You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3128 lines
97 KiB
3128 lines
97 KiB
//========= Copyright (c) 1996-2006, Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose:
|
|
//
|
|
// $NoKeywords: $
|
|
//===========================================================================//
|
|
|
|
#include "quakedef.h"
|
|
#include "lightcache.h"
|
|
#include "cmodel_engine.h"
|
|
#include "istudiorender.h"
|
|
#include "studio_internal.h"
|
|
#include "bspfile.h"
|
|
#include "cdll_engine_int.h"
|
|
#include "tier1/mempool.h"
|
|
#include "gl_model_private.h"
|
|
#include "r_local.h"
|
|
#include "materialsystem/imaterialsystemhardwareconfig.h"
|
|
#include "materialsystem/imaterialsystem.h"
|
|
#include "materialsystem/imaterial.h"
|
|
#include "materialsystem/imaterialvar.h"
|
|
#include "l_studio.h"
|
|
#include "debugoverlay.h"
|
|
#include "worldsize.h"
|
|
#include "ispatialpartitioninternal.h"
|
|
#include "staticpropmgr.h"
|
|
#include "cmodel_engine.h"
|
|
#include "icliententitylist.h"
|
|
#include "icliententity.h"
|
|
#include "enginetrace.h"
|
|
#include "client.h"
|
|
#include "cl_main.h"
|
|
#include "collisionutils.h"
|
|
#include "tier0/vprof.h"
|
|
#include "filesystem_engine.h"
|
|
#include "mathlib/anorms.h"
|
|
#include "gl_matsysiface.h"
|
|
#include "materialsystem/materialsystem_config.h"
|
|
#include "tier2/tier2.h"
|
|
|
|
// memdbgon must be the last include file in a .cpp file!!!
|
|
#include "tier0/memdbgon.h"
|
|
|
|
// EMIT_SURFACE LIGHTS:
|
|
//
|
|
// Dim emit_surface lights go in the ambient cube because there are a ton of them and they are often so dim that
|
|
// they get filtered out by r_worldlightmin.
|
|
//
|
|
// (Dim) emit_surface lights only get calculated at runtime for static props because static props
|
|
// do the full calculation of ambient lighting at runtime instead of using vrad's per-leaf
|
|
// calculation. Vrad's calculation includes the emit_surfaces, so if we're NOT using it, then
|
|
// we want to include emit_surface lights here.
|
|
|
|
|
|
// this should be prime to make the hash better
|
|
#define MAX_CACHE_ENTRY 200
|
|
#define MAX_CACHE_BUCKETS MAX_CACHE_ENTRY
|
|
|
|
// number of bits per grid in x, y, z
|
|
#define HASH_GRID_SIZEX 5
|
|
#define HASH_GRID_SIZEY 5
|
|
#define HASH_GRID_SIZEZ 7
|
|
|
|
#define LIGHTCACHE_SNAP_EPSILON 0.5f
|
|
|
|
float Engine_WorldLightDistanceFalloff( const dworldlight_t *wl, const Vector& delta, bool bNoRadiusCheck = false );
|
|
float Engine_WorldLightAngle( const dworldlight_t *wl, const Vector& lnormal, const Vector& snormal, const Vector& delta );
|
|
|
|
#define MAX_LIGHTSTYLE_BITS MAX_LIGHTSTYLES
|
|
#define MAX_LIGHTSTYLE_BYTES ( (MAX_LIGHTSTYLE_BITS + 7) / 8 )
|
|
|
|
static byte g_FrameMissCount = 0;
|
|
static int g_FrameIndex = 0;
|
|
ConVar lightcache_maxmiss("lightcache_maxmiss","2", FCVAR_CHEAT);
|
|
|
|
#define NUMRANDOMNORMALS 162
|
|
static Vector s_raddir[NUMRANDOMNORMALS] = {
|
|
#include "randomnormals.h"
|
|
};
|
|
|
|
static ConVar r_lightcache_numambientsamples( "r_lightcache_numambientsamples", "162", FCVAR_CHEAT,
|
|
"number of random directions to fire rays when computing ambient lighting",
|
|
true, 1.0f, true, ( float )NUMRANDOMNORMALS );
|
|
|
|
ConVar r_ambientlightingonly(
|
|
"r_ambientlightingonly",
|
|
"0",
|
|
FCVAR_CHEAT,
|
|
"Set this to 1 to light models with only ambient lighting (and no static lighting)." );
|
|
|
|
ConVar r_oldlightselection("r_oldlightselection", "0", FCVAR_CHEAT, "Set this to revert to HL2's method of selecting lights");
|
|
ConVar r_lightcache_radiusfactor( "r_lightcache_radiusfactor", "1000", FCVAR_CHEAT, "Allow lights to influence lightcaches beyond the lights' radii" );
|
|
|
|
// global ambient term test convars
|
|
ConVar mat_ambient_light_r( "mat_ambient_light_r", "0.0", FCVAR_CHEAT );
|
|
ConVar mat_ambient_light_g( "mat_ambient_light_g", "0.0", FCVAR_CHEAT );
|
|
ConVar mat_ambient_light_b( "mat_ambient_light_b", "0.0", FCVAR_CHEAT );
|
|
|
|
|
|
static void ComputeAmbientFromSphericalSamples( const Vector& start,
|
|
Vector* lightBoxColor );
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Cache used to compute which lightcache entries computed this frame
|
|
// may be able to be used temporarily for lighting other objects in the
|
|
// case where we've got too many new lightcache samples in a single frame
|
|
//-----------------------------------------------------------------------------
|
|
struct CacheInfo_t
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int leaf;
|
|
};
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Lightcache entry
|
|
//-----------------------------------------------------------------------------
|
|
enum
|
|
{
|
|
HACKLIGHTCACHEFLAGS_HASSWITCHABLELIGHTSTYLE = 0x1,
|
|
HACKLIGHTCACHEFLAGS_HASNONSWITCHABLELIGHTSTYLE = 0x2, // flickering lights
|
|
HACKLIGHTCACHEFLAGS_HASDONESTATICLIGHTING = 0x4, // for static props
|
|
};
|
|
|
|
|
|
struct LightingStateInfo_t
|
|
{
|
|
float m_pIllum[MAXLOCALLIGHTS];
|
|
LightingStateInfo_t()
|
|
{
|
|
memset( this, 0, sizeof( *this ) );
|
|
}
|
|
void Clear()
|
|
{
|
|
memset( this, 0, sizeof( *this ) );
|
|
}
|
|
};
|
|
|
|
|
|
// This holds the shared data between lightcache_t and PropLightcache_t.
|
|
// This way, PropLightcache_t can be about half the size, since it doesn't need a bunch of data in lightcache_t.
|
|
class CBaseLightCache : public LightingStateInfo_t
|
|
{
|
|
public:
|
|
CBaseLightCache()
|
|
{
|
|
m_pEnvCubemapTexture = NULL;
|
|
memset( m_pLightstyles, 0, sizeof( m_pLightstyles ) );
|
|
m_LightingFlags = 0;
|
|
m_LastFrameUpdated_LightStyles = -1;
|
|
}
|
|
|
|
bool HasLightStyle()
|
|
{
|
|
return ( m_LightingFlags & ( HACKLIGHTCACHEFLAGS_HASSWITCHABLELIGHTSTYLE | HACKLIGHTCACHEFLAGS_HASNONSWITCHABLELIGHTSTYLE ) ) ? true : false;
|
|
}
|
|
|
|
bool HasSwitchableLightStyle()
|
|
{
|
|
return ( m_LightingFlags & HACKLIGHTCACHEFLAGS_HASSWITCHABLELIGHTSTYLE ) ? true : false;
|
|
}
|
|
|
|
bool HasNonSwitchableLightStyle()
|
|
{
|
|
return ( m_LightingFlags & HACKLIGHTCACHEFLAGS_HASNONSWITCHABLELIGHTSTYLE ) ? true : false;
|
|
}
|
|
|
|
public:
|
|
// cache for static lighting . . never changes after cache creation
|
|
// preserved because static prop's color meshes are under cache control
|
|
LightingState_t m_StaticLightingState;
|
|
|
|
// cache for light styles
|
|
LightingState_t m_LightStyleLightingState; // This includes m_StaticLightingState
|
|
int m_LastFrameUpdated_LightStyles;
|
|
|
|
LightingState_t m_DynamicLightingState; // This includes m_LightStyleLightingState
|
|
int m_LastFrameUpdated_DynamicLighting;
|
|
|
|
LightingState_t m_DynamicAmbientLightingState; // This includes m_DynamicLightingState
|
|
|
|
// FIXME: could just use m_LightStyleWorldLights.Count() if we are a static prop
|
|
int m_LightingFlags; /* LightCacheFlags_t */
|
|
int leaf;
|
|
|
|
unsigned char m_pLightstyles[MAX_LIGHTSTYLE_BYTES];
|
|
|
|
// for a dynamic prop, ideally the cache center if valid space, otherwise initial origin
|
|
// for a static prop, the provided origin
|
|
Vector m_LightingOrigin;
|
|
|
|
// env_cubemap texture associated with this entry.
|
|
ITexture * m_pEnvCubemapTexture;
|
|
};
|
|
|
|
class lightcache_t : public CBaseLightCache
|
|
{
|
|
public:
|
|
lightcache_t()
|
|
{
|
|
m_LastFrameUpdated_DynamicLighting = -1;
|
|
}
|
|
|
|
public:
|
|
|
|
// Precalculated for the static lighting from AddWorldLightToLightingState.
|
|
dworldlight_t *m_StaticPrecalc_LocalLight[MAXLOCALLIGHTS];
|
|
unsigned short m_StaticPrecalc_NumLocalLights;
|
|
LightingStateInfo_t m_StaticPrecalc_LightingStateInfo;
|
|
// the boxcolor is stored in m_StaticLightingState.
|
|
|
|
|
|
// bucket singly linked list.
|
|
unsigned short next; // index into lightcache
|
|
unsigned short bucket; // index into lightbuckets
|
|
|
|
// lru links
|
|
unsigned short lru_prev;
|
|
unsigned short lru_next;
|
|
|
|
int x,y,z;
|
|
};
|
|
|
|
struct PropLightcache_t : public CBaseLightCache
|
|
{
|
|
public:
|
|
// Linked into s_pAllStaticProps.
|
|
PropLightcache_t *m_pNextPropLightcache;
|
|
|
|
unsigned int m_Flags; // corresponds to LIGHTCACHEFLAGS_*
|
|
// stuff for pushing lights onto static props
|
|
int m_DLightActive; // bit field for which dlights currently affect us.
|
|
// recomputed by AddDlightsForStaticProps
|
|
int m_DLightMarkFrame; // last frame in which a dlight was marked on this prop (helps detect lights that are marked but have moved away from this prop)
|
|
CUtlVector<short> m_LightStyleWorldLights; // This is a list of lights that affect this static prop cache entry.
|
|
int m_SwitchableLightFrame; // This is the last frame that switchable lights were calculated.
|
|
Vector mins; // fixme: make these smaller
|
|
Vector maxs; // fixme: make these smaller
|
|
|
|
bool HasDlights() { return m_DLightActive ? true : false; }
|
|
PropLightcache_t()
|
|
{
|
|
m_Flags = 0;
|
|
m_SwitchableLightFrame = -1;
|
|
m_DLightActive = 0;
|
|
m_DLightMarkFrame = 0;
|
|
}
|
|
};
|
|
|
|
|
|
// NOTE! Changed from 4 to 3 for L4D! May or may not want to merge this to main.
|
|
#ifdef POSIX
|
|
ConVar r_worldlights ("r_worldlights", "2", 0, "number of world lights to use per vertex" );
|
|
// JasonM GL - capping at 2 world lights at the moment
|
|
#else
|
|
ConVar r_worldlights ("r_worldlights", "3", 0, "number of world lights to use per vertex" );
|
|
#endif
|
|
ConVar r_radiosity ("r_radiosity", "4", FCVAR_CHEAT, "0: no radiosity\n1: radiosity with ambient cube (6 samples)\n2: radiosity with 162 samples\n3: 162 samples for static props, 6 samples for everything else" );
|
|
ConVar r_worldlightmin ("r_worldlightmin", "0.0002" );
|
|
ConVar r_avglight ("r_avglight", "1", FCVAR_CHEAT);
|
|
static ConVar r_drawlightcache ("r_drawlightcache", "0", FCVAR_CHEAT, "0: off\n1: draw light cache entries\n2: draw rays\n");
|
|
static ConVar r_minnewsamples ("r_minnewsamples", "3");
|
|
static ConVar r_maxnewsamples ("r_maxnewsamples", "6");
|
|
static ConVar r_maxsampledist ("r_maxsampledist", "128");
|
|
static ConVar r_lightcachecenter ("r_lightcachecenter", "1", FCVAR_CHEAT );
|
|
|
|
CON_COMMAND_F( r_lightcache_invalidate, "", FCVAR_CHEAT )
|
|
{
|
|
R_StudioInitLightingCache();
|
|
}
|
|
|
|
// head and tail sentinels of the LRU
|
|
#define LIGHT_LRU_HEAD_INDEX MAX_CACHE_ENTRY
|
|
#define LIGHT_LRU_TAIL_INDEX (MAX_CACHE_ENTRY+1)
|
|
|
|
static lightcache_t lightcache[MAX_CACHE_ENTRY + 2]; // the extra 2 are the head and tail
|
|
static unsigned short lightbuckets[MAX_CACHE_BUCKETS];
|
|
|
|
static CClassMemoryPool<PropLightcache_t> s_PropCache( 256, CClassMemoryPool<lightcache_t>::GROW_SLOW );
|
|
|
|
// A memory pool of lightcache entries that is
|
|
static int cached_r_worldlights = -1;
|
|
static int cached_r_radiosity = -1;
|
|
static int cached_r_avglight = -1;
|
|
static int cached_mat_fullbright = -1;
|
|
static int cached_r_lightcache_numambientsamples = -1;
|
|
static PropLightcache_t* s_pAllStaticProps = NULL;
|
|
|
|
|
|
// Used to convert RGB colors to greyscale intensity
|
|
static Vector s_Grayscale( 0.299f, 0.587f, 0.114f );
|
|
|
|
#define BIT_SET( a, b ) ((a)[(b)>>3] & (1<<((b)&7)))
|
|
|
|
|
|
inline unsigned short GetLightCacheIndex( const lightcache_t *pCache )
|
|
{
|
|
return pCache - lightcache;
|
|
}
|
|
|
|
inline lightcache_t& GetLightLRUHead()
|
|
{
|
|
return lightcache[LIGHT_LRU_HEAD_INDEX];
|
|
}
|
|
|
|
inline lightcache_t& GetLightLRUTail()
|
|
{
|
|
return lightcache[LIGHT_LRU_TAIL_INDEX];
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: Set up the LRU
|
|
//-----------------------------------------------------------------------------
|
|
void R_StudioInitLightingCache( void )
|
|
{
|
|
unsigned short i;
|
|
|
|
memset( lightcache, 0, sizeof(lightcache) );
|
|
|
|
for ( i=0; i < ARRAYSIZE( lightcache ); i++ )
|
|
lightcache[i].bucket = 0xFFFF;
|
|
|
|
for ( i=0; i < ARRAYSIZE( lightbuckets ); i++ )
|
|
lightbuckets[i] = 0xFFFF;
|
|
|
|
unsigned short last = LIGHT_LRU_HEAD_INDEX;
|
|
// Link every node into the LRU
|
|
for ( i = 0; i < MAX_CACHE_ENTRY-1; i++)
|
|
{
|
|
lightcache[i].lru_prev = last;
|
|
lightcache[i].lru_next = i + 1;
|
|
last = i;
|
|
}
|
|
// terminate the lru list
|
|
lightcache[i].lru_prev = last;
|
|
lightcache[i].lru_next = LIGHT_LRU_TAIL_INDEX;
|
|
|
|
// link the sentinels
|
|
lightcache[LIGHT_LRU_HEAD_INDEX].lru_next = 0;
|
|
lightcache[LIGHT_LRU_TAIL_INDEX].lru_prev = i;
|
|
|
|
// Lower number of lights on older hardware
|
|
if ( g_pMaterialSystemHardwareConfig->MaxNumLights() < r_worldlights.GetInt() )
|
|
{
|
|
r_worldlights.SetValue( g_pMaterialSystemHardwareConfig->MaxNumLights() );
|
|
}
|
|
|
|
cached_r_worldlights = r_worldlights.GetInt();
|
|
cached_r_radiosity = r_radiosity.GetInt();
|
|
cached_r_avglight = r_avglight.GetInt();
|
|
cached_mat_fullbright = g_pMaterialSystemConfig->nFullbright;
|
|
cached_r_lightcache_numambientsamples = r_lightcache_numambientsamples.GetInt();
|
|
|
|
// Recompute all static lighting
|
|
InvalidateStaticLightingCache();
|
|
}
|
|
|
|
|
|
void R_StudioCheckReinitLightingCache()
|
|
{
|
|
// Make sure this stays clamped to match hardware capabilities
|
|
if ( g_pMaterialSystemHardwareConfig->MaxNumLights() < r_worldlights.GetInt() )
|
|
{
|
|
r_worldlights.SetValue( g_pMaterialSystemHardwareConfig->MaxNumLights() );
|
|
}
|
|
|
|
// Flush the lighting cache, if necessary
|
|
if (cached_r_worldlights != r_worldlights.GetInt() ||
|
|
cached_r_radiosity != r_radiosity.GetInt() ||
|
|
cached_r_avglight != r_avglight.GetInt() ||
|
|
cached_mat_fullbright != g_pMaterialSystemConfig->nFullbright ||
|
|
cached_r_lightcache_numambientsamples != r_lightcache_numambientsamples.GetInt() )
|
|
{
|
|
R_StudioInitLightingCache();
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: Moves this cache entry to the end of the lru, i.e. marks it recently used
|
|
// Input : *pcache -
|
|
//-----------------------------------------------------------------------------
|
|
static void LightcacheMark( lightcache_t *pcache )
|
|
{
|
|
// don't link in static lighting
|
|
if ( !pcache->lru_next && !pcache->lru_prev )
|
|
return;
|
|
|
|
// already at tail
|
|
if ( GetLightCacheIndex( pcache ) == lightcache[LIGHT_LRU_TAIL_INDEX].lru_prev )
|
|
return;
|
|
|
|
// unlink pcache
|
|
lightcache[pcache->lru_prev].lru_next = pcache->lru_next;
|
|
lightcache[pcache->lru_next].lru_prev = pcache->lru_prev;
|
|
|
|
// link to tail
|
|
// patch backward link
|
|
lightcache[GetLightLRUTail().lru_prev].lru_next = GetLightCacheIndex( pcache );
|
|
pcache->lru_prev = GetLightLRUTail().lru_prev;
|
|
|
|
// patch forward link
|
|
pcache->lru_next = LIGHT_LRU_TAIL_INDEX;
|
|
GetLightLRUTail().lru_prev = GetLightCacheIndex( pcache );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: Unlink a cache entry from its current bucket
|
|
// Input : *pcache -
|
|
//-----------------------------------------------------------------------------
|
|
static void LightcacheUnlink( lightcache_t *pcache )
|
|
{
|
|
unsigned short iBucket = pcache->bucket;
|
|
|
|
// not used yet?
