//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the DominatorTree class, which provides fast and efficient // dominance queries. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_DOMINATORS_H #define LLVM_ANALYSIS_DOMINATORS_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/Function.h" #include "llvm/Pass.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> namespace llvm { //===----------------------------------------------------------------------===// /// DominatorBase - Base class that other, more interesting dominator analyses /// inherit from. /// template <class NodeT> class DominatorBase { protected: std::vector<NodeT*> Roots; const bool IsPostDominators; inline explicit DominatorBase(bool isPostDom) : Roots(), IsPostDominators(isPostDom) {} public: /// getRoots - Return the root blocks of the current CFG. This may include /// multiple blocks if we are computing post dominators. For forward /// dominators, this will always be a single block (the entry node). /// inline const std::vector<NodeT*> &getRoots() const { return Roots; } /// isPostDominator - Returns true if analysis based of postdoms /// bool isPostDominator() const { return IsPostDominators; } }; //===----------------------------------------------------------------------===// // DomTreeNode - Dominator Tree Node template<class NodeT> class DominatorTreeBase; struct PostDominatorTree; class MachineBasicBlock; template <class NodeT> class DomTreeNodeBase { NodeT *TheBB; DomTreeNodeBase<NodeT> *IDom; std::vector<DomTreeNodeBase<NodeT> *> Children; int DFSNumIn, DFSNumOut; template<class N> friend class DominatorTreeBase; friend struct PostDominatorTree; public: typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator; typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator const_iterator; iterator begin() { return Children.begin(); } iterator end() { return Children.end(); } const_iterator begin() const { return Children.begin(); } const_iterator end() const { return Children.end(); } NodeT *getBlock() const { return TheBB; } DomTreeNodeBase<NodeT> *getIDom() const { return IDom; } const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const { return Children; } DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom) : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { } DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) { Children.push_back(C); return C; } size_t getNumChildren() const { return Children.size(); } void clearAllChildren() { Children.clear(); } bool compare(const DomTreeNodeBase<NodeT> *Other) const { if (getNumChildren() != Other->getNumChildren()) return true; SmallPtrSet<const NodeT *, 4> OtherChildren; for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) { const NodeT *Nd = (*I)->getBlock(); OtherChildren.insert(Nd); } for (const_iterator I = begin(), E = end(); I != E; ++I) { const NodeT *N = (*I)->getBlock(); if (OtherChildren.count(N) == 0) return true; } return false; } void setIDom(DomTreeNodeBase<NodeT> *NewIDom) { assert(IDom && "No immediate dominator?"); if (IDom != NewIDom) { typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I = std::find(IDom->Children.begin(), IDom->Children.end(), this); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child... IDom->Children.erase(I); // Switch to new dominator IDom = NewIDom; IDom->Children.push_back(this); } } /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do /// not call them. unsigned getDFSNumIn() const { return DFSNumIn; } unsigned getDFSNumOut() const { return DFSNumOut; } private: // Return true if this node is dominated by other. Use this only if DFS info // is valid. bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const { return this->DFSNumIn >= other->DFSNumIn && this->DFSNumOut <= other->DFSNumOut; } }; EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>); EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>); template<class NodeT> inline raw_ostream &operator<<(raw_ostream &o, const DomTreeNodeBase<NodeT> *Node) { if (Node->getBlock()) WriteAsOperand(o, Node->getBlock(), false); else o << " <<exit node>>"; o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}"; return o << "\n"; } template<class NodeT> inline void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o, unsigned Lev) { o.indent(2*Lev) << "[" << Lev << "] " << N; for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(), E = N->end(); I != E; ++I) PrintDomTree<NodeT>(*I, o, Lev+1); } typedef DomTreeNodeBase<BasicBlock> DomTreeNode; //===----------------------------------------------------------------------===// /// DominatorTree - Calculate the immediate dominator tree for a function. /// template<class FuncT, class N> void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT, FuncT& F); template<class NodeT> class DominatorTreeBase : public DominatorBase<NodeT> { bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, const DomTreeNodeBase<NodeT> *B) const { assert(A != B); assert(isReachableFromEntry(B)); assert(isReachableFromEntry(A)); const DomTreeNodeBase<NodeT> *IDom; while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B) B = IDom; // Walk up the tree return IDom != 0; } protected: typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType; DomTreeNodeMapType DomTreeNodes; DomTreeNodeBase<NodeT> *RootNode; bool DFSInfoValid; unsigned int SlowQueries; // Information record used during immediate dominators computation. struct InfoRec { unsigned DFSNum; unsigned Parent; unsigned Semi; NodeT *Label; InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {} }; DenseMap<NodeT*, NodeT*> IDoms; // Vertex - Map the DFS number to the BasicBlock* std::vector<NodeT*> Vertex; // Info - Collection of information used during the computation of idoms. DenseMap<NodeT*, InfoRec> Info; void reset() { for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(), E = DomTreeNodes.end(); I != E; ++I) delete I->second; DomTreeNodes.clear(); IDoms.clear(); this->Roots.clear(); Vertex.clear(); RootNode = 0; } // NewBB is split and now it has one successor. Update dominator tree to // reflect this change. template<class N, class GraphT> void Split(DominatorTreeBase<typename GraphT::NodeType>& DT, typename GraphT::NodeType* NewBB) { assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1 && "NewBB should have a single successor!"); typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB); std::vector<typename GraphT::NodeType*> PredBlocks; typedef GraphTraits<Inverse<N> > InvTraits; for (typename InvTraits::ChildIteratorType PI = InvTraits::child_begin(NewBB), PE = InvTraits::child_end(NewBB); PI != PE; ++PI) PredBlocks.push_back(*PI); assert(!PredBlocks.empty() && "No predblocks?"); bool NewBBDominatesNewBBSucc = true; for (typename InvTraits::ChildIteratorType PI = InvTraits::child_begin(NewBBSucc), E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) { typename InvTraits::NodeType *ND = *PI; if (ND != NewBB && !DT.dominates(NewBBSucc, ND) && DT.isReachableFromEntry(ND)) { NewBBDominatesNewBBSucc = false; break; } } // Find NewBB's immediate dominator and create new dominator tree node for // NewBB. NodeT *NewBBIDom = 0; unsigned i = 0; for (i = 0; i < PredBlocks.size(); ++i) if (DT.isReachableFromEntry(PredBlocks[i])) { NewBBIDom = PredBlocks[i]; break; } // It's possible that none of the predecessors of NewBB are reachable; // in that case, NewBB itself is unreachable, so nothing needs to be // changed. if (!NewBBIDom) return; for (i = i + 1; i < PredBlocks.size(); ++i) { if (DT.isReachableFromEntry(PredBlocks[i])) NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]); } // Create the new dominator tree node... and set the idom of NewBB. DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom); // If NewBB strictly dominates other blocks, then it is now the immediate // dominator of NewBBSucc. Update the dominator tree as appropriate. if (NewBBDominatesNewBBSucc) { DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc); DT.changeImmediateDominator(NewBBSuccNode, NewBBNode); } } public: explicit DominatorTreeBase(bool isPostDom) : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {} virtual ~DominatorTreeBase() { reset(); } /// compare - Return false if the other dominator tree base matches this /// dominator tree base. Otherwise return true. bool compare(DominatorTreeBase &Other) const { const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; if (DomTreeNodes.size() != OtherDomTreeNodes.size()) return true; for (typename DomTreeNodeMapType::const_iterator I = this->DomTreeNodes.begin(), E = this->DomTreeNodes.end(); I != E; ++I) { NodeT *BB = I->first; typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB); if (OI == OtherDomTreeNodes.end()) return true; DomTreeNodeBase<NodeT>* MyNd = I->second; DomTreeNodeBase<NodeT>* OtherNd = OI->second; if (MyNd->compare(OtherNd)) return true; } return false; } virtual void releaseMemory() { reset(); } /// getNode - return the (Post)DominatorTree node for the specified basic /// block. This is the same as using operator[] on this class. /// inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const { return DomTreeNodes.lookup(BB); } /// getRootNode - This returns the entry node for the CFG of the function. If /// this tree represents the post-dominance relations for a function, however, /// this root may be a node with the block == NULL. This is the case when /// there are multiple exit nodes from a particular function. Consumers of /// post-dominance information must be capable of dealing with this /// possibility. /// DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; } const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; } /// properlyDominates - Returns true iff A dominates B and A != B. /// Note that this is not a constant time operation! /// bool properlyDominates(const DomTreeNodeBase<NodeT> *A, const DomTreeNodeBase<NodeT> *B) { if (A == 0 || B == 0) return false; if (A == B) return false; return dominates(A, B); } bool properlyDominates(const NodeT *A, const NodeT *B); /// isReachableFromEntry - Return true if A is dominated by the entry /// block of the function containing it. bool isReachableFromEntry(const NodeT* A) const { assert(!this->isPostDominator() && "This is not implemented for post dominators"); return isReachableFromEntry(getNode(const_cast<NodeT *>(A))); } inline bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; } /// dominates - Returns true iff A dominates B. Note that this is not a /// constant time operation! /// inline bool dominates(const DomTreeNodeBase<NodeT> *A, const DomTreeNodeBase<NodeT> *B) { // A node trivially dominates itself. if (B == A) return true; // An unreachable node is dominated by anything. if (!isReachableFromEntry(B)) return true; // And dominates nothing. if (!isReachableFromEntry(A)) return false; // Compare the result of the tree walk and the dfs numbers, if expensive // checks are enabled. #ifdef XDEBUG assert((!