Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3219 lines
106 KiB

//===== Copyright © 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose:
//
// $NoKeywords: $
//
// @TODO: The features and implementation of these class classes require overly
// broad mutexing. Needs to be addressed. (toml 3-20-06)
//
//===========================================================================//
#include "mathlib/vector.h"
#include "utlhash.h"
#include "utllinkedlist.h"
#include "utllinkedlist.h"
#include "ispatialpartitioninternal.h"
#include "bsptreedata.h"
#include "worldsize.h"
#include "cmodel.h"
#include "sys_dll.h"
#include "collisionutils.h"
#include "debugoverlay.h"
#include "tier0/vprof.h"
#include "tier1/utlbuffer.h"
#include "filesystem_engine.h"
#include "filesystem.h"
#include "tier1/convar.h"
#include "tier1/memstack.h"
#include "enginethreads.h"
#include "datacache/imdlcache.h"
#include "tier2/renderutils.h"
#include "bitvec.h"
#include "host.h"
#include "tier1/mempool.h"
#ifdef _PS3
#include "tls_ps3.h"
#endif
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
class CVoxelTree;
class CIntersectSweptBox;
#define SPHASH_LEVEL_SKIP 2
#define SPHASH_VOXEL_SIZE 256 // must power of 2
#define SPHASH_VOXEL_SHIFT 8 // shift for voxel size
#define SPHASH_VOXEL_LARGE 65536.0f
#define SPHASH_HANDLELIST_BLOCK 256
#define SPHASH_LEAFLIST_BLOCK 512
#define SPHASH_ENTITYLIST_BLOCK 256
#define SPHASH_BUCKET_COUNT 512
#define SPHASH_EPS 0.03125f
enum PartitionTrees_t
{
CLIENT_TREE,
SERVER_TREE,
NUM_TREES,
};
class CPartitionVisitor;
#if defined( _X360 )
#pragma bitfield_order( push, lsb_to_msb )
#elif defined( _PS3 )
#pragma ms_struct on
#pragma reverse_bitfields on
#endif
union Voxel_t
{
struct
{
unsigned int x:11;
unsigned int y:11;
unsigned int z:10;
} bitsVoxel;
unsigned int uiVoxel;
};
#if defined( _X360 )
#pragma bitfield_order( pop )
#elif defined( _PS3 )
#pragma ms_struct off
#pragma reverse_bitfields off
#endif
enum EntityInfoFlags_t
{
ENTITY_HIDDEN = ( 1 << 0 ),
IN_CLIENT_TREE = ( 1 << 1 ),
IN_SERVER_TREE = ( 1 << 2 ),
};
struct EntityInfo_t
{
Vector m_vecMin; // Min/Max of entity
Voxel_t m_voxelMin;
Vector m_vecMax;
Voxel_t m_voxelMax;
IHandleEntity * m_pHandleEntity; // Entity handle.
unsigned short m_fList; // Which lists is it in?
uint8 m_flags;
char m_nLevel[NUM_TREES]; // Which level voxel tree is it in?
unsigned short m_nVisitBit[NUM_TREES];
intp m_iLeafList[NUM_TREES]; // Index into the leaf pool - leaf list for entity (m_aLeafList).
};
struct LeafListData_t
{
UtlHashFixedHandle_t m_hVoxel; // Voxel handle the entity is in.
intp m_iEntity; // Entity list index for voxel
};
typedef CUtlFixedLinkedList<LeafListData_t> CLeafList;
typedef CVarBitVec CPartitionVisits;
//-----------------------------------------------------------------------------
// Used when rendering the various levels of the voxel hash
//-----------------------------------------------------------------------------
static Color s_pVoxelColor[9] =
{
Color( 255, 0, 0, 255 ),
Color( 0, 255, 0, 255 ),
Color( 0, 0, 255, 255 ),
Color( 255, 0, 255, 255 ),
Color( 255, 255, 0, 255 ),
Color( 0, 255, 255, 255 ),
Color( 255, 255, 255, 255 ),
Color( 192, 192, 0, 255 ),
Color( 128, 128, 128, 255 ),
};
// bounds of the spatial partition
static Vector s_PartitionMin( MIN_COORD_FLOAT, MIN_COORD_FLOAT, MIN_COORD_FLOAT );
static Vector s_PartitionMax( MAX_COORD_FLOAT, MAX_COORD_FLOAT, MAX_COORD_FLOAT );
//-----------------------------------------------------------------------------
// Divide voxel coordinates by 2
//-----------------------------------------------------------------------------
inline Voxel_t ConvertToNextLevel( Voxel_t v )
{
// Just need to divide by 2 and eliminate the low bits of y and z that shifted
// into the x and y fields
Voxel_t res;
res.uiVoxel = ( ( v.uiVoxel >> SPHASH_LEVEL_SKIP ) & 0xFFCFF9FF );
return res;
}
class CSpatialEntry
{
public:
SpatialPartitionHandle_t m_handle;
uint16 m_nListMask;
};
//-----------------------------------------------------------------------------
// A single voxel hash
//-----------------------------------------------------------------------------
class CVoxelHash
{
public:
// Constructor, destructor
CVoxelHash();
~CVoxelHash();
// Call this to clear out the spatial partition and to re-initialize it given a particular world size (ISpatialPartitionInternal)
void Init( CVoxelTree *pPartition, const Vector& worldmin, const Vector& worldmax, int nLevel );
void Shutdown();
// Gets all entities in a particular volume...
// returns false if the enumerator broke early
bool EnumerateElementsInBox( SpatialPartitionListMask_t listMask, Voxel_t vmin, Voxel_t vmax, const Vector& mins, const Vector& maxs, IPartitionEnumerator* pIterator );
bool EnumerateElementsAlongRay( SpatialPartitionListMask_t listMask, const Ray_t& ray, const Vector &vecInvDelta, const Vector &vecEnd, IPartitionEnumerator* pIterator );
bool EnumerateElementsAtPoint( SpatialPartitionListMask_t listMask, Voxel_t v, const Vector& pt, IPartitionEnumerator* pIterator );
// Inserts/Removes a handle from the tree.
void InsertIntoTree( SpatialPartitionHandle_t hPartition, Voxel_t voxelMin, Voxel_t voxelMax );
void RemoveFromTree( SpatialPartitionHandle_t hPartition );
void UpdateListMask( SpatialPartitionHandle_t hPartition );
// Debug!
void RenderAllObjectsInTree( float flTime );
void RenderObjectsInPlayerLeafs( const Vector &vecPlayerMin, const Vector &vecPlayerMax, float flTime );
void RenderVoxel( Voxel_t voxel, float flTime );
void RenderObjectInVoxel( SpatialPartitionHandle_t hPartition, CPartitionVisitor *pVisitor, float flTime );
void RenderObjectsInVoxel( Voxel_t voxel, CPartitionVisitor *pVisitor, bool bRenderVoxel, float flTime );
// Computes the voxel count in 1 dimension at a particular level of the tree
static int ComputeVoxelCountAtLevel( int nLevel );
// Gets the voxel size for this hash
int VoxelSize( ) const;
inline float VoxelSizeF( ) const { return m_flVoxelSize; }
int EntityCount();
// Rendering methods
void RenderGrid();
// Converts point into voxel index
inline Voxel_t VoxelIndexFromPoint( const Vector &vecWorldPoint );
inline void VoxelIndexFromPoint( const Vector &vecWorldPoint, int pPoint[3] );
#if defined(_X360) || defined(_PS3)
inline Voxel_t VoxelIndexFromPoint( const fltx4 &vecWorldPoint );
inline void VoxelIndexFromPoint( const fltx4 &vecWorldPoint, int pPoint[3] );
#endif
// Setup ray for iteration
void LeafListRaySetup( const Ray_t &ray, const Vector &vecEnd, const Vector &vecInvDelta, Voxel_t voxel, int *pStep, float *pMax, float *pDelta );
void LeafListExtrudedRaySetup( const Ray_t &ray, const Vector &vecInvDelta, const Vector &vecMin, const Vector &vecMax, int iVoxelMin[3], int iVoxelMax[3], int *pStep, float *pMin, float *pMax, float *pDelta );
// Main enumeration method
template <class T> bool EnumerateElementsInVoxel( Voxel_t voxel, const T &intersectTest, SpatialPartitionListMask_t listMask, IPartitionEnumerator* pIterator );
// Enumeration method when only 1 voxel is ever visited
template <class T> bool EnumerateElementsInSingleVoxel( Voxel_t voxel, const T &intersectTest, SpatialPartitionListMask_t listMask, IPartitionEnumerator* pIterator );
bool EnumerateElementsAlongRay_ExtrudedRaySlice( SpatialPartitionListMask_t listMask, IPartitionEnumerator *pIterator, const CIntersectSweptBox &intersectSweptBox, int voxelMin[3], int voxelMax[3], int iAxis, int *pStep );
private:
bool EnumerateElementsAlongRay_Ray( SpatialPartitionListMask_t listMask, const Ray_t &ray, const Vector &vecInvDelta, const Vector &vecEnd, IPartitionEnumerator* pIterator );
bool EnumerateElementsAlongRay_ExtrudedRay( SpatialPartitionListMask_t listMask, const Ray_t &ray, const Vector &vecInvDelta, const Vector &vecEnd, IPartitionEnumerator* pIterator );
inline void PackVoxel( int iX, int iY, int iZ, Voxel_t &voxel );
typedef CUtlHashFixed<intp, SPHASH_BUCKET_COUNT, CUtlHashFixedGenericHash<SPHASH_BUCKET_COUNT> > CHashTable;
Vector m_vecVoxelOrigin; // Voxel space (hash) origin.
CHashTable m_aVoxelHash; // Voxel tree (hash) - data = entity list head handle (m_aEntityList)
int m_nVoxelDelta[3]; // Voxel world - width(Dx), height(Dy), depth(Dz)
CUtlFixedLinkedList<CSpatialEntry> m_aEntityList; // Pool - Linked list(multilist) of entities per leaf.
CVoxelTree *m_pTree;
int m_nLevel;
float m_flVoxelSize;
uint m_nLevelShift;
};
class CSpatialPartition;
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
class CVoxelTree
{
public:
// constructor, destructor
CVoxelTree();
virtual ~CVoxelTree();
// Inherited from ISpatialPartition
virtual void Init( CSpatialPartition *pOwner, int iTree, const Vector& worldmin, const Vector& worldmax );
virtual void ElementMoved( SpatialPartitionHandle_t handle, const Vector& mins, const Vector& maxs );
virtual void EnumerateElementsInBox( SpatialPartitionListMask_t listMask, const Vector& mins, const Vector& maxs, bool coarseTest, IPartitionEnumerator* pIterator );
virtual void EnumerateElementsInSphere( SpatialPartitionListMask_t listMask, const Vector& origin, float radius, bool coarseTest, IPartitionEnumerator* pIterator );
virtual void EnumerateElementsAlongRay( SpatialPartitionListMask_t listMask, const Ray_t& ray, bool coarseTest, IPartitionEnumerator* pIterator );
virtual void EnumerateElementsAtPoint( SpatialPartitionListMask_t listMask, const Vector& pt, bool coarseTest, IPartitionEnumerator* pIterator );
virtual void RenderAllObjectsInTree( float flTime );
virtual void RenderObjectsInPlayerLeafs( const Vector &vecPlayerMin, const Vector &vecPlayerMax, float flTime );
virtual void ReportStats( const char *pFileName );
virtual void DrawDebugOverlays();
EntityInfo_t &EntityInfo( SpatialPartitionHandle_t hPartition );
CLeafList &LeafList();
int GetTreeId() const;
CPartitionVisits *BeginVisit();
CPartitionVisits *GetVisits();
void EndVisit( CPartitionVisits * );
// Shut down the allocated memory
void Shutdown( void );
// Insert into the appropriate tree
void InsertIntoTree( SpatialPartitionHandle_t hPartition, const Vector& mins, const Vector& maxs, bool bReinsert );
// Remove from appropriate tree
void RemoveFromTree( SpatialPartitionHandle_t hPartition );
void UpdateListMask( SpatialPartitionHandle_t hPartition );
void LockForWrite() { m_lock.LockForWrite(); }
void UnlockWrite() { m_lock.UnlockWrite(); }
void LockForRead() { m_lock.LockForRead(); }
void UnlockRead() { m_lock.UnlockRead(); }
// Ray casting
bool EnumerateElementsAlongRay_Ray( SpatialPartitionListMask_t listMask, const Ray_t &ray, const Vector &vecInvDelta, const Vector &vecEnd, IPartitionEnumerator *pIterator );
bool EnumerateElementsAlongRay_ExtrudedRay( SpatialPartitionListMask_t listMask,
const Ray_t &ray, const Vector &vecInvDelta, const Vector &vecEnd, IPartitionEnumerator *pIterator );
bool EnumerateRayStartVoxels( SpatialPartitionListMask_t listMask, IPartitionEnumerator *pIterator, CIntersectSweptBox &intersectSweptBox, int voxelBounds[4][2][3] );
// Purpose:
void ComputeSweptRayBounds( const Ray_t &ray, const Vector &vecStartMin, const Vector &vecStartMax, Vector *pVecMin, Vector *pVecMax );
private:
int m_nLevelCount;
CVoxelHash* m_pVoxelHash;
CLeafList m_aLeafList; // Pool - Linked list(multilist) of leaves per entity.
int m_TreeId;
CPartitionVisits * m_pVisits[MAX_THREADS_SUPPORTED];
CSpatialPartition * m_pOwner;
CUtlVector<unsigned short> m_AvailableVisitBits;
unsigned short m_nNextVisitBit;
CTSPool<CPartitionVisits> m_FreeVisits;
CThreadSpinRWLock m_lock;
};
//-----------------------------------------------------------------------------
// The spatial partition
//-----------------------------------------------------------------------------
class CSpatialPartition : public ISpatialPartitionInternal
{
public:
CSpatialPartition();
~CSpatialPartition();
enum
{
MAX_QUERY_CALLBACK = 3
};
// Inherited from ISpatialPartition
virtual void Init( const Vector& worldmin, const Vector& worldmax );
void Shutdown( void );
virtual SpatialPartitionHandle_t CreateHandle( IHandleEntity *pHandleEntity );
virtual SpatialPartitionHandle_t CreateHandle( IHandleEntity *pHandleEntity, SpatialPartitionListMask_t listMask, const Vector& mins, const Vector& maxs );
virtual void DestroyHandle( SpatialPartitionHandle_t handle );
virtual void Insert( SpatialPartitionListMask_t listMask, SpatialPartitionHandle_t handle );
virtual void Remove( SpatialPartitionListMask_t listMask, SpatialPartitionHandle_t handle );
virtual void RemoveAndInsert( SpatialPartitionListMask_t removeMask, SpatialPartitionListMask_t insertMask, SpatialPartitionHandle_t handle );
virtual void Remove( SpatialPartitionHandle_t handle );
virtual SpatialTempHandle_t HideElement( SpatialPartitionHandle_t handle );
virtual void UnhideElement( SpatialPartitionHandle_t handle, SpatialTempHandle_t tempHandle );
virtual void InstallQueryCallback( IPartitionQueryCallback *pCallback );
virtual void RemoveQueryCallback( IPartitionQueryCallback *pCallback );
virtual void SuppressLists( SpatialPartitionListMask_t nListMask, bool bSuppress );
virtual SpatialPartitionListMask_t GetSuppressedLists( void );
virtual void RenderLeafsForRayTraceStart( float flTime ) { }
virtual void RenderLeafsForRayTraceEnd( void ) { }
virtual void RenderLeafsForHullTraceStart( float flTime ) { }
virtual void RenderLeafsForHullTraceEnd( void ) { }
virtual void RenderLeafsForBoxStart( float flTime ) { }
virtual void RenderLeafsForBoxEnd( void ) { }
virtual void RenderLeafsForSphereStart( float flTime ) { }
virtual void RenderLeafsForSphereEnd( void ) { }
virtual void RenderObjectsInBox( const Vector &vecMin, const Vector &vecMax, float flTime );
virtual void RenderObjectsInSphere( const Vector &vecCenter, float flRadius, float flTime );
virtual void RenderObjectsAlongRay( const Ray_t& ray, float flTime );
virtual void ElementMoved( SpatialPartitionHandle_t handle, const Vector& mins, const Vector& maxs );
virtual void EnumerateElementsInBox( SpatialPartitionListMask_t listMask, const Vector& mins, const Vector& maxs, bool coarseTest, IPartitionEnumerator* pIterator );
virtual void EnumerateElementsInSphere( SpatialPartitionListMask_t listMask, const Vector& origin, float radius, bool coarseTest, IPartitionEnumerator* pIterator );
virtual void EnumerateElementsAlongRay( SpatialPartitionListMask_t listMask, const Ray_t& ray, bool coarseTest, IPartitionEnumerator* pIterator );
virtual void EnumerateElementsAtPoint( SpatialPartitionListMask_t listMask, const Vector& pt, bool coarseTest, IPartitionEnumerator* pIterator );
virtual void RenderAllObjectsInTree( float flTime );
virtual void RenderObjectsInPlayerLeafs( const Vector &vecPlayerMin, const Vector &vecPlayerMax, float flTime );
virtual void ReportStats( const char *pFileName );
virtual void DrawDebugOverlays();
// Gets entity info (for enumerations).