|
|
if ( iBucket == 0xFFFF )
|
|
return;
|
|
|
|
unsigned short iCache = GetLightCacheIndex( pcache );
|
|
|
|
// unlink it
|
|
unsigned short plist = lightbuckets[iBucket];
|
|
|
|
if ( plist == iCache )
|
|
{
|
|
// head of bucket? move bucket down
|
|
lightbuckets[iBucket] = pcache->next;
|
|
}
|
|
else
|
|
{
|
|
bool found = false;
|
|
// walk the bucket
|
|
while ( plist != 0xFFFF )
|
|
{
|
|
// if next is pcache, unlink pcache
|
|
if ( lightcache[plist].next == iCache )
|
|
{
|
|
lightcache[plist].next = pcache->next;
|
|
found = true;
|
|
break;
|
|
}
|
|
plist = lightcache[plist].next;
|
|
}
|
|
assert(found);
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: Get the least recently used cache entry
|
|
//-----------------------------------------------------------------------------
|
|
static lightcache_t *LightcacheGetLRU( void )
|
|
{
|
|
// grab head
|
|
lightcache_t *pcache = &lightcache[GetLightLRUHead().lru_next];
|
|
|
|
// move to tail
|
|
LightcacheMark( pcache );
|
|
|
|
// unlink from the bucket
|
|
LightcacheUnlink( pcache );
|
|
|
|
pcache->leaf = -1;
|
|
return pcache;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: Quick & Dirty hashing function to bucket the cube in 4d parameter space
|
|
//-----------------------------------------------------------------------------
|
|
static int LightcacheHashKey( int x, int y, int z, int leaf )
|
|
{
|
|
unsigned int key = (((x<<20) + (y<<8) + z) ^ (leaf));
|
|
key = key % MAX_CACHE_BUCKETS;
|
|
return (int)key;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute the lightcache bucket given a position
|
|
//-----------------------------------------------------------------------------
|
|
static lightcache_t* FindInCache( int bucket, int x, int y, int z, int leaf )
|
|
{
|
|
// loop over the entries in this bucket
|
|
unsigned short iCache;
|
|
for ( iCache = lightbuckets[bucket]; iCache != 0xFFFF; iCache = lightcache[iCache].next )
|
|
{
|
|
lightcache_t *pCache = &lightcache[iCache];
|
|
|
|
// hit?
|
|
if (pCache->x == x && pCache->y == y && pCache->z == z && pCache->leaf == leaf )
|
|
{
|
|
return pCache;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Links to a bucket
|
|
//-----------------------------------------------------------------------------
|
|
static inline void LinkToBucket( int bucket, lightcache_t* pcache )
|
|
{
|
|
pcache->next = lightbuckets[bucket];
|
|
lightbuckets[bucket] = GetLightCacheIndex( pcache );
|
|
|
|
// point back to the bucket
|
|
pcache->bucket = (unsigned short)bucket;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Links in a new lightcache entry
|
|
//-----------------------------------------------------------------------------
|
|
static lightcache_t* NewLightcacheEntry( int bucket )
|
|
{
|
|
// re-use the LRU cache entry
|
|
lightcache_t* pcache = LightcacheGetLRU();
|
|
LinkToBucket( bucket, pcache );
|
|
return pcache;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute the lightcache origin
|
|
//-----------------------------------------------------------------------------
|
|
#if 0
|
|
static inline void ComputeLightcacheOrigin( int x, int y, int z, Vector& org )
|
|
{
|
|
// this is suspicious and *maybe* wrong
|
|
// the bucket origin can't re-establish the correct negative numbers
|
|
// because of the non-arithmetic shift down?
|
|
int ix = x << HASH_GRID_SIZEX;
|
|
int iy = y << HASH_GRID_SIZEY;
|
|
int iz = z << HASH_GRID_SIZEZ;
|
|
org.Init( ix, iy, iz );
|
|
}
|
|
#endif
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute the lightcache bounds given a point
|
|
//-----------------------------------------------------------------------------
|
|
void ComputeLightcacheBounds( const Vector &vecOrigin, Vector *pMins, Vector *pMaxs )
|
|
{
|
|
bool bXPos = (vecOrigin[0] >= 0);
|
|
bool bYPos = (vecOrigin[1] >= 0);
|
|
bool bZPos = (vecOrigin[2] >= 0);
|
|
|
|
// can't snap and shift negative values
|
|
// truncate positive number and shift
|
|
int ix = ((int)(fabs(vecOrigin[0]))) >> HASH_GRID_SIZEX;
|
|
int iy = ((int)(fabs(vecOrigin[1]))) >> HASH_GRID_SIZEY;
|
|
int iz = ((int)(fabs(vecOrigin[2]))) >> HASH_GRID_SIZEZ;
|
|
|
|
// mins is floored as fixup depending on <0 or >0
|
|
pMins->x = (bXPos ? ix : -(ix + 1)) << HASH_GRID_SIZEX;
|
|
pMins->y = (bYPos ? iy : -(iy + 1)) << HASH_GRID_SIZEY;
|
|
pMins->z = (bZPos ? iz : -(iz + 1)) << HASH_GRID_SIZEZ;
|
|
|
|
// maxs is exactly one grid increasing from mins
|
|
pMaxs->x = pMins->x + (1 << HASH_GRID_SIZEX );
|
|
pMaxs->y = pMins->y + (1 << HASH_GRID_SIZEY );
|
|
pMaxs->z = pMins->z + (1 << HASH_GRID_SIZEZ );
|
|
|
|
Assert( (pMins->x <= vecOrigin.x) && (pMins->y <= vecOrigin.y) && (pMins->z <= vecOrigin.z) );
|
|
Assert( (pMaxs->x >= vecOrigin.x) && (pMaxs->y >= vecOrigin.y) && (pMaxs->z >= vecOrigin.z) );
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute the cache origin suitable for key
|
|
//-----------------------------------------------------------------------------
|
|
static inline void OriginToCacheOrigin( const Vector &origin, int &x, int &y, int &z )
|
|
{
|
|
x = ((int)origin[0] + 32768) >> HASH_GRID_SIZEX;
|
|
y = ((int)origin[1] + 32768) >> HASH_GRID_SIZEY;
|
|
z = ((int)origin[2] + 32768) >> HASH_GRID_SIZEZ;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Finds ambient lights
|
|
//-----------------------------------------------------------------------------
|
|
dworldlight_t* FindAmbientLight()
|
|
{
|
|
// find any ambient lights
|
|
for (int i = 0; i < host_state.worldbrush->numworldlights; i++)
|
|
{
|
|
if (host_state.worldbrush->worldlights[i].type == emit_skyambient)
|
|
{
|
|
return &host_state.worldbrush->worldlights[i];
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Computes the ambient term from a particular surface
|
|
//-----------------------------------------------------------------------------
|
|
static void ComputeAmbientFromSurface( SurfaceHandle_t surfID, dworldlight_t* pSkylight,
|
|
Vector& radcolor )
|
|
{
|
|
if (IS_SURF_VALID( surfID ) )
|
|
{
|
|
// If we hit the sky, use the sky ambient
|
|
if (MSurf_Flags( surfID ) & SURFDRAW_SKY)
|
|
{
|
|
if (pSkylight)
|
|
{
|
|
// add in sky ambient
|
|
VectorCopy( pSkylight->intensity, radcolor );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Vector reflectivity;
|
|
MSurf_TexInfo( surfID )->material->GetReflectivity( reflectivity );
|
|
VectorMultiply( radcolor, reflectivity, radcolor );
|
|
}
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Computes the ambient term from a large number of spherical samples
|
|
//-----------------------------------------------------------------------------
|
|
|
|
static void ComputeAmbientFromSphericalSamples( const Vector& start,
|
|
Vector* lightBoxColor )
|
|
{
|
|
VPROF( "ComputeAmbientFromSphericalSamples" );
|
|
// find any ambient lights
|
|
dworldlight_t *pSkylight = FindAmbientLight();
|
|
|
|
Vector radcolor[NUMRANDOMNORMALS];
|
|
Assert( cached_r_lightcache_numambientsamples <= ARRAYSIZE( radcolor ) );
|
|
|
|
// sample world by casting N rays distributed across a sphere
|
|
Vector upend;
|
|
int i;
|
|
for ( i = 0; i < cached_r_lightcache_numambientsamples; i++)
|
|
{
|
|
// FIXME: a good optimization would be to scale this per leaf
|
|
VectorMA( start, COORD_EXTENT * 1.74, g_anorms[i], upend );
|
|
|
|
// Now that we've got a ray, see what surface we've hit
|
|
SurfaceHandle_t surfID = R_LightVec (start, upend, false, radcolor[i] );
|
|
if (!IS_SURF_VALID(surfID) )
|
|
continue;
|
|
|
|
ComputeAmbientFromSurface( surfID, pSkylight, radcolor[i] );
|
|
}
|
|
|
|
// accumulate samples into radiant box
|
|
const Vector* pBoxDirs = g_pStudioRender->GetAmbientLightDirections();
|
|
for (int j = g_pStudioRender->GetNumAmbientLightSamples(); --j >= 0; )
|
|
{
|
|
float c, t;
|
|
t = 0;
|
|
|
|
lightBoxColor[j][0] = 0;
|
|
lightBoxColor[j][1] = 0;
|
|
lightBoxColor[j][2] = 0;
|
|
|
|
for (i = 0; i < cached_r_lightcache_numambientsamples; i++)
|
|
{
|
|
c = DotProduct( g_anorms[i], pBoxDirs[j] );
|
|
if (c > 0)
|
|
{
|
|
t += c;
|
|
VectorMA( lightBoxColor[j], c, radcolor[i], lightBoxColor[j] );
|
|
}
|
|
}
|
|
VectorMultiply( lightBoxColor[j], 1/t, lightBoxColor[j] );
|
|
}
|
|
}
|
|
|
|
|
|
static void ComputeAmbientFromLeaf( const Vector &start, int leafID, Vector *lightBoxColor, bool *bAddedLeafAmbientCube )
|
|
{
|
|
if( leafID >= 0 )
|
|
{
|
|
Mod_LeafAmbientColorAtPos( lightBoxColor, start, leafID );
|
|
// The ambient lighting in the leaves has the emit_surface lights factored in.
|
|
*bAddedLeafAmbientCube = true;
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
for( i = 0; i < 6; i++ )
|
|
{
|
|
lightBoxColor[i].Init( 0.0f, 0.0f, 0.0f );
|
|
}
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Computes the ambient term from 6 cardinal directions
|
|
//-----------------------------------------------------------------------------
|
|
static void ComputeAmbientFromAxisAlignedSamples( const Vector& start,
|
|
Vector* lightBoxColor )
|
|
{
|
|
Vector upend;
|
|
|
|
// find any ambient lights
|
|
dworldlight_t *pSkylight = FindAmbientLight();
|
|
|
|
// sample world only along cardinal axes
|
|
const Vector* pBoxDirs = g_pStudioRender->GetAmbientLightDirections();
|
|
for (int i = 0; i < 6; i++)
|
|
{
|
|
VectorMA( start, COORD_EXTENT * 1.74, pBoxDirs[i], upend );
|
|
|
|
// Now that we've got a ray, see what surface we've hit
|
|
SurfaceHandle_t surfID = R_LightVec (start, upend, false, lightBoxColor[i] );
|
|
if (!IS_SURF_VALID( surfID ) )
|
|
continue;
|
|
|
|
ComputeAmbientFromSurface( surfID, pSkylight, lightBoxColor[i] );
|
|
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Computes the ambient lighting at a point, and sets the lightstyles bitfield
|
|
//-----------------------------------------------------------------------------
|
|
static void R_StudioGetAmbientLightForPoint(
|
|
int leafID,
|
|
const Vector& start,
|
|
Vector* pLightBoxColor,
|
|
bool bIsStaticProp,
|
|
bool *bAddedLeafAmbientCube )
|
|
{
|
|
*bAddedLeafAmbientCube = false;
|
|
|
|
VPROF( "R_StudioGetAmbientLightForPoint" );
|
|
int i;
|
|
if ( g_pMaterialSystemConfig->nFullbright == 1 )
|
|
{
|
|
for (i = g_pStudioRender->GetNumAmbientLightSamples(); --i >= 0; )
|
|
{
|
|
VectorFill( pLightBoxColor[i], 1.0 );
|
|
}
|
|
return;
|
|
}
|
|
|
|
switch( r_radiosity.GetInt() )
|
|
{
|
|
case 1:
|
|
ComputeAmbientFromAxisAlignedSamples( start, pLightBoxColor );
|
|
break;
|
|
|
|
case 2:
|
|
ComputeAmbientFromSphericalSamples( start, pLightBoxColor );
|
|
break;
|
|
|
|
case 3:
|
|
if (bIsStaticProp)
|
|
ComputeAmbientFromSphericalSamples( start, pLightBoxColor );
|
|
else
|
|
ComputeAmbientFromAxisAlignedSamples( start, pLightBoxColor );
|
|
break;
|
|
|
|
case 4:
|
|
if (bIsStaticProp)
|
|
ComputeAmbientFromSphericalSamples( start, pLightBoxColor );
|
|
else
|
|
ComputeAmbientFromLeaf( start, leafID, pLightBoxColor, bAddedLeafAmbientCube );
|
|
break;
|
|
|
|
default:
|
|
// assume no bounced light from the world
|
|
for (i = g_pStudioRender->GetNumAmbientLightSamples(); --i >= 0; )
|
|
{
|
|
VectorFill( pLightBoxColor[i], 0 );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// This filter bumps against the world + all but one prop
|
|
//-----------------------------------------------------------------------------
|
|
class CTraceFilterWorldAndProps : public ITraceFilter
|
|
{
|
|
public:
|
|
CTraceFilterWorldAndProps( IHandleEntity *pHandleEntity ) : m_pIgnoreProp( pHandleEntity ) {}
|
|
|
|
bool ShouldHitEntity( IHandleEntity *pHandleEntity, int contentsMask )
|
|
{
|
|
// We only bump against props + we ignore one particular prop
|
|
if ( !StaticPropMgr()->IsStaticProp( pHandleEntity ) )
|
|
return false;
|
|
|
|
return ( pHandleEntity != m_pIgnoreProp );
|
|
}
|
|
virtual TraceType_t GetTraceType() const
|
|
{
|
|
return TRACE_EVERYTHING_FILTER_PROPS;
|
|
}
|
|
|
|
private:
|
|
IHandleEntity *m_pIgnoreProp;
|
|
};
|
|
|
|
|
|
|
|
static float LightIntensityAndDirectionAtPointOld( dworldlight_t* pLight,
|
|
const Vector& mid, int fFlags, IHandleEntity *pIgnoreEnt, Vector *pDirection )
|
|
{
|
|
CTraceFilterWorldOnly worldTraceFilter;
|
|
CTraceFilterWorldAndProps propTraceFilter( pIgnoreEnt );
|
|
ITraceFilter *pTraceFilter = &worldTraceFilter;
|
|
if (fFlags & LIGHT_OCCLUDE_VS_PROPS)
|
|
{
|
|
pTraceFilter = &propTraceFilter;
|
|
}
|
|
|
|
// Special case lights
|
|
switch (pLight->type)
|
|
{
|
|
case emit_skylight:
|
|
{
|
|
// There can be more than one skylight, but we should only
|
|
// ever be affected by one of them (multiple ones are created from
|
|
// a single light in vrad)
|
|
|
|
VectorFill( *pDirection, 0 );
|
|
// check to see if you can hit the sky texture
|
|
Vector end;
|
|
VectorMA( mid, -COORD_EXTENT * 1.74f, pLight->normal, end ); // max_range * sqrt(3)
|
|
|
|
trace_t tr;
|
|
Ray_t ray;
|
|
ray.Init( mid, end );
|
|
g_pEngineTraceClient->TraceRay( ray, MASK_OPAQUE | CONTENTS_BLOCKLIGHT, pTraceFilter, &tr );
|
|
|
|
// Here, we didn't hit the sky, so we must be in shadow
|
|
if ( !(tr.surface.flags & SURF_SKY) )
|
|
return 0.0f;
|
|
|
|
// fudge delta and dist for skylights
|
|
*pDirection = -pLight->normal;
|
|
return 1.0f;
|
|
}
|
|
|
|
case emit_skyambient:
|
|
// always ignore these
|
|
return 0.0f;
|
|
}
|
|
|
|
// all other lights
|
|
|
|
// check distance
|
|
VectorSubtract( pLight->origin, mid, *pDirection );
|
|
float ratio = Engine_WorldLightDistanceFalloff( pLight, *pDirection, (fFlags & LIGHT_NO_RADIUS_CHECK) != 0 );
|
|
|
|
// Add in light style component
|
|
if( !( fFlags & LIGHT_IGNORE_LIGHTSTYLE_VALUE ) )
|
|
{
|
|
ratio *= LightStyleValue( pLight->style );
|
|
}
|
|
|
|
// Early out for really low-intensity lights
|
|
// That way we don't need to ray-cast or normalize
|
|
float intensity = MAX( pLight->intensity[0], pLight->intensity[1] );
|
|
intensity = MAX(intensity, pLight->intensity[2] );
|
|
|
|
// This is about 1/256
|
|
// See the comment titled "EMIT_SURFACE LIGHTS" at the top for info about why we don't
|
|
// test emit_surface lights here.