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && "Tree walk disagrees with dfs numbers!"); #endif if (DFSInfoValid) return B->DominatedBy(A); // If we end up with too many slow queries, just update the // DFS numbers on the theory that we are going to keep querying. SlowQueries++; if (SlowQueries > 32) { updateDFSNumbers(); return B->DominatedBy(A); } return dominatedBySlowTreeWalk(A, B); } bool dominates(const NodeT *A, const NodeT *B); NodeT *getRoot() const { assert(this->Roots.size() == 1 && "Should always have entry node!"); return this->Roots[0]; } /// findNearestCommonDominator - Find nearest common dominator basic block /// for basic block A and B. If there is no such block then return NULL. NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) { assert(A->getParent() == B->getParent() && "Two blocks are not in same function"); // If either A or B is a entry block then it is nearest common dominator // (for forward-dominators). if (!this->isPostDominator()) { NodeT &Entry = A->getParent()->front(); if (A == &Entry || B == &Entry) return &Entry; } // If B dominates A then B is nearest common dominator. if (dominates(B, A)) return B; // If A dominates B then A is nearest common dominator. if (dominates(A, B)) return A; DomTreeNodeBase<NodeT> *NodeA = getNode(A); DomTreeNodeBase<NodeT> *NodeB = getNode(B); // Collect NodeA dominators set. SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms; NodeADoms.insert(NodeA); DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom(); while (IDomA) { NodeADoms.insert(IDomA); IDomA = IDomA->getIDom(); } // Walk NodeB immediate dominators chain and find common dominator node. DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom(); while (IDomB) { if (NodeADoms.count(IDomB) != 0) return IDomB->getBlock(); IDomB = IDomB->getIDom(); } return NULL; } const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) { // Cast away the const qualifiers here. This is ok since // const is re-introduced on the return type. return findNearestCommonDominator(const_cast<NodeT *>(A), const_cast<NodeT *>(B)); } //===--------------------------------------------------------------------===// // API to update (Post)DominatorTree information based on modifications to // the CFG... /// addNewBlock - Add a new node to the dominator tree information. This /// creates a new node as a child of DomBB dominator node,linking it into /// the children list of the immediate dominator. DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) { assert(getNode(BB) == 0 && "Block already in dominator tree!"); DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB); assert(IDomNode && "Not immediate dominator specified for block!"); DFSInfoValid = false; return DomTreeNodes[BB] = IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode)); } /// changeImmediateDominator - This method is used to update the dominator /// tree information when a node's immediate dominator changes. /// void changeImmediateDominator(DomTreeNodeBase<NodeT> *N, DomTreeNodeBase<NodeT> *NewIDom) { assert(N && NewIDom && "Cannot change null node pointers!"); DFSInfoValid = false; N->setIDom(NewIDom); } void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { changeImmediateDominator(getNode(BB), getNode(NewBB)); } /// eraseNode - Removes a node from the dominator tree. Block must not /// dominate any other blocks. Removes node from its immediate dominator's /// children list. Deletes dominator node associated with basic block BB. void eraseNode(NodeT *BB) { DomTreeNodeBase<NodeT> *Node = getNode(BB); assert(Node && "Removing node that isn't in dominator tree."); assert(Node->getChildren().empty() && "Node is not a leaf node."); // Remove node from immediate dominator's children list. DomTreeNodeBase<NodeT> *IDom = Node->getIDom(); if (IDom) { typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I = std::find(IDom->Children.begin(), IDom->Children.end(), Node); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child... IDom->Children.erase(I); } DomTreeNodes.erase(BB); delete Node; } /// removeNode - Removes a node from the dominator tree. Block must not /// dominate any other blocks. Invalidates any node pointing to removed /// block. void removeNode(NodeT *BB) { assert(getNode(BB) && "Removing node that isn't in dominator tree."); DomTreeNodes.erase(BB); } /// splitBlock - BB is split and now it has one successor. Update dominator /// tree