Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1178 lines
37 KiB

//================ Copyright (c) Valve Corporation. All Rights Reserved. ===========================
//
//
//
//==================================================================================================
#include "mesh.h"
#include "tier1/mempool.h"
#include "utlintrusivelist.h"
#include "mathlib/ssemath.h"
class CHullTri;
static int g_Mod3Table[] = { 0, 1, 2, 0, 1, 2 };
int SupportPoint( const Vector &vDirection, const float *pVerts, int nVertCount, uint32 nVertexStrideFloats )
{
if ( nVertCount < 2 )
return 0;
const float *pDirection = vDirection.Base();
float flMax = DotProduct( pDirection, pVerts );
int nMax = 0;
pVerts += nVertexStrideFloats;
for ( int i = 1; i < nVertCount; i++ )
{
float flDot = DotProduct( pDirection, pVerts );
if ( flDot > flMax )
{
flMax = flDot;
nMax = i;
}
pVerts += nVertexStrideFloats;
}
return nMax;
}
// Class half-edge data structure. Stores neighboring information per triangle edge
// so it is possible to walk adjacent parts of the mesh
class CHullHalfEdge
{
public:
CHullHalfEdge()
{
m_pTri = NULL;
m_pNext = NULL;
m_pPrev = NULL;
m_pOpposite = NULL;
}
void SetNext( CHullHalfEdge *pNext )
{
pNext->m_pPrev = this;
m_pNext = pNext;
}
void GetVerts( int nVerts[2] );
int GetStartVert();
int GetIndex();
CHullTri *m_pTri; // triangle containing these edges
CHullHalfEdge *m_pNext; // next edge on this tri in clockwise order
CHullHalfEdge *m_pPrev; // previous edge
CHullHalfEdge *m_pOpposite; // the other half edge on the other triangle that shares this edge
};
// each triangle on the hull or potentially on the hull is one of these
class CHullTri
{
public:
// compute and store the plane of this triangle for later computation
void Init( int nV0, int nV1, int nV2, const float *pVerts, int nVertexStrideFloats )
{
// save vertex indices
m_nIndex[0] = nV0;
m_nIndex[1] = nV1;
m_nIndex[2] = nV2;
// compute plane normal and plane constant
Vector vEdge0 = *(Vector *)(pVerts + nV1 * nVertexStrideFloats ) - *(Vector *)(pVerts + nV0 * nVertexStrideFloats );
Vector vEdge1 = *(Vector *)(pVerts + nV2 * nVertexStrideFloats ) - *(Vector *)(pVerts + nV0 * nVertexStrideFloats );
m_vNormal = CrossProduct( vEdge1, vEdge0 );
VectorNormalize( m_vNormal );
m_flDist = DotProduct( pVerts + nV0 * nVertexStrideFloats, m_vNormal.Base() );
// Part of the list of vertices in front of the plane
m_flMaxDist = 0;
m_pMaxVert = NULL;
// mailbox for mesh walking
m_nVisitCount = 0;
// setup half edges
for ( int i = 0; i < 3; i++ )
{
m_edges[i].m_pTri = this;
m_edges[i].SetNext( &m_edges[g_Mod3Table[(i+1)]] );
}
}
// distance from a vert to the triangle's plane
float VertDist( const float *pVert )
{
float flDist = DotProduct( pVert, m_vNormal.Base() ) - m_flDist;
return flDist;
}
// link half edges to neighboring triangles
// NOTE: does the backlinks too, which results in doing that work twice, optimize?
void SetNeighbors( CHullHalfEdge *p0, CHullHalfEdge *p1, CHullHalfEdge *p2 )
{
m_edges[0].m_pOpposite = p0;
p0->m_pOpposite = &m_edges[0];
m_edges[1].m_pOpposite = p1;
p1->m_pOpposite = &m_edges[1];
m_edges[2].m_pOpposite = p2;
p2->m_pOpposite = &m_edges[2];
}
// debug, check validity / consistency. I used this to find bugs when relinking the mesh
bool IsValid()
{
if ( m_edges[0].m_pNext != &m_edges[1] || m_edges[0].m_pPrev != &m_edges[2] ||
m_edges[1].m_pNext != &m_edges[2] || m_edges[1].m_pPrev != &m_edges[0] ||
m_edges[2].m_pNext != &m_edges[0] || m_edges[2].m_pPrev != &m_edges[1] )
return false;
if ( m_edges[0].m_pTri != this || m_edges[1].m_pTri != this || m_edges[2].m_pTri != this )
return false;
if ( m_edges[0].m_pOpposite->m_pOpposite != &m_edges[0] ||
m_edges[1].m_pOpposite->m_pOpposite != &m_edges[1] ||
m_edges[2].m_pOpposite->m_pOpposite != &m_edges[2] )
return false;
return true;
}
// simple accessor
inline CHullHalfEdge *GetEdge( int nIndex ) { return &m_edges[nIndex]; }
CUtlVector<const float *> m_pVerts;
CHullHalfEdge m_edges[3];
Vector m_vNormal;
float m_flDist;
int m_nIndex[3];
int m_nVisitCount;
const float *m_pMaxVert;
float m_flMaxDist;
CHullTri *m_pNext;
CHullTri *m_pPrev;
};
// gets the verts from an edge