|
|
if ( pLight->type != emit_surface )
|
|
{
|
|
if (intensity * ratio < r_worldlightmin.GetFloat() )
|
|
return 0.0f;
|
|
}
|
|
|
|
float dist = VectorNormalize( *pDirection );
|
|
|
|
if ( fFlags & LIGHT_NO_OCCLUSION_CHECK )
|
|
return ratio;
|
|
|
|
trace_t pm;
|
|
Ray_t ray;
|
|
ray.Init( mid, pLight->origin );
|
|
g_pEngineTraceClient->TraceRay( ray, MASK_OPAQUE | CONTENTS_BLOCKLIGHT, pTraceFilter, &pm );
|
|
|
|
// hack
|
|
if ( (1.f-pm.fraction) * dist > 8 )
|
|
{
|
|
#ifndef DEDICATED
|
|
if (r_drawlightcache.GetInt() == 2)
|
|
{
|
|
CDebugOverlay::AddLineOverlay( mid, pm.endpos, 255, 0, 0, 255, true, 3 );
|
|
}
|
|
#endif
|
|
return 0.f;
|
|
}
|
|
|
|
return ratio;
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// This method returns the effective intensity of a light as seen from
|
|
// a particular point. PVS is used to speed up the task.
|
|
//-----------------------------------------------------------------------------
|
|
static float LightIntensityAndDirectionAtPointNew( dworldlight_t* pLight, lightzbuffer_t *pZBuf,
|
|
const Vector& mid, int fFlags, IHandleEntity *pIgnoreEnt, Vector *pDirection )
|
|
{
|
|
CTraceFilterWorldOnly worldTraceFilter;
|
|
CTraceFilterWorldAndProps propTraceFilter( pIgnoreEnt );
|
|
ITraceFilter *pTraceFilter = &worldTraceFilter;
|
|
if (fFlags & LIGHT_OCCLUDE_VS_PROPS)
|
|
{
|
|
pTraceFilter = &propTraceFilter;
|
|
}
|
|
|
|
// Special case lights
|
|
switch (pLight->type)
|
|
{
|
|
case emit_skylight:
|
|
{
|
|
// There can be more than one skylight, but we should only
|
|
// ever be affected by one of them (multiple ones are created from
|
|
// a single light in vrad)
|
|
|
|
VectorFill( *pDirection, 0 );
|
|
// check to see if you can hit the sky texture
|
|
Vector end;
|
|
VectorMA( mid, -COORD_EXTENT * 1.74f, pLight->normal, end ); // max_range * sqrt(3)
|
|
|
|
trace_t tr;
|
|
Ray_t ray;
|
|
ray.Init( mid, end );
|
|
g_pEngineTraceClient->TraceRay( ray, MASK_OPAQUE, pTraceFilter, &tr );
|
|
|
|
// Here, we didn't hit the sky, so we must be in shadow
|
|
if ( !(tr.surface.flags & SURF_SKY) )
|
|
return 0.0f;
|
|
|
|
// fudge delta and dist for skylights
|
|
*pDirection = -pLight->normal;
|
|
return 1.0f;
|
|
}
|
|
|
|
case emit_skyambient:
|
|
// always ignore these
|
|
return 0.0f;
|
|
}
|
|
|
|
// all other lights
|
|
|
|
// check distance
|
|
VectorSubtract( pLight->origin, mid, *pDirection );
|
|
float ratio = Engine_WorldLightDistanceFalloff( pLight, *pDirection, (fFlags & LIGHT_NO_RADIUS_CHECK) != 0 );
|
|
|
|
// Add in light style component
|
|
if( !( fFlags & LIGHT_IGNORE_LIGHTSTYLE_VALUE ) )
|
|
{
|
|
ratio *= LightStyleValue( pLight->style );
|
|
}
|
|
|
|
// Early out for really low-intensity lights
|
|
// That way we don't need to ray-cast or normalize
|
|
float intensity = fpmax( pLight->intensity[0], pLight->intensity[1] );
|
|
intensity = fpmax(intensity, pLight->intensity[2] );
|
|
|
|
// This is about 1/256
|
|
// See the comment titled "EMIT_SURFACE LIGHTS" at the top for info about why we don't
|
|
// test emit_surface lights here.
|
|
if ( pLight->type != emit_surface )
|
|
{
|
|
if (intensity * ratio < r_worldlightmin.GetFloat() )
|
|
return 0.0f;
|
|
}
|
|
|
|
float dist = VectorNormalize( *pDirection );
|
|
|
|
if ( fFlags & LIGHT_NO_OCCLUSION_CHECK )
|
|
return ratio;
|
|
|
|
float flTraceDistance = dist;
|
|
// check if we are so close to the light that we shouldn't use our coarse z buf
|
|
if ( dist - ( 1 << HASH_GRID_SIZEZ ) < 8 * SHADOW_ZBUF_RES )
|
|
pZBuf = NULL;
|
|
|
|
Vector epnt = mid;
|
|
|
|
LightShadowZBufferSample_t *pSample = NULL;
|
|
if ( pZBuf )
|
|
{
|
|
pSample = &( pZBuf->GetSample( *pDirection ) );
|
|
if ( ( pSample->m_flHitDistance < pSample->m_flTraceDistance ) || ( pSample->m_flTraceDistance >= dist ) )
|
|
{
|
|
// hit!
|
|
if ( dist > pSample->m_flHitDistance + 8 ) // shadow hit
|
|
{
|
|
#ifndef DEDICATED
|
|
if (r_drawlightcache.GetInt() == 2 )
|
|
{
|
|
CDebugOverlay::AddLineOverlay( mid, pLight->origin, 0, 0, 0, 255, true, 3 );
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
#ifndef DEDICATED
|
|
if (r_drawlightcache.GetInt() == 2 )
|
|
{
|
|
CDebugOverlay::AddLineOverlay( mid, pLight->origin, 0, 255, 0, 255, true, 3 );
|
|
}
|
|
#endif
|
|
return ratio;
|
|
}
|
|
|
|
}
|
|
|
|
// cache miss
|
|
flTraceDistance = MAX( 100.0, 2.0 * dist ); // trace a little further for better caching
|
|
epnt += ( dist - flTraceDistance ) * ( *pDirection );
|
|
}
|
|
|
|
trace_t pm;
|
|
Ray_t ray;
|
|
ray.Init( pLight->origin, epnt ); // trace from light to object
|
|
g_pEngineTraceClient->TraceRay( ray, MASK_OPAQUE, pTraceFilter, &pm );
|
|
|
|
// [msmith per Henry Goffin] This fraction should not be flipped.
|
|
// pm.fraction = 1-pm.fraction;
|
|
|
|
float flHitDistance = ( pm.startsolid ) ? FLT_EPSILON : ( pm.fraction ) * flTraceDistance;
|
|
|
|
if ( pSample )
|
|
{
|
|
pSample->m_flTraceDistance = flTraceDistance;
|
|
pSample->m_flHitDistance = ( pm.fraction >= 1.0 ) ? 1.0e23 : flHitDistance;
|
|
}
|
|
if ( dist > flHitDistance + 8)
|
|
{
|
|
#ifndef DEDICATED
|
|
if (r_drawlightcache.GetInt() == 2 )
|
|
{
|
|
CDebugOverlay::AddLineOverlay( mid, pLight->origin, 255, 0, 0, 255, true, 3 );
|
|
}
|
|
#endif
|
|
return 0.f;
|
|
}
|
|
return ratio;
|
|
}
|
|
|
|
|
|
static float LightIntensityAndDirectionAtPoint( dworldlight_t* pLight, lightzbuffer_t *pZBuf,
|
|
const Vector& mid, int fFlags, IHandleEntity *pIgnoreEnt, Vector *pDirection )
|
|
{
|
|
#if 1
|
|
if ( pZBuf )
|
|
return LightIntensityAndDirectionAtPointNew( pLight, pZBuf, mid, fFlags, pIgnoreEnt, pDirection );
|
|
else
|
|
return LightIntensityAndDirectionAtPointOld( pLight, mid, fFlags, pIgnoreEnt, pDirection );
|
|
#else
|
|
float old = LightIntensityAndDirectionAtPointOld( pLight, mid, fFlags, pIgnoreEnt, pDirection );
|
|
float newf = LightIntensityAndDirectionAtPointNew( pLight, pZBuf, mid, fFlags, pIgnoreEnt, pDirection );
|
|
if ( old != newf )
|
|
{
|
|
float old2 = LightIntensityAndDirectionAtPointOld( pLight, mid, fFlags, pIgnoreEnt, pDirection );
|
|
float newf2 = LightIntensityAndDirectionAtPointNew( pLight, pZBuf, mid, fFlags, pIgnoreEnt, pDirection );
|
|
}
|
|
return newf;
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// This method returns the effective intensity of a light as seen within
|
|
// a particular box...
|
|
// a particular point. PVS is used to speed up the task.
|
|
//-----------------------------------------------------------------------------
|
|
static float LightIntensityAndDirectionInBox( dworldlight_t* pLight,
|
|
lightzbuffer_t *pZBuf,
|
|
const Vector &mid, const Vector &mins, const Vector &maxs, int fFlags,
|
|
Vector *pDirection )
|
|
{
|
|
// Choose the point closest on the box to the light to get max intensity
|
|
// within the box....
|
|
|
|
const float LightRadiusFactor = r_lightcache_radiusfactor.GetFloat(); // TERROR: try harder to get contributions from lights at the edges of their radii
|
|
if ( !r_oldlightselection.GetBool() )
|
|
{
|
|
switch (pLight->type)
|
|
{
|
|
case emit_spotlight: // directional & positional
|
|
{
|
|
float sphereRadius = (maxs-mid).Length();
|
|
// first do a sphere/sphere check
|
|
float dist = (pLight->origin - mid).Length();
|
|
if ( dist > (sphereRadius + pLight->radius * LightRadiusFactor) )
|
|
return 0;
|
|
// PERFORMANCE: precalc this and store in the light?
|
|
float angle = acos(pLight->stopdot2);
|
|
float sinAngle = sin(angle);
|
|
if ( !IsSphereIntersectingCone( mid, sphereRadius, pLight->origin, pLight->normal, sinAngle, pLight->stopdot2 ) )
|
|
return 0;
|
|
}
|
|
// NOTE: fall through to radius check in point case
|
|
case emit_point:
|
|
{
|
|
float distSqr = CalcSqrDistanceToAABB( mins, maxs, pLight->origin );
|
|
if ( distSqr > pLight->radius * pLight->radius * LightRadiusFactor )
|
|
return 0;
|
|
}
|
|
|
|
break;
|
|
case emit_surface: // directional & positional, fixed cone size
|
|
{
|
|
float sphereRadius = (maxs-mid).Length();
|
|
// first do a sphere/sphere check
|
|
float dist = (pLight->origin - mid).Length();
|
|
if ( dist > (sphereRadius + pLight->radius) )
|
|
return 0;
|
|
// PERFORMANCE: precalc this and store in the light?
|
|
if ( !IsSphereIntersectingCone( mid, sphereRadius, pLight->origin, pLight->normal, 1.0f, 0.0f ) )
|
|
return 0;
|
|
}
|
|
break;
|
|
case emit_skylight:
|
|
{
|
|
// test for skylight contribution at voxel corners in addition to voxel center.