to reflect this change. void splitBlock(NodeT* NewBB) { if (this->IsPostDominators) this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB); else this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB); } /// print - Convert to human readable form /// void print(raw_ostream &o) const { o << "=============================--------------------------------\n"; if (this->isPostDominator()) o << "Inorder PostDominator Tree: "; else o << "Inorder Dominator Tree: "; if (!this->DFSInfoValid) o << "DFSNumbers invalid: " << SlowQueries << " slow queries."; o << "\n"; // The postdom tree can have a null root if there are no returns. if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), o, 1); } protected: template<class GraphT> friend typename GraphT::NodeType* Eval( DominatorTreeBase<typename GraphT::NodeType>& DT, typename GraphT::NodeType* V, unsigned LastLinked); template<class GraphT> friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT, typename GraphT::NodeType* V, unsigned N); template<class FuncT, class N> friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT, FuncT& F); /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking /// dominator tree in dfs order. void updateDFSNumbers() { unsigned DFSNum = 0; SmallVector<std::pair<DomTreeNodeBase<NodeT>*, typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack; DomTreeNodeBase<NodeT> *ThisRoot = getRootNode(); if (!ThisRoot) return; // Even in the case of multiple exits that form the post dominator root // nodes, do not iterate over all exits, but start from the virtual root // node. Otherwise bbs, that are not post dominated by any exit but by the // virtual root node, will never be assigned a DFS number. WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin())); ThisRoot->DFSNumIn = DFSNum++; while (!WorkStack.empty()) { DomTreeNodeBase<NodeT> *Node = WorkStack.back().first; typename DomTreeNodeBase<NodeT>::iterator ChildIt = WorkStack.back().second; // If we visited all of the children of this node, "recurse" back up the // stack setting the DFOutNum. if (ChildIt == Node->end()) { Node->DFSNumOut = DFSNum++; WorkStack.pop_back(); } else { // Otherwise, recursively visit this child. DomTreeNodeBase<NodeT> *Child = *ChildIt; ++WorkStack.back().second; WorkStack.push_back(std::make_pair(Child, Child->begin())); Child->DFSNumIn = DFSNum++; } } SlowQueries = 0; DFSInfoValid = true; } DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) { if (DomTreeNodeBase<NodeT> *Node = getNode(BB)) return Node; // Haven't calculated this node yet? Get or calculate the node for the // immediate dominator. NodeT *IDom = getIDom(BB); assert(IDom || this->DomTreeNodes[NULL]); DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode); return this->DomTreeNodes[BB] = IDomNode->addChild(C); } inline NodeT *getIDom(NodeT *BB) const { return IDoms.lookup(BB); } inline void addRoot(NodeT* BB) { this->Roots.push_back(BB); } public: /// recalculate - compute a dominator tree for the given function template<class FT> void recalculate(FT& F) { typedef GraphTraits<FT*> TraitsTy; reset(); this->Vertex.push_back(0); if (!this->IsPostDominators) { // Initialize root NodeT *entry = TraitsTy::getEntryNode(&F); this->Roots.push_back(entry); this->IDoms[entry] = 0; this->DomTreeNodes[entry] = 0; Calculate<FT, NodeT*>(*this, F); } else { // Initialize the roots list for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F), E = TraitsTy::nodes_end(&F); I != E; ++I) { if (TraitsTy::child_begin(I) == TraitsTy::child_end(I)) addRoot(I); // Prepopulate maps so that we don't get iterator invalidation issues later. this->IDoms[I] = 0; this->DomTreeNodes[I] = 0; } Calculate<FT, Inverse<NodeT*> >(*this, F); } } }; // These two functions are declared out of line as a workaround for building // with old (< r147295) versions of clang because of pr11642. template<class NodeT> bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) { if (A == B) return true; // Cast away the const qualifiers here. This is ok since // this function doesn't actually return the values returned // from getNode. return dominates(getNode(const_cast<NodeT *>(A)), getNode(const_cast<NodeT *>(B))); } template<class NodeT> bool DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) { if (A == B) return false; // Cast away the const qualifiers here. This is ok since // this function doesn't actually return the values returned // from getNode. return dominates(getNode(const_cast<NodeT *>(A)), getNode(const_cast<NodeT *>(B))); } EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>); class BasicBlockEdge { const BasicBlock *Start; const BasicBlock *End; public: BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) : Start(Start_), End(End_) { } const BasicBlock *getStart() const { return Start; } const BasicBlock *getEnd() const { return End; } bool isSingleEdge() const; }; //===------------------------------------- /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to /// compute a normal dominator tree. /// class DominatorTree : public FunctionPass { public: static char ID; // Pass ID, replacement for typeid