EntityInfo_t &EntityInfo( SpatialPartitionHandle_t hPartition );
virtual void InsertIntoTree( SpatialPartitionHandle_t hPartition, const Vector& mins, const Vector& maxs );
virtual void RemoveFromTree( SpatialPartitionHandle_t hPartition );
CVoxelTree * VoxelTree( SpatialPartitionListMask_t listMask );
CVoxelTree * VoxelTreeForHandle( SpatialPartitionHandle_t handle );
protected:
void UpdateListMask( SpatialPartitionHandle_t hPartition, uint16 nListMask );
// Invokes the pre-query callbacks.
void InvokeQueryCallbacks( SpatialPartitionListMask_t listMask, bool = false );
typedef CUtlLinkedList<EntityInfo_t, SpatialPartitionHandle_t, false, SpatialPartitionHandle_t, CUtlMemoryStack<UtlLinkedListElem_t< EntityInfo_t, SpatialPartitionHandle_t >, SpatialPartitionHandle_t, 0xffff, 1024> > CHandleList;
private:
CHandleList m_aHandles; // Stores all unique elements (1 per entity in tree).
CThreadFastMutex m_HandlesMutex;
CVoxelTree m_VoxelTrees[NUM_TREES];
IPartitionQueryCallback *m_pQueryCallback[MAX_QUERY_CALLBACK]; // Query callbacks.
int m_nQueryCallbackCount; // Number of query callbacks.
// Debug!
SpatialPartitionListMask_t m_nSuppressedListMask;
};
//-----------------------------------------------------------------------------
// Spatial partition inline methods
//-----------------------------------------------------------------------------
// Gets entity info (for enumerations).
inline EntityInfo_t &CSpatialPartition::EntityInfo( SpatialPartitionHandle_t hPartition )
{
return m_aHandles[hPartition];
}
inline EntityInfo_t &CVoxelTree::EntityInfo( SpatialPartitionHandle_t hPartition )
{
return m_pOwner->EntityInfo( hPartition );
}
inline CLeafList &CVoxelTree::LeafList()
{
return m_aLeafList;
}
inline int CVoxelTree::GetTreeId() const
{
return m_TreeId;
}
inline CPartitionVisits *CVoxelTree::GetVisits()
{
int nThread = g_nThreadID;
return m_pVisits[nThread];
}
inline CPartitionVisits *CVoxelTree::BeginVisit()
{
int nThread = g_nThreadID;
CPartitionVisits *pPrev = m_pVisits[nThread];
CPartitionVisits *pVisits = m_FreeVisits.GetObject();
if ( pVisits->GetNumBits() < m_nNextVisitBit )
{
pVisits->Resize( m_nNextVisitBit, true );
}
else
{
pVisits->ClearAll();
}
m_pVisits[g_nThreadID] = pVisits;
return pPrev;
}
inline void CVoxelTree::EndVisit( CPartitionVisits *pPrev )
{
int nThread = g_nThreadID;
m_FreeVisits.PutObject( m_pVisits[nThread] );
m_pVisits[nThread] = pPrev;
}
inline CVoxelTree *CSpatialPartition::VoxelTree( SpatialPartitionListMask_t listMask )
{
int iTree = ( ( listMask & PARTITION_ALL_CLIENT_EDICTS ) == 0 ) ? SERVER_TREE : CLIENT_TREE;
return &m_VoxelTrees[iTree];
}
inline CVoxelTree *CSpatialPartition::VoxelTreeForHandle( SpatialPartitionHandle_t handle )
{
return VoxelTree( m_aHandles[handle].m_fList );
}
//-----------------------------------------------------------------------------
// Constructor, destructor
//-----------------------------------------------------------------------------
CVoxelHash::CVoxelHash( )
{
}
CVoxelHash::~CVoxelHash()
{
Shutdown();
}
//-----------------------------------------------------------------------------
// Purpose: Create a voxel index from a world point - is the hash key.
// Input: vecWorldPoint - world point to get voxel index for
// Output: voxel index
//-----------------------------------------------------------------------------
inline void CVoxelHash::PackVoxel( int iX, int iY, int iZ, Voxel_t &voxel )
{
Assert( ( iX >= -( 1 << 10 ) ) && ( iX <= ( 1 << 10 ) ) );
Assert( ( iY >= -( 1 << 10 ) ) && ( iY <= ( 1 << 10 ) ) );
Assert( ( iZ >= -( 1 << 9 ) ) && ( iZ <= ( 1 << 9 ) ) );
voxel.bitsVoxel.x = iX;
voxel.bitsVoxel.y = iY;
voxel.bitsVoxel.z = iZ;
}
#if defined(_X360) || defined(_PS3)
// NOTE: This isn't supportable on SSE but it isn't necessary either
inline double FloatConvertToIntegerFormat( double flVal )
{
#if defined( _PS3 )
return __builtin_fctiwz( flVal );
#else
return __fctiwz( flVal );
#endif
}
inline fltx4 ConvertToSignedIntegerSIMD( fltx4 fl4Data )
{
#if defined(_X360)
return __vctsxs( fl4Data, 0 ); // NOTE: 0 is power of 2 to scale by
#else
return (fltx4)vec_cts( fl4Data, 0 );
#endif
}
inline fltx4 ShiftRightSIMD( const fltx4 &fl4Data, const fltx4 &fl4Shift )
{
#if defined(_X360)
return __vsrw( fl4Data, fl4Shift );
#else
return (fltx4)vec_sr( (u32x4)fl4Data, (u32x4)fl4Shift );
#endif
}
union doublecnv_t
{
double m_flConverted;
int32 m_nConverted[2];
};
// SIMD Versions - need more code changes to fully support this but there are enough benefits to use it on some of the code
inline void CVoxelHash::VoxelIndexFromPoint( const fltx4 &fl4WorldPoint, int pPoint[3] )
{
fltx4 fl4Shift = (fltx4)ReplicateIX4( m_nLevelShift );
fltx4 fl4VoxelOrigin = LoadUnaligned3SIMD( m_vecVoxelOrigin.Base() );
fltx4 fl4LocalOrigin = SubSIMD( fl4WorldPoint, fl4VoxelOrigin );
fltx4 fl4OriginInt = ConvertToSignedIntegerSIMD( fl4LocalOrigin );
fl4OriginInt = ShiftRightSIMD( fl4OriginInt, fl4Shift );
StoreUnaligned3SIMD( (float *)pPoint, fl4OriginInt );
}
inline void CVoxelHash::VoxelIndexFromPoint( const Vector &vecWorldPoint, int pPoint[3] )
{
return VoxelIndexFromPoint( LoadUnaligned3SIMD( vecWorldPoint.Base() ), pPoint );
}
inline Voxel_t CVoxelHash::VoxelIndexFromPoint( const Vector &vecWorldPoint )
{
Voxel_t voxel;
// This code manually schedules the float->int conversion to avoid LHS on PPC
// First we convert the float to int format within a float register
// then we write it back to memory
volatile union doublecnv_t cnvX, cnvY, cnvZ;
cnvX.m_flConverted = FloatConvertToIntegerFormat( vecWorldPoint.x - m_vecVoxelOrigin.x );
cnvY.m_flConverted = FloatConvertToIntegerFormat( vecWorldPoint.y - m_vecVoxelOrigin.y );
cnvZ.m_flConverted = FloatConvertToIntegerFormat( vecWorldPoint.z - m_vecVoxelOrigin.z );
// now we load that value back into an integer register. This will LHS if there aren't enough
// cycles between the stores and the loads but this will allow the compiler to reorder the operations
// and when the conversions are implicit they don't get reordered (load instruction immediately follows the store)
int nX = cnvX.m_nConverted[1];
int nY = cnvY.m_nConverted[1];
int nZ = cnvZ.m_nConverted[1];
voxel.bitsVoxel.x = nX >> m_nLevelShift;
voxel.bitsVoxel.y = nY >> m_nLevelShift;
voxel.bitsVoxel.z = nZ >> m_nLevelShift;
return voxel;
}
inline Voxel_t CVoxelHash::VoxelIndexFromPoint( const fltx4 &fl4WorldPoint )
{
Voxel_t voxel;
fltx4 fl4Shift = (fltx4)ReplicateIX4( m_nLevelShift );
fltx4 fl4VoxelOrigin = LoadUnaligned3SIMD( m_vecVoxelOrigin.Base() );
fltx4 fl4LocalOrigin = SubSIMD( fl4WorldPoint, fl4VoxelOrigin );
fltx4 fl4OriginInt = ConvertToSignedIntegerSIMD( fl4LocalOrigin );
fl4OriginInt = ShiftRightSIMD( fl4OriginInt, fl4Shift );
// UNDONE: Can probably pack these with shift, permute, or
int32 ALIGN16 tmp[4];
StoreAlignedIntSIMD( tmp, fl4OriginInt );
voxel.bitsVoxel.x = tmp[0];
voxel.bitsVoxel.y = tmp[1];
voxel.bitsVoxel.z = tmp[2];
return voxel;
}
#else
inline void CVoxelHash::VoxelIndexFromPoint( const Vector &vecWorldPoint, int pPoint[3] )
{
pPoint[0] = static_cast<int>( vecWorldPoint.x - m_vecVoxelOrigin.x ) >> m_nLevelShift;
pPoint[1] = static_cast<int>( vecWorldPoint.y - m_vecVoxelOrigin.y ) >> m_nLevelShift;
pPoint[2] = static_cast<int>( vecWorldPoint.z - m_vecVoxelOrigin.z ) >> m_nLevelShift;
}
inline Voxel_t CVoxelHash::VoxelIndexFromPoint( const Vector &vecWorldPoint )
{
Voxel_t voxel;
voxel.bitsVoxel.x = static_cast<int>( vecWorldPoint.x - m_vecVoxelOrigin.x ) >> m_nLevelShift;
voxel.bitsVoxel.y = static_cast<int>( vecWorldPoint.y - m_vecVoxelOrigin.y ) >> m_nLevelShift;
voxel.bitsVoxel.z = static_cast<int>( vecWorldPoint.z - m_vecVoxelOrigin.z ) >> m_nLevelShift;
return voxel;
}
#endif
//-----------------------------------------------------------------------------
// Purpose: Computes the voxel count at a particular level of the tree
//-----------------------------------------------------------------------------
int CVoxelHash::ComputeVoxelCountAtLevel( int nLevel )
{
int nVoxelCount = COORD_EXTENT >> SPHASH_VOXEL_SHIFT;
nVoxelCount >>= ( SPHASH_LEVEL_SKIP * nLevel );
return ( nVoxelCount > 0 ) ? nVoxelCount : 1;
}
//-----------------------------------------------------------------------------
// Gets the voxel size for this hash
//-----------------------------------------------------------------------------
inline int CVoxelHash::VoxelSize( ) const
{
return SPHASH_VOXEL_SIZE << ( SPHASH_LEVEL_SKIP * m_nLevel );
}
//-----------------------------------------------------------------------------
// Purpose:
// Input: worldmin -
// worldmax -
//-----------------------------------------------------------------------------
void CVoxelHash::Init( CVoxelTree *pPartition, const Vector &worldmin, const Vector &worldmax, int nLevel )
{
m_pTree = pPartition;
m_nLevel = nLevel;
m_flVoxelSize = VoxelSize();
m_nLevelShift = ( SPHASH_VOXEL_SHIFT + SPHASH_LEVEL_SKIP * nLevel );
// Setup the hash.
MEM_ALLOC_CREDIT();
int nVoxelCount = ComputeVoxelCountAtLevel( nLevel );
m_vecVoxelOrigin.Init( MIN_COORD_FLOAT, MIN_COORD_FLOAT, MIN_COORD_FLOAT );
int nHashBucketCount = SPHASH_BUCKET_COUNT >> nLevel;
if ( nHashBucketCount < 16 )
{
nHashBucketCount = 16;
}
m_nVoxelDelta[0] = nVoxelCount;
m_nVoxelDelta[1] = nVoxelCount;
m_nVoxelDelta[2] = nVoxelCount;
Assert( ( m_nVoxelDelta[0] >= 0 ) && ( m_nVoxelDelta[0] <= ( 1 << 10 ) ) );
Assert( ( m_nVoxelDelta[1] >= 0 ) && ( m_nVoxelDelta[1] <= ( 1 << 10 ) ) );
Assert( ( m_nVoxelDelta[2] >= 0 ) && ( m_nVoxelDelta[2] <= ( 1 << 9 ) ) );
m_aVoxelHash.RemoveAll();
// Setup the entity list pool.
int nGrowSize = SPHASH_ENTITYLIST_BLOCK >> nLevel;
if ( nGrowSize < 16 )
{
nGrowSize = 16;
}
m_aEntityList.Purge();
m_aEntityList.SetGrowSize( nGrowSize );
}
//-----------------------------------------------------------------------------
// Shutdown
//-----------------------------------------------------------------------------
void CVoxelHash::Shutdown( void )
{
m_aEntityList.Purge();
m_aVoxelHash.Purge();
}
//-----------------------------------------------------------------------------
// Purpose: Insert the object into the voxel hash.