void CHullHalfEdge::GetVerts( int nVerts[2] )
{
int nIndex = this - m_pTri->m_edges;
Assert(nIndex>=0 && nIndex<ARRAYSIZE(m_pTri->m_edges));
nVerts[0] = m_pTri->m_nIndex[nIndex];
nVerts[1] = m_pTri->m_nIndex[ g_Mod3Table[nIndex+1] ];
}
// edge to edge index (0,1,2)
int CHullHalfEdge::GetIndex()
{
int nIndex = this - m_pTri->m_edges;
Assert(nIndex>=0 && nIndex<ARRAYSIZE(m_pTri->m_edges));
return nIndex;
}
int CHullHalfEdge::GetStartVert()
{
return m_pTri->m_nIndex[GetIndex()];
}
// instantiate one of these to build convex hulls and fit OBBs
class CConvexHullBuilder
{
public:
CConvexHullBuilder( const float *pVerts, int nVertexCount, uint32 nVertexStrideFloats, float flFrontEpsilon )
: m_triPool(128), m_nCurrentVisit(0), m_pVerts(pVerts), m_nVertexStrideFloats(nVertexStrideFloats), m_nVertexCount(nVertexCount), m_flCoplanarEpsilon(flFrontEpsilon) {}
void BuildHull();
// tries all faces
void FitOBB( matrix3x4_t &xform, Vector &vExtents );
// tries only the face with minimum extents of hull along normal
void FitOBBFast( matrix3x4_t &xform, Vector &vExtents );
void GenerateOutputMesh( CMesh *pOutputMesh );
bool IsValid()
{
for ( CHullTri *pTri = m_faceListVerts.Head(); pTri != NULL; pTri = pTri->m_pNext )
{
if ( !pTri->IsValid() )
return false;
if ( pTri->m_pNext && pTri->m_pNext->m_pPrev != pTri )
return false;
if ( pTri->m_pPrev && pTri->m_pPrev->m_pNext != pTri )
return false;
if ( pTri->m_pMaxVert == NULL || pTri->m_pVerts.Count() <= 0 )
return false;
}
for ( CHullTri *pTri = m_faceListNoVerts.Head(); pTri != NULL; pTri = pTri->m_pNext )
{
if ( !pTri->IsValid() )
return false;
if ( pTri->m_pNext && pTri->m_pNext->m_pPrev != pTri )
return false;
if ( pTri->m_pPrev && pTri->m_pPrev->m_pNext != pTri )
return false;
if ( pTri->m_pMaxVert != NULL || pTri->m_pVerts.Count() > 0 )
return false;
}
return true;
}
private:
void BuildInitialTetrahedron();
void BuildHorizonList( CHullTri *pTri, const float *pVert );
void BuildHorizonList_r( CHullTri *pTri, const float *pVert, int nEdgeStart );
void BuildSilhouette_r( CHullTri *pTri, const Vector &vNormal, int nEdgeStart );
void BuildSilhouette( CHullTri *pTri, const Vector &vNormal );
void TransferVerts( CHullTri *pRemove, CHullTri *pNewTri );
float SupportExtents( const Vector &vDirection, float *pMin, float *pMax ) const;
float SupportExtents_Silhouette( const Vector &vDirection, float *pMin = NULL, float *pMax = NULL );
void FitOBBToFace( CHullTri *pTri, matrix3x4_t &xform, Vector &vExtents );
inline const float *GetVertex( int nIndex ) { return m_pVerts + nIndex * m_nVertexStrideFloats; }
inline const Vector *GetVertexPosition( int nIndex ) { return (const Vector *)(m_pVerts + nIndex * m_nVertexStrideFloats); }
void NextVisit()
{
m_nCurrentVisit++;
}
void AddTriangle( CHullTri *pTri )
{
if ( pTri->m_pMaxVert )
{
// add the new faces to the tail since they are likely to have fewer verts in front than faces already in the list
m_faceListVerts.AddToTail( pTri );
}
else
{
m_faceListNoVerts.AddToHead( pTri );
}
}
void RemoveTriangle( CHullTri *pTri )
{
if ( pTri->m_pMaxVert )
{
m_faceListVerts.RemoveNode( pTri );
}
else
{
m_faceListNoVerts.RemoveNode( pTri );
}
}
bool Visit( CHullTri *pTri )
{
if ( pTri->m_nVisitCount != m_nCurrentVisit )
{
pTri->m_nVisitCount = m_nCurrentVisit;
return true;
}
return false;
}
CUtlIntrusiveDListWithTailPtr<CHullTri> m_faceListVerts;
CUtlIntrusiveDList<CHullTri> m_faceListNoVerts;
CClassMemoryPool<CHullTri> m_triPool;
CUtlVectorFixedGrowable<CHullHalfEdge *, 256> m_halfEdgeList;
CUtlVectorFixedGrowable<CHullTri *, 256> m_removeList;
CUtlVectorFixedGrowable<const float *, 256> m_silhouetteVertexList;
const float *m_pVerts;
float m_flCoplanarEpsilon;
uint32 m_nVertexStrideFloats;
int m_nVertexCount;
int m_nCurrentVisit;
};
// Builds a tetradhedron to start the convex hull
// This does an iteration like GJK - could use bounding box or some other method
// BUGBUG: Test this with 2D mesh for failure cases
void CConvexHullBuilder::BuildInitialTetrahedron()
{
Vector vDir(0,0,1);
int i0 = SupportPoint( vDir, m_pVerts, m_nVertexCount, m_nVertexStrideFloats );
int i1 = SupportPoint( -vDir, m_pVerts, m_nVertexCount, m_nVertexStrideFloats );