|
|
Vector vecCorners[8];
|
|
|
|
// bottom corners
|
|
vecCorners[0] = mins;
|
|
vecCorners[1] = Vector( maxs.x, mins.y, mins.z );
|
|
vecCorners[2] = Vector( mins.x, mins.y, maxs.z );
|
|
vecCorners[3] = Vector( mins.x, maxs.y, mins.z );
|
|
|
|
//top corners
|
|
vecCorners[4] = Vector( mins.x, maxs.y, maxs.z );
|
|
vecCorners[5] = Vector( maxs.x, maxs.y, mins.z );
|
|
vecCorners[6] = Vector( maxs.x, mins.y, maxs.z );
|
|
vecCorners[7] = maxs;
|
|
|
|
// init intensity with value from center
|
|
float flMaxIntensity = LightIntensityAndDirectionAtPoint( pLight, pZBuf, mid, fFlags | LIGHT_NO_RADIUS_CHECK, NULL, pDirection );
|
|
|
|
// if any corner intensity is greater, use that value
|
|
for (int i=0; i<8; i++)
|
|
flMaxIntensity = MAX( flMaxIntensity, LightIntensityAndDirectionAtPoint( pLight, pZBuf, vecCorners[i], fFlags | LIGHT_NO_RADIUS_CHECK, NULL, pDirection ) );
|
|
|
|
return flMaxIntensity;
|
|
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
|
|
// NOTE: Here, we do radius check to check to see if we should even care about the light
|
|
// because we want to check the closest point in the box
|
|
switch (pLight->type)
|
|
{
|
|
case emit_point:
|
|
case emit_spotlight: // directional & positional
|
|
{
|
|
Vector vecClosestPoint;
|
|
vecClosestPoint.Init();
|
|
for ( int i = 0; i < 3; ++i )
|
|
{
|
|
vecClosestPoint[i] = clamp( pLight->origin[i], mins[i], maxs[i] );
|
|
}
|
|
|
|
vecClosestPoint -= pLight->origin;
|
|
if ( vecClosestPoint.LengthSqr() > pLight->radius * pLight->radius )
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return LightIntensityAndDirectionAtPoint( pLight, pZBuf, mid, fFlags | LIGHT_NO_RADIUS_CHECK, NULL, pDirection );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Computes the static vertex lighting term from a large number of spherical samples
|
|
//-----------------------------------------------------------------------------
|
|
bool ComputeVertexLightingFromSphericalSamples( const Vector& vecVertex,
|
|
const Vector &vecNormal, IHandleEntity *pIgnoreEnt, Vector *pLinearColor )
|
|
{
|
|
if ( IsX360() )
|
|
return false;
|
|
|
|
// Check to see if this vertex is in solid
|
|
trace_t tr;
|
|
CTraceFilterWorldAndProps filter( pIgnoreEnt );
|
|
Ray_t ray;
|
|
ray.Init( vecVertex, vecVertex );
|
|
g_pEngineTraceClient->TraceRay( ray, MASK_OPAQUE | CONTENTS_BLOCKLIGHT, &filter, &tr );
|
|
if ( tr.startsolid || tr.allsolid )
|
|
return false;
|
|
|
|
pLinearColor->Init( 0, 0, 0 );
|
|
|
|
// find any ambient lights
|
|
dworldlight_t *pSkylight = FindAmbientLight();
|
|
|
|
// sample world by casting N rays distributed across a sphere
|
|
float t = 0.0f;
|
|
Vector upend, color;
|
|
int i;
|
|
for ( i = 0; i < cached_r_lightcache_numambientsamples; i++)
|
|
{
|
|
float flDot = DotProduct( vecNormal, s_raddir[i] );
|
|
if ( flDot < 0.0f )
|
|
continue;
|
|
|
|
// FIXME: a good optimization would be to scale this per leaf
|
|
VectorMA( vecVertex, COORD_EXTENT * 1.74, s_raddir[i], upend );
|
|
|
|
// Now that we've got a ray, see what surface we've hit
|
|
SurfaceHandle_t surfID = R_LightVec( vecVertex, upend, false, color );
|
|
if ( !IS_SURF_VALID(surfID) )
|
|
continue;
|
|
|
|
// FIXME: Maybe make sure we aren't obstructed by static props?
|
|
// To do this, R_LightVec would need to return distance of hit...
|
|
// Or, we need another arg to R_LightVec to return black when hitting a static prop
|
|
ComputeAmbientFromSurface( surfID, pSkylight, color );
|
|
|
|
t += flDot;
|
|
VectorMA( *pLinearColor, flDot, color, *pLinearColor );
|
|
}
|
|
|
|
if (t != 0.0f)
|
|
{
|
|
*pLinearColor /= t;
|
|
}
|
|
|
|
// Figure out the PVS info for this location
|
|
int leaf = CM_PointLeafnum( vecVertex );
|
|
const byte* pVis = CM_ClusterPVS( CM_LeafCluster( leaf ) );
|
|
|
|
// Now add in the direct lighting
|
|
Vector vecDirection;
|
|
for (i = 0; i < host_state.worldbrush->numworldlights; ++i)
|
|
{
|
|
dworldlight_t *wl = &host_state.worldbrush->worldlights[i];
|
|
|
|
// only do it if the entity can see into the lights leaf
|
|
if ((wl->cluster < 0) || (!BIT_SET( pVis, wl->cluster )) )
|
|
continue;
|
|
|
|
float flRatio = LightIntensityAndDirectionAtPoint( wl, NULL, vecVertex, LIGHT_OCCLUDE_VS_PROPS, pIgnoreEnt, &vecDirection );
|
|
|
|
// No light contribution? Get outta here!
|
|
if ( flRatio <= 0.0f )
|
|
continue;
|
|
|
|
// Figure out spotlight attenuation
|
|
float flAngularRatio = Engine_WorldLightAngle( wl, wl->normal, vecNormal, vecDirection );
|
|
|
|
// Add in the direct lighting
|
|
VectorMAInline( *pLinearColor, flAngularRatio * flRatio, wl->intensity, *pLinearColor );
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Finds the minimum light
|
|
//-----------------------------------------------------------------------------
|
|
static int FindDarkestWorldLight( int numLights, float* pLightIllum, float newIllum )
|
|
{
|
|
// FIXME: make the list sorted?
|
|
int minLightIndex = -1;
|
|
float minillum = newIllum;
|
|
for (int j = 0; j < numLights; ++j)
|
|
{
|
|
// only check ones dimmer than have already been checked
|
|
if (pLightIllum[j] < minillum)
|
|
{
|
|
minillum = pLightIllum[j];
|
|
minLightIndex = j;
|
|
}
|
|
}
|
|
|
|
return minLightIndex;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Adds a world light to the ambient cube
|
|
//-----------------------------------------------------------------------------
|
|
static void AddWorldLightToLightCube( dworldlight_t* pWorldLight,
|
|
Vector* pBoxColor,
|
|
const Vector& direction,
|
|
float ratio )
|
|
{
|
|
if (ratio == 0.0f)
|
|
return;
|
|
|
|
// add whatever didn't stay in the list to lightBoxColor
|
|
// FIXME: This method is a guess, I don't know how it should be done
|
|
const Vector* pBoxDir = g_pStudioRender->GetAmbientLightDirections();
|
|
|
|
for (int j = g_pStudioRender->GetNumAmbientLightSamples(); --j >= 0; )
|
|
{
|
|
float t = DotProduct( pBoxDir[j], direction );
|
|
if (t > 0)
|
|
{
|
|
VectorMAInline( pBoxColor[j], ratio * t, pWorldLight->intensity, pBoxColor[j] );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Adds a world light to the ambient cube
|
|
//-----------------------------------------------------------------------------
|
|
void AddWorldLightToAmbientCube( dworldlight_t* pWorldLight, const Vector &vecLightingOrigin, AmbientCube_t &ambientCube, bool bNoLightCull )
|
|
{
|
|
int nFlags = bNoLightCull ? ( LIGHT_NO_RADIUS_CHECK | LIGHT_NO_OCCLUSION_CHECK ) : 0;
|
|
Vector vecDirection;
|
|
float ratio = LightIntensityAndDirectionAtPoint( pWorldLight, NULL, vecLightingOrigin, nFlags, NULL, &vecDirection );
|
|
float angularRatio = Engine_WorldLightAngle( pWorldLight, pWorldLight->normal, vecDirection, vecDirection );
|
|
AddWorldLightToLightCube( pWorldLight, ambientCube, vecDirection, ratio * angularRatio );
|
|
}
|
|
|
|
|
|
static inline const byte* FastRejectLightSource(
|
|
bool bIgnoreVis,
|
|
const byte *pVis,
|
|
const Vector &bucketOrigin,
|
|
int lightType,
|
|
int lightCluster,
|
|
bool &bReject )
|
|
{
|
|
bReject = false;
|
|
if( !bIgnoreVis )
|
|
{
|
|
// This is an optimization to avoid decompressing Vis twice
|
|
if (!pVis)
|
|
{
|
|
// Figure out the PVS info for this location
|
|
int bucketOriginLeaf = CM_PointLeafnum( bucketOrigin );
|
|
pVis = CM_ClusterPVS( CM_LeafCluster( bucketOriginLeaf ) );
|
|
}
|
|
if ( lightType == emit_skylight )
|
|
{
|
|
int bucketOriginLeaf = CM_PointLeafnum( bucketOrigin );
|
|
mleaf_t *pLeaf = &host_state.worldbrush->leafs[bucketOriginLeaf];
|
|
if ( pLeaf && !( pLeaf->flags & ( LEAF_FLAGS_SKY | LEAF_FLAGS_SKY2D ) ) )
|
|
{
|
|
bReject = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((lightCluster < 0) || (!BIT_SET( pVis, lightCluster )) )
|
|
bReject = true;
|
|
}
|
|
}
|
|
return pVis;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Adds a world light to the list of lights
|
|
//-----------------------------------------------------------------------------
|
|
static const byte *AddWorldLightToLightingState( dworldlight_t* pWorldLight,
|
|
lightzbuffer_t* pZBuf,
|
|
LightingState_t& lightingState, LightingStateInfo_t& info,
|
|
const Vector& bucketOrigin, const byte* pVis, bool dynamic = false,
|
|
bool bIgnoreVis = false,
|
|
bool bIgnoreVisTest = false )
|
|
{
|
|
Assert( lightingState.numlights >= 0 && lightingState.numlights <= MAXLOCALLIGHTS );
|
|
|
|
// only do it if the entity can see into the lights leaf
|
|
if ( !bIgnoreVisTest )
|
|
{
|
|
bool bReject;
|
|
pVis = FastRejectLightSource( bIgnoreVis, pVis, bucketOrigin, pWorldLight->type, pWorldLight->cluster, bReject );
|
|
if ( bReject )
|
|
return pVis;
|
|
}
|
|
|
|
// Get the lighting ratio
|
|
Vector direction;
|
|
|
|
float ratio;
|
|
|
|
if (!dynamic && r_oldlightselection.GetBool())
|
|
{
|
|
ratio = LightIntensityAndDirectionAtPoint( pWorldLight, pZBuf, bucketOrigin, 0, NULL, &direction );
|
|
}
|
|
else
|
|
{
|
|
Vector mins, maxs;
|
|
ComputeLightcacheBounds( bucketOrigin, &mins, &maxs );
|
|
ratio = LightIntensityAndDirectionInBox( pWorldLight, pZBuf, bucketOrigin, mins, maxs, dynamic ? LIGHT_NO_OCCLUSION_CHECK : 0, &direction );
|
|
}
|
|
|
|
// No light contribution? Get outta here!
|
|
if ( ratio <= 0.0f )
|
|
return pVis;
|
|
|
|
// Figure out spotlight attenuation
|
|
float angularRatio = Engine_WorldLightAngle( pWorldLight, pWorldLight->normal, direction, direction );
|
|
|
|
// Use standard RGB to gray conversion
|
|
float illum = ratio * DotProduct( pWorldLight->intensity, s_Grayscale ); // Don't multiply by cone angle?
|
|
|
|
// It can't be a local light if it's too dark
|
|
// See the comment titled "EMIT_SURFACE LIGHTS" at the top for info.
|
|
if (pWorldLight->type == emit_surface || illum >= r_worldlightmin.GetFloat()) // FIXME: tune this value
|
|
{
|
|
int nWorldLights = MIN( g_pMaterialSystemHardwareConfig->MaxNumLights(), r_worldlights.GetInt() );
|
|
|
|
// if remaining slots, add to list
|
|
if ( lightingState.numlights < nWorldLights )
|
|
{
|
|
// save pointer to world light
|
|
lightingState.locallight[lightingState.numlights] = pWorldLight;
|
|
info.m_pIllum[lightingState.numlights] = illum;
|
|
++lightingState.numlights;
|
|
return pVis;
|
|
}
|
|
|
|
// no remaining slots
|
|
// find the dimmest existing light and replace
|
|
// If dynamic, make sure that it stays as a local light if possible.
|
|
int minLightIndex = FindDarkestWorldLight( lightingState.numlights, info.m_pIllum, dynamic ? 100000 : illum );
|
|
if (minLightIndex != -1)
|
|
{
|
|
// FIXME: We're sorting by ratio here instead of illum cause we either
|
|
// have to store more memory or do more computations; I'm not
|
|
// convinced it's any better of a metric though, so ratios for now...
|
|
|
|
// found a light was was dimmer, swap it with the current light
|
|
V_swap( pWorldLight, lightingState.locallight[minLightIndex] );
|
|
V_swap( illum, info.m_pIllum[minLightIndex] );
|
|
|
|
// FIXME: Avoid these recomputations
|
|
// But I don't know how to do it without storing a ton of data
|
|
// per cache entry... yuck!
|
|
|
|
// NOTE: We know the dot product can't be zero or illum would have been 0 to start with!
|
|
ratio = illum / DotProduct( pWorldLight->intensity, s_Grayscale );
|
|
|
|
if (pWorldLight->type == emit_skylight)
|
|
{
|
|
VectorFill( direction, 0 );
|
|
angularRatio = 1.0f;
|
|
}
|
|
else
|
|
{
|
|
VectorSubtract( pWorldLight->origin, bucketOrigin, direction );
|
|
VectorNormalize( direction );
|
|
|
|
// Recompute the ratios
|
|
angularRatio = Engine_WorldLightAngle( pWorldLight, pWorldLight->normal, direction, direction );
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add the low light to the ambient box color
|
|
AddWorldLightToLightCube( pWorldLight, lightingState.r_boxcolor, direction, ratio * angularRatio );
|
|
return pVis;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Construct a world light from a dynamic light
|
|
//-----------------------------------------------------------------------------
|
|
static void WorldLightFromDynamicLight( dlight_t const& dynamicLight,
|
|
dworldlight_t& worldLight )
|
|
{
|
|
VectorCopy( dynamicLight.origin, worldLight.origin );
|
|
worldLight.type = emit_point;
|
|
|
|
worldLight.intensity[0] = TexLightToLinear( dynamicLight.color.r, dynamicLight.color.exponent );
|
|
worldLight.intensity[1] = TexLightToLinear( dynamicLight.color.g, dynamicLight.color.exponent );
|
|
worldLight.intensity[2] = TexLightToLinear( dynamicLight.color.b, dynamicLight.color.exponent );
|
|
worldLight.style = dynamicLight.style;
|
|
|
|
// Compute cluster associated with the dynamic light
|
|
worldLight.cluster = CM_LeafCluster( CM_PointLeafnum(worldLight.origin) );
|
|
|
|
// Assume a quadratic attenuation factor; atten so we hit minlight
|
|
// at radius away...
|
|
float minlight = fpmax( dynamicLight.minlight, g_flMinLightingValue );
|
|
// NOTE: Previous implementation turned off attenuation at radius zero.
|
|
// clamping is more continuous
|
|
float radius = dynamicLight.GetRadius();
|
|
if ( radius < 0.1f )
|
|
radius = 0.1f;
|
|
|
|
worldLight.constant_attn = 0;
|
|
worldLight.linear_attn = 0;
|
|
worldLight.quadratic_attn = 1.0f / (minlight * radius * radius);
|
|
|
|
// Set the max radius
|
|
worldLight.radius = radius;
|
|
|
|
// Spotlights...
|
|
if (dynamicLight.m_OuterAngle > 0.0f)
|
|
{
|
|
worldLight.type = emit_spotlight;
|
|
VectorCopy( dynamicLight.m_Direction, worldLight.normal );
|
|
worldLight.stopdot = cos( dynamicLight.m_InnerAngle * M_PI / 180.0f );
|
|
worldLight.stopdot2 = cos( dynamicLight.m_OuterAngle * M_PI / 180.0f );
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Add in dynamic worldlights (lightstyles)
|
|
//-----------------------------------------------------------------------------
|
|
static const byte *ComputeLightStyles( lightcache_t* pCache, LightingState_t& lightingState,
|
|
const Vector& origin, int leaf, const byte* pVis )
|
|
{
|
|
VPROF_INCREMENT_COUNTER( "ComputeLightStyles", 1 );
|
|
LightingStateInfo_t info;
|
|
|
|
lightingState.ZeroLightingState();
|
|
// Next, add each world light with a lightstyle into the lighting state,
|
|
// ejecting less relevant local lights + folding them into the ambient cube
|
|
for ( int i = 0; i < host_state.worldbrush->numworldlights; ++i)
|
|
{
|
|
dworldlight_t *wl = &host_state.worldbrush->worldlights[i];
|
|
if (wl->style == 0)
|
|
continue;
|
|
|
|
int byte = wl->style >> 3;
|
|
int bit = wl->style & 0x7;
|
|
if( !( pCache->m_pLightstyles[byte] & ( 1 << bit ) ) )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
// This is an optimization to avoid decompressing Vis twice
|
|
if (!pVis)
|
|
{
|
|
// Figure out the PVS info for this location
|
|
pVis = CM_ClusterPVS( CM_LeafCluster( leaf ) );
|
|
}
|
|
|
|
// Now add that world light into our list of worldlights
|
|
AddWorldLightToLightingState( wl, NULL, lightingState, info, origin, pVis );
|
|
}
|
|
pCache->m_LastFrameUpdated_LightStyles = r_framecount;
|
|
return pVis;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Add in dynamic worldlights (lightstyles)
|
|
//-----------------------------------------------------------------------------
|
|
static void AddLightStylesForStaticProp( PropLightcache_t *pcache, LightingState_t& lightingState )
|
|
{
|
|
// Next, add each world light with a lightstyle into the lighting state,
|
|
// ejecting less relevant local lights + folding them into the ambient cube
|
|
for( int i = 0; i < pcache->m_LightStyleWorldLights.Count(); ++i )
|
|
{
|
|
Assert( pcache->m_LightStyleWorldLights[i] >= 0 );
|
|
Assert( pcache->m_LightStyleWorldLights[i] < host_state.worldbrush->numworldlights );
|
|
dworldlight_t *wl = &host_state.worldbrush->worldlights[pcache->m_LightStyleWorldLights[i]];
|
|
Assert( wl->style != 0 );
|
|
|
|
// Now add that world light into our list of worldlights
|
|
AddWorldLightToLightingState( wl, NULL, lightingState, *pcache, pcache->m_LightingOrigin, NULL,
|
|
false /*dynamic*/, true /*ignorevis*/ );
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Add DLights + ELights to the dynamic lighting
|
|
//-----------------------------------------------------------------------------
|
|
static dworldlight_t s_pDynamicLight[MAX_DLIGHTS + MAX_ELIGHTS];
|
|
|
|
static const byte* AddDLights( LightingStateInfo_t& info, LightingState_t& lightingState,
|
|
const Vector& origin, int leaf, const byte* pVis, const IClientRenderable* pRenderable )
|
|
{
|
|
// NOTE: g_bActiveDLights, g_nNumActiveDLights, et al. are updated in CL_UpdateDAndELights() which is expected to have
|
|
// been called this frame before we get here.