//-----------------------------------------------------------------------------
void CVoxelHash::InsertIntoTree( SpatialPartitionHandle_t hPartition, Voxel_t voxelMin, Voxel_t voxelMax )
{
EntityInfo_t &info = m_pTree->EntityInfo( hPartition );
CLeafList &leafList = m_pTree->LeafList();
int treeId = m_pTree->GetTreeId();
uint16 nListMask = m_pTree->EntityInfo( hPartition ).m_fList;
// Set the voxel level
info.m_nLevel[m_pTree->GetTreeId()] = m_nLevel;
Assert( (m_nLevel == 4) ||
(voxelMax.bitsVoxel.x - voxelMin.bitsVoxel.x <= 1) &&
(voxelMax.bitsVoxel.y - voxelMin.bitsVoxel.y <= 1) &&
(voxelMax.bitsVoxel.z - voxelMin.bitsVoxel.z <= 1) );
// Add the object to all the voxels it intersects.
Voxel_t voxel;
unsigned int iX, iY, iZ;
for ( iX = voxelMin.bitsVoxel.x; iX <= voxelMax.bitsVoxel.x; ++iX )
{
voxel.bitsVoxel.x = iX;
for ( iY = voxelMin.bitsVoxel.y; iY <= voxelMax.bitsVoxel.y; ++iY )
{
voxel.bitsVoxel.y = iY;
for ( iZ = voxelMin.bitsVoxel.z; iZ <= voxelMax.bitsVoxel.z; ++iZ )
{
voxel.bitsVoxel.z = iZ;
#if 0
// Debug!
RenderVoxel( voxel );
#endif
// Entity list.
intp iEntity = m_aEntityList.Alloc( true );
m_aEntityList[iEntity].m_handle = hPartition;
m_aEntityList[iEntity].m_nListMask = nListMask;
UtlHashFixedHandle_t hHash = m_aVoxelHash.Find( voxel.uiVoxel );
if ( hHash == m_aVoxelHash.InvalidHandle() )
{
// Add voxel(leaf) to hash.
hHash = m_aVoxelHash.FastInsert( voxel.uiVoxel, iEntity );
}
else
{
intp iHead = m_aVoxelHash.Element( hHash );
m_aEntityList.LinkBefore( iHead, iEntity );
m_aVoxelHash[hHash] = iEntity;
}
// Leaf list.
intp iLeafList = leafList.Alloc( true );
leafList[iLeafList].m_hVoxel = hHash;
leafList[iLeafList].m_iEntity = iEntity;
if ( info.m_iLeafList[treeId] == leafList.InvalidIndex() )
{
info.m_iLeafList[treeId] = iLeafList;
}
else
{
intp iHead = info.m_iLeafList[treeId];
leafList.LinkBefore( iHead, iLeafList );
info.m_iLeafList[treeId] = iLeafList;
}
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Removes the object into the voxel hash.
//-----------------------------------------------------------------------------
void CVoxelHash::RemoveFromTree( SpatialPartitionHandle_t hPartition )
{
EntityInfo_t &data = m_pTree->EntityInfo( hPartition );
CLeafList &leafList = m_pTree->LeafList();
int treeId = m_pTree->GetTreeId();
intp iLeaf = data.m_iLeafList[treeId];
intp iNext;
while ( iLeaf != leafList.InvalidIndex() )
{
// Get the next voxel - if any.
iNext = leafList.Next( iLeaf );
UtlHashFixedHandle_t hHash = leafList[iLeaf].m_hVoxel;
if ( hHash == m_aVoxelHash.InvalidHandle() )
{
iLeaf = iNext;
continue;
}
// Get the head of the entity list for the voxel.
intp iEntity = leafList[iLeaf].m_iEntity;
intp iEntityHead = m_aVoxelHash[hHash];
if ( iEntityHead == iEntity )
{
intp iEntityNext = m_aEntityList.Next( iEntityHead );
if ( iEntityNext == m_aEntityList.InvalidIndex() )
{
m_aVoxelHash.Remove( hHash );
}
else
{
m_aVoxelHash[hHash] = iEntityNext;
}
}
// Remove the entity from the entity list for the voxel.
m_aEntityList.Remove( iEntity );
// Remove from the leaf list.
leafList.Remove( iLeaf );
iLeaf = iNext;
}
data.m_iLeafList[treeId] = leafList.InvalidIndex();
}
void CVoxelHash::UpdateListMask( SpatialPartitionHandle_t hPartition )
{
EntityInfo_t &data = m_pTree->EntityInfo( hPartition );
uint16 nListMask = data.m_fList;
Voxel_t vmin = data.m_voxelMin;
Voxel_t vmax = data.m_voxelMax;
// single voxel
if ( vmin.uiVoxel == vmax.uiVoxel )
{
UtlHashFixedHandle_t hHash = m_aVoxelHash.Find( vmin.uiVoxel );
if ( hHash != m_aVoxelHash.InvalidHandle() )
{
for ( intp i = m_aVoxelHash.Element( hHash ); i != m_aEntityList.InvalidIndex(); i = m_aEntityList.Next(i) )
{
SpatialPartitionHandle_t handle = m_aEntityList[i].m_handle;
if ( handle != hPartition )
continue;
m_aEntityList[i].m_nListMask = nListMask;
break;
}
}
}
// spans voxels
Voxel_t vdelta;
vdelta.uiVoxel = vmax.uiVoxel - vmin.uiVoxel;
int cx = vdelta.bitsVoxel.x;
int cy = vdelta.bitsVoxel.y;
int cz = vdelta.bitsVoxel.z;
Voxel_t voxel;
voxel.bitsVoxel.x = vmin.bitsVoxel.x;
for ( int iX = 0; iX <= cx; ++iX, ++voxel.bitsVoxel.x )
{
voxel.bitsVoxel.y = vmin.bitsVoxel.y;
for ( int iY = 0; iY <= cy; ++iY, ++voxel.bitsVoxel.y )
{
voxel.bitsVoxel.z = vmin.bitsVoxel.z;
for ( int iZ = 0; iZ <= cz; ++iZ, ++voxel.bitsVoxel.z )
{
UtlHashFixedHandle_t hHash = m_aVoxelHash.Find( voxel.uiVoxel );
if ( hHash != m_aVoxelHash.InvalidHandle() )
{
for ( intp i = m_aVoxelHash.Element( hHash ); i != m_aEntityList.InvalidIndex(); i = m_aEntityList.Next(i) )
{
if ( m_aEntityList[i].m_handle != hPartition )
continue;
m_aEntityList[i].m_nListMask = nListMask;
break;
}
}
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline void ClampStartPoint( Ray_t &ray, const Vector &vecEnd )
{
float flDistStart, flT;
for ( int iAxis = 0; iAxis < 3; ++iAxis )
{
if ( fabs(ray.m_Delta[iAxis]) < 1e-10 )
continue;
if ( ray.m_Delta[iAxis] > 0.0f )
{
if ( ray.m_Start[iAxis] < MIN_COORD_FLOAT )
{
// Add some bloat inward.
flDistStart = ( MIN_COORD_FLOAT + 5.0f ) - ray.m_Start[iAxis];
flT = flDistStart / ray.m_Delta[iAxis];
VectorMA( ray.m_Start, flT, ray.m_Delta, ray.m_Start );
}
}
else
{
if ( ray.m_Start[iAxis] > MAX_COORD_FLOAT )
{
// Add some bloat inward.
flDistStart = ray.m_Start[iAxis] - ( MAX_COORD_FLOAT - 5.0f );
flT = flDistStart / -ray.m_Delta[iAxis];
VectorMA( ray.m_Start, flT, ray.m_Delta, ray.m_Start );
}
}
}
VectorSubtract( vecEnd, ray.m_Start, ray.m_Delta );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline void ClampEndPoint( Ray_t &ray, Vector &vecEnd )
{
float flDistStart, flT;
for ( int iAxis = 0; iAxis < 3; ++iAxis )
{
if ( fabs(ray.m_Delta[iAxis]) < 1e-10 )
continue;
if ( ray.m_Delta[iAxis] < 0.0f )
{
if ( vecEnd[iAxis] < MIN_COORD_FLOAT )
{
// Add some bloat inward.
flDistStart = ray.m_Start[iAxis] - ( MIN_COORD_FLOAT + 5.0f );
flT = flDistStart / -ray.m_Delta[iAxis];
VectorMA( ray.m_Start, flT, ray.m_Delta, vecEnd );
}
}
else
{
if ( vecEnd[iAxis] > MAX_COORD_FLOAT )
{
// Add some bloat inward.
flDistStart = ray.m_Start[iAxis] - ( -MAX_COORD_FLOAT + 5.0f );
flT = flDistStart / ray.m_Delta[iAxis];
VectorMA( ray.m_Start, flT, ray.m_Delta, vecEnd );
}
}
}
VectorSubtract( vecEnd, ray.m_Start, ray.m_Delta );
}
//-----------------------------------------------------------------------------
// Intersection classes
//-----------------------------------------------------------------------------
class CPartitionVisitor
{
public:
CPartitionVisitor( CVoxelTree *pPartition )
{
m_pVisits = pPartition->GetVisits();
m_iTree = pPartition->GetTreeId();
}
~CPartitionVisitor()
{
}
bool Visit( SpatialPartitionHandle_t hPartition, EntityInfo_t &hInfo ) const
{
int nVisitBit = hInfo.m_nVisitBit[m_iTree];
if ( m_pVisits->IsBitSet( nVisitBit ) )
{
return false;
}
m_pVisits->Set( nVisitBit );
return true;
}
private:
CPartitionVisits *m_pVisits;
int m_iTree;
};
class CIntersectPoint : public CPartitionVisitor
{
public:
CIntersectPoint( CVoxelTree *pPartition, const Vector &pt ) : CPartitionVisitor( pPartition )
{
m_f4Point = LoadUnaligned3SIMD( pt.Base() );
}
bool Intersects( const float *pMins, const float *pMaxs ) const
{
// Ray intersection test
Assert( pMins[0] <= pMaxs[0] );
Assert( pMins[1] <= pMaxs[1] );
Assert( pMins[2] <= pMaxs[2] );
return IsPointInBox( m_f4Point, LoadUnaligned3SIMD( pMins ), LoadUnaligned3SIMD(pMaxs) );
}
private:
fltx4 m_f4Point;
};
class CIntersectBox : public CPartitionVisitor
{
public:
CIntersectBox( CVoxelTree *pPartition, const Vector &vecMins, const Vector &vecMaxs ) : CPartitionVisitor( pPartition ), m_vecMins( vecMins ), m_vecMaxs( vecMaxs )
{
}
bool Intersects( const float *pMins, const float *pMaxs ) const
{
// Box intersection test
Assert( pMins[0] <= pMaxs[0] );
Assert( pMins[1] <= pMaxs[1] );
Assert( pMins[2] <= pMaxs[2] );
return ( pMins[0] <= m_vecMaxs.x ) && ( pMaxs[0] >= m_vecMins.x ) &&
( pMins[1] <= m_vecMaxs.y ) && ( pMaxs[1] >= m_vecMins.y ) &&
( pMins[2] <= m_vecMaxs.z ) && ( pMaxs[2] >= m_vecMins.z );
}
private:
const Vector &m_vecMins;
const Vector &m_vecMaxs;
};
class CIntersectRay : public CPartitionVisitor
{
public:
CIntersectRay( CVoxelTree *pPartition, const Ray_t &ray, const Vector &vecInvDelta ) : CPartitionVisitor( pPartition )
{
m_f4Start = LoadUnaligned3SIMD( ray.m_Start.Base() );
m_f4Delta = LoadUnaligned3SIMD( ray.m_Delta.Base() );
m_f4InvDelta = LoadUnaligned3SIMD( vecInvDelta.Base() );
}
bool Intersects( const float *pMins, const float *pMaxs ) const
{
// Ray intersection test
Assert( pMins[0] <= pMaxs[0] );
Assert( pMins[1] <= pMaxs[1] );
Assert( pMins[2] <= pMaxs[2] );
fltx4 f4Mins = LoadUnaligned3SIMD( pMins );
fltx4 f4Maxs = LoadUnaligned3SIMD( pMaxs );
return IsBoxIntersectingRay( f4Mins, f4Maxs, m_f4Start, m_f4Delta, m_f4InvDelta );
}
private:
fltx4 m_f4Start;
fltx4 m_f4Delta;
fltx4 m_f4InvDelta;
};
class CIntersectSweptBox : public CPartitionVisitor
{
public:
CIntersectSweptBox( CVoxelTree *pPartition, const Ray_t &ray, const Vector &vecInvDelta ) : CPartitionVisitor( pPartition )
{
m_f4Start = LoadUnaligned3SIMD( ray.m_Start.Base() );
m_f4Delta = LoadUnaligned3SIMD( ray.m_Delta.Base() );
m_f4InvDelta = LoadUnaligned3SIMD( vecInvDelta.Base() );
m_f4Extents = LoadUnaligned3SIMD( ray.m_Extents.Base() );
}
bool Intersects( const float *pMins, const float *pMaxs ) const
{
// Swept box intersection test
Assert( pMins[0] <= pMaxs[0] );
Assert( pMins[1] <= pMaxs[1] );
Assert( pMins[2] <= pMaxs[2] );
fltx4 f4Mins = LoadUnaligned3SIMD( pMins );
fltx4 f4Maxs = LoadUnaligned3SIMD( pMaxs );
// Does the ray intersect the box?
return IsBoxIntersectingRay( SubSIMD(f4Mins, m_f4Extents), AddSIMD(f4Maxs, m_f4Extents), m_f4Start, m_f4Delta, m_f4InvDelta );
}
private:
fltx4 m_f4Start;
fltx4 m_f4Delta;
fltx4 m_f4InvDelta;
fltx4 m_f4Extents;
};
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
template <class T>
bool CVoxelHash::EnumerateElementsInVoxel( Voxel_t voxel, const T &intersectTest, SpatialPartitionListMask_t listMask, IPartitionEnumerator* pIterator )
{
// If the voxel doesn't exist, nothing to iterate over
UtlHashFixedHandle_t hHash = m_aVoxelHash.Find( voxel.uiVoxel );
if ( hHash == m_aVoxelHash.InvalidHandle() )
return true;
for ( intp i = m_aVoxelHash.Element( hHash ); i != m_aEntityList.InvalidIndex(); i = m_aEntityList.Next(i) )
{
SpatialPartitionHandle_t handle = m_aEntityList[i].m_handle;
SpatialPartitionListMask_t nListMask = m_aEntityList[i].m_nListMask;
if ( handle == PARTITION_INVALID_HANDLE )
continue;
// Keep going if this dude isn't in the list
if ( !( listMask & nListMask ) )
continue;
EntityInfo_t &hInfo = m_pTree->EntityInfo( handle );
Assert( hInfo.m_fList == nListMask );
if ( hInfo.m_flags & ENTITY_HIDDEN )
continue;
// Has this handle already been visited?
if ( !intersectTest.Visit( handle, hInfo ) )
continue;
// Intersection test
if ( !intersectTest.Intersects( hInfo.m_vecMin.Base(), hInfo.m_vecMax.Base() ) )
continue;
// Okay, this one is good...