DominatorTreeBase<BasicBlock>* DT; DominatorTree() : FunctionPass(ID) { initializeDominatorTreePass(*PassRegistry::getPassRegistry()); DT = new DominatorTreeBase<BasicBlock>(false); } ~DominatorTree() { delete DT; } DominatorTreeBase<BasicBlock>& getBase() { return *DT; } /// getRoots - Return the root blocks of the current CFG. This may include /// multiple blocks if we are computing post dominators. For forward /// dominators, this will always be a single block (the entry node). /// inline const std::vector<BasicBlock*> &getRoots() const { return DT->getRoots(); } inline BasicBlock *getRoot() const { return DT->getRoot(); } inline DomTreeNode *getRootNode() const { return DT->getRootNode(); } /// compare - Return false if the other dominator tree matches this /// dominator tree. Otherwise return true. inline bool compare(DominatorTree &Other) const { DomTreeNode *R = getRootNode(); DomTreeNode *OtherR = Other.getRootNode(); if (!R || !OtherR || R->getBlock() != OtherR->getBlock()) return true; if (DT->compare(Other.getBase())) return true; return false; } virtual bool runOnFunction(Function &F); virtual void verifyAnalysis() const; virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const { return DT->dominates(A, B); } inline bool dominates(const BasicBlock* A, const BasicBlock* B) const { return DT->dominates(A, B); } // dominates - Return true if Def dominates a use in User. This performs // the special checks necessary if Def and User are in the same basic block. // Note that Def doesn't dominate a use in Def itself! bool dominates(const Instruction *Def, const Use &U) const; bool dominates(const Instruction *Def, const Instruction *User) const; bool dominates(const Instruction *Def, const BasicBlock *BB) const; bool dominates(const BasicBlockEdge &BBE, const Use &U) const; bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const; bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const { return DT->properlyDominates(A, B); } bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const { return DT->properlyDominates(A, B); } /// findNearestCommonDominator - Find nearest common dominator basic block /// for basic block A and B. If there is no such block then return NULL. inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) { return DT->findNearestCommonDominator(A, B); } inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A, const BasicBlock *B) { return DT->findNearestCommonDominator(A, B); } inline DomTreeNode *operator[](BasicBlock *BB) const { return DT->getNode(BB); } /// getNode - return the (Post)DominatorTree node for the specified basic /// block. This is the same as using operator[] on this class. /// inline DomTreeNode *getNode(BasicBlock *BB) const { return DT->getNode(BB); } /// addNewBlock - Add a new node to the dominator tree information. This /// creates a new node as a child of DomBB dominator node,linking it into /// the children list of the immediate dominator. inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) { return DT->addNewBlock(BB, DomBB); } /// changeImmediateDominator - This method is used to update the dominator /// tree information when a node's immediate dominator changes. /// inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) { DT->changeImmediateDominator(N, NewIDom); } inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) { DT->changeImmediateDominator(N, NewIDom); } /// eraseNode - Removes a node from the dominator tree. Block must not /// dominate any other blocks. Removes node from its immediate dominator's /// children list. Deletes dominator node associated with basic block BB. inline void eraseNode(BasicBlock *BB) { DT->eraseNode(BB); } /// splitBlock - BB is split and now it has one successor. Update dominator /// tree to reflect this change. inline void splitBlock(BasicBlock* NewBB) { DT->splitBlock(NewBB); } bool isReachableFromEntry(const BasicBlock* A) const { return DT->isReachableFromEntry(A); } bool isReachableFromEntry(const Use &U) const; virtual void releaseMemory() { DT->releaseMemory(); } virtual void print(raw_ostream &OS, const Module* M= 0) const; }; //===------------------------------------- /// DominatorTree GraphTraits specialization so the DominatorTree can be /// iterable by generic graph iterators. /// template <> struct GraphTraits<DomTreeNode*> { typedef DomTreeNode NodeType; typedef NodeType::iterator ChildIteratorType; static NodeType *getEntryNode(NodeType *N) { return N; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->end(); } typedef df_iterator<DomTreeNode*> nodes_iterator; static nodes_iterator nodes_begin(DomTreeNode *N) { return df_begin(getEntryNode(N)); } static nodes_iterator nodes_end(DomTreeNode *N) { return df_end(getEntryNode(N)); } }; template <> struct GraphTraits<DominatorTree*> : public GraphTraits<DomTreeNode*> { static NodeType *getEntryNode(DominatorTree *DT) { return DT->getRootNode(); } static nodes_iterator nodes_begin(DominatorTree *N) { return df_begin(getEntryNode(N)); } static nodes_iterator nodes_end(DominatorTree *N) { return df_end(getEntryNode(N)); } }; } // End llvm namespace #endif