|
|
|
|
if ( !g_bActiveDlights )
|
|
return pVis;
|
|
|
|
const bool bIgnoreVis = false;
|
|
const bool bIgnoreVisTest = true;
|
|
|
|
// Next, add each world light with a lightstyle into the lighting state,
|
|
// ejecting less relevant local lights + folding them into the ambient cube
|
|
dlight_t* RESTRICT dl;
|
|
for ( int i=0; i<g_nNumActiveDLights; ++i, ++dl )
|
|
{
|
|
dl = &(cl_dlights[ g_ActiveDLightIndex[i] ]);
|
|
|
|
if ( dl->m_pExclusiveLightReceiver != pRenderable )
|
|
continue;
|
|
|
|
// If the light's not active, then continue
|
|
if ( (r_dlightactive & (1 << i)) == 0 )
|
|
continue;
|
|
|
|
// If the light doesn't affect models, then continue
|
|
if (dl->flags & (DLIGHT_NO_MODEL_ILLUMINATION | DLIGHT_DISPLACEMENT_MASK))
|
|
continue;
|
|
|
|
// Fast reject. If we can reject it here, then we don't have to call WorldLightFromDynamicLight..
|
|
bool bReject;
|
|
int lightCluster = CM_LeafCluster( g_DLightLeafAccessors[i].GetLeaf( dl->origin ) );
|
|
pVis = FastRejectLightSource( bIgnoreVis, pVis, origin, emit_point, lightCluster, bReject );
|
|
if ( bReject )
|
|
continue;
|
|
|
|
// Construct a world light representing the dynamic light
|
|
// we're making a static list here because the lighting state
|
|
// contains a set of pointers to dynamic lights
|
|
WorldLightFromDynamicLight( *dl, s_pDynamicLight[i] );
|
|
|
|
// Now add that world light into our list of worldlights
|
|
pVis = AddWorldLightToLightingState( &s_pDynamicLight[i], NULL, lightingState,
|
|
info, origin, pVis, true, bIgnoreVis, bIgnoreVisTest );
|
|
}
|
|
return pVis;
|
|
}
|
|
|
|
static const byte* AddELights( LightingStateInfo_t& info, LightingState_t& lightingState,
|
|
const Vector& origin, int leaf, const byte* pVis, const IClientRenderable* pRenderable )
|
|
{
|
|
// NOTE: g_bActiveELights, g_nNumActiveELights, et al. are updated in CL_UpdateDAndELights() which is expected to have
|
|
// been called this frame before we get here.
|
|
|
|
if ( !g_bActiveElights )
|
|
return pVis;
|
|
|
|
const bool bIgnoreVisTest = true;
|
|
|
|
// Next, add each world light with a lightstyle into the lighting state,
|
|
// ejecting less relevant local lights + folding them into the ambient cube
|
|
dlight_t* RESTRICT dl;
|
|
for ( int i=0; i<g_nNumActiveELights; ++i )
|
|
{
|
|
dl = &(cl_elights[ g_ActiveELightIndex[i] ]);
|
|
|
|
if ( dl->m_pExclusiveLightReceiver != pRenderable )
|
|
continue;
|
|
|
|
// If the light doesn't affect models, then continue
|
|
if (dl->flags & (DLIGHT_NO_MODEL_ILLUMINATION | DLIGHT_DISPLACEMENT_MASK))
|
|
continue;
|
|
|
|
bool bExclusiveLight = ( dl->m_pExclusiveLightReceiver != NULL );
|
|
bool bIgnoreVis = false;
|
|
|
|
if ( !bExclusiveLight )
|
|
{
|
|
// 2.25 multiplier scales cull radius for lights by 1.5. The elight radius doesn't actually specify the distance where the light
|
|
// falls off to 0, so culling at that radius limits the light influence too much. Scaling by 1.5 seems reasonable based on visual
|
|
// inspection.
|
|
if ( dl->GetRadiusSquared() * 2.25f < origin.DistToSqr( dl->origin ) )
|
|
continue;
|
|
|
|
// Fast reject. If we can reject it here, then we don't have to call WorldLightFromDynamicLight..
|
|
bool bReject;
|
|
int lightCluster = CM_LeafCluster( g_ELightLeafAccessors[i].GetLeaf( dl->origin ) );
|
|
pVis = FastRejectLightSource( bIgnoreVis, pVis, origin, emit_point, lightCluster, bReject );
|
|
if ( bReject )
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
// Exclusive lights always get applied
|
|
bIgnoreVis = true;
|
|
}
|
|
|
|
// Construct a world light representing the dynamic light
|
|
// we're making a static list here because the lighting state
|
|
// contains a set of pointers to dynamic lights
|
|
WorldLightFromDynamicLight( *dl, s_pDynamicLight[i+MAX_DLIGHTS] );
|
|
|
|
// Now add that world light into our list of worldlights
|
|
pVis = AddWorldLightToLightingState( &s_pDynamicLight[i+MAX_DLIGHTS], NULL, lightingState,
|
|
info, origin, pVis, true, bIgnoreVis, bIgnoreVisTest );
|
|
}
|
|
return pVis;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Given static + dynamic lighting, figure out the total light
|
|
//-----------------------------------------------------------------------------
|
|
static const byte *ComputeDynamicLighting( lightcache_t* pCache, LightingState_t& lightingState,
|
|
const Vector& origin, int leaf, const byte* pVis = 0 )
|
|
{
|
|
if (pCache->m_LastFrameUpdated_DynamicLighting != r_framecount)
|
|
{
|
|
VPROF_INCREMENT_COUNTER( "ComputeDynamicLighting", 1 );
|
|
|
|
// First factor in the cache into the current lighting state..
|
|
LightingStateInfo_t info;
|
|
|
|
pCache->m_DynamicLightingState.ZeroLightingState();
|
|
|
|
// Next, add each dlight one at a time
|
|
pVis = AddDLights( info, pCache->m_DynamicLightingState, origin, leaf, pVis, NULL );
|
|
|
|
// Finally, add in elights
|
|
pVis = AddELights( info, pCache->m_DynamicLightingState, origin, leaf, pVis, NULL );
|
|
|
|
pCache->m_LastFrameUpdated_DynamicLighting = r_framecount;
|
|
}
|
|
|
|
Assert( pCache->m_DynamicLightingState.numlights >= 0 && pCache->m_DynamicLightingState.numlights <= MAXLOCALLIGHTS );
|
|
memcpy( &lightingState, &pCache->m_DynamicLightingState, sizeof(LightingState_t) );
|
|
return pVis;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Add all dynamic lights exclusive to a particular renderable into a lighting state
|
|
//--------------------------------------------------=====---------------------------
|
|
static const byte *ComputeExclusiveDynamicLighting( LightingState_t& lightingState, const Vector& origin,
|
|
int leaf, const IClientRenderable* pRenderable, const byte* pVis = 0 )
|
|
{
|
|
LightingStateInfo_t info;
|
|
|
|
lightingState.ZeroLightingState();
|
|
pVis = AddDLights( info, lightingState, origin, leaf, pVis, pRenderable );
|
|
pVis = AddELights( info, lightingState, origin, leaf, pVis, pRenderable );
|
|
Assert( lightingState.numlights >= 0 && lightingState.numlights <= MAXLOCALLIGHTS );
|
|
return pVis;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Adds a world light to the list of lights
|
|
//-----------------------------------------------------------------------------
|
|
static void AddWorldLightToLightingStateForStaticProps( dworldlight_t* pWorldLight,
|
|
LightingState_t& lightingState, LightingStateInfo_t& info, PropLightcache_t *pCache,
|
|
bool dynamic = false )
|
|
{
|
|
// Get the lighting ratio
|
|
float ratio;
|
|
Vector direction;
|
|
|
|
if (!dynamic)
|
|
{
|
|
ratio = LightIntensityAndDirectionAtPoint( pWorldLight, NULL, pCache->m_LightingOrigin, 0, NULL, &direction );
|
|
}
|
|
else
|
|
{
|
|
Vector mins, maxs;
|
|
ComputeLightcacheBounds( pCache->m_LightingOrigin, &mins, &maxs );
|
|
ratio = LightIntensityAndDirectionInBox( pWorldLight, NULL, pCache->m_LightingOrigin,
|
|
pCache->mins, pCache->maxs, LIGHT_NO_OCCLUSION_CHECK, &direction );
|
|
}
|
|
|
|
// No light contribution? Get outta here!
|
|
if ( ratio <= 0.0f )
|
|
return;
|
|
|
|
// Figure out spotlight attenuation
|
|
float angularRatio = Engine_WorldLightAngle( pWorldLight, pWorldLight->normal, direction, direction );
|
|
|
|
// Use standard RGB to gray conversion
|
|
float illum = ratio * DotProduct( pWorldLight->intensity, s_Grayscale ); // Don't multiply by cone angle?
|
|
|
|
// It can't be a local light if it's too dark
|
|
// See the comment titled "EMIT_SURFACE LIGHTS" at the top for info.
|
|
if (pWorldLight->type == emit_surface || illum >= r_worldlightmin.GetFloat()) // FIXME: tune this value
|
|
{
|
|
int nWorldLights = MIN( g_pMaterialSystemHardwareConfig->MaxNumLights(), r_worldlights.GetInt() );
|
|
|
|
// if remaining slots, add to list
|
|
if ( lightingState.numlights < nWorldLights )
|
|
{
|
|
// save pointer to world light
|
|
lightingState.locallight[lightingState.numlights] = pWorldLight;
|
|
info.m_pIllum[lightingState.numlights] = illum;
|
|
++lightingState.numlights;
|
|
return;
|
|
}
|
|
|
|
// no remaining slots
|
|
// find the dimmest existing light and replace
|
|
int minLightIndex = FindDarkestWorldLight( lightingState.numlights, info.m_pIllum, dynamic ? 100000 : illum );
|
|
if (minLightIndex != -1)
|
|
{
|
|
// FIXME: We're sorting by ratio here instead of illum cause we either
|
|
// have to store more memory or do more computations; I'm not
|
|
// convinced it's any better of a metric though, so ratios for now...
|
|
|
|
// found a light was was dimmer, swap it with the current light
|
|
V_swap( pWorldLight, lightingState.locallight[minLightIndex] );
|
|
V_swap( illum, info.m_pIllum[minLightIndex] );
|
|
|
|
// FIXME: Avoid these recomputations
|
|
// But I don't know how to do it without storing a ton of data
|
|
// per cache entry... yuck!
|
|
|
|
// NOTE: We know the dot product can't be zero or illum would have been 0 to start with!
|
|
ratio = illum / DotProduct( pWorldLight->intensity, s_Grayscale );
|
|
|
|
if (pWorldLight->type == emit_skylight)
|
|
{
|
|
VectorFill( direction, 0 );
|
|
angularRatio = 1.0f;
|
|
}
|
|
else
|
|
{
|
|
VectorSubtract( pWorldLight->origin, pCache->m_LightingOrigin, direction );
|
|
VectorNormalize( direction );
|
|
|
|
// Recompute the ratios
|
|
angularRatio = Engine_WorldLightAngle( pWorldLight, pWorldLight->normal, direction, direction );
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add the low light to the ambient box color
|
|
AddWorldLightToLightCube( pWorldLight, lightingState.r_boxcolor, direction, ratio * angularRatio );
|
|
}
|
|
|
|
static void AddDLightsForStaticProps( LightingStateInfo_t& info, LightingState_t& lightingState,
|
|
PropLightcache_t *pCache )
|
|
{
|
|
// mask off any dlights that have gone inactive
|
|
pCache->m_DLightActive &= r_dlightactive;
|
|
if ( pCache->m_DLightMarkFrame != r_framecount )
|
|
{
|
|
pCache->m_DLightActive = 0;
|
|
}
|
|
|
|
if ( !pCache->m_DLightActive )
|
|
return;
|
|
|
|
// Iterate the relevant dlights and add them to the lighting state
|
|
dlight_t *dl = cl_dlights;
|
|
for ( int i=0; i<MAX_DLIGHTS; ++i, ++dl )
|
|
{
|
|
// If the light doesn't affect this model, then continue.
|
|
if( !( pCache->m_DLightActive & ( 1 << i ) ) )
|
|
continue;
|
|
|
|
// Construct a world light representing the dynamic light
|
|
// we're making a static list here because the lighting state
|
|
// contains a set of pointers to dynamic lights
|
|
WorldLightFromDynamicLight( *dl, s_pDynamicLight[i] );
|
|
|
|
// Now add that world light into our list of worldlights
|
|
AddWorldLightToLightingStateForStaticProps( &s_pDynamicLight[i], lightingState,
|
|
info, pCache, true );
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Add static lighting to the lighting state
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
ConVar r_lightcache_zbuffercache( "r_lightcache_zbuffercache", "0" );
|
|
|
|
static void AddStaticLighting(
|
|
CBaseLightCache* pCache,
|
|
const Vector& origin,
|
|
const byte* pVis,
|
|
bool bStaticProp,
|
|
bool bAddedLeafAmbientCube )
|
|
{
|
|
VPROF( "AddStaticLighting" );
|
|
// First, blat out the lighting state
|
|
int i;
|
|
pCache->m_StaticLightingState.numlights = 0;
|
|
|
|
// NOTE: for static props, we mark lightstyles elsewhere (BuildStaticLightingCacheLightStyleInfo)
|
|
if( !bStaticProp )
|
|
{
|
|
pCache->m_LightingFlags &= ~( HACKLIGHTCACHEFLAGS_HASSWITCHABLELIGHTSTYLE |
|
|
HACKLIGHTCACHEFLAGS_HASNONSWITCHABLELIGHTSTYLE );
|
|
memset( pCache->m_pLightstyles, 0, sizeof( pCache->m_pLightstyles ) );
|
|
}
|
|
|
|
// Next, add each static light one at a time into the lighting state,
|
|
// ejecting less relevant local lights + folding them into the ambient cube
|
|
// Also, we need to add *all* new lights into the total box color
|
|
for (i = 0; i < host_state.worldbrush->numworldlights; ++i)
|
|
{
|
|
dworldlight_t *wl = &host_state.worldbrush->worldlights[i];
|
|
lightzbuffer_t *pZBuf;
|
|
if ( r_lightcache_zbuffercache.GetInt() )
|
|
pZBuf = &host_state.worldbrush->shadowzbuffers[i];
|
|
else
|
|
pZBuf = NULL;
|
|
|
|
// See the comment titled "EMIT_SURFACE LIGHTS" at the top for info.
|
|
if ( bAddedLeafAmbientCube && (wl->flags & DWL_FLAGS_INAMBIENTCUBE) )
|
|
{
|
|
Assert( wl->type == emit_surface );
|
|
continue;
|
|
}
|
|
|
|
// Don't add lights without lightstyles... we cache static lighting + lightstyles separately from static lighting
|
|
if (wl->style == 0)
|
|
{
|
|
// Now add that world light into our list of worldlights
|
|
AddWorldLightToLightingState( wl, pZBuf, pCache->m_StaticLightingState, *pCache, origin, pVis,
|
|
false, false );
|
|
}
|
|
else
|
|
{
|
|
// This is a lighstyle (flickering or switchable light)
|
|
// NOTE: for static props, we mark lightstyles elsewhere. (BuildStaticLightingCacheLightStyleInfo)
|
|
if( !bStaticProp )
|
|
{
|
|
int byte = wl->style >> 3;
|
|
int bit = GetBitForBitnum(wl->style & 0x7);
|
|
if( !( pCache->m_pLightstyles[byte] & bit ) )
|
|
{
|
|
Vector mins, maxs;
|
|
Vector dummyDirection;
|
|
ComputeLightcacheBounds( origin, &mins, &maxs );
|
|
float ratio = LightIntensityAndDirectionInBox( wl, NULL, origin, mins, maxs,
|
|
LIGHT_NO_OCCLUSION_CHECK | LIGHT_IGNORE_LIGHTSTYLE_VALUE, &dummyDirection );
|
|
// See if this light has any contribution on this cache entry.