Vector vEdge0 = *GetVertexPosition(i1) - *GetVertexPosition(i0);
Vector vNormal = CrossProduct( *GetVertexPosition(i0), vEdge0 );
if ( vNormal.LengthSqr() < 1e-3f )
{
vNormal.x = 1.0f;
}
int i2 = SupportPoint( vNormal, m_pVerts, m_nVertexCount, m_nVertexStrideFloats );
if ( i2 == i0 || i2 == i1 )
{
i2 = SupportPoint( -vNormal, m_pVerts, m_nVertexCount, m_nVertexStrideFloats );
}
Vector vEdge1 = *GetVertexPosition(i2) - *GetVertexPosition(i0);
vNormal = CrossProduct( vEdge1, vEdge0 );
int i3 = SupportPoint( -vNormal, m_pVerts, m_nVertexCount, m_nVertexStrideFloats );
CHullTri *pTri0 = m_triPool.Alloc();
pTri0->Init( i0, i1, i2, m_pVerts, m_nVertexStrideFloats );
CHullTri *pTri1 = m_triPool.Alloc();
pTri1->Init( i0, i3, i1, m_pVerts, m_nVertexStrideFloats );
CHullTri *pTri2 = m_triPool.Alloc();
pTri2->Init( i1, i3, i2, m_pVerts, m_nVertexStrideFloats );
CHullTri *pTri3 = m_triPool.Alloc();
pTri3->Init( i2, i3, i0, m_pVerts, m_nVertexStrideFloats );
m_faceListVerts.AddToTail(pTri0);
m_faceListVerts.AddToTail(pTri1);
m_faceListVerts.AddToTail(pTri2);
m_faceListVerts.AddToTail(pTri3);
pTri0->SetNeighbors( pTri1->GetEdge(2), pTri2->GetEdge(2), pTri3->GetEdge(2) );
pTri1->SetNeighbors( pTri3->GetEdge(1), pTri2->GetEdge(0), pTri0->GetEdge(0) );
pTri2->SetNeighbors( pTri1->GetEdge(1), pTri3->GetEdge(0), pTri0->GetEdge(1) );
pTri3->SetNeighbors( pTri2->GetEdge(1), pTri1->GetEdge(0), pTri0->GetEdge(2) );
const float flFrontDist = m_flCoplanarEpsilon;
for ( int i = 0; i < m_nVertexCount; i++ )
{
for ( CHullTri *pTri = m_faceListVerts.Head(); pTri != NULL; pTri = pTri->m_pNext )
{
const float *pVert = GetVertex(i);
float flDist = pTri->VertDist( pVert );
if ( flDist > flFrontDist )
{
pTri->m_pVerts.AddToTail( pVert );
if ( flDist > pTri->m_flMaxDist )
{
pTri->m_flMaxDist = flDist;
pTri->m_pMaxVert = pVert;
}
break;
}
}
}
for ( CHullTri *pNext = NULL, *pTri = m_faceListVerts.Head(); pTri != NULL; pTri = pNext )
{
pNext = pTri->m_pNext;
if ( !pTri->m_pMaxVert )
{
m_faceListVerts.RemoveNode( pTri );
m_faceListNoVerts.AddToTail( pTri );
}
}
}
// Recursively visit neighboring triangles to produce the list of edges that are silhouettes with respect
// to the new vertex.
// IMPORTANT NOTE: This recursion is carefully designed to visit the boundary edge list exactly in order
// Once it reaches the boundary it will form an edge loop in order in the m_halfEdgeList array
// If this array is not in order the half-edges will not be linked up properly in BuildHull
void CConvexHullBuilder::BuildHorizonList_r( CHullTri *pTri, const float *pVert, int nEdgeStart )
{
RemoveTriangle( pTri );
for ( int i = 0; i < 3; i++ )
{
// this visits the neighbors in clockwise order starting with the edge you came in on
CHullHalfEdge *pNeighborEdge = pTri->GetEdge( g_Mod3Table[( i + nEdgeStart)])->m_pOpposite;
CHullTri *pNeighbor = pNeighborEdge->m_pTri;
bool bRecurse = Visit( pNeighbor );
if ( pNeighbor->VertDist(pVert) > 0 )
{
if ( bRecurse )
{
BuildHorizonList_r( pNeighbor, pVert, pNeighborEdge->GetIndex() );
}
}
else
{
// This edge has a neighbor that has the new vert in front (so removed) but it's triangle
// is not in front. This is a silhouette edge that will remain on the hull, but needs to
// be relinked to a new triangle
m_halfEdgeList.AddToTail( pNeighborEdge );
}
}
m_removeList.AddToTail( pTri );
}
// Starts a new recursion to found the silhouette edge loop
void CConvexHullBuilder::BuildHorizonList( CHullTri *pTri, const float *pVert )
{
// clear out any list - we're going to write this
m_halfEdgeList.RemoveAll();
// advance the token we use to avoid visiting triangles twice
NextVisit();
// mark the starting triangle as visited so we don't re-enter it
Visit( pTri );
BuildHorizonList_r( pTri, pVert, 0 );
}
void CConvexHullBuilder::BuildSilhouette_r( CHullTri *pTri, const Vector &vNormal, int nEdgeStart )
{
for ( int i = 0; i < 3; i++ )
{
// this visits the neighbors in clockwise order starting with the edge you came in on
CHullHalfEdge *pNeighborEdge = pTri->GetEdge( g_Mod3Table[( i + nEdgeStart)])->m_pOpposite;
CHullTri *pNeighbor = pNeighborEdge->m_pTri;
bool bRecurse = Visit( pNeighbor );