if ( pIterator->EnumElement( hInfo.m_pHandleEntity ) == ITERATION_STOP )
return false;
}
return true;
}
//-----------------------------------------------------------------------------
// Enumeration method when only 1 voxel is ever visited
//-----------------------------------------------------------------------------
template <class T>
bool CVoxelHash::EnumerateElementsInSingleVoxel( Voxel_t voxel, const T &intersectTest,
SpatialPartitionListMask_t listMask, IPartitionEnumerator* pIterator )
{
// NOTE: We don't have to do the enum id checking, nor do we have to up the
// nesting level, since this only visits 1 voxel.
intp iEntityList;
UtlHashFixedHandle_t hHash = m_aVoxelHash.Find( voxel.uiVoxel );
if ( hHash != m_aVoxelHash.InvalidHandle() )
{
iEntityList = m_aVoxelHash.Element( hHash );
while ( iEntityList != m_aEntityList.InvalidIndex() )
{
SpatialPartitionHandle_t handle = m_aEntityList[iEntityList].m_handle;
SpatialPartitionListMask_t nListMask = m_aEntityList[iEntityList].m_nListMask;
iEntityList = m_aEntityList.Next( iEntityList );
if ( handle == PARTITION_INVALID_HANDLE )
continue;
// Keep going if this dude isn't in the list
if ( !( listMask & nListMask ) )
continue;
EntityInfo_t &hInfo = m_pTree->EntityInfo( handle );
if ( hInfo.m_flags & ENTITY_HIDDEN )
continue;
// Keep going if there's no collision
if ( !intersectTest.Intersects( hInfo.m_vecMin.Base(), hInfo.m_vecMax.Base() ) )
continue;
// Okay, this one is good...
if ( pIterator->EnumElement( hInfo.m_pHandleEntity ) == ITERATION_STOP )
return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CVoxelHash::EnumerateElementsInBox( SpatialPartitionListMask_t listMask,
Voxel_t vmin, Voxel_t vmax, const Vector& mins, const Vector& maxs, IPartitionEnumerator* pIterator )
{
VPROF( "BoxTest/SphereTest" );
Assert( mins.x <= maxs.x );
Assert( mins.y <= maxs.y );
Assert( mins.z <= maxs.z );
// Create the intersection object
bool bSingleVoxel = ( vmin.uiVoxel == vmax.uiVoxel );
CIntersectBox rect( m_pTree, mins, maxs );
// In the same voxel
if ( bSingleVoxel )
return EnumerateElementsInSingleVoxel( vmin, rect, listMask, pIterator );
// Iterate over all voxels
Voxel_t vdelta;
vdelta.uiVoxel = vmax.uiVoxel - vmin.uiVoxel;
int cx = vdelta.bitsVoxel.x;
int cy = vdelta.bitsVoxel.y;
int cz = vdelta.bitsVoxel.z;
// Hijack what can feel like infinite iteration over voxels
#if defined( _GAMECONSOLE ) && defined( _DEBUG )
if ( uint64( cx ) * uint64( cy ) * uint64( cz ) > 10000ull )
{
Assert( !"CVoxelHash::EnumerateElementsInBox: box too large" );
return true;
}
#endif
Voxel_t voxel;
voxel.bitsVoxel.x = vmin.bitsVoxel.x;
for ( int iX = 0; iX <= cx; ++iX, ++voxel.bitsVoxel.x )
{
voxel.bitsVoxel.y = vmin.bitsVoxel.y;
for ( int iY = 0; iY <= cy; ++iY, ++voxel.bitsVoxel.y )
{
voxel.bitsVoxel.z = vmin.bitsVoxel.z;
for ( int iZ = 0; iZ <= cz; ++iZ, ++voxel.bitsVoxel.z )
{
if ( !EnumerateElementsInVoxel( voxel, rect, listMask, pIterator ) )
return false;
}
}
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CVoxelHash::EnumerateElementsAlongRay( SpatialPartitionListMask_t listMask,
const Ray_t &ray, const Vector &vecInvDelta, const Vector &vecEnd, IPartitionEnumerator *pIterator )
{
Assert( ray.m_IsSwept );
// Two different methods
if ( ray.m_IsRay )
return EnumerateElementsAlongRay_Ray( listMask, ray, vecInvDelta, vecEnd, pIterator );
return EnumerateElementsAlongRay_ExtrudedRay( listMask, ray, vecInvDelta, vecEnd, pIterator );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CVoxelHash::EnumerateElementsAlongRay_Ray( SpatialPartitionListMask_t listMask,
const Ray_t &ray, const Vector &vecInvDelta, const Vector &vecEnd, IPartitionEnumerator *pIterator )
{
#ifdef _DEBUG
// For drawing debug objects.
static int nRenderRayEnumId = 4;
#endif
// Find the voxel start + end
Voxel_t voxelStart = VoxelIndexFromPoint( ray.m_Start );
Voxel_t voxelEnd = VoxelIndexFromPoint( vecEnd );
bool bSingleVoxel = ( voxelStart.uiVoxel == voxelEnd.uiVoxel );
CIntersectRay intersectRay( m_pTree, ray, vecInvDelta );
// Optimization: Look for single voxel rays
if ( bSingleVoxel )
return EnumerateElementsInSingleVoxel( voxelStart, intersectRay, listMask, pIterator );
Voxel_t voxelCurrent;
voxelCurrent.uiVoxel = voxelStart.uiVoxel;
// Setup.
int nStep[3];
float tMax[3];
float tDelta[3];
LeafListRaySetup( ray, vecEnd, vecInvDelta, voxelStart, nStep, tMax, tDelta );
// Walk the voxels and visit all elements in each voxel
while ( 1 )
{
if ( !EnumerateElementsInVoxel( voxelCurrent, intersectRay, listMask, pIterator ) )
return false;
if ( tMax[0] >= 1.0f && tMax[1] >= 1.0f && tMax[2] >= 1.0f )
break;
if ( tMax[0] < tMax[1] )
{
if ( tMax[0] < tMax[2] )
{
voxelCurrent.bitsVoxel.x += nStep[0];
tMax[0] += tDelta[0];
}
else
{
voxelCurrent.bitsVoxel.z += nStep[2];
tMax[2] += tDelta[2];
}
}
else
{
if ( tMax[1] < tMax[2] )
{
voxelCurrent.bitsVoxel.y += nStep[1];
tMax[1] += tDelta[1];
}
else
{
voxelCurrent.bitsVoxel.z += nStep[2];
tMax[2] += tDelta[2];
}
}
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CVoxelHash::LeafListRaySetup( const Ray_t &ray, const Vector &vecEnd,
const Vector &vecInvDelta, Voxel_t voxel, int *pStep, float *pMax, float *pDelta )
{
int iVoxel[3];
iVoxel[0] = voxel.bitsVoxel.x;
iVoxel[1] = voxel.bitsVoxel.y;
iVoxel[2] = voxel.bitsVoxel.z;
// Setup.
float flDist, flDistStart, flDistEnd, flRecipDist;
Vector vecVoxelStart, vecVoxelEnd;
VectorSubtract( ray.m_Start, m_vecVoxelOrigin, vecVoxelStart );
VectorSubtract( vecEnd, m_vecVoxelOrigin, vecVoxelEnd );
for ( int iAxis = 0; iAxis < 3; ++iAxis )
{
if ( vecVoxelStart[iAxis] == vecVoxelEnd[iAxis] )
{
pStep[iAxis] = 0;
pMax[iAxis] = SPHASH_VOXEL_LARGE;
pDelta[iAxis] = SPHASH_VOXEL_LARGE;
continue;
}
if ( ray.m_Delta[iAxis] < 0.0f )
{
pStep[iAxis] = -1;
flDist = ( iVoxel[iAxis] ) * VoxelSize();
flDistStart = vecVoxelStart[iAxis] - flDist;
flDistEnd = vecVoxelEnd[iAxis] - flDist;
flRecipDist = -vecInvDelta[iAxis];
}
else
{
pStep[iAxis] = 1;
flDist = ( iVoxel[iAxis] + 1 ) * -VoxelSize();
flDistStart = -vecVoxelStart[iAxis] - flDist;
flDistEnd = -vecVoxelEnd[iAxis] - flDist;
flRecipDist = vecInvDelta[iAxis];
}
if ( ( flDistStart > 0.0f ) && ( flDistEnd > 0.0f ) )
{
pMax[iAxis] = SPHASH_VOXEL_LARGE;
pDelta[iAxis] = SPHASH_VOXEL_LARGE;
}
else
{
pMax[iAxis] = flDistStart * flRecipDist;
pDelta[iAxis] = VoxelSize() * flRecipDist;
}
}
}
//-----------------------------------------------------------------------------
// Computes the min index of 3 numbers
//-----------------------------------------------------------------------------
inline int MinIndex( float v1, float v2, float v3 )
{
if ( v1 < v2 )
return ( v1 < v3 ) ? 0 : 2;
return ( v2 < v3 ) ? 1 : 2;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CVoxelHash::EnumerateElementsAlongRay_ExtrudedRay( SpatialPartitionListMask_t listMask,
const Ray_t &ray, const Vector &vecInvDelta, const Vector &vecEnd, IPartitionEnumerator *pIterator )
{
// Check the starting position, then proceed with the sweep.
Vector vecMin, vecMax;
VectorSubtract( ray.m_Start, ray.m_Extents, vecMin );
VectorAdd( ray.m_Start, ray.m_Extents, vecMax );
// Visit each voxel in the box and enumerate its elements.
int voxelMin[3], voxelMax[3];
VoxelIndexFromPoint( vecMin, voxelMin );
VoxelIndexFromPoint( vecMax, voxelMax );
CIntersectSweptBox intersectSweptBox( m_pTree, ray, vecInvDelta );
// Iterate over all voxels that intersect the box around the starting ray point
Voxel_t voxel;
int iX, iY, iZ;
for ( iX = voxelMin[0]; iX <= voxelMax[0]; ++iX )
{
voxel.bitsVoxel.x = iX;
for ( iY = voxelMin[1]; iY <= voxelMax[1]; ++iY )
{
voxel.bitsVoxel.y = iY;
for ( iZ = voxelMin[2]; iZ <= voxelMax[2]; ++iZ )
{
voxel.bitsVoxel.z = iZ;
if ( !EnumerateElementsInVoxel( voxel, intersectSweptBox, listMask, pIterator ) )
return false;
}
}
}
// Early out: Check to see if the range of voxels at the endpoint
// is the same as the range at the start point. If so, we're done.
Vector vecEndMin, vecEndMax;
VectorSubtract( vecEnd, ray.m_Extents, vecEndMin );
VectorAdd( vecEnd, ray.m_Extents, vecEndMax );
int endVoxelMin[3], endVoxelMax[3];
VoxelIndexFromPoint( vecEndMin, endVoxelMin );
VoxelIndexFromPoint( vecEndMax, endVoxelMax );
if ( (endVoxelMin[0] >= voxelMin[0]) && (endVoxelMin[1] >= voxelMin[1]) && (endVoxelMin[2] >= voxelMin[2]) &&
(endVoxelMax[0] <= voxelMax[0]) && (endVoxelMax[1] <= voxelMax[1]) && (endVoxelMax[2] <= voxelMax[2]) )
return true;
// Setup.
int nStep[3];
float tMax[3]; // amount of change in t along ray until we hit the next new voxel
float tMin[3]; // amount of change in t along ray until we leave the last voxel
float tDelta[3];
LeafListExtrudedRaySetup( ray, vecInvDelta, vecMin, vecMax, voxelMin, voxelMax, nStep, tMin, tMax, tDelta );
// Walk the voxels and create the leaf list.
int iAxis, iMinAxis;
while ( tMax[0] < 1.0f || tMax[1] < 1.0f || tMax[2] < 1.0f )
{
iAxis = MinIndex( tMax[0], tMax[1], tMax[2] );
iMinAxis = MinIndex( tMin[0], tMin[1], tMin[2] );
if ( tMin[iMinAxis] < tMax[iAxis] )
{
tMin[iMinAxis] += tDelta[iMinAxis];
if ( nStep[iMinAxis] > 0 )
{
voxelMin[iMinAxis] += nStep[iMinAxis];
}
else
{
voxelMax[iMinAxis] += nStep[iMinAxis];
}
}
else
{
tMax[iAxis] += tDelta[iAxis];
if ( nStep[iAxis] > 0 )
{
voxelMax[iAxis] += nStep[iAxis];
}
else
{
voxelMin[iAxis] += nStep[iAxis];
}
if ( !EnumerateElementsAlongRay_ExtrudedRaySlice( listMask, pIterator, intersectSweptBox, voxelMin, voxelMax, iAxis, nStep ) )
return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CVoxelHash::LeafListExtrudedRaySetup( const Ray_t &ray, const Vector &vecInvDelta,
const Vector &vecMin, const Vector &vecMax,
int iVoxelMin[3], int iVoxelMax[3],
int *pStep, float *pMin, float *pMax, float *pDelta )
{
float flDist, flDistStart, flRecipDist, flDistMinStart;
Vector vecVoxelMin, vecVoxelMax;
VectorSubtract( vecMin, m_vecVoxelOrigin, vecVoxelMin );
VectorSubtract( vecMax, m_vecVoxelOrigin, vecVoxelMax );
for ( int iAxis = 0; iAxis < 3; ++iAxis )
{
if ( ray.m_Delta[iAxis] == 0.0f )
{
pMax[iAxis] = SPHASH_VOXEL_LARGE;
pMin[iAxis] = SPHASH_VOXEL_LARGE;
pDelta[iAxis] = SPHASH_VOXEL_LARGE;
continue;
}
if ( ray.m_Delta[iAxis] < 0.0f )
{
pStep[iAxis] = -1;
flDistStart = vecVoxelMin[iAxis] - ( ( iVoxelMin[iAxis] ) * VoxelSize() );
flDistMinStart = vecVoxelMax[iAxis] - ( ( iVoxelMax[iAxis] ) * VoxelSize() );
flDist = -ray.m_Delta[iAxis];
flRecipDist = -vecInvDelta[iAxis];
}
else
{
pStep[iAxis] = 1;
flDistStart = -vecVoxelMax[iAxis] - ( ( iVoxelMax[iAxis] + 1 ) * -VoxelSize() );
flDistMinStart = -vecVoxelMin[iAxis] - ( ( iVoxelMin[iAxis] + 1 ) * -VoxelSize() );
flDist = ray.m_Delta[iAxis];
flRecipDist = vecInvDelta[iAxis];
}
if ( flDistStart > flDist )
{
pMax[iAxis] = SPHASH_VOXEL_LARGE;
pDelta[iAxis] = SPHASH_VOXEL_LARGE;
}
else
{
pMax[iAxis] = flDistStart * flRecipDist;
pDelta[iAxis] = VoxelSize() * flRecipDist;
}
if ( flDistMinStart > flDist )
{
pMin[iAxis] = SPHASH_VOXEL_LARGE;
}
else
{
pMin[iAxis] = flDistMinStart * flRecipDist;
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CVoxelHash::EnumerateElementsAlongRay_ExtrudedRaySlice( SpatialPartitionListMask_t listMask,
IPartitionEnumerator *pIterator, const CIntersectSweptBox &intersectSweptBox,
int voxelMin[3], int voxelMax[3], int iAxis, int *pStep )
{
int mins[3] = { voxelMin[0], voxelMin[1], voxelMin[2] };
int maxs[3] = { voxelMax[0], voxelMax[1], voxelMax[2] };
if ( pStep[iAxis] < 0.0f )
{
maxs[iAxis] = mins[iAxis];
}
else
{
mins[iAxis] = maxs[iAxis];
}
// Create leaf cache.
Voxel_t voxel;
int iX, iY, iZ;
for ( iX = mins[0]; iX <= maxs[0]; ++iX )
{
voxel.bitsVoxel.x = iX;
for ( iY = mins[1]; iY <= maxs[1]; ++iY )
{
voxel.bitsVoxel.y = iY;
for ( iZ = mins[2]; iZ <= maxs[2]; ++iZ )
{
voxel.bitsVoxel.z = iZ;
if ( !EnumerateElementsInVoxel( voxel, intersectSweptBox, listMask, pIterator ) )
return false;
}
}
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CVoxelHash::EnumerateElementsAtPoint( SpatialPartitionListMask_t listMask,
Voxel_t v, const Vector& pt, IPartitionEnumerator* pIterator )
{
// NOTE: We don't have to do the enum id checking, nor do we have to up the
// nesting level, since this only visits 1 voxel.
intp iEntityList;
UtlHashFixedHandle_t hHash = m_aVoxelHash.Find( v.uiVoxel );
if ( hHash != m_aVoxelHash.InvalidHandle() )
{
iEntityList = m_aVoxelHash.Element( hHash );
while ( iEntityList != m_aEntityList.InvalidIndex() )
{
SpatialPartitionHandle_t handle = m_aEntityList[iEntityList].m_handle;
SpatialPartitionListMask_t nListMask = m_aEntityList[iEntityList].m_nListMask;
iEntityList = m_aEntityList.Next( iEntityList );
if ( handle == PARTITION_INVALID_HANDLE )
continue;
// Keep going if this dude isn't in the list
if ( !( listMask & nListMask ) )
continue;
EntityInfo_t &hInfo = m_pTree->EntityInfo( handle );
if ( hInfo.m_flags & ENTITY_HIDDEN )
continue;
// Keep going if there's no collision
if ( !IsPointInBox( pt, hInfo.m_vecMin, hInfo.m_vecMax ) )
continue;
// Okay, this one is good...
if ( pIterator->EnumElement( hInfo.m_pHandleEntity ) == ITERATION_STOP )
return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose: Debug! Render a voxel - blue.
//-----------------------------------------------------------------------------
void CVoxelHash::RenderVoxel( Voxel_t voxel, float flTime )
{
#ifndef DEDICATED
Vector vecMin, vecMax;
vecMin.x = ( voxel.bitsVoxel.x * VoxelSize() ) + m_vecVoxelOrigin.x;
vecMin.y = ( voxel.bitsVoxel.y * VoxelSize() ) + m_vecVoxelOrigin.y;
vecMin.z = ( voxel.bitsVoxel.z * VoxelSize() ) + m_vecVoxelOrigin.z;
vecMax.x = ( ( voxel.bitsVoxel.x + 1 ) * VoxelSize() ) + m_vecVoxelOrigin.x;
vecMax.y = ( ( voxel.bitsVoxel.y + 1 ) * VoxelSize() ) + m_vecVoxelOrigin.y;
vecMax.z = ( ( voxel.bitsVoxel.z + 1 ) * VoxelSize() ) + m_vecVoxelOrigin.z;
CDebugOverlay::AddBoxOverlay( vec3_origin, vecMin, vecMax, vec3_angle, s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 30, flTime );
// Add outline.
Vector vecPoints[8];
vecPoints[0].Init( vecMin.x, vecMin.y, vecMin.z );
vecPoints[1].Init( vecMin.x, vecMax.y, vecMin.z );
vecPoints[2].Init( vecMax.x, vecMax.y, vecMin.z );
vecPoints[3].Init( vecMax.x, vecMin.y, vecMin.z );
vecPoints[4].Init( vecMin.x, vecMin.y, vecMax.z );
vecPoints[5].Init( vecMin.x, vecMax.y, vecMax.z );
vecPoints[6].Init( vecMax.x, vecMax.y, vecMax.z );
vecPoints[7].Init( vecMax.x, vecMin.y, vecMax.z );
CDebugOverlay::AddLineOverlay( vecPoints[0], vecPoints[1], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[1], vecPoints[2], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[2], vecPoints[3], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[3], vecPoints[0], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[4], vecPoints[5], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[5], vecPoints[6], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[6], vecPoints[7], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[7], vecPoints[4], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[0], vecPoints[4], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[3], vecPoints[7], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[1], vecPoints[5], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[2], vecPoints[6], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
#endif
}
//-----------------------------------------------------------------------------
// Purpose: Debug! Render an object in a voxel - green.
//-----------------------------------------------------------------------------
void CVoxelHash::RenderObjectInVoxel( SpatialPartitionHandle_t hPartition, CPartitionVisitor *pVisitor, float flTime )
{
#ifndef DEDICATED
// Add outline.
if ( hPartition == PARTITION_INVALID_HANDLE )
return;
EntityInfo_t &info = m_pTree->EntityInfo( hPartition );
if ( !pVisitor->Visit( hPartition, info ) )
{
return;
}
CDebugOverlay::AddBoxOverlay( vec3_origin, info.m_vecMin, info.m_vecMax, vec3_angle, s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 75, flTime );
// Add outline.
Vector vecMin, vecMax;
vecMin = info.m_vecMin;
vecMax = info.m_vecMax;
Vector vecPoints[8];
vecPoints[0].Init( vecMin.x, vecMin.y, vecMin.z );
vecPoints[1].Init( vecMin.x, vecMax.y, vecMin.z );
vecPoints[2].Init( vecMax.x, vecMax.y, vecMin.z );
vecPoints[3].Init( vecMax.x, vecMin.y, vecMin.z );
vecPoints[4].Init( vecMin.x, vecMin.y, vecMax.z );
vecPoints[5].Init( vecMin.x, vecMax.y, vecMax.z );
vecPoints[6].Init( vecMax.x, vecMax.y, vecMax.z );
vecPoints[7].Init( vecMax.x, vecMin.y, vecMax.z );
CDebugOverlay::AddLineOverlay( vecPoints[0], vecPoints[1], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[1], vecPoints[2], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[2], vecPoints[3], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[3], vecPoints[0], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[4], vecPoints[5], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[5], vecPoints[6], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[6], vecPoints[7], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[7], vecPoints[4], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[0], vecPoints[4], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[3], vecPoints[7], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[1], vecPoints[5], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
CDebugOverlay::AddLineOverlay( vecPoints[2], vecPoints[6], s_pVoxelColor[m_nLevel][0], s_pVoxelColor[m_nLevel][1], s_pVoxelColor[m_nLevel][2], 255, true, flTime );
#endif
}
//-----------------------------------------------------------------------------
// Purpose: Debug! Render the objects in a voxel (optionally, render the voxel!).
//-----------------------------------------------------------------------------
void CVoxelHash::RenderObjectsInVoxel( Voxel_t voxel, CPartitionVisitor *pVisitor, bool bRenderVoxel, float flTime )
{
UtlHashFixedHandle_t hHash = m_aVoxelHash.Find( voxel.uiVoxel );
if ( hHash == m_aVoxelHash.InvalidHandle() )
return;
intp iEntityList = m_aVoxelHash.Element( hHash );
while ( iEntityList != m_aEntityList.InvalidIndex() )
{
SpatialPartitionHandle_t hPartition = m_aEntityList[iEntityList].m_handle;
RenderObjectInVoxel( hPartition, pVisitor, flTime );
iEntityList = m_aEntityList.Next( iEntityList );
}
if ( bRenderVoxel )
{
RenderVoxel( voxel, flTime );
}
}
//-----------------------------------------------------------------------------
// Returns number of entities in the hash
//-----------------------------------------------------------------------------
int CVoxelHash::EntityCount()
{
int nCount = 0;
int nBucketCount = SPHASH_BUCKET_COUNT;
for ( int iBucket = 0; iBucket < nBucketCount; ++iBucket )
{
if ( m_aVoxelHash.m_aBuckets[iBucket].Count() == 0 )
continue;
UtlPtrLinkedListIndex_t hHash = m_aVoxelHash.m_aBuckets[iBucket].Head();
while ( hHash != m_aVoxelHash.m_aBuckets[iBucket].InvalidIndex() )
{
intp iEntity = m_aVoxelHash.m_aBuckets[iBucket][hHash].m_Data;
while ( iEntity!= m_aEntityList.InvalidIndex() )
{
++nCount;
iEntity = m_aEntityList.Next( iEntity );
}
hHash = m_aVoxelHash.m_aBuckets[iBucket].Next( hHash );
}
}
return nCount;
}
//-----------------------------------------------------------------------------
// Rendering methods
//-----------------------------------------------------------------------------
void CVoxelHash::RenderGrid()
{
#ifndef DEDICATED
Vector vecStart, vecEnd;
for ( int i = 0; i < m_nVoxelDelta[0]; ++i )
{
vecStart.x = vecEnd.x = i * VoxelSize() + m_vecVoxelOrigin.x;
for ( int j = 0; j < m_nVoxelDelta[1]; ++j )
{
vecStart.y = vecEnd.y = j * VoxelSize() + m_vecVoxelOrigin.y;
vecStart.z = m_vecVoxelOrigin.z;
vecEnd.z = m_nVoxelDelta[2] * VoxelSize() + m_vecVoxelOrigin.z;
RenderLine( vecStart, vecEnd, s_pVoxelColor[m_nLevel], true );
}
}
for ( int i = 0; i < m_nVoxelDelta[0]; ++i )
{
vecStart.x = vecEnd.x = i * VoxelSize() + m_vecVoxelOrigin.x;
for ( int j = 0; j < m_nVoxelDelta[2]; ++j )
{
vecStart.z = vecEnd.z = j * VoxelSize() + m_vecVoxelOrigin.z;
vecStart.y = m_vecVoxelOrigin.y;
vecEnd.y = m_nVoxelDelta[2] * VoxelSize() + m_vecVoxelOrigin.y;
RenderLine( vecStart, vecEnd, s_pVoxelColor[m_nLevel], true );
}
}
for ( int i = 0; i < m_nVoxelDelta[1]; ++i )
{
vecStart.y = vecEnd.y = i * VoxelSize() + m_vecVoxelOrigin.y;
for ( int j = 0; j < m_nVoxelDelta[2]; ++j )
{
vecStart.z = vecEnd.z = j * VoxelSize() + m_vecVoxelOrigin.z;
vecStart.x = m_vecVoxelOrigin.z;
vecEnd.x = m_nVoxelDelta[2] * VoxelSize() + m_vecVoxelOrigin.x;
RenderLine( vecStart, vecEnd, s_pVoxelColor[m_nLevel], true );
}
}
#endif
}
//-----------------------------------------------------------------------------
// Purpose: Debug! Render boxes around objects in tree.
//-----------------------------------------------------------------------------
void CVoxelHash::RenderAllObjectsInTree( float flTime )
{
int nBucketCount = SPHASH_BUCKET_COUNT;
CPartitionVisits *pPrevVisits = m_pTree->BeginVisit();
CPartitionVisitor visitor( m_pTree );
for ( int iBucket = 0; iBucket < nBucketCount; ++iBucket )
{
if ( m_aVoxelHash.m_aBuckets[iBucket].Count() == 0 )
continue;
UtlPtrLinkedListIndex_t hHash = m_aVoxelHash.m_aBuckets[iBucket].Head();
while ( hHash != m_aVoxelHash.m_aBuckets[iBucket].InvalidIndex() )
{
intp iEntity = m_aVoxelHash.m_aBuckets[iBucket][hHash].m_Data;
while ( iEntity!= m_aEntityList.InvalidIndex() )
{
SpatialPartitionHandle_t hPartition = m_aEntityList[iEntity].m_handle;
RenderObjectInVoxel( hPartition, &visitor, flTime );
iEntity = m_aEntityList.Next( iEntity );
}
hHash = m_aVoxelHash.m_aBuckets[iBucket].Next( hHash );
}
}
m_pTree->EndVisit( pPrevVisits );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CVoxelHash::RenderObjectsInPlayerLeafs( const Vector &vecPlayerMin, const Vector &vecPlayerMax, float flTime )
{
// Visit each voxel in the box and enumerate its elements.
Voxel_t voxelMin, voxelMax;
voxelMin = VoxelIndexFromPoint( vecPlayerMin );
voxelMax = VoxelIndexFromPoint( vecPlayerMax );
CPartitionVisits *pPrevVisits = m_pTree->BeginVisit();
// Create leaf cache.
Voxel_t voxel;
unsigned int iX, iY, iZ;
CPartitionVisitor visitor( m_pTree );
for ( iX = voxelMin.bitsVoxel.x; iX <= voxelMax.bitsVoxel.x; ++iX )
{
for ( iY = voxelMin.bitsVoxel.y; iY <= voxelMax.bitsVoxel.y; ++iY )
{
for ( iZ = voxelMin.bitsVoxel.z; iZ <= voxelMax.bitsVoxel.z; ++iZ )
{
voxel.bitsVoxel.x = iX;
voxel.bitsVoxel.y = iY;
voxel.bitsVoxel.z = iZ;
RenderObjectsInVoxel( voxel, &visitor, false, flTime );
}
}
}
m_pTree->EndVisit( pPrevVisits );
}
//-----------------------------------------------------------------------------
// Purpose: Constructor
//-----------------------------------------------------------------------------
CVoxelTree::CVoxelTree() : m_pVoxelHash( NULL ), m_pOwner( NULL ), m_nNextVisitBit( 0 )
{
// Compute max number of levels
m_nLevelCount = 0;
while ( CVoxelHash::ComputeVoxelCountAtLevel( m_nLevelCount ) > 2 )
{
++m_nLevelCount;
}
++m_nLevelCount; // Account for the level where count = 2;
// Various optimizations I've made require 4 levels
Assert( m_nLevelCount == 4 );
m_pVoxelHash = new CVoxelHash[m_nLevelCount];
m_AvailableVisitBits.EnsureCapacity( 2048 );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
CVoxelTree::~CVoxelTree()
{
delete[] m_pVoxelHash;
}
void ClampVector( Vector &out, const Vector &mins, const Vector &maxs )
{
for ( int i = 0; i < 3; i++ )
{
out[i] = clamp(out[i], mins[i], maxs[i]);
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input: worldmin -
// worldmax -
//-----------------------------------------------------------------------------
void CVoxelTree::Init( CSpatialPartition *pOwner, int iTree, const Vector &worldmin, const Vector &worldmax )
{
m_pOwner = pOwner;
m_TreeId = iTree;
// Reset the enumeration id.
memset( m_pVisits, 0, sizeof( m_pVisits ) );
for ( int i = 0; i < m_nLevelCount; ++i )
{
m_pVoxelHash[i].Init( this, worldmin, worldmax, i );
}
// Setup the leaf list pool.
m_aLeafList.Purge();
m_aLeafList.SetGrowSize( SPHASH_LEAFLIST_BLOCK );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CVoxelTree::Shutdown( void )
{
m_aLeafList.Purge();
for ( int i = 0; i < m_nLevelCount; ++i )
{
m_pVoxelHash[i].Shutdown();
}
}
//-----------------------------------------------------------------------------
// Insert into the appropriate tree
//-----------------------------------------------------------------------------
void CVoxelTree::InsertIntoTree( SpatialPartitionHandle_t hPartition, const Vector& mins, const Vector& maxs, bool bReinsert )
{
Assert( hPartition != PARTITION_INVALID_HANDLE );
EntityInfo_t &info = EntityInfo( hPartition );
// Bloat by an eps before inserting the object into the tree.
Vector vecMin( mins.x - SPHASH_EPS, mins.y - SPHASH_EPS, mins.z - SPHASH_EPS );
Vector vecMax( maxs.x + SPHASH_EPS, maxs.y + SPHASH_EPS, maxs.z + SPHASH_EPS );
ClampVector(vecMin, s_PartitionMin, s_PartitionMax);
ClampVector(vecMax, s_PartitionMin, s_PartitionMax);
Vector vecSize;
VectorSubtract( vecMax, vecMin, vecSize );
int nLevel;
for ( nLevel = 0; nLevel < m_nLevelCount - 1; ++nLevel )
{
float flVoxelSize = m_pVoxelHash[nLevel].VoxelSizeF();
if ( (flVoxelSize > vecSize.x) && (flVoxelSize > vecSize.y) && (flVoxelSize > vecSize.z) )
break;
}
// Add the object to the tree.
Voxel_t voxelMin, voxelMax;
voxelMin = m_pVoxelHash[nLevel].VoxelIndexFromPoint( vecMin );
voxelMax = m_pVoxelHash[nLevel].VoxelIndexFromPoint( vecMax );
bool bDoInsert = true;
if ( bReinsert )
{
// on reinsert we need to either remove/insert or not do anything
// if the entity spans the same bounding box of voxels no remove/insert is necessary
if ( info.m_voxelMin.uiVoxel == voxelMin.uiVoxel && info.m_voxelMax.uiVoxel == voxelMax.uiVoxel )
{
bDoInsert = false;
}
else
{
// Remove entity from voxel hash.
RemoveFromTree( hPartition );
}
}
// Set/update the entity bounding box.
info.m_vecMin = vecMin;
info.m_vecMax = vecMax;
if ( bDoInsert )
{
bool bWasReading = ( m_pVisits[g_nThreadID] != NULL );
if ( bWasReading )
{
// If we're recursing in this thread, need to release our read lock to allow ourselves to write
UnlockRead();
}
m_lock.LockForWrite();
// if these have changed we need to insert
info.m_voxelMin = voxelMin;
info.m_voxelMax = voxelMax;
if ( m_AvailableVisitBits.Count() )
{
info.m_nVisitBit[m_TreeId] = m_AvailableVisitBits.Tail();
m_AvailableVisitBits.Remove( m_AvailableVisitBits.Count() - 1 );
}
else
{
info.m_nVisitBit[m_TreeId] = m_nNextVisitBit++;
}
m_pVoxelHash[nLevel].InsertIntoTree( hPartition, voxelMin, voxelMax );
m_lock.UnlockWrite();
if ( bWasReading )
{
LockForRead();
}
}
}
//-----------------------------------------------------------------------------
// Remove from appropriate tree
//-----------------------------------------------------------------------------
void CVoxelTree::RemoveFromTree( SpatialPartitionHandle_t hPartition )
{
Assert( hPartition != PARTITION_INVALID_HANDLE );
EntityInfo_t &info = EntityInfo( hPartition );
int nLevel = info.m_nLevel[GetTreeId()];
if ( nLevel >= 0 )
{
bool bWasReading = ( m_pVisits[g_nThreadID] != NULL );
if ( bWasReading )
{
// If we're recursing in this thread, need to release our read lock to allow ourselves to write
UnlockRead();
}
m_lock.LockForWrite();
m_pVoxelHash[nLevel].RemoveFromTree( hPartition );
m_AvailableVisitBits.AddToTail( info.m_nVisitBit[m_TreeId] );
info.m_nVisitBit[m_TreeId] = (unsigned short)-1;
m_lock.UnlockWrite();
if ( bWasReading )
{
LockForRead();
}
}
}
void CVoxelTree::UpdateListMask( SpatialPartitionHandle_t hPartition )
{
EntityInfo_t &info = EntityInfo( hPartition );
int nLevel = info.m_nLevel[GetTreeId()];
if ( nLevel >= 0 )
{
m_lock.LockForRead();
m_pVoxelHash[nLevel].UpdateListMask( hPartition );
m_lock.UnlockRead();
}
}
//-----------------------------------------------------------------------------
// Called when an element moves
//-----------------------------------------------------------------------------
void CVoxelTree::ElementMoved( SpatialPartitionHandle_t hPartition, const Vector& mins, const Vector& maxs )
{
if ( hPartition != PARTITION_INVALID_HANDLE )
{
// If it doesn't already exist in the tree - add it.
EntityInfo_t &info = EntityInfo( hPartition );
if ( info.m_iLeafList[GetTreeId()] == CLeafList::InvalidIndex() )
{
InsertIntoTree( hPartition, mins, maxs, false );
return;
}
// Re-insert entity into voxel hash.
InsertIntoTree( hPartition, mins, maxs, true );
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CVoxelTree::EnumerateElementsInBox( SpatialPartitionListMask_t listMask,
const Vector& vecMins, const Vector& vecMaxs,
bool coarseTest, IPartitionEnumerator* pIterator )
{
VPROF( "BoxTest/SphereTest" );
// If this assertion fails, you're using a list at a point where the spatial partition elements aren't set up!
// Assert( ( listMask & m_nSuppressedListMask ) == 0 );
// Early-out.
if ( listMask == 0 )
return;
// Clamp bounds to extant space
Vector mins, maxs;
VectorMax( vecMins, s_PartitionMin, mins );
VectorMin( mins, s_PartitionMax, mins );
VectorMax( vecMaxs, s_PartitionMin, maxs );
VectorMin( maxs, s_PartitionMax, maxs );
// Callbacks.
CPartitionVisits *pPrevVisits = BeginVisit();
m_lock.LockForRead();
Voxel_t vs = m_pVoxelHash[0].VoxelIndexFromPoint( mins );
Voxel_t ve = m_pVoxelHash[0].VoxelIndexFromPoint( maxs );
if ( !m_pVoxelHash[0].EnumerateElementsInBox( listMask, vs, ve, mins, maxs, pIterator ) )
{
m_lock.UnlockRead();
EndVisit( pPrevVisits );
return;
}
vs = ConvertToNextLevel( vs );
ve = ConvertToNextLevel( ve );
if ( !m_pVoxelHash[1].EnumerateElementsInBox( listMask, vs, ve, mins, maxs, pIterator ) )
{
m_lock.UnlockRead();
EndVisit( pPrevVisits );
return;
}
vs = ConvertToNextLevel( vs );
ve = ConvertToNextLevel( ve );
if ( !m_pVoxelHash[2].EnumerateElementsInBox( listMask, vs, ve, mins, maxs, pIterator ) )
{
m_lock.UnlockRead();
EndVisit( pPrevVisits );
return;
}
vs = ConvertToNextLevel( vs );
ve = ConvertToNextLevel( ve );
m_pVoxelHash[3].EnumerateElementsInBox( listMask, vs, ve, mins, maxs, pIterator );
m_lock.UnlockRead();
EndVisit( pPrevVisits );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CVoxelTree::EnumerateElementsInSphere( SpatialPartitionListMask_t listMask,
const Vector& origin, float radius, bool coarseTest, IPartitionEnumerator* pIterator )
{
// Otherwise they might as well just walk the entire ent list!!!
Assert( radius <= MAX_COORD_FLOAT );
// If the box test is fast enough - forget about the sphere test?
Vector vecMin( origin.x - radius, origin.y - radius, origin.z - radius );
Vector vecMax( origin.x + radius, origin.y + radius, origin.z + radius );
return EnumerateElementsInBox( listMask, vecMin, vecMax, coarseTest, pIterator );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CVoxelTree::EnumerateElementsAlongRay_Ray( SpatialPartitionListMask_t listMask,
const Ray_t &ray, const Vector &vecInvDelta, const Vector &vecEnd, IPartitionEnumerator *pIterator )
{
// Find the voxel start + end
Voxel_t voxelStart = m_pVoxelHash[0].VoxelIndexFromPoint( ray.m_Start );
Voxel_t voxelEnd = m_pVoxelHash[0].VoxelIndexFromPoint( vecEnd );
bool bSingleVoxel = ( voxelStart.uiVoxel == voxelEnd.uiVoxel );
CIntersectRay intersectRay( this, ray, vecInvDelta );
// Optimization: Look for single voxel rays
if ( bSingleVoxel )
{
if ( !m_pVoxelHash[0].EnumerateElementsInSingleVoxel( voxelStart, intersectRay, listMask, pIterator ) )
return false;
voxelStart = ConvertToNextLevel( voxelStart );
if ( !m_pVoxelHash[1].EnumerateElementsInSingleVoxel( voxelStart, intersectRay, listMask, pIterator ) )
return false;
voxelStart = ConvertToNextLevel( voxelStart );
if ( !m_pVoxelHash[2].EnumerateElementsInSingleVoxel( voxelStart, intersectRay, listMask, pIterator ) )
return false;
voxelStart = ConvertToNextLevel( voxelStart );
return m_pVoxelHash[3].EnumerateElementsInSingleVoxel( voxelStart, intersectRay, listMask, pIterator );
}
Voxel_t voxelCurrent;
voxelCurrent.uiVoxel = voxelStart.uiVoxel;
// Setup.
int nStep[3];
float tMax[3];
float tDelta[3];
m_pVoxelHash[0].LeafListRaySetup( ray, vecEnd, vecInvDelta, voxelStart, nStep, tMax, tDelta );
// Walk the voxels and visit all elements in each voxel
// Deal with all levels
Voxel_t ov1, ov2, ov3;
ov1.uiVoxel = ov2.uiVoxel = ov3.uiVoxel = 0xFFFFFFFF;
Voxel_t v1 = ConvertToNextLevel( voxelCurrent );
Voxel_t v2 = ConvertToNextLevel( v1 );
Voxel_t v3 = ConvertToNextLevel( v2 );
while ( 1 )
{
if ( !m_pVoxelHash[0].EnumerateElementsInVoxel( voxelCurrent, intersectRay, listMask, pIterator ) )
return false;
if ( v1.uiVoxel != ov1.uiVoxel )
{
if ( !m_pVoxelHash[1].EnumerateElementsInVoxel( v1, intersectRay, listMask, pIterator ) )
return false;
}
if ( v2.uiVoxel != ov2.uiVoxel )
{
if ( !m_pVoxelHash[2].EnumerateElementsInVoxel( v2, intersectRay, listMask, pIterator ) )
return false;
}
if ( v3.uiVoxel != ov3.uiVoxel )
{
if ( !m_pVoxelHash[3].EnumerateElementsInVoxel( v3, intersectRay, listMask, pIterator ) )
return false;
}
if ( tMax[0] >= 1.0f && tMax[1] >= 1.0f && tMax[2] >= 1.0f )
break;
if ( tMax[0] < tMax[1] )
{
if ( tMax[0] < tMax[2] )
{
voxelCurrent.bitsVoxel.x += nStep[0];
tMax[0] += tDelta[0];
}
else
{
voxelCurrent.bitsVoxel.z += nStep[2];
tMax[2] += tDelta[2];
}
}
else
{
if ( tMax[1] < tMax[2] )
{
voxelCurrent.bitsVoxel.y += nStep[1];
tMax[1] += tDelta[1];
}
else
{
voxelCurrent.bitsVoxel.z += nStep[2];
tMax[2] += tDelta[2];
}
}
ov1 = v1; ov2 = v2; ov3 = v3;
v1 = ConvertToNextLevel( voxelCurrent );
v2 = ConvertToNextLevel( v1 );
v3 = ConvertToNextLevel( v2 );
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CVoxelTree::ComputeSweptRayBounds( const Ray_t &ray, const Vector &vecStartMin, const Vector &vecStartMax, Vector *pVecMin, Vector *pVecMax )
{
if ( ray.m_Delta.x < 0 )
{
pVecMin->x = vecStartMin.x + ray.m_Delta.x;
pVecMax->x = vecStartMax.x;
}
else
{
pVecMin->x = vecStartMin.x;
pVecMax->x = vecStartMax.x + ray.m_Delta.x;
}
if ( ray.m_Delta.y < 0 )
{
pVecMin->y = vecStartMin.y + ray.m_Delta.y;
pVecMax->y = vecStartMax.y;
}
else
{
pVecMin->y = vecStartMin.y;
pVecMax->y = vecStartMax.y + ray.m_Delta.y;
}
if ( ray.m_Delta.z < 0 )
{
pVecMin->z = vecStartMin.z + ray.m_Delta.z;
pVecMax->z = vecStartMax.z;
}
else
{
pVecMin->z = vecStartMin.z;
pVecMax->z = vecStartMax.z + ray.m_Delta.z;
}
}
bool CVoxelTree::EnumerateRayStartVoxels( SpatialPartitionListMask_t listMask, IPartitionEnumerator *pIterator, CIntersectSweptBox &intersectSweptBox, int voxelBounds[4][2][3] )
{
// Iterate over all voxels that intersect the box around the starting ray point
int nMinX = voxelBounds[0][0][0];
int nMinY = voxelBounds[0][0][1];
int nMinZ = voxelBounds[0][0][2];
int nMaxX = voxelBounds[0][1][0];
int nMaxY = voxelBounds[0][1][1];
int nMaxZ = voxelBounds[0][1][2];
for ( int i = 0; i < m_nLevelCount; ++i )
{
if ( i != 0 )
{
nMinX >>= SPHASH_LEVEL_SKIP;
nMinY >>= SPHASH_LEVEL_SKIP;
nMinZ >>= SPHASH_LEVEL_SKIP;
nMaxX >>= SPHASH_LEVEL_SKIP;
nMaxY >>= SPHASH_LEVEL_SKIP;
nMaxZ >>= SPHASH_LEVEL_SKIP;
voxelBounds[i][0][0] = nMinX;
voxelBounds[i][0][1] = nMinY;
voxelBounds[i][0][2] = nMinZ;
voxelBounds[i][1][0] = nMaxX;
voxelBounds[i][1][1] = nMaxY;
voxelBounds[i][1][2] = nMaxZ;
}
Voxel_t voxel;
int iX, iY, iZ;
for ( iX = nMinX; iX <= nMaxX; ++iX )
{
voxel.bitsVoxel.x = iX;
for ( iY = nMinY; iY <= nMaxY; ++iY )
{
voxel.bitsVoxel.y = iY;
for ( iZ = nMinZ; iZ <= nMaxZ; ++iZ )
{
voxel.bitsVoxel.z = iZ;
if ( !m_pVoxelHash[i].EnumerateElementsInVoxel( voxel, intersectSweptBox, listMask, pIterator ) )
return false;
}
}
}
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CVoxelTree::EnumerateElementsAlongRay_ExtrudedRay( SpatialPartitionListMask_t listMask,
const Ray_t &ray, const Vector &vecInvDelta, const Vector &vecEnd, IPartitionEnumerator *pIterator )
{
// Check the starting position, then proceed with the sweep.
Vector vecMin, vecMax;
VectorSubtract( ray.m_Start, ray.m_Extents, vecMin );
VectorAdd( ray.m_Start, ray.m_Extents, vecMax );
// Visit each voxel in the box and enumerate its elements.
// Indexed as voxelBounds[level][min/max][x/y/z]
int voxelBounds[4][2][3];
m_pVoxelHash[0].VoxelIndexFromPoint( vecMin, voxelBounds[0][0] );
m_pVoxelHash[0].VoxelIndexFromPoint( vecMax, voxelBounds[0][1] );
CIntersectSweptBox intersectSweptBox( this, ray, vecInvDelta );
if ( !EnumerateRayStartVoxels( listMask, pIterator, intersectSweptBox, voxelBounds ) )
return false;
// Early out: Check to see if the range of voxels at the endpoint
// is the same as the range at the start point. If so, we're done.
#if defined(_X360) || defined(_PS3)
fltx4 fl4RayEnd = LoadUnaligned3SIMD(vecEnd.Base());
fltx4 fl4Extents = LoadAlignedSIMD(ray.m_Extents.Base());
fltx4 vecEndMin = SubSIMD( fl4RayEnd, fl4Extents );
fltx4 vecEndMax = AddSIMD( fl4RayEnd, fl4Extents );
#else
Vector vecEndMin, vecEndMax;
VectorSubtract( vecEnd, ray.m_Extents, vecEndMin );
VectorAdd( vecEnd, ray.m_Extents, vecEndMax );
#endif
int endVoxelMin[3], endVoxelMax[3];
m_pVoxelHash[0].VoxelIndexFromPoint( vecEndMin, endVoxelMin );
m_pVoxelHash[0].VoxelIndexFromPoint( vecEndMax, endVoxelMax );
if ( (endVoxelMin[0] >= voxelBounds[0][0][0]) && (endVoxelMin[1] >= voxelBounds[0][0][1]) && (endVoxelMin[2] >= voxelBounds[0][0][2]) &&
(endVoxelMax[0] <= voxelBounds[0][1][0]) && (endVoxelMax[1] <= voxelBounds[0][1][1]) && (endVoxelMax[2] <= voxelBounds[0][1][2]) )
return true;
// Setup.
int nStep[3];
float tMax[3]; // amount of change in t along ray until we hit the next new voxel
float tMin[3]; // amount of change in t along ray until we leave the last voxel
float tDelta[3];
m_pVoxelHash[0].LeafListExtrudedRaySetup( ray, vecInvDelta, vecMin, vecMax, voxelBounds[0][0], voxelBounds[0][1], nStep, tMin, tMax, tDelta );
int nLastVoxel1[3];
int nLastVoxel2[3];
int nLastVoxel3[3];
for ( int i = 0; i < 3; ++i )
{
int nIndex = ( nStep[i] > 0 ) ? 1 : 0;
nLastVoxel1[i] = voxelBounds[1][nIndex][i];
nLastVoxel2[i] = voxelBounds[2][nIndex][i];
nLastVoxel3[i] = voxelBounds[3][nIndex][i];
}
// Walk the voxels and create the leaf list.
int iAxis, iMinAxis;
while ( tMax[0] < 1.0f || tMax[1] < 1.0f || tMax[2] < 1.0f )
{
iAxis = MinIndex( tMax[0], tMax[1], tMax[2] );
iMinAxis = MinIndex( tMin[0], tMin[1], tMin[2] );
if ( tMin[iMinAxis] < tMax[iAxis] )
{
tMin[iMinAxis] += tDelta[iMinAxis];
int nIndex = ( nStep[iMinAxis] > 0 ) ? 0 : 1;
voxelBounds[0][nIndex][iMinAxis] += nStep[iMinAxis];
voxelBounds[1][nIndex][iMinAxis] = voxelBounds[0][nIndex][iMinAxis] >> SPHASH_LEVEL_SKIP;
voxelBounds[2][nIndex][iMinAxis] = voxelBounds[0][nIndex][iMinAxis] >> (2 * SPHASH_LEVEL_SKIP);
voxelBounds[3][nIndex][iMinAxis] = voxelBounds[0][nIndex][iMinAxis] >> (3 * SPHASH_LEVEL_SKIP);
}
else
{
tMax[iAxis] += tDelta[iAxis];
int nIndex = ( nStep[iAxis] > 0 ) ? 1 : 0;
voxelBounds[0][nIndex][iAxis] += nStep[iAxis];
voxelBounds[1][nIndex][iAxis] = voxelBounds[0][nIndex][iAxis] >> SPHASH_LEVEL_SKIP;
voxelBounds[2][nIndex][iAxis] = voxelBounds[0][nIndex][iAxis] >> (2 * SPHASH_LEVEL_SKIP);
voxelBounds[3][nIndex][iAxis] = voxelBounds[0][nIndex][iAxis] >> (3 * SPHASH_LEVEL_SKIP);
if ( !m_pVoxelHash[0].EnumerateElementsAlongRay_ExtrudedRaySlice( listMask, pIterator, intersectSweptBox, voxelBounds[0][0], voxelBounds[0][1], iAxis, nStep ) )
return false;
if ( nLastVoxel1[iAxis] != voxelBounds[1][nIndex][iAxis] )
{
nLastVoxel1[iAxis] = voxelBounds[1][nIndex][iAxis];
if ( !m_pVoxelHash[1].EnumerateElementsAlongRay_ExtrudedRaySlice( listMask, pIterator, intersectSweptBox, voxelBounds[1][0], voxelBounds[1][1], iAxis, nStep ) )
return false;
}
if ( nLastVoxel2[iAxis] != voxelBounds[2][nIndex][iAxis] )
{
nLastVoxel2[iAxis] = voxelBounds[2][nIndex][iAxis];
if ( !m_pVoxelHash[2].EnumerateElementsAlongRay_ExtrudedRaySlice( listMask, pIterator, intersectSweptBox, voxelBounds[2][0], voxelBounds[2][1], iAxis, nStep ) )
return false;
}
if ( nLastVoxel3[iAxis] != voxelBounds[3][nIndex][iAxis] )
{
nLastVoxel3[iAxis] = voxelBounds[3][nIndex][iAxis];
if ( !m_pVoxelHash[3].EnumerateElementsAlongRay_ExtrudedRaySlice( listMask, pIterator, intersectSweptBox, voxelBounds[3][0], voxelBounds[3][1], iAxis, nStep ) )
return false;
}
}
}
return true;
}
#ifndef _PS3
#define THINK_TRACE_COUNTER_COMPILE_FUNCTIONS_ENGINE
#include "engine/thinktracecounter.h"
#endif
#ifdef THINK_TRACE_COUNTER_COMPILED
ConVar think_trace_limit( "think_trace_limit", "0", FCVAR_CHEAT | FCVAR_DEVELOPMENTONLY, "Break into the debugger if this many or more traces are performed in a single think function. Negative numbers mean that the same think function may be broken into many times (once per [x] may traces), positive numbers mean each think will break only once." );
CTHREADLOCALINT g_DebugTracesRemainingBeforeTrap(0);
#endif
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CVoxelTree::EnumerateElementsAlongRay( SpatialPartitionListMask_t listMask,
const Ray_t &ray, bool coarseTest, IPartitionEnumerator *pIterator )
{
VPROF("EnumerateElementsAlongRay");
#ifdef THINK_TRACE_COUNTER_COMPILED
if ( DEBUG_THINK_TRACE_COUNTER_ALLOWED() && think_trace_limit.GetInt() != 0 && g_DebugTracesRemainingBeforeTrap > 0 )
{
if ( --g_DebugTracesRemainingBeforeTrap <= 0 )
{
if ( Plat_IsInDebugSession() )
{
DebuggerBreakIfDebugging();
if ( think_trace_limit.GetInt() < 0 )
{
g_DebugTracesRemainingBeforeTrap = -think_trace_limit.GetInt();
}
}
else
{
AssertMsg1( false, "Performed %d traces in a single think function!\n", think_trace_limit.GetInt() );
}
}
}
#endif
if ( !ray.m_IsSwept )
{
Vector vecMin, vecMax;
VectorSubtract( ray.m_Start, ray.m_Extents, vecMin );
VectorAdd( ray.m_Start, ray.m_Extents, vecMax );
return EnumerateElementsInBox( listMask, vecMin, vecMax, coarseTest, pIterator );
}
// If this assertion fails, you're using a list at a point where the spatial partition elements aren't set up!
// Assert( ( listMask & m_nSuppressedListMask ) == 0 );
// Early-out.
if ( listMask == 0 )
return;
// Calculate the end of the ray
Vector vecEnd;
Vector vecInvDelta;
Ray_t clippedRay = ray;
VectorAdd( clippedRay.m_Start, clippedRay.m_Delta, vecEnd );
bool bStartIn = IsPointInBox( ray.m_Start, s_PartitionMin, s_PartitionMax );
bool bEndIn = IsPointInBox( vecEnd, s_PartitionMin, s_PartitionMax );
if ( !bStartIn && !bEndIn )
return;
// Callbacks.
if ( !bStartIn )
{
ClampStartPoint( clippedRay, vecEnd );
}
else if ( !bEndIn )
{
ClampEndPoint( clippedRay, vecEnd );
}
vecInvDelta[0] = ( clippedRay.m_Delta[0] != 0.0f ) ? 1.0f / clippedRay.m_Delta[0] : FLT_MAX;
vecInvDelta[1] = ( clippedRay.m_Delta[1] != 0.0f ) ? 1.0f / clippedRay.m_Delta[1] : FLT_MAX;
vecInvDelta[2] = ( clippedRay.m_Delta[2] != 0.0f ) ? 1.0f / clippedRay.m_Delta[2] : FLT_MAX;
CPartitionVisits *pPrevVisits = BeginVisit();
m_lock.LockForRead();
if ( ray.m_IsRay )
{
EnumerateElementsAlongRay_Ray( listMask, clippedRay, vecInvDelta, vecEnd, pIterator );
}
else
{
EnumerateElementsAlongRay_ExtrudedRay( listMask, clippedRay, vecInvDelta, vecEnd, pIterator );
}
m_lock.UnlockRead();
EndVisit( pPrevVisits );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CVoxelTree::EnumerateElementsAtPoint( SpatialPartitionListMask_t listMask,
const Vector& pt, bool coarseTest, IPartitionEnumerator* pIterator )
{
// If this assertion fails, you're using a list at a point where the spatial partition elements aren't set up!
// Assert( ( listMask & m_nSuppressedListMask ) == 0 );
// Early-out.
if ( listMask == 0 )
return;
m_lock.LockForRead();
// Callbacks.
Voxel_t v = m_pVoxelHash[0].VoxelIndexFromPoint( pt );
if ( !m_pVoxelHash[0].EnumerateElementsAtPoint( listMask, v, pt, pIterator ) )
{
m_lock.UnlockRead();
return;
}
v = ConvertToNextLevel( v );
if ( !m_pVoxelHash[1].EnumerateElementsAtPoint( listMask, v, pt, pIterator ) )
{
m_lock.UnlockRead();
return;
}
v = ConvertToNextLevel( v );
if ( !m_pVoxelHash[2].EnumerateElementsAtPoint( listMask, v, pt, pIterator ) )
{
m_lock.UnlockRead();
return;
}
v = ConvertToNextLevel( v );
m_pVoxelHash[3].EnumerateElementsAtPoint( listMask, v, pt, pIterator );
m_lock.UnlockRead();
}
//-----------------------------------------------------------------------------
// Purpose: Debug! Render boxes around objects in tree.
//-----------------------------------------------------------------------------
void CVoxelTree::RenderAllObjectsInTree( float flTime )
{
MDLCACHE_CRITICAL_SECTION_(g_pMDLCache);
m_lock.LockForRead();
for ( int i = 0; i < m_nLevelCount; ++i )
{
m_pVoxelHash[i].RenderAllObjectsInTree( flTime );
}
m_lock.UnlockRead();
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CVoxelTree::RenderObjectsInPlayerLeafs( const Vector &vecPlayerMin, const Vector &vecPlayerMax, float flTime )
{
MDLCACHE_CRITICAL_SECTION_(g_pMDLCache);
m_lock.LockForRead();
for ( int i = 0; i < m_nLevelCount; ++i )
{
m_pVoxelHash[i].RenderObjectsInPlayerLeafs( vecPlayerMin, vecPlayerMax, flTime );
}
m_lock.UnlockRead();
}
//-----------------------------------------------------------------------------
// Expose CSpatialPartition to the game + client DLL.
//-----------------------------------------------------------------------------
static CSpatialPartition g_SpatialPartition;
EXPOSE_SINGLE_INTERFACE_GLOBALVAR( CSpatialPartition, ISpatialPartition, INTERFACEVERSION_SPATIALPARTITION, g_SpatialPartition );
//-----------------------------------------------------------------------------
// Expose ISpatialPartitionInternal to the engine.
//-----------------------------------------------------------------------------
ISpatialPartitionInternal *SpatialPartition()
{
return &g_SpatialPartition;
}
//-----------------------------------------------------------------------------
// Purpose: Constructor
//-----------------------------------------------------------------------------
CSpatialPartition::CSpatialPartition()
{
m_nQueryCallbackCount = 0;
m_aHandles.SetAllocOwner( "CSpatialPartition::m_aHandles" );
}
CSpatialPartition::~CSpatialPartition()
{
Shutdown();
}
//-----------------------------------------------------------------------------
// Purpose:
// Input: worldmin -
// worldmax -
//-----------------------------------------------------------------------------
void CSpatialPartition::Init( const Vector &worldmin, const Vector &worldmax )
{
// Clear the handle list and ensure some new memory.
MEM_ALLOC_CREDIT();
m_aHandles.Purge();
m_aHandles.EnsureCapacity( SPHASH_HANDLELIST_BLOCK );
for ( int i = 0; i < NUM_TREES; i++ )
{
m_VoxelTrees[i].Init( this, i, worldmin, worldmax );
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CSpatialPartition::Shutdown( void )
{
for ( int i = 0; i < NUM_TREES; i++ )
{
m_VoxelTrees[i].Shutdown();
}
m_aHandles.Purge();
}
//-----------------------------------------------------------------------------
// Purpose: Add a callback to the query callback list. Functions get called
// right before a query occurs.
// Input: pCallback - pointer to the callback function to add
//-----------------------------------------------------------------------------
void CSpatialPartition::InstallQueryCallback( IPartitionQueryCallback *pCallback )
{
// Verify data.
Assert( pCallback && m_nQueryCallbackCount < MAX_QUERY_CALLBACK );
if ( !pCallback || ( m_nQueryCallbackCount >= MAX_QUERY_CALLBACK ) )
return;
m_pQueryCallback[m_nQueryCallbackCount] = pCallback;
++m_nQueryCallbackCount;
}
//-----------------------------------------------------------------------------
// Purpose: Remove a callback from the query callback list.
// Input: pCallback - pointer to the callback function to remove
//-----------------------------------------------------------------------------
void CSpatialPartition::RemoveQueryCallback( IPartitionQueryCallback *pCallback )
{
// Verify data.
if ( !pCallback )
return;
for ( int iQuery = m_nQueryCallbackCount; --iQuery >= 0; )
{
if ( m_pQueryCallback[iQuery] == pCallback )
{
--m_nQueryCallbackCount;
m_pQueryCallback[iQuery] = m_pQueryCallback[m_nQueryCallbackCount];
return;
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Invokes the pre-query callbacks.
//-----------------------------------------------------------------------------
void CSpatialPartition::InvokeQueryCallbacks( SpatialPartitionListMask_t listMask, bool bDone )
{
for ( int iQuery = 0; iQuery < m_nQueryCallbackCount; ++iQuery )
{
if ( !bDone )
{
m_pQueryCallback[iQuery]->OnPreQuery( listMask );
}
else
{
m_pQueryCallback[iQuery]->OnPostQuery( listMask );
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Create spatial partition object handle.
// Input: pHandleEntity - entity handle of the object to create a spatial partition handle for
//-----------------------------------------------------------------------------
SpatialPartitionHandle_t CSpatialPartition::CreateHandle( IHandleEntity *pHandleEntity )
{
m_HandlesMutex.Lock();
SpatialPartitionHandle_t hPartition = m_aHandles.AddToTail();
m_HandlesMutex.Unlock();
m_aHandles[hPartition].m_pHandleEntity = pHandleEntity;
m_aHandles[hPartition].m_vecMin.Init( FLT_MAX, FLT_MAX, FLT_MAX );
m_aHandles[hPartition].m_vecMax.Init( FLT_MIN, FLT_MIN, FLT_MIN );
m_aHandles[hPartition].m_fList = 0;
m_aHandles[hPartition].m_flags = 0;
for ( int i = 0; i < NUM_TREES; i++ )
{
m_aHandles[hPartition].m_nVisitBit[i] = 0xffff;
m_aHandles[hPartition].m_nLevel[i] = (uint8)-1;
m_aHandles[hPartition].m_iLeafList[i] = CLeafList::InvalidIndex();
}
return hPartition;
}
//-----------------------------------------------------------------------------
// Purpose: Destroy spatial partition object handle.
// Input: handle - handle of the spatial partition object handle to destroy
//-----------------------------------------------------------------------------
void CSpatialPartition::DestroyHandle( SpatialPartitionHandle_t hPartition )
{
if ( hPartition != PARTITION_INVALID_HANDLE )
{
RemoveFromTree( hPartition );
m_HandlesMutex.Lock();
// memset( &m_aHandles[hPartition], 0xcd, sizeof(EntityInfo_t) );
m_aHandles.Remove( hPartition );
m_HandlesMutex.Unlock();
}
}
//-----------------------------------------------------------------------------
// Purpose: Create spatial partition object handle and insert it into the tree.
// Input: pHandleEntity - entity handle of the object to create a spatial partition handle for
// listMask -
// mins -
// maxs -
//-----------------------------------------------------------------------------
SpatialPartitionHandle_t CSpatialPartition::CreateHandle( IHandleEntity *pHandleEntity,
SpatialPartitionListMask_t listMask,
const Vector &mins, const Vector &maxs )
{
// CDebugOverlay::AddBoxOverlay( vec3_origin, mins, maxs, vec3_angle, 0, 255, 0, 75, 3600 );
SpatialPartitionHandle_t hPartition = CreateHandle( pHandleEntity );
Insert( listMask, hPartition );
InsertIntoTree( hPartition, mins, maxs );
return hPartition;
}
void CSpatialPartition::UpdateListMask( SpatialPartitionHandle_t hPartition, uint16 nListMask )
{
EntityInfo_t &entityInfo = EntityInfo( hPartition );
if ( entityInfo.m_fList != nListMask )
{
entityInfo.m_fList = nListMask;
if ( entityInfo.m_flags & IN_CLIENT_TREE )
{
m_VoxelTrees[CLIENT_TREE].UpdateListMask( hPartition );
}
if ( entityInfo.m_flags & IN_SERVER_TREE )
{
m_VoxelTrees[SERVER_TREE].UpdateListMask( hPartition );
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Insert object handle into group(s).
// Input: listId - list(s) to insert the object handle into
// handle - object handle to be inserted into list
//-----------------------------------------------------------------------------
void CSpatialPartition::Insert( SpatialPartitionListMask_t listId, SpatialPartitionHandle_t handle )
{
Assert( m_aHandles.IsValidIndex( handle ) );
Assert( listId <= USHRT_MAX );
UpdateListMask( handle, m_aHandles[handle].m_fList | listId );
}
//-----------------------------------------------------------------------------
// Purpose: Remove object handle from group(s).
// Input: listId - list(s) to remove the object handle from
// handle - object handle to be removed from list
//-----------------------------------------------------------------------------
void CSpatialPartition::Remove( SpatialPartitionListMask_t listId, SpatialPartitionHandle_t handle )
{
Assert( m_aHandles.IsValidIndex( handle ) );
Assert( listId <= USHRT_MAX );
UpdateListMask( handle, m_aHandles[handle].m_fList & ~listId );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CSpatialPartition::RemoveAndInsert( SpatialPartitionListMask_t removeMask, SpatialPartitionListMask_t insertMask,
SpatialPartitionHandle_t handle )
{
Assert( m_aHandles.IsValidIndex( handle ) );
Assert( removeMask <= USHRT_MAX );
Assert( insertMask <= USHRT_MAX );
uint16 nOriginalListMask = m_aHandles[handle].m_fList;
uint16 nListMask = (nOriginalListMask & ~removeMask) | insertMask;
UpdateListMask( handle, nListMask );
}
//-----------------------------------------------------------------------------
// Purpose: Remove object handle from all groups.
// Input: handle - object handle to be removed from all lists
//-----------------------------------------------------------------------------
void CSpatialPartition::Remove( SpatialPartitionHandle_t handle )
{
Assert( m_aHandles.IsValidIndex( handle ) );
UpdateListMask( handle, 0 );
}
//-----------------------------------------------------------------------------
// Purpose: Fast way to re-add (set) a group that was removed (and saved) via the
// HideElement call.
//-----------------------------------------------------------------------------
void CSpatialPartition::UnhideElement( SpatialPartitionHandle_t handle, SpatialTempHandle_t tempHandle )
{
Assert( m_aHandles.IsValidIndex( handle ) );
m_HandlesMutex.Lock();
m_aHandles[handle].m_flags &= ~ENTITY_HIDDEN;
m_HandlesMutex.Unlock();
}
//-----------------------------------------------------------------------------
// Purpose: Remove handle quickly saving the old list data, to be restored later
// via the UnhideElement call.
//-----------------------------------------------------------------------------
SpatialTempHandle_t CSpatialPartition::HideElement( SpatialPartitionHandle_t handle )
{
Assert( m_aHandles.IsValidIndex( handle ) );
m_HandlesMutex.Lock();
m_aHandles[handle].m_flags |= ENTITY_HIDDEN;
m_HandlesMutex.Unlock();
return 1;
}
//-----------------------------------------------------------------------------
// Purpose: (Debugging) Suppress queries on particular lists.
// Input: nListMask - lists to suppress/unsuppress
// bSuppress - (true/false) suppress/unsuppress
//-----------------------------------------------------------------------------
void CSpatialPartition::SuppressLists( SpatialPartitionListMask_t nListMask, bool bSuppress )
{
if ( bSuppress )
{
m_nSuppressedListMask |= nListMask;
}
else
{
m_nSuppressedListMask &= ~nListMask;
}
}
//-----------------------------------------------------------------------------
// Purpose: (Debugging) Get the suppression list.
// Output: spatial partition suppression list
//-----------------------------------------------------------------------------
SpatialPartitionListMask_t CSpatialPartition::GetSuppressedLists( void )
{
return m_nSuppressedListMask;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CSpatialPartition::ElementMoved( SpatialPartitionHandle_t handle, const Vector& mins, const Vector& maxs )
{
EntityInfo_t &entityInfo = EntityInfo( handle );
SpatialPartitionListMask_t listMask = entityInfo.m_fList;
if ( CLIENT_TREE != SERVER_TREE )
{
if ( listMask & PARTITION_ALL_CLIENT_EDICTS )
{
m_VoxelTrees[CLIENT_TREE].ElementMoved( handle, mins, maxs );
entityInfo.m_flags |= IN_CLIENT_TREE;
}
if ( listMask & ~PARTITION_ALL_CLIENT_EDICTS )
{
m_VoxelTrees[SERVER_TREE].ElementMoved( handle, mins, maxs );
entityInfo.m_flags |= IN_SERVER_TREE;
}
}
else
{
m_VoxelTrees[CLIENT_TREE].ElementMoved( handle, mins, maxs );
entityInfo.m_flags |= IN_CLIENT_TREE;
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CSpatialPartition::EnumerateElementsInBox( SpatialPartitionListMask_t listMask, const Vector& mins, const Vector& maxs, bool coarseTest, IPartitionEnumerator* pIterator )
{
MDLCACHE_CRITICAL_SECTION_(g_pMDLCache);
CVoxelTree *pTree = VoxelTree( listMask );
InvokeQueryCallbacks( listMask );
pTree->EnumerateElementsInBox( listMask, mins, maxs, coarseTest, pIterator );
InvokeQueryCallbacks( listMask, true );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CSpatialPartition::EnumerateElementsInSphere( SpatialPartitionListMask_t listMask, const Vector& origin, float radius, bool coarseTest, IPartitionEnumerator* pIterator )
{
MDLCACHE_CRITICAL_SECTION_(g_pMDLCache);
CVoxelTree *pTree = VoxelTree( listMask );
InvokeQueryCallbacks( listMask );
pTree->EnumerateElementsInSphere( listMask, origin, radius, coarseTest, pIterator );
InvokeQueryCallbacks( listMask, true );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CSpatialPartition::EnumerateElementsAlongRay( SpatialPartitionListMask_t listMask, const Ray_t& ray, bool coarseTest, IPartitionEnumerator* pIterator )
{
MDLCACHE_CRITICAL_SECTION_(g_pMDLCache);
CVoxelTree *pTree = VoxelTree( listMask );
InvokeQueryCallbacks( listMask );
pTree->EnumerateElementsAlongRay( listMask, ray, coarseTest, pIterator );
InvokeQueryCallbacks( listMask, true );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CSpatialPartition::EnumerateElementsAtPoint( SpatialPartitionListMask_t listMask, const Vector& pt, bool coarseTest, IPartitionEnumerator* pIterator )
{
MDLCACHE_CRITICAL_SECTION_(g_pMDLCache);
CVoxelTree *pTree = VoxelTree( listMask );
InvokeQueryCallbacks( listMask );
pTree->EnumerateElementsAtPoint( listMask, pt, coarseTest, pIterator );
InvokeQueryCallbacks( listMask, true );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CSpatialPartition::InsertIntoTree( SpatialPartitionHandle_t hPartition, const Vector& mins, const Vector& maxs )
{
EntityInfo_t &entityInfo = EntityInfo( hPartition );
SpatialPartitionListMask_t listMask = entityInfo.m_fList;
if ( CLIENT_TREE != SERVER_TREE )
{
if ( ( listMask & PARTITION_ALL_CLIENT_EDICTS ) && !( entityInfo.m_flags & IN_CLIENT_TREE ) )
{
m_VoxelTrees[CLIENT_TREE].InsertIntoTree( hPartition, mins, maxs, false );
entityInfo.m_flags |= IN_CLIENT_TREE;
}
if ( ( listMask & ~PARTITION_ALL_CLIENT_EDICTS ) && !( entityInfo.m_flags & IN_SERVER_TREE ) )
{
m_VoxelTrees[SERVER_TREE].InsertIntoTree( hPartition, mins, maxs, false );
entityInfo.m_flags |= IN_SERVER_TREE;
}
}
else if ( !( entityInfo.m_flags & IN_CLIENT_TREE ) )
{
m_VoxelTrees[CLIENT_TREE].InsertIntoTree( hPartition, mins, maxs, false );
entityInfo.m_flags |= IN_CLIENT_TREE;
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CSpatialPartition::RemoveFromTree( SpatialPartitionHandle_t hPartition )
{
EntityInfo_t &entityInfo = EntityInfo( hPartition );
if ( entityInfo.m_flags & IN_CLIENT_TREE )
{
m_VoxelTrees[CLIENT_TREE].RemoveFromTree( hPartition );
entityInfo.m_flags &= ~IN_CLIENT_TREE;
}
if ( entityInfo.m_flags & IN_SERVER_TREE )
{
m_VoxelTrees[SERVER_TREE].RemoveFromTree( hPartition );
entityInfo.m_flags &= ~IN_SERVER_TREE;
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CSpatialPartition::RenderObjectsInBox( const Vector &vecMin, const Vector &vecMax, float flTime )
{
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CSpatialPartition::RenderObjectsInSphere( const Vector &vecCenter, float flRadius, float flTime )
{
}
void CSpatialPartition::RenderObjectsAlongRay( const Ray_t& ray, float flTime )
{
}
//-----------------------------------------------------------------------------
// Report stats
//-----------------------------------------------------------------------------
void CSpatialPartition::RenderAllObjectsInTree( float flTime )
{
for ( int i = 0; i < NUM_TREES; i++ )
{
m_VoxelTrees[i].RenderAllObjectsInTree( flTime );
}
}
void CSpatialPartition::RenderObjectsInPlayerLeafs( const Vector &vecPlayerMin, const Vector &vecPlayerMax, float flTime )
{
for ( int i = 0; i < NUM_TREES; i++ )
{
m_VoxelTrees[i].RenderObjectsInPlayerLeafs( vecPlayerMin, vecPlayerMax, flTime );
}
}
//-----------------------------------------------------------------------------
// Report stats
//-----------------------------------------------------------------------------
void CVoxelTree::ReportStats( const char *pFileName )
{
Msg( "Histogram : Entities per level\n" );
for ( int i = 0; i < m_nLevelCount; ++i )
{
Msg( "\t%d - %d\n", i, m_pVoxelHash[i].EntityCount() );
}
}
void CSpatialPartition::ReportStats( const char *pFileName )
{
Msg( "Handle Count %d (%d bytes)\n", m_aHandles.Count(), m_aHandles.Count() * ( sizeof(EntityInfo_t) + 2 * sizeof(SpatialPartitionHandle_t) ) );
for ( int i = 0; i < NUM_TREES; i++ )
{
m_VoxelTrees[i].ReportStats( pFileName );
}
}
static ConVar r_partition_level( "r_partition_level", "-1", FCVAR_CHEAT, "Displays a particular level of the spatial partition system. Use -1 to disable it." );
void CVoxelTree::DrawDebugOverlays()
{
int nLevel = r_partition_level.GetInt();
if ( nLevel < 0 )
return;
m_lock.LockForRead();
for ( int i = 0; i < m_nLevelCount; ++i )
{
if ( ( nLevel >= 0 ) && ( nLevel != i ) )
continue;
m_pVoxelHash[i].RenderGrid();
m_pVoxelHash[i].RenderAllObjectsInTree( 0.01f );
}
m_lock.UnlockRead();
}
void CSpatialPartition::DrawDebugOverlays()
{
for ( int i = 0; i < NUM_TREES; i++ )
{
m_VoxelTrees[i].DrawDebugOverlays();
}
}
//=============================================================================
ISpatialPartition *CreateSpatialPartition( const Vector& worldmin, const Vector& worldmax )
{
CSpatialPartition *pResult = new CSpatialPartition;
pResult->Init( worldmin, worldmax );
return pResult;
}
void DestroySpatialPartition( ISpatialPartition *pPartition )
{
Assert( pPartition != (ISpatialPartition*)&g_SpatialPartition );
delete pPartition;
}