|
|
if( ratio > 0.0f )
|
|
{
|
|
if( d_lightstylenumframes[wl->style] <= 1 )
|
|
{
|
|
pCache->m_LightingFlags |= HACKLIGHTCACHEFLAGS_HASSWITCHABLELIGHTSTYLE;
|
|
}
|
|
else
|
|
{
|
|
pCache->m_LightingFlags |= HACKLIGHTCACHEFLAGS_HASNONSWITCHABLELIGHTSTYLE;
|
|
}
|
|
pCache->m_pLightstyles[byte] |= bit;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Checks to see if the lightstyles are valid for this cache entry
|
|
//-----------------------------------------------------------------------------
|
|
static bool IsCachedLightStylesValid( CBaseLightCache* pCache )
|
|
{
|
|
if (!pCache->HasLightStyle())
|
|
return true;
|
|
|
|
for (int b = 0; b < (MAX_LIGHTSTYLES>>3); ++b)
|
|
{
|
|
byte test = pCache->m_pLightstyles[b];
|
|
if ( !test )
|
|
continue;
|
|
int offset = b << 3;
|
|
for (int i = 0; i < 8; ++i)
|
|
{
|
|
int bit = GetBitForBitnum(i & 0x7);
|
|
if (test & bit)
|
|
{
|
|
if (d_lightstyleframe[offset+i] > pCache->m_LastFrameUpdated_LightStyles)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Find a lightcache entry within the requested radius from a point
|
|
//-----------------------------------------------------------------------------
|
|
#if 0
|
|
static int FindRecentCacheEntryWithinRadius( int count, CacheInfo_t* pCache, const Vector& origin, float radius )
|
|
{
|
|
radius *= radius;
|
|
|
|
// Try to find something within the radius of an existing new sample
|
|
int minIndex = -1;
|
|
for (int i = 0; i < count; ++i)
|
|
{
|
|
Vector delta;
|
|
ComputeLightcacheOrigin( pCache[i].x, pCache[i].y, pCache[i].z, delta );
|
|
delta -= origin;
|
|
float distSq = delta.LengthSqr();
|
|
if (distSq < radius )
|
|
{
|
|
minIndex = i;
|
|
radius = distSq;
|
|
}
|
|
}
|
|
|
|
return minIndex;
|
|
}
|
|
#endif
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Draw the lightcache box for debugging
|
|
//-----------------------------------------------------------------------------
|
|
static void DebugRenderLightcache( Vector &sampleOrigin, LightingState_t& lightingState, bool bDebugModel )
|
|
{
|
|
#ifndef DEDICATED
|
|
// draw the cache entry defined by the sampling origin
|
|
Vector cacheOrigin, cacheMins, cacheMaxs, lightMins, lightMaxs;
|
|
ComputeLightcacheBounds( sampleOrigin, &cacheMins, &cacheMaxs );
|
|
cacheOrigin = ( cacheMins + cacheMaxs ) * 0.5f;
|
|
cacheMins -= cacheOrigin;
|
|
cacheMaxs -= cacheOrigin;
|
|
|
|
// For drawing irradiance light probes as shown in [Greger98]
|
|
if( r_drawlightcache.GetInt() == 5 )
|
|
{
|
|
if ( bDebugModel )
|
|
{
|
|
CDebugOverlay::AddSphereOverlay( sampleOrigin, 2.5f, 32, 32, 255, 255, 255, 255, 0.1f ); // 8 inch solid white sphere
|
|
CDebugOverlay::AddTextOverlay( sampleOrigin, 0.1f, "0" );
|
|
|
|
for ( int j = 0; j < lightingState.numlights; ++j )
|
|
{
|
|
Vector vLightPosition;
|
|
int r, g, b;
|
|
|
|
if ( lightingState.locallight[j]->type == emit_skylight )
|
|
{
|
|
vLightPosition = sampleOrigin - lightingState.locallight[j]->normal * 10000.0f;
|
|
r = 255;
|
|
g = 50;
|
|
b = 50;
|
|
}
|
|
else
|
|
{
|
|
vLightPosition = lightingState.locallight[j]->origin;
|
|
r = 255;
|
|
g = 255;
|
|
b = 255;
|
|
}
|
|
|
|
CDebugOverlay::AddLineOverlay( sampleOrigin, vLightPosition, r, g, b, 255, true, 0.0f );
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// draw cache entry
|
|
CDebugOverlay::AddBoxOverlay( cacheOrigin, cacheMins, cacheMaxs, vec3_angle, 255, 255, 255, 0, 0.0f );
|
|
|
|
// draw boxes at light ray terminals to visualize endpoints
|
|
if ( lightingState.numlights > 0 )
|
|
{
|
|
lightMins.Init( -2, -2, -2 );
|
|
lightMaxs.Init( 2, 2, 2);
|
|
|
|
CDebugOverlay::AddBoxOverlay( sampleOrigin, lightMins, lightMaxs, vec3_angle, 100, 255, 100, 0, 0.0f );
|
|
}
|
|
|
|
int nLineColor[4] = {255, 170, 85, 0};
|
|
|
|
for (int j = 0; j < lightingState.numlights; ++j)
|
|
{
|
|
Vector vLightPosition;
|
|
int r, g, b;
|
|
|
|
if ( lightingState.locallight[j]->type == emit_skylight )
|
|
{
|
|
vLightPosition = sampleOrigin - lightingState.locallight[j]->normal * 10000.0f;
|
|
r = 255;
|
|
g = 50;
|
|
b = 50;
|
|
}
|
|
else
|
|
{
|
|
vLightPosition = lightingState.locallight[j]->origin;
|
|
r = g = b = nLineColor[j];
|
|
}
|
|
|
|
// draw lines from sampling point to light
|
|
CDebugOverlay::AddLineOverlay( sampleOrigin, vLightPosition, r, g, b, 255, true, 0.0f );
|
|
CDebugOverlay::AddBoxOverlay( lightingState.locallight[j]->origin, lightMins, lightMaxs, vec3_angle, 255, 255, 100, 0, 0.0f );
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Identify lighting errors
|
|
//-----------------------------------------------------------------------------
|
|
bool IdentifyLightingErrors( int leaf, LightingState_t& lightingState )
|
|
{
|
|
if (r_drawlightcache.GetInt() == 3)
|
|
{
|
|
if (CM_LeafContents(leaf) == CONTENTS_SOLID)
|
|
{
|
|
// Try another choice...
|
|
lightingState.r_boxcolor[0].Init( 1, 0, 0 );
|
|
lightingState.r_boxcolor[1].Init( 1, 0, 0 );
|
|
lightingState.r_boxcolor[2].Init( 1, 0, 0 );
|
|
lightingState.r_boxcolor[3].Init( 1, 0, 0 );
|
|
lightingState.r_boxcolor[4].Init( 1, 0, 0 );
|
|
lightingState.r_boxcolor[5].Init( 1, 0, 0 );
|
|
lightingState.numlights = 0;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute the cache...
|
|
//-----------------------------------------------------------------------------
|
|
static const byte* ComputeStaticLightingForCacheEntry( CBaseLightCache *pcache, const Vector& origin, int leaf, bool bStaticProp = false )
|
|
{
|
|
VPROF_INCREMENT_COUNTER( "ComputeStaticLightingForCacheEntry", 1 );
|
|
|
|
VPROF( "ComputeStaticLightingForCacheEntry" );
|
|
// Figure out the PVS info for this location
|
|
const byte* pVis = CM_ClusterPVS( CM_LeafCluster( leaf ) );
|
|
|
|
bool bAddedLeafAmbientCube;
|
|
|
|
R_StudioGetAmbientLightForPoint(
|
|
leaf,
|
|
origin,
|
|
pcache->m_StaticLightingState.r_boxcolor,
|
|
bStaticProp,
|
|
&bAddedLeafAmbientCube );
|
|
|
|
// get direct lighting from world light sources (point lights, etc.)
|
|
if ( !r_ambientlightingonly.GetInt() )
|
|
{
|
|
AddStaticLighting( pcache, origin, pVis, bStaticProp, bAddedLeafAmbientCube );
|
|
}
|
|
|
|
return pVis;
|
|
}
|
|
|
|
|
|
static void BuildStaticLightingCacheLightStyleInfo( PropLightcache_t* pcache, const Vector& mins, const Vector& maxs )
|
|
{
|
|
const byte *pVis = NULL;
|
|
Assert( pcache->m_LightStyleWorldLights.Count() == 0 );
|
|
pcache->m_LightingFlags &= ~( HACKLIGHTCACHEFLAGS_HASSWITCHABLELIGHTSTYLE | HACKLIGHTCACHEFLAGS_HASSWITCHABLELIGHTSTYLE );
|
|
// clear lightstyles
|
|
memset( pcache->m_pLightstyles, 0, MAX_LIGHTSTYLE_BYTES );
|
|
for ( short i = 0; i < host_state.worldbrush->numworldlights; ++i)
|
|
{
|
|
dworldlight_t *wl = &host_state.worldbrush->worldlights[i];
|
|
if (wl->style == 0)
|
|
continue;
|
|
|
|
// This is an optimization to avoid decompressing Vis twice
|
|
if (!pVis)
|
|
{
|
|
// Figure out the PVS info for this static prop
|
|
pVis = CM_ClusterPVS( CM_LeafCluster( pcache->leaf ) );
|
|
}
|
|
// FIXME: Could do better here if we had access to the list of leaves that this
|
|
// static prop is in. For now, we use the lighting origin.
|
|
if( pVis[ wl->cluster >> 3 ] & ( 1 << ( wl->cluster & 7 ) ) )
|
|
{
|
|
// Use the maximum illumination to cull out lights that are far away.
|
|
dworldlight_t tmpLight = *wl;
|
|
tmpLight.style = 0;
|
|
Vector dummyDirection;
|
|
float ratio = LightIntensityAndDirectionInBox( &tmpLight, NULL, pcache->m_LightingOrigin, mins, maxs,
|
|
LIGHT_NO_OCCLUSION_CHECK | LIGHT_IGNORE_LIGHTSTYLE_VALUE, &dummyDirection );
|
|
// See if this light has any contribution on this cache entry.
|
|
if( ratio <= 0.0f )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
{
|
|
MEM_ALLOC_CREDIT();
|
|
pcache->m_LightStyleWorldLights.AddToTail( i );
|
|
}
|
|
|
|
int byte = wl->style >> 3;
|
|
int bit = wl->style & 0x7;
|
|
pcache->m_pLightstyles[byte] |= ( 1 << bit );
|
|
if( d_lightstylenumframes[wl->style] <= 1 )
|
|
{
|
|
pcache->m_LightingFlags |= HACKLIGHTCACHEFLAGS_HASSWITCHABLELIGHTSTYLE;
|
|
}
|
|
else
|
|
{
|
|
pcache->m_LightingFlags |= HACKLIGHTCACHEFLAGS_HASNONSWITCHABLELIGHTSTYLE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static ITexture *FindEnvCubemapForPoint( const Vector& origin )
|
|
{
|
|
worldbrushdata_t *pBrushData = host_state.worldbrush;
|
|
if( pBrushData && pBrushData->m_nCubemapSamples > 0 )
|
|
{
|
|
int smallestIndex = 0;
|
|
Vector blah = origin - pBrushData->m_pCubemapSamples[0].origin;
|
|
float smallestDist = DotProduct( blah, blah );
|
|
int i;
|
|
for( i = 1; i < pBrushData->m_nCubemapSamples; i++ )
|
|
{
|
|
Vector blah = origin - pBrushData->m_pCubemapSamples[i].origin;
|
|
float dist = DotProduct( blah, blah );
|
|
if( dist < smallestDist )
|
|
{
|
|
smallestDist = dist;
|
|
smallestIndex = i;
|
|
}
|
|
}
|
|
|
|
return pBrushData->m_pCubemapSamples[smallestIndex].pTexture;
|
|
}
|
|
else
|
|
{
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Create static light cache entry
|
|
//-----------------------------------------------------------------------------
|
|
LightCacheHandle_t CreateStaticLightingCache( const Vector& origin, const Vector& mins, const Vector& maxs )
|
|
{
|
|
PropLightcache_t* pcache = s_PropCache.Alloc();
|
|
|
|
pcache->m_LightingOrigin = origin;
|
|
pcache->m_Flags = 0;
|
|
|
|
pcache->mins = mins;
|
|
pcache->maxs = maxs;
|
|
|
|
// initialize this to point to our current origin
|
|
pcache->leaf = CM_PointLeafnum(origin);
|
|
|
|
// Add the prop to the list of props
|
|
pcache->m_pNextPropLightcache = s_pAllStaticProps;
|
|
s_pAllStaticProps = pcache;
|
|
|
|
pcache->m_Flags = 0; // must set this to zero so that this cache entry will be invalid.
|
|
pcache->m_pEnvCubemapTexture = FindEnvCubemapForPoint( origin );
|
|
BuildStaticLightingCacheLightStyleInfo( pcache, mins, maxs );
|
|
return (LightCacheHandle_t)pcache;
|
|
}
|
|
|
|
bool StaticLightCacheAffectedByDynamicLight( LightCacheHandle_t handle )
|
|
{
|
|
PropLightcache_t *pcache = ( PropLightcache_t *)handle;
|
|
return pcache->HasDlights();
|
|
}
|
|
|
|
bool StaticLightCacheAffectedByAnimatedLightStyle( LightCacheHandle_t handle )
|
|
{
|
|
PropLightcache_t *pcache = ( PropLightcache_t *)handle;
|
|
if( !pcache->HasLightStyle() )
|
|
{
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
for( int i = 0; i < pcache->m_LightStyleWorldLights.Count(); ++i )
|
|
{
|
|
Assert( pcache->m_LightStyleWorldLights[i] >= 0 );
|
|
Assert( pcache->m_LightStyleWorldLights[i] < host_state.worldbrush->numworldlights );
|
|
dworldlight_t *wl = &host_state.worldbrush->worldlights[pcache->m_LightStyleWorldLights[i]];
|
|
Assert( wl->style != 0 );
|
|
if( d_lightstylenumframes[wl->style] > 1 )
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool StaticLightCacheNeedsSwitchableLightUpdate( LightCacheHandle_t handle )
|
|
{
|
|
PropLightcache_t *pcache = ( PropLightcache_t *)handle;
|
|
if( !pcache->HasSwitchableLightStyle() )
|
|
{
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
for( int i = 0; i < pcache->m_LightStyleWorldLights.Count(); ++i )
|
|
{
|
|
Assert( pcache->m_LightStyleWorldLights[i] >= 0 );
|
|
Assert( pcache->m_LightStyleWorldLights[i] < host_state.worldbrush->numworldlights );
|
|
dworldlight_t *wl = &host_state.worldbrush->worldlights[pcache->m_LightStyleWorldLights[i]];
|
|
Assert( wl->style != 0 );
|
|
// Is it a switchable light?
|
|
if( d_lightstylenumframes[wl->style] <= 1 )
|
|
{
|
|
// Has it changed since the last time we updated our cached static VB version?
|
|
if( pcache->m_SwitchableLightFrame < d_lightstyleframe[wl->style] )
|
|
{
|
|
pcache->m_SwitchableLightFrame = r_framecount;
|
|
// return true since our static vb is dirty
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Clears the prop lighting cache
|
|
//-----------------------------------------------------------------------------
|
|
void ClearStaticLightingCache()
|
|
{
|
|
s_PropCache.Clear();
|
|
s_pAllStaticProps = NULL;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Recomputes all static prop lighting
|
|
//-----------------------------------------------------------------------------
|
|
void InvalidateStaticLightingCache(void)
|
|
{
|
|
for ( PropLightcache_t *pCur=s_pAllStaticProps; pCur; pCur=pCur->m_pNextPropLightcache )
|
|
{
|
|
// Compute the static lighting
|
|
pCur->m_Flags = 0;
|
|
pCur->m_LightingFlags &=~HACKLIGHTCACHEFLAGS_HASDONESTATICLIGHTING;
|
|
|
|
LightcacheGetStatic( ( LightCacheHandle_t )pCur, NULL, LIGHTCACHEFLAGS_STATIC );
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Gets the lightcache entry for a static prop
|
|
//-----------------------------------------------------------------------------
|
|
LightingState_t *LightcacheGetStatic( LightCacheHandle_t cache, ITexture **pEnvCubemapTexture, unsigned int flags )
|
|
{
|
|
PropLightcache_t *pcache = ( PropLightcache_t * )cache;
|
|
Assert( pcache );
|
|
|
|
// get the cubemap texture
|
|
if ( pEnvCubemapTexture )
|
|
{
|
|
*pEnvCubemapTexture = pcache->m_pEnvCubemapTexture;
|
|
}
|
|
|
|
bool bRecalcStaticLighting = false;
|
|
bool bRecalcLightStyles = (pcache->HasLightStyle() && pcache->m_LastFrameUpdated_LightStyles != r_framecount) && !IsCachedLightStylesValid(pcache);
|
|
bool bRecalcDLights = pcache->HasDlights() && pcache->m_LastFrameUpdated_DynamicLighting != r_framecount;
|
|
|
|
if ( flags != pcache->m_Flags )
|
|
{
|
|
// This should not happen often, but if the flags change, blow away all of the lighting state.
|
|
// This cache entry's state must be regenerated.
|
|
bRecalcStaticLighting = true;
|
|
bRecalcLightStyles = true;
|
|
bRecalcDLights = true;
|
|
|
|
pcache->m_Flags = flags;
|
|
}
|
|
else if ( !bRecalcDLights && !bRecalcLightStyles )
|
|
{
|
|
// already have expected lighting state
|
|
// get out of here since we already did this this frame.
|
|
|
|
// But first add experimental global ambient term
|
|
pcache->m_DynamicAmbientLightingState = pcache->m_DynamicLightingState;
|
|
|
|
float fAmbientR, fAmbientG, fAmbientB;
|
|
fAmbientR = mat_ambient_light_r.GetFloat();
|
|
fAmbientG = mat_ambient_light_g.GetFloat();
|
|
fAmbientB = mat_ambient_light_b.GetFloat();
|
|
|
|
for ( int i = 0; i < 6; i++ )
|
|
{
|
|
pcache->m_DynamicAmbientLightingState.r_boxcolor[i].x += fAmbientR;
|
|
pcache->m_DynamicAmbientLightingState.r_boxcolor[i].y += fAmbientG;
|
|
pcache->m_DynamicAmbientLightingState.r_boxcolor[i].z += fAmbientB;
|
|
}
|
|
|
|
return &pcache->m_DynamicAmbientLightingState;
|
|
}
|
|
else
|
|
{
|
|
// the dlight cache includes lightstyles
|
|
// we have to recalc the dlight cache if lightstyles change.
|
|
if ( bRecalcLightStyles )
|
|
{
|
|
bRecalcDLights = true;
|
|
}
|
|
}
|
|
|
|
// must need to recalc, do so
|
|
|
|
LightingState_t accumulatedState;
|
|
|
|
// static lighting state gets preserved because its expensive to generate
|
|
// it gets re-requested for static props that rebake
|
|
if ( flags & LIGHTCACHEFLAGS_STATIC )
|
|
{
|
|
// want static lighting data
|
|
if ( bRecalcStaticLighting && !(pcache->m_LightingFlags & HACKLIGHTCACHEFLAGS_HASDONESTATICLIGHTING) )
|
|
{
|
|
ComputeStaticLightingForCacheEntry( pcache, pcache->m_LightingOrigin, pcache->leaf, true );
|
|
pcache->m_LightingFlags |= HACKLIGHTCACHEFLAGS_HASDONESTATICLIGHTING;
|
|
}
|
|
|
|
// set as start values for accumulation
|
|
accumulatedState = pcache->m_StaticLightingState;
|
|
}
|
|
else
|
|
{
|
|
// set as zero for accumulation
|
|
accumulatedState.ZeroLightingState();
|
|
}
|
|
|
|
// lightstyle lighting state gets preserved when there is no lightstyle change
|
|
if ( flags & LIGHTCACHEFLAGS_LIGHTSTYLE )
|
|
{
|
|
if ( bRecalcLightStyles )
|
|
{
|
|
// accumulate lightstyles
|
|
AddLightStylesForStaticProp( pcache, accumulatedState );
|
|
pcache->m_LightStyleLightingState = accumulatedState;
|
|
pcache->m_LastFrameUpdated_LightStyles = r_framecount;
|
|
}
|
|
else
|
|
{
|
|
accumulatedState = pcache->m_LightStyleLightingState;
|
|
}
|
|
}
|
|
|
|
if ( flags & LIGHTCACHEFLAGS_DYNAMIC )
|
|
{
|
|
if ( bRecalcDLights )
|
|
{
|
|
// accumulate dynamic lights
|
|
AddDLightsForStaticProps( *( LightingStateInfo_t *)pcache, accumulatedState, pcache );
|
|
pcache->m_DynamicLightingState = accumulatedState;
|
|
pcache->m_LastFrameUpdated_DynamicLighting = r_framecount;
|
|
}
|
|
else
|
|
{
|
|
accumulatedState = pcache->m_DynamicLightingState;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// hold the current state
|
|
pcache->m_DynamicLightingState = accumulatedState;
|
|
}
|
|
|
|
// Add global ambient term to ambient cube
|
|
pcache->m_DynamicAmbientLightingState = pcache->m_DynamicLightingState;
|
|
|
|
float fAmbientR, fAmbientG, fAmbientB;
|
|
fAmbientR = mat_ambient_light_r.GetFloat();
|
|
fAmbientG = mat_ambient_light_g.GetFloat();
|
|
fAmbientB = mat_ambient_light_b.GetFloat();
|
|
|
|
for ( int i = 0; i < 6; i++ )
|
|
{
|
|
pcache->m_DynamicAmbientLightingState.r_boxcolor[i].x += fAmbientR;
|
|
pcache->m_DynamicAmbientLightingState.r_boxcolor[i].y += fAmbientG;
|
|
pcache->m_DynamicAmbientLightingState.r_boxcolor[i].z += fAmbientB;
|
|
}
|
|
|
|
// caller gets requested data
|
|
return &pcache->m_DynamicAmbientLightingState;
|
|
}
|
|
|
|
|
|
inline const byte *AddLightingState(
|
|
LightingState_t &dst,
|
|
const LightingState_t &src,
|
|
LightingStateInfo_t &info,
|
|
const Vector& bucketOrigin,
|
|
const byte *pVis,
|
|
bool bDynamic,
|
|
bool bIgnoreVis )
|
|
{
|
|
int i;
|
|
for( i = 0; i < src.numlights; i++ )
|
|
{
|
|
pVis = AddWorldLightToLightingState( src.locallight[i], NULL, dst, info, bucketOrigin, pVis,
|
|
bDynamic, bIgnoreVis );
|
|
}
|
|
for( i = 0; i < 6; i++ )
|
|
{
|
|
dst.r_boxcolor[i] += src.r_boxcolor[i];
|
|
}
|
|
return pVis;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Get or create the lighting information for this point
|
|
// This is the version for dynamic objects.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
const byte* PrecalcLightingState( lightcache_t *pCache, const byte *pVis )
|
|
{
|
|
LightingState_t lightingState;
|
|
lightingState.ZeroLightingState();
|
|
|
|
pCache->m_StaticPrecalc_LightingStateInfo.Clear();
|
|
|
|
int i;
|
|
for( i = 0; i < pCache->m_StaticLightingState.numlights; i++ )
|
|
{
|
|
pVis = AddWorldLightToLightingState(
|
|
pCache->m_StaticLightingState.locallight[i],
|
|
NULL,
|
|
lightingState,
|
|
pCache->m_StaticPrecalc_LightingStateInfo,
|
|
pCache->m_LightingOrigin,
|
|
pVis,
|
|
true, // bDynamic
|
|
false // bIgnoreVis
|
|
);
|
|
}
|
|
|
|
for ( i=0; i < 6; i++ )
|
|
pCache->m_StaticLightingState.r_boxcolor[i] += lightingState.r_boxcolor[i];
|
|
|
|
pCache->m_StaticPrecalc_NumLocalLights = lightingState.numlights;
|
|
for ( i=0; i < pCache->m_StaticPrecalc_NumLocalLights; i++ )
|
|
pCache->m_StaticPrecalc_LocalLight[i] = lightingState.locallight[i];
|
|
|
|
return pVis;
|
|
}
|
|
|
|
|
|
void CopyPrecalcedLightingState( lightcache_t *pCache, LightingState_t &lightingState, LightingStateInfo_t &info )
|
|
{
|
|
info = pCache->m_StaticPrecalc_LightingStateInfo;
|
|
|
|
int i;
|
|
for ( i=0; i < 6; i++ )
|
|
lightingState.r_boxcolor[i] = pCache->m_StaticLightingState.r_boxcolor[i];
|
|
|
|
lightingState.numlights = pCache->m_StaticPrecalc_NumLocalLights;
|
|
for ( i=0; i < lightingState.numlights; i++ )
|
|
lightingState.locallight[i] = pCache->m_StaticPrecalc_LocalLight[i];
|
|
}
|
|
|
|
|
|
void AdjustLightCacheOrigin( lightcache_t *pCache, const Vector &origin, int originLeaf )
|
|
{
|
|
Vector cacheMins;
|
|
Vector cacheMaxs;
|
|
Vector center;
|
|
trace_t tr;
|
|
Ray_t ray;
|
|
CTraceFilterWorldOnly worldTraceFilter;
|
|
ITraceFilter *pTraceFilter = &worldTraceFilter;
|
|
|
|
// quiet compiler
|
|
tr.startsolid = false;
|
|
tr.fraction = 0;
|
|
|
|
// prefer to use the center of the light cache for all sampling
|
|
// which helps consistent stable cache entries
|
|
ComputeLightcacheBounds( origin, &cacheMins, &cacheMaxs );
|
|
center = cacheMins + cacheMaxs;
|
|
center *= 0.5f;
|
|
|
|
bool bTraceToCenter = true;
|
|
int centerLeaf = CM_PointLeafnum(center);
|
|
if (centerLeaf != originLeaf)
|
|
{
|
|
// preferred center resides in a different leaf
|
|
if (CM_LeafContents(centerLeaf) & MASK_OPAQUE)
|
|
{
|
|
// preferred center is invalid
|
|
bTraceToCenter = false;
|
|
}
|
|
else
|
|
{
|
|
// ensure the desired center resides in the leaf that the provided origin is in
|
|
CM_SnapPointToReferenceLeaf(origin, LIGHTCACHE_SNAP_EPSILON, ¢er);
|
|
}
|
|
}
|
|
|
|
|
|
if (bTraceToCenter)
|
|
{
|
|
// if the center is unavailable, fallback to provided origin
|
|
ray.Init( origin, center );
|
|
g_pEngineTraceClient->TraceRay( ray, MASK_OPAQUE, pTraceFilter, &tr );
|
|
}
|
|
|
|
if (bTraceToCenter && tr.startsolid)
|
|
{
|
|
// origin is in solid, can't trace anywhere, use bad origin as provided
|
|
VectorCopy(origin, pCache->m_LightingOrigin);
|
|
}
|
|
else if (!bTraceToCenter || tr.fraction < 1)
|
|
{
|
|
// center is occluded
|
|
// trace again, recompute alternate x-y center, substitute z
|
|
// ensure the desired center resides in the leaf that the provided origin is in
|
|
center.x = (cacheMins.x + cacheMaxs.x) * 0.5f;
|
|
center.y = (cacheMins.y + cacheMaxs.y) * 0.5f;
|
|
center.z = origin.z;
|
|
CM_SnapPointToReferenceLeaf(origin, LIGHTCACHE_SNAP_EPSILON, ¢er);
|
|
|
|
ray.Init( origin, center );
|
|
g_pEngineTraceClient->TraceRay( ray, MASK_OPAQUE, pTraceFilter, &tr );
|
|
if (tr.fraction < 1)
|
|
{
|
|
// no further fallback, use origin as provided
|
|
VectorCopy(origin, pCache->m_LightingOrigin);
|
|
}
|
|
else
|
|
{
|
|
// trace succeeded
|
|
VectorCopy(center, pCache->m_LightingOrigin);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// trace succeeded
|
|
VectorCopy(center, pCache->m_LightingOrigin);
|
|
}
|
|
}
|
|
|
|
bool AllowFullCacheMiss(int flags)
|
|
{
|
|
if ( r_framecount < 60 || r_framecount != g_FrameIndex )
|
|
{
|
|
g_FrameMissCount = 0;
|
|
g_FrameIndex = r_framecount;
|
|
}
|
|
if ( g_FrameMissCount < lightcache_maxmiss.GetInt() )
|
|
{
|
|
g_FrameMissCount++;
|
|
return true;
|
|
}
|
|
|
|
if ( flags & LIGHTCACHEFLAGS_ALLOWFAST )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
lightcache_t *FindNearestCache( int x, int y, int z, int leafIndex )
|
|
{
|
|
int bestDist = INT_MAX;
|
|
lightcache_t *pBest = NULL;
|
|
short current = GetLightLRUTail().lru_prev;
|
|
int dx, dy, dz;
|
|
while ( current != LIGHT_LRU_HEAD_INDEX )
|
|
{
|
|
lightcache_t *pCache = &lightcache[current];
|
|
int dist = 0;
|
|
dx = pCache->x - x;
|
|
dx = abs(dx);
|
|
dy = pCache->y - y;
|
|
dy = abs(dy);
|
|
dz = pCache->z - z;
|
|
dz = abs(dz);
|
|
if ( leafIndex != pCache->leaf )
|
|
{
|
|
dist += 2;
|
|
}
|
|
dist = MAX(dist, dx);
|
|
dist = MAX(dist, dy);
|
|
dist = MAX(dist, dz);
|
|
if ( dist < bestDist )
|
|
{
|
|
pBest = pCache;
|
|
bestDist = dist;
|
|
if ( dist <= 1 )
|
|
break;
|
|
}
|
|
current = pCache->lru_prev;
|
|
}
|
|
return pBest;
|
|
}
|
|
|
|
|
|
ITexture *LightcacheGetDynamic( const Vector& origin, LightingState_t& lightingState,
|
|
LightcacheGetDynamic_Stats &stats, const IClientRenderable* pRenderable,
|
|
unsigned int flags, bool bDebugModel )
|
|
{
|
|
VPROF_BUDGET( "LightcacheGet", VPROF_BUDGETGROUP_LIGHTCACHE );
|
|
|
|
LightingStateInfo_t info;
|
|
|
|
// generate the hashing vars
|
|
int originLeaf = CM_PointLeafnum(origin);
|
|
|
|
/*
|
|
if (IdentifyLightingErrors(leaf, lightingState))
|
|
return false;
|
|
*/
|
|
|
|
int x, y, z;
|
|
OriginToCacheOrigin( origin, x, y, z );
|
|
|
|
// convert vars to hash key / bucket id
|
|
int bucket = LightcacheHashKey( x, y, z, originLeaf );
|
|
|
|
const byte* pVis = NULL;
|
|
bool bComputeLightStyles = ( flags & LIGHTCACHEFLAGS_LIGHTSTYLE ) != 0;
|
|
|
|
// See if we've already computed the light in this location
|
|
lightcache_t *pCache = FindInCache(bucket, x, y, z, originLeaf);
|
|
|
|
if ( pCache )
|
|
{
|
|
// cache hit, move to tail of LRU
|
|
LightcacheMark( pCache );
|
|
|
|
if ( bComputeLightStyles && IsCachedLightStylesValid( pCache ) )
|
|
{
|
|
bComputeLightStyles = false;
|
|
}
|
|
}
|
|
else if ( !AllowFullCacheMiss(flags) )
|
|
{
|
|
pCache = FindNearestCache( x, y, z, originLeaf );
|
|
originLeaf = pCache->leaf;
|
|
|
|
x = pCache->x;
|
|
y = pCache->y;
|
|
z = pCache->z;
|
|
}
|
|
if ( !pCache )
|
|
{
|
|
VPROF_INCREMENT_COUNTER( "lightcache miss", 1 );
|
|
|
|
// cache miss, nothing appropriate from the frame cache, make a new entry
|
|
pCache = NewLightcacheEntry(bucket);
|
|
|
|
// initialize the cache entry based on provided origin
|
|
pCache->x = x;
|
|
pCache->y = y;
|
|
pCache->z = z;
|
|
pCache->leaf = originLeaf;
|
|
pCache->m_LastFrameUpdated_DynamicLighting = -1;
|
|
pCache->m_LastFrameUpdated_LightStyles = -1;
|
|
|
|
if ( r_lightcachecenter.GetBool() )
|
|
{
|
|
AdjustLightCacheOrigin( pCache, origin, originLeaf );
|
|
}
|
|
else
|
|
{
|
|
// old behavior, use provided origin
|
|
VectorCopy(origin, pCache->m_LightingOrigin);
|
|
}
|
|
|
|
// Figure out which env_cubemap is used for this cache entry.
|
|
pCache->m_pEnvCubemapTexture = FindEnvCubemapForPoint( pCache->m_LightingOrigin );
|
|
|
|
// Compute the static portion of the cache
|
|
pVis = ComputeStaticLightingForCacheEntry( pCache, pCache->m_LightingOrigin, originLeaf );
|
|
pVis = PrecalcLightingState( pCache, pVis );
|
|
}
|
|
|
|
// NOTE: On a cache miss, this has to be after ComputeStaticLightingForCacheEntry since these flags are computed there.
|
|
stats.m_bHasNonSwitchableLightStyles = pCache->HasNonSwitchableLightStyle();
|
|
stats.m_bHasSwitchableLightStyles = pCache->HasSwitchableLightStyle();
|
|
|
|
if ( bComputeLightStyles )
|
|
{
|
|
pVis = ComputeLightStyles( pCache, pCache->m_LightStyleLightingState, pCache->m_LightingOrigin, originLeaf, pVis );
|
|
stats.m_bNeedsSwitchableLightStyleUpdate = true;
|
|
}
|
|
else
|
|
{
|
|
stats.m_bNeedsSwitchableLightStyleUpdate = false;
|
|
}
|
|
|
|
stats.m_bHasDLights = false;
|
|
if ( flags & LIGHTCACHEFLAGS_DYNAMIC )
|
|
{
|
|
pVis = ComputeDynamicLighting( pCache, pCache->m_DynamicLightingState, pCache->m_LightingOrigin, originLeaf, pVis );
|
|
if( pCache->m_DynamicLightingState.numlights > 0 )
|
|
{
|
|
stats.m_bHasDLights = true;
|
|
}
|
|
}
|
|
|
|
if ( flags & LIGHTCACHEFLAGS_STATIC )
|
|
{
|
|
CopyPrecalcedLightingState( pCache, lightingState, info );
|
|
}
|
|
else
|
|
{
|
|
lightingState.ZeroLightingState();
|
|
}
|
|
|
|
if ( flags & LIGHTCACHEFLAGS_LIGHTSTYLE )
|
|
{
|
|
pVis = AddLightingState( lightingState, pCache->m_LightStyleLightingState, info, pCache->m_LightingOrigin, pVis,
|
|
true /*bDynamic*/, false /*bIgnoreVis*/ );
|
|
}
|
|
|
|
if ( flags & LIGHTCACHEFLAGS_DYNAMIC )
|
|
{
|
|
// Compute all dynamic lights that only affect a specific renderable. These can't be in the cache because the cache is
|
|
// shared between different intities.
|
|
LightingState_t exclDynamicLightingState;
|
|
pVis = ComputeExclusiveDynamicLighting( exclDynamicLightingState, pCache->m_LightingOrigin, originLeaf, pRenderable, pVis );
|
|
|
|
// Add shared dynamic lights
|
|
pVis = AddLightingState( lightingState, pCache->m_DynamicLightingState, info, pCache->m_LightingOrigin, pVis,
|
|
true /*bDynamic*/, false /*bIgnoreVis*/ );
|
|
// Add exclusive dynamic lights
|
|
pVis = AddLightingState( lightingState, exclDynamicLightingState, info, pCache->m_LightingOrigin, pVis,
|
|
true /*bDynamic*/, true /*bIgnoreVis*/ );
|
|
}
|
|
|
|
|
|
// Add global ambient light to ambient cube here.
|
|
float fAmbientR, fAmbientG, fAmbientB;
|
|
fAmbientR = mat_ambient_light_r.GetFloat();
|
|
fAmbientG = mat_ambient_light_g.GetFloat();
|
|
fAmbientB = mat_ambient_light_b.GetFloat();
|
|
|
|
for ( int i = 0; i < 6; i++ )
|
|
{
|
|
lightingState.r_boxcolor[i].x += fAmbientR;
|
|
lightingState.r_boxcolor[i].y += fAmbientG;
|
|
lightingState.r_boxcolor[i].z += fAmbientB;
|
|
}
|
|
|
|
if ( r_drawlightcache.GetBool() )
|
|
{
|
|
DebugRenderLightcache( pCache->m_LightingOrigin, lightingState, bDebugModel );
|
|
}
|
|
|
|
return pCache->m_pEnvCubemapTexture;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute the contribution of D- and E- lights at a point + normal
|
|
//-----------------------------------------------------------------------------
|
|
void ComputeDynamicLighting( const Vector& pt, const Vector* pNormal, Vector& color )
|
|
{
|
|
if ( !g_bActiveDlights && !g_bActiveElights )
|
|
{
|
|
VectorFill( color, 0 );
|
|
return;
|
|
}
|
|
|
|
// Next, add each world light with a lightstyle into the lighting state,
|
|
// ejecting less relevant local lights + folding them into the ambient cube
|
|
static Vector ambientTerm[6] =
|
|
{
|
|
Vector(0,0,0),
|
|
Vector(0,0,0),
|
|
Vector(0,0,0),
|
|
Vector(0,0,0),
|
|
Vector(0,0,0),
|
|
Vector(0,0,0)
|
|
};
|
|
|
|
int lightCount = 0;
|
|
LightDesc_t pLightDesc[MAX_DLIGHTS + MAX_ELIGHTS];
|
|
|
|
int i;
|
|
dlight_t* dl = cl_dlights;
|
|
if ( g_bActiveDlights )
|
|
{
|
|
for ( i=0; i<MAX_DLIGHTS; ++i, ++dl )
|
|
{
|
|
// If the light's not active, then continue
|
|
if ( (r_dlightactive & (1 << i)) == 0 )
|
|
continue;
|
|
|
|
// If the light doesn't affect models, then continue
|
|
if (dl->flags & (DLIGHT_NO_MODEL_ILLUMINATION | DLIGHT_DISPLACEMENT_MASK))
|
|
continue;
|
|
|
|
// Construct a world light representing the dynamic light
|
|
// we're making a static list here because the lighting state
|
|
// contains a set of pointers to dynamic lights
|
|
dworldlight_t worldLight;
|
|
WorldLightFromDynamicLight( *dl, worldLight );
|
|
WorldLightToMaterialLight( &worldLight, pLightDesc[lightCount] );
|
|
++lightCount;
|
|
}
|
|
}
|
|
|
|
if ( g_bActiveElights )
|
|
{
|
|
// Next, add each world light with a lightstyle into the lighting state,
|
|
// ejecting less relevant local lights + folding them into the ambient cube
|
|
dl = cl_elights;
|
|
for ( i=0; i<MAX_ELIGHTS; ++i, ++dl )
|
|
{
|
|
// If the light's not active, then continue
|
|
if ( !dl->IsRadiusGreaterThanZero() )
|
|
continue;
|
|
|
|
// If the light doesn't affect models, then continue
|
|
if (dl->flags & (DLIGHT_NO_MODEL_ILLUMINATION | DLIGHT_DISPLACEMENT_MASK))
|
|
continue;
|
|
|
|
// Construct a world light representing the dynamic light
|
|
// we're making a static list here because the lighting state
|
|
// contains a set of pointers to dynamic lights
|
|
dworldlight_t worldLight;
|
|
WorldLightFromDynamicLight( *dl, worldLight );
|
|
WorldLightToMaterialLight( &worldLight, pLightDesc[lightCount] );
|
|
++lightCount;
|
|
}
|
|
}
|
|
|
|
if ( lightCount )
|
|
{
|
|
g_pStudioRender->ComputeLighting( ambientTerm, lightCount,
|
|
pLightDesc, pt, *pNormal, color );
|
|
}
|
|
else
|
|
{
|
|
VectorFill( color, 0 );
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Is Dynamic Light?
|
|
//-----------------------------------------------------------------------------
|
|
static bool IsDynamicLight( dworldlight_t *pWorldLight )
|
|
{
|
|
// NOTE: This only works because we're using some implementation details
|
|
// that the dynamic lights are stored in a little static array
|
|
return ( pWorldLight >= s_pDynamicLight && pWorldLight < &s_pDynamicLight[ARRAYSIZE(s_pDynamicLight)] );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Computes an average color (of sorts) at a particular point + optional normal
|
|
//-----------------------------------------------------------------------------
|
|
void ComputeLighting( const Vector& pt, const Vector* pNormal, bool bClamp, bool bAddDynamicLightsToBox, Vector& color, Vector *pBoxColors )
|
|
{
|
|
LightingState_t lightingState;
|
|
LightcacheGetDynamic_Stats stats;
|
|
LightcacheGetDynamic( pt, lightingState, stats, NULL, LIGHTCACHEFLAGS_STATIC|LIGHTCACHEFLAGS_DYNAMIC|LIGHTCACHEFLAGS_LIGHTSTYLE|LIGHTCACHEFLAGS_ALLOWFAST );
|
|
int i;
|
|
if ( pNormal )
|
|
{
|
|
LightDesc_t* pLightDesc = (LightDesc_t*)stackalloc( lightingState.numlights * sizeof(LightDesc_t) );
|
|
|
|
for ( i=0; i < lightingState.numlights; ++i )
|
|
{
|
|
// Construct a world light representing the dynamic light
|
|
// we're making a static list here because the lighting state
|
|
// contains a set of pointers to dynamic lights
|
|
WorldLightToMaterialLight( lightingState.locallight[i], pLightDesc[i] );
|
|
}
|
|
|
|
g_pStudioRender->ComputeLighting( lightingState.r_boxcolor, lightingState.numlights, pLightDesc, pt, *pNormal, color );
|
|
}
|
|
else
|
|
{
|
|
Vector direction;
|
|
|
|
for ( i = 0; i < lightingState.numlights; ++i )
|
|
{
|
|
if ( !bAddDynamicLightsToBox && IsDynamicLight( lightingState.locallight[i] ) )
|
|
continue;
|
|
|
|
float ratio = LightIntensityAndDirectionAtPoint( lightingState.locallight[i], NULL, pt, LIGHT_NO_OCCLUSION_CHECK, NULL, &direction );
|
|
float angularRatio = Engine_WorldLightAngle( lightingState.locallight[i], lightingState.locallight[i]->normal, direction, direction );
|
|
AddWorldLightToLightCube( lightingState.locallight[i], lightingState.r_boxcolor, direction, ratio * angularRatio );
|
|
}
|
|
|
|
color.Init( 0, 0, 0 );
|
|
for ( i = 0; i < 6; ++i )
|
|
{
|
|
color += lightingState.r_boxcolor[i];
|
|
}
|
|
color /= 6.0f;
|
|
}
|
|
|
|
// If they want the colors for each box side, give it to them.
|
|
if ( pBoxColors )
|
|
{
|
|
memcpy( pBoxColors, lightingState.r_boxcolor, sizeof( lightingState.r_boxcolor ) );
|
|
}
|
|
|
|
if (bClamp)
|
|
{
|
|
#if 1
|
|
color.x = fpmin( color.x, 1.0f ); // if (color.x > 1.0f) color.x = 1.0f;
|
|
color.y = fpmin( color.y, 1.0f ); // if (color.y > 1.0f) color.y = 1.0f;
|
|
color.z = fpmin( color.z, 1.0f ); // if (color.z > 1.0f) color.z = 1.0f;
|
|
#else
|
|
if (color.x > 1.0f)
|
|
color.x = 1.0f;
|
|
if (color.y > 1.0f)
|
|
color.y = 1.0f;
|
|
if (color.z > 1.0f)
|
|
color.z = 1.0f;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static const byte *s_pDLightVis = NULL;
|
|
|
|
// All dlights that affect a static prop must mark that static prop every frame.
|
|
class MarkStaticPropLightsEmumerator : public IPartitionEnumerator
|
|
{
|
|
public:
|
|
void SetLightID( int nLightID )
|
|
{
|
|
m_nLightID = nLightID;
|
|
}
|
|
|
|
virtual IterationRetval_t EnumElement( IHandleEntity *pHandleEntity )
|
|
{
|
|
Assert( StaticPropMgr()->IsStaticProp( pHandleEntity ) );
|
|
|
|
PropLightcache_t *pCache =
|
|
( PropLightcache_t * )StaticPropMgr()->GetLightCacheHandleForStaticProp( pHandleEntity );
|
|
|
|
if ( !pCache )
|
|
{
|
|
return ITERATION_CONTINUE;
|
|
}
|
|
|
|
if( !s_pDLightVis )
|
|
{
|
|
s_pDLightVis = CM_ClusterPVS( CM_LeafCluster( CM_PointLeafnum( cl_dlights[m_nLightID].origin ) ) );
|
|
}
|
|
|
|
if( !StaticPropMgr()->IsPropInPVS( pHandleEntity, s_pDLightVis ) )
|
|
{
|
|
return ITERATION_CONTINUE;
|
|
}
|
|
|
|
if ( !pCache )
|
|
{
|
|
return ITERATION_CONTINUE;
|
|
}
|
|
|
|
#ifdef _DEBUG
|
|
if( r_drawlightcache.GetInt() == 4 )
|
|
{
|
|
Vector mins( -5, -5, -5 );
|
|
Vector maxs( 5, 5, 5 );
|
|
CDebugOverlay::AddLineOverlay( cl_dlights[m_nLightID].origin, pCache->m_LightingOrigin, 0, 0, 255, 255, true, 0.001f );
|
|
CDebugOverlay::AddBoxOverlay( pCache->m_LightingOrigin, mins, maxs, vec3_angle, 255, 0, 0, 0, 0.001f );
|
|
}
|
|
#endif
|
|
|
|
|
|
pCache->m_DLightActive |= ( 1 << m_nLightID );
|
|
pCache->m_DLightMarkFrame = r_framecount;
|
|
return ITERATION_CONTINUE;
|
|
}
|
|
|
|
private:
|
|
int m_nLightID;
|
|
};
|
|
|
|
static MarkStaticPropLightsEmumerator s_MarkStaticPropLightsEnumerator;
|
|
|
|
void MarkDLightsOnStaticProps( void )
|
|
{
|
|
if ( !g_bActiveDlights )
|
|
return;
|
|
|
|
dlight_t *l = cl_dlights;
|
|
for (int i=0 ; i<MAX_DLIGHTS ; i++, l++)
|
|
{
|
|
if (l->flags & (DLIGHT_NO_MODEL_ILLUMINATION | DLIGHT_DISPLACEMENT_MASK))
|
|
continue;
|
|
if (l->die < GetBaseLocalClient().GetTime() || !l->IsRadiusGreaterThanZero() )
|
|
continue;
|
|
// If the light's not active, then continue
|
|
if ( (r_dlightactive & (1 << i)) == 0 )
|
|
continue;
|
|
|
|
#ifdef _DEBUG
|
|
if( r_drawlightcache.GetInt() == 4 )
|
|
{
|
|
Vector mins( -5, -5, -5 );
|
|
Vector maxs( 5, 5, 5 );
|
|
CDebugOverlay::AddBoxOverlay( l->origin, mins, maxs, vec3_angle, 255, 255, 255, 0, 0.001f );
|
|
}
|
|
#endif
|
|
s_pDLightVis = NULL;
|
|
s_MarkStaticPropLightsEnumerator.SetLightID( i );
|
|
SpatialPartition()->EnumerateElementsInSphere( PARTITION_ENGINE_STATIC_PROPS,
|
|
l->origin, l->GetRadius(), true, &s_MarkStaticPropLightsEnumerator );
|
|
}
|
|
}
|
|
|
|
float g_flMinLightingValue = 1.0f;
|
|
|
|
void InitDLightGlobals( int nMapVersion )
|
|
{
|
|
if( nMapVersion >= 20 )
|
|
{
|
|
// The light level at which we are close enough to black to treat as black for
|
|
// culling purposes.
|
|
g_flMinLightingValue = 1.0f / 256.0f;
|
|
}
|
|
else
|
|
{
|
|
// This is the broken value from HL2. It is supposed to be
|
|
// the light level at which we are close enough to black to treat as black for
|
|
// culling purposes. We leave it at the broken value here for old bsp files
|
|
// Since HL2 maps were compiled with this bsp version.
|
|
g_flMinLightingValue = 20.0f / 256.0f;
|
|
}
|
|
}
|