float flDot = DotProduct( vNormal, pNeighbor->m_vNormal );
if ( flDot > 0 )
{
if ( bRecurse )
{
BuildSilhouette_r( pNeighbor, vNormal, pNeighborEdge->GetIndex() );
}
}
else
{
// add edge to sil
m_silhouetteVertexList.AddToTail( GetVertex( pNeighborEdge->m_pNext->GetStartVert() ) );
}
}
}
// Starts a new recursion to found the silhouette edge loop
void CConvexHullBuilder::BuildSilhouette( CHullTri *pTri, const Vector &vNormal )
{
// clear out any list - we're going to write this
m_silhouetteVertexList.RemoveAll();
// advance the token we use to avoid visiting triangles twice
NextVisit();
// mark the starting triangle as visited so we don't re-enter it
Visit( pTri );
BuildSilhouette_r( pTri, vNormal, 0 );
}
// transfer any verts in the front list of pRemove to the front list of pNewTri if they
// are in front of pNewTri
// Remove them from the original list so they won't get transferred to subsequent triangles
void CConvexHullBuilder::TransferVerts( CHullTri *pRemove, CHullTri *pNewTri )
{
int nVertex = 0;
const float flFrontDist = m_flCoplanarEpsilon;
while ( nVertex < pRemove->m_pVerts.Count() )
{
const float *pCheckVert = pRemove->m_pVerts[nVertex];
if ( pCheckVert == pRemove->m_pMaxVert )
{
pRemove->m_pVerts.FastRemove(nVertex);
continue;
}
float flDist = pNewTri->VertDist(pCheckVert);
if ( flDist > flFrontDist )
{
pNewTri->m_pVerts.AddToTail( pCheckVert );
if ( flDist > pNewTri->m_flMaxDist )
{
pNewTri->m_flMaxDist = flDist;
pNewTri->m_pMaxVert = pCheckVert;
}
pRemove->m_pVerts.FastRemove(nVertex);
}
else
{
nVertex++;
}
}
}
float CConvexHullBuilder::SupportExtents( const Vector &vDirection, float *pMin, float *pMax ) const
{
const float *pVerts = m_pVerts;
const float *pDirection = vDirection.Base();
float flMax = DotProduct( pDirection, pVerts );
float flMin = flMax;
const uint32 nStride = m_nVertexStrideFloats;
pVerts += nStride;
for ( int i = 1; i < m_nVertexCount; i++ )
{
float flDot = DotProduct( pDirection, pVerts );
flMax = MAX(flMax, flDot);
flMin = MIN(flMin, flDot);
pVerts += nStride;
}
if ( pMin )
{
*pMin = flMin;
}
if ( pMax )
{
*pMax = flMax;
}
return flMax - flMin;
}
// UNDONE: Only look at half edge verts
float CConvexHullBuilder::SupportExtents_Silhouette( const Vector &vDirection, float *pMin, float *pMax )
{
if ( !m_silhouetteVertexList.Count() )
return 0;
const float *pDirection = vDirection.Base();
float flMax = DotProduct( pDirection, m_silhouetteVertexList[0] );
float flMin = flMax;
int nVertCount = m_silhouetteVertexList.Count();
for ( int i = 1; i < nVertCount; i++ )
{
float flDot = DotProduct( pDirection, m_silhouetteVertexList[i] );
flMax = MAX(flMax, flDot);
flMin = MIN(flMin, flDot);
}
if ( pMin )
{
*pMin = flMin;
}
if ( pMax )
{
*pMax = flMax;
}
return flMax - flMin;
}
// Construct the triangulated convex hull from the point set
void CConvexHullBuilder::BuildHull()
{
// get a tetrahedron for this mesh and build a list of verts for each face
BuildInitialTetrahedron();
// process each face that has vertices in front of it until all are done
while ( m_faceListVerts.Head() != NULL )
{
CHullTri *pTri = m_faceListVerts.Head();
const float *pNewVert = pTri->m_pMaxVert;
int nNewVertIndex = (pNewVert - m_pVerts) / m_nVertexStrideFloats;
// Get the horizon edge loop of the new vert
BuildHorizonList( pTri, pNewVert );
// now build a new triangle along each horizon edge and the new vert
int nEdgeVerts[2];
CUtlVectorFixedGrowable<CHullTri *, 64> addedList;
int nLastEdgeVert = -1;
for ( int i = 0; i < m_halfEdgeList.Count(); i++ )
{
CHullHalfEdge *pEdge = m_halfEdgeList[i];
pEdge->GetVerts( nEdgeVerts );
CHullTri *pNewTri = m_triPool.Alloc();
if ( nLastEdgeVert >= 0 )
{
Assert(nEdgeVerts[1]==nLastEdgeVert);
}
nLastEdgeVert = nEdgeVerts[0];
pNewTri->Init( nNewVertIndex, nEdgeVerts[1], nEdgeVerts[0], m_pVerts, m_nVertexStrideFloats );
// now transfer any verts in front of the new triangle
for ( int j = 0; j < m_removeList.Count(); j++ )
{
TransferVerts( m_removeList[j], pNewTri );
}
addedList.AddToTail( pNewTri );
// put this triangle in the list of hull triangles or the list of triangles to be expanded
AddTriangle(pNewTri);
}
// now free the removed triangles (we had to keep them until their verts were transferred)
for ( int j = 0; j < m_removeList.Count(); j++ )
{
m_triPool.Free( m_removeList[j] );
}
m_removeList.RemoveAll();
// now link up the halfEdges between the new triangles and the hull mesh
// NOTE: This depends on m_halfEdgeList being an in-order loop which is guaranteed by
// the recursion order in BuildHorizon
int nNewTriangleCount = addedList.Count();
CHullTri *pPrev = addedList[ nNewTriangleCount-1 ];
for ( int i = 0; i < nNewTriangleCount; i++ )
{
CHullTri *pNext = addedList[ (i + 1) % nNewTriangleCount ];
addedList[i]->SetNeighbors( pPrev->GetEdge(2), m_halfEdgeList[i], pNext->GetEdge(0) );
pPrev = addedList[i];
}
}
Assert(m_faceListVerts.Head()==NULL);
}
// write all of the faces on the hull to an output mesh
void CConvexHullBuilder::GenerateOutputMesh( CMesh *pOutMesh )
{
CUtlVector<int> vertexMap;
vertexMap.SetCount( m_nVertexCount );
vertexMap.FillWithValue( -1 );
int nOutVert = 0;
int nOutTri = 0;
for ( CHullTri *pTri = m_faceListNoVerts.Head(); pTri != NULL; pTri = pTri->m_pNext )
{
for ( int j = 0; j < 3; j++ )
{
int nIndex = pTri->m_nIndex[j];
if ( vertexMap[nIndex] < 0 )
{
vertexMap[nIndex] = nOutVert++;
}
}
nOutTri++;
}
vertexMap.FillWithValue(-1);
pOutMesh->AllocateMesh( nOutVert, nOutTri * 3, m_nVertexStrideFloats, NULL, 0 );
nOutVert = 0;
nOutTri = 0;
for ( CHullTri *pTri = m_faceListNoVerts.Head(); pTri != NULL; pTri = pTri->m_pNext )
{
for ( int j = 0; j < 3; j++ )
{
int nIndex = pTri->m_nIndex[j];
if ( vertexMap[nIndex] < 0 )
{
CopyVertex( pOutMesh->GetVertex(nOutVert), GetVertex(nIndex), m_nVertexStrideFloats );
vertexMap[nIndex] = nOutVert++;
}
pOutMesh->m_pIndices[nOutTri*3+j] = vertexMap[nIndex];
}
nOutTri++;
}
}
void CConvexHullBuilder::FitOBBToFace( CHullTri *pTri, matrix3x4_t &xform, Vector &vExtents )
{
BuildSilhouette( pTri, pTri->m_vNormal );
int nEdgeCount = m_silhouetteVertexList.Count();
int nMinEdge = 0;
float flMinPerimeter = 1e24f;
for ( int i = 0; i < nEdgeCount; i++ )
{
int nNext = (i+1)%nEdgeCount;
Vector v0 = *(Vector *)m_silhouetteVertexList[i];
Vector v1 = *(Vector *)m_silhouetteVertexList[nNext];
Vector vEdge = v1 - v0;
Vector vNormalY = CrossProduct( pTri->m_vNormal, vEdge );
VectorNormalize( vNormalY );
float flExtentTestY = SupportExtents_Silhouette( vNormalY );
Vector vNormalZ = CrossProduct( pTri->m_vNormal, vNormalY );
float flExtentTestZ = SupportExtents_Silhouette( vNormalZ );
float flPerim = flExtentTestZ + flExtentTestY;
if ( flPerim < flMinPerimeter )
{
flMinPerimeter = flPerim;
nMinEdge = i;
}
}
Vector vNormalX = pTri->m_vNormal;
int nNext = (nMinEdge+1)%nEdgeCount;
Vector vEdge = *(Vector *)m_silhouetteVertexList[nNext] - *(Vector *)m_silhouetteVertexList[nMinEdge];
Vector vNormalY = CrossProduct( pTri->m_vNormal, vEdge );
VectorNormalize( vNormalY );
Vector vNormalZ = CrossProduct( pTri->m_vNormal, vNormalY );
VectorNormalize( vNormalZ );
MatrixSetColumn( vNormalX, 0, xform );
MatrixSetColumn( vNormalY, 1, xform );
MatrixSetColumn( vNormalZ, 2, xform );
Vector vMins, vMaxs, vCenter;
SupportExtents( pTri->m_vNormal, &vMins.x, &vMaxs.x );
SupportExtents_Silhouette( vNormalY, &vMins.y, &vMaxs.y );
SupportExtents_Silhouette( vNormalZ, &vMins.z, &vMaxs.z );
vCenter = 0.5f * (vMins + vMaxs);
vExtents = vMaxs - vCenter;
vCenter = vNormalX * vCenter.x + vNormalY * vCenter.y + vNormalZ * vCenter.z;
MatrixSetColumn( vCenter, 3, xform );
}
void CConvexHullBuilder::FitOBBFast( matrix3x4_t &xform, Vector &vExtents )
{
CHullTri *pTri = m_faceListNoVerts.Head();
if ( !pTri )
return;
CHullTri *pMinTri = pTri;
float flMinX = 0, flMaxX = 0;
float flExtentX = SupportExtents( pTri->m_vNormal, &flMinX, &flMaxX );
pTri = pTri->m_pNext;
for ( ; pTri != NULL; pTri = pTri->m_pNext )
{
float flMinTest = 0, flMaxTest = 0;
float flExtentTest = SupportExtents( pTri->m_vNormal, &flMinTest, &flMaxTest );
if ( flExtentTest < flExtentX )
{
flExtentX = flExtentTest;
flMinX = flMinTest;
flMaxX = flMaxTest;
pMinTri = pTri;
}
}
FitOBBToFace( pMinTri, xform, vExtents );
}
void CConvexHullBuilder::FitOBB( matrix3x4_t &xform, Vector &vExtents )
{
// try all faces, return minimum surface area box
CHullTri *pMinTri = NULL;
Vector vTmpExtents;
matrix3x4_t tmpXform;
float flMinSurfacearea = 1e24;
for ( CHullTri *pTri = m_faceListNoVerts.Head(); pTri != NULL; pTri = pTri->m_pNext )
{
FitOBBToFace( pTri, tmpXform, vTmpExtents );
float flSurfaceArea = vTmpExtents.x * vTmpExtents.y + vTmpExtents.x * vTmpExtents.z + vTmpExtents.y * vTmpExtents.z;
if ( flSurfaceArea < flMinSurfacearea )
{
flMinSurfacearea = flSurfaceArea;
pMinTri = pTri;
}
}
FitOBBToFace( pMinTri, xform, vExtents );
}
// returns the mesh containing the convex hull of the input mesh
void ConvexHull3D( CMesh *pOutMesh, const CMesh &inputMesh, float flCoplanarEpsilon )
{
CConvexHullBuilder builder( inputMesh.m_pVerts, inputMesh.m_nVertexCount, inputMesh.m_nVertexStrideFloats, flCoplanarEpsilon );
builder.BuildHull();
builder.GenerateOutputMesh( pOutMesh );
}
void FitOBBToMesh( matrix3x4_t *pCenter, Vector *pExtents, const CMesh &inputMesh, float flCoplanarEpsilon )
{
CConvexHullBuilder builder( inputMesh.m_pVerts, inputMesh.m_nVertexCount, inputMesh.m_nVertexStrideFloats, flCoplanarEpsilon );
builder.BuildHull();
matrix3x4_t xform;
Vector vExtents;
builder.FitOBB( xform, vExtents );
if ( pCenter && pExtents )
{
*pCenter = xform;
*pExtents = vExtents;
}
}
Vector CSGInsidePoint( VPlane *pPlanes, int planeCount )
{
Vector point = vec3_origin;
for ( int i = 0; i < planeCount; i++ )
{
float d = DotProduct( pPlanes[i].m_Normal, point ) - pPlanes[i].m_Dist;
if ( d < 0 )
{
point -= d * pPlanes[i].m_Normal;
}
}
return point;
}
fltx4 CSGInsidePoint_SIMD( fltx4 *pPlanes, int nPlaneCount )
{
fltx4 point = Four_Zeros;
// TODO: Depending of the number of planes that we have, it may be possible to actually calculate several planes at the same time.
// Have to see if the calculation is still correct when done in parallel (the offset may still be similar).
// Even with the current code complexity, it would be good to do 4 by 4 if we have at least 8 to 12 planes every time.
for ( int i = 0; i < nPlaneCount; i++ )
{
fltx4 planeValue = pPlanes[i];
// float d = DotProduct( pPlanes[i].m_Normal, point ) - pPlanes[i].m_Dist;
fltx4 result = Dot3SIMD( planeValue, point ); // Fast on X360, not so fast on PC and PS3 - Still faster than FPU operation though
result = SubSIMD( result, SplatWSIMD( planeValue ) ); // XYZW has the result of the dot product
// if ( d < 0 )
// point -= d * pPlanes[i].m_Normal;
fltx4 offset = MulSIMD( result, planeValue ); // XYZ has d * normal, and W as garbage
bi32x4 mask = CmpLtSIMD( result, Four_Zeros ); // (d < 0) ? 0xffffffff : 0
point = SubSIMD( point, MaskedAssign( mask, offset, Four_Zeros ) ); // point will have garbage W, but this has no impact
// (as we use Dot3 product).
}
point = SetWToZeroSIMD( point ); // Just in case
return point;
}
void TranslatePlaneList( VPlane *pPlanes, int nPlaneCount, const Vector &offset )
{
for ( int i = 0; i < nPlaneCount; i++ )
{
pPlanes[i].m_Dist += DotProduct( offset, pPlanes[i].m_Normal );
}
}
void TranslatePlaneList_SIMD( fltx4 *pPlanes, int nPlaneCount, const fltx4 &offset )
{
int i = 0;
fltx4 f4WMask = LoadAlignedSIMD( g_SIMD_ComponentMask[3] );
while ( nPlaneCount >= 4 )
{
fltx4 plane0 = pPlanes[i];
fltx4 plane1 = pPlanes[i + 1];
fltx4 plane2 = pPlanes[i + 2];
fltx4 plane3 = pPlanes[i + 3];
fltx4 dot0 = Dot3SIMD( offset, plane0 );
fltx4 dot1 = Dot3SIMD( offset, plane1 );
fltx4 dot2 = Dot3SIMD( offset, plane2 );
fltx4 dot3 = Dot3SIMD( offset, plane3 );
dot0 = AndSIMD( dot0, f4WMask ); // 0 0 0 Dot
dot1 = AndSIMD( dot1, f4WMask ); // W contains Dist
dot2 = AndSIMD( dot2, f4WMask );
dot3 = AndSIMD( dot3, f4WMask );
pPlanes[i] = AddSIMD( plane0, dot0 );
pPlanes[i + 1] = AddSIMD( plane1, dot1 );
pPlanes[i + 2] = AddSIMD( plane2, dot2 );
pPlanes[i + 3] = AddSIMD( plane3, dot3 );
nPlaneCount -= 4;
i += 4;
}
while ( nPlaneCount > 0 )
{
fltx4 plane0 = pPlanes[i];
fltx4 dot0 = Dot3SIMD( offset, plane0 );
dot0 = AndSIMD( dot0, f4WMask ); // 0 0 0 Dot
pPlanes[i] = AddSIMD( plane0, dot0 );
++i;
--nPlaneCount;
}
}
void InvertPlanes( VPlane *pPlaneList, int nPlaneCount )
{
for ( int i = 0; i < nPlaneCount; i++ )
{
pPlaneList[i].m_Normal *= -1;
pPlaneList[i].m_Dist *= -1;
}
}
void InvertPlanes_SIMD( fltx4 * pPlanes, int nPlaneCount )
{
int i = 0;
while ( nPlaneCount >= 4)
{
pPlanes[i] = -pPlanes[i];
pPlanes[i + 1] = -pPlanes[i + 1];
pPlanes[i + 2] = -pPlanes[i + 2];
pPlanes[i + 3] = -pPlanes[i + 3];
i += 4;
nPlaneCount -= 4;
}
while ( nPlaneCount > 0 )
{
pPlanes[i] = -pPlanes[i];
++i;
--nPlaneCount;
}
}
void CSGPlaneList( CUtlVector<Vector> &verts, CUtlVector<uint32> &index, CUtlVector<uint32> &trianglePlaneIndices, VPlane *pPlaneList, int nPlaneCount, float flCoplanarEpsilon )
{
const int MAX_VERTS = 128;
Vector vertsIn[MAX_VERTS], vertsOut[MAX_VERTS];
// compute a point inside the volume defined by these planes
Vector insidePoint = CSGInsidePoint( pPlaneList, nPlaneCount );
// move the planes so that the inside point is at the origin
// NOTE: This is to maximize precision for the CSG operations
TranslatePlaneList( pPlaneList, nPlaneCount, -insidePoint );
// Build the CSG solid of this leaf given that the planes in the list define a convex solid
for ( int i = 0; i < nPlaneCount; ++i )
{
// Build a big-ass poly in this plane
int vertCount = PolyFromPlane( vertsIn, pPlaneList[i].m_Normal, pPlaneList[i].m_Dist );
// Now chop it by every other plane
int j;
for ( j = 0; j < nPlaneCount; ++j )
{
// don't clip planes with themselves
if ( i == j )
continue;
// Less than a poly left, something is wrong, don't bother with this polygon
if ( vertCount < 3 )
continue;
// Chop the polygon against this plane
vertCount = ClipPolyToPlane( vertsIn, vertCount, vertsOut, pPlaneList[j].m_Normal, pPlaneList[j].m_Dist, flCoplanarEpsilon );
// Just copy the verts each time, don't bother swapping pointers (efficiency is not a goal here)
for ( int k = 0; k < vertCount; ++k )
{
VectorCopy( vertsOut[k], vertsIn[k] );
}
}
// We've got a polygon here
if ( vertCount >= 3 )
{
// Since this is a convex polygon, use the fan algorithm to create the triangles
int baseVertex = verts.Count();
for ( int j = 0; j < vertCount - 2; ++j )
{
trianglePlaneIndices.AddToTail(i);
index.AddToTail( baseVertex );
index.AddToTail( baseVertex + j + 1 );
index.AddToTail( baseVertex + j + 2 );
}
// Copy verts
for ( int j = 0; j < vertCount; ++j )
{
verts.AddToTail( vertsIn[j] + insidePoint );
}
}
}
}
void CSGPlaneList_SIMD( CUtlVector<fltx4> &verts, CUtlVector<uint32> &index, CUtlVector<uint16> &trianglePlaneIndices, fltx4 *pPlaneList, int nPlaneCount, float flCoplanarEpsilon )
{
const int MAX_VERTS = 128;
fltx4 vertsIn[MAX_VERTS], vertsOut[MAX_VERTS];
#if _DEBUG
Vector tempVertsIn[MAX_VERTS], tempVertOuts[MAX_VERTS];
#endif
// compute a point inside the volume defined by these planes
fltx4 insidePoint = CSGInsidePoint_SIMD( pPlaneList, nPlaneCount );
#if _DEBUG
Vector vInsidePoint = CSGInsidePoint( (VPlane *)pPlaneList, nPlaneCount );
Assert( vInsidePoint.x == SubFloat( insidePoint, 0 ) );
Assert( vInsidePoint.y == SubFloat( insidePoint, 1 ) );
Assert( vInsidePoint.z == SubFloat( insidePoint, 2 ) );
#endif
// move the planes so that the inside point is at the origin
// NOTE: This is to maximize precision for the CSG operations
TranslatePlaneList_SIMD( pPlaneList, nPlaneCount, -insidePoint );
// Build the CSG solid of this leaf given that the planes in the list define a convex solid
for ( int i = 0; i < nPlaneCount; ++i )
{
// Build a big-ass poly in this plane
PolyFromPlane_SIMD( vertsIn, pPlaneList[i] );
int nVertCount = 4; // PolyFromPlane actually always return 4. Bake the result.
#if _DEBUG
Vector normalI( SubFloat( pPlaneList[i], 0 ), SubFloat( pPlaneList[i], 1 ), SubFloat( pPlaneList[i], 2 ) );
int nResult = PolyFromPlane( tempVertsIn, normalI, SubFloat( pPlaneList[i], 3 ) );
Assert( nVertCount == nResult );
for (int n = 0 ; n < nVertCount ; ++n )
{
Assert( tempVertsIn[n].x == SubFloat( vertsIn[n], 0 ) );
Assert( tempVertsIn[n].y == SubFloat( vertsIn[n], 1 ) );
Assert( tempVertsIn[n].z == SubFloat( vertsIn[n], 2 ) );
}
#endif
// Now chop it by every other plane
int j;
for ( j = 0; j < nPlaneCount; ++j )
{
// don't clip planes with themselves
if ( i == j )
{
continue;
}
// Less than a poly left, something is wrong, don't bother with this polygon
if ( nVertCount < 3 )
{
break; // Or with any other polygon (as nVertCount would not be set in the loop).
}
// Chop the polygon against this plane
#if _DEBUG
int nOldVertCount = nVertCount;
#endif
nVertCount = ClipPolyToPlane_SIMD( vertsIn, nVertCount, vertsOut, pPlaneList[j], flCoplanarEpsilon );
#if _DEBUG
Vector normal( SubFloat( pPlaneList[j], 0 ), SubFloat( pPlaneList[j], 1 ), SubFloat( pPlaneList[j], 2 ) );
int nClipResult = ClipPolyToPlane( tempVertsIn, nOldVertCount, tempVertOuts, normal, SubFloat( pPlaneList[j], 3 ), flCoplanarEpsilon );
Assert( nClipResult == nVertCount );
for ( int n = 0 ; n < nVertCount ; ++n )
{
// In some cases, the SIMD algorithm does not return the exact same result as the fpu version.
Assert( fabs( tempVertOuts[n].x - SubFloat( vertsOut[n], 0 ) ) < 0.001f );
Assert( fabs( tempVertOuts[n].y - SubFloat( vertsOut[n], 1 ) ) < 0.001f );
Assert( fabs( tempVertOuts[n].z - SubFloat( vertsOut[n], 2 ) ) < 0.001f );
}
#endif
// Just copy the verts each time, don't bother swapping pointers (efficiency is not a goal here) - Not anymore :)
int nNumberOfVertices = nVertCount;
int k = 0;
while ( nNumberOfVertices >= 4)
{
vertsIn[k] = vertsOut[k];
vertsIn[k + 1] = vertsOut[k + 1];
vertsIn[k + 2] = vertsOut[k + 2];
vertsIn[k + 3] = vertsOut[k + 3];
#if _DEBUG
tempVertsIn[k] = tempVertOuts[k];
tempVertsIn[k + 1] = tempVertOuts[k + 1];
tempVertsIn[k + 2] = tempVertOuts[k + 2];
tempVertsIn[k + 3] = tempVertOuts[k + 3];
#endif
nNumberOfVertices -= 4;
k += 4;
}
while ( nNumberOfVertices > 0 )
{
vertsIn[k] = vertsOut[k];
#if _DEBUG
tempVertsIn[k] = tempVertOuts[k];
#endif
--nNumberOfVertices;
++k;
}
}
// We've got a polygon here
if ( nVertCount >= 3 )
{
// Since this is a convex polygon, use the fan algorithm to create the triangles
const int NUMBER_OF_TRIANGLES = nVertCount - 2;
int nDestTrianglePlaneIndex = trianglePlaneIndices.Count();
int nDestIndex = index.Count();
// Set the count once (will grow as needed), so we don't call AddTail() several times.
trianglePlaneIndices.SetCountNonDestructively( nDestTrianglePlaneIndex + NUMBER_OF_TRIANGLES );
index.SetCountNonDestructively( nDestIndex + ( 3 * NUMBER_OF_TRIANGLES ) );
int nBaseVertex = verts.Count();
for ( int j = 0; j < NUMBER_OF_TRIANGLES; ++j )
{
trianglePlaneIndices[nDestTrianglePlaneIndex] = i;
index[nDestIndex] = nBaseVertex;
index[nDestIndex + 1] = nBaseVertex + j + 1;
index[nDestIndex + 2] = nBaseVertex + j + 2;
++nDestTrianglePlaneIndex;
nDestIndex += 3;
}
// Copy verts
int nNumberOfVertices = nVertCount;
int nDestVertIndex = verts.Count();
// Set the count once (will grow as needed), so we don't call AddTail() several times.
verts.SetCountNonDestructively( nDestVertIndex + nNumberOfVertices );
int k = 0;
while ( nNumberOfVertices >= 4 )
{
fltx4 result0 = AddSIMD( vertsIn[k], insidePoint );
fltx4 result1 = AddSIMD( vertsIn[k + 1], insidePoint );
fltx4 result2 = AddSIMD( vertsIn[k + 2], insidePoint );
fltx4 result3 = AddSIMD( vertsIn[k + 3], insidePoint );
verts[nDestVertIndex] = result0;
verts[nDestVertIndex + 1] = result1;
verts[nDestVertIndex + 2] = result2;
verts[nDestVertIndex + 3] = result3;
nNumberOfVertices -= 4;
k += 4;
nDestVertIndex += 4;
}
while ( nNumberOfVertices > 0 )
{
fltx4 result = AddSIMD( vertsIn[k], insidePoint );
verts[nDestVertIndex] = result;
--nNumberOfVertices;
++k;
++nDestVertIndex;
}
}
}
}
void HullFromPlanes( CMesh *pOutMesh, CUtlVector<uint32> *pTrianglePlaneIndices, const float *pPlanesInput, int nPlaneCount, int nPlaneStrideFloats, float flCoplanarEpsilon )
{
CUtlVector<VPlane> planes;
planes.SetCount( nPlaneCount );
const float *pPlane = pPlanesInput;
for ( int i = 0; i < nPlaneCount; i++, pPlane += nPlaneStrideFloats )
{
planes[i].m_Normal.Init( pPlane[0], pPlane[1], pPlane[2] );
planes[i].m_Dist = pPlane[3];
}
// the clipping code returns polys IN FRONT of the plane, whereas our interface has planes pointing out of the solid
InvertPlanes( planes.Base(), planes.Count() );
CUtlVector<Vector> verts;
CUtlVector<uint32> index;
CUtlVector<uint32> trianglePlaneIndices;
CSGPlaneList( verts, index, trianglePlaneIndices, planes.Base(), planes.Count(), flCoplanarEpsilon );
if ( verts.Count() )
{
pOutMesh->AllocateAndCopyMesh( verts.Count(), (float *)verts.Base(), index.Count(), index.Base(), 3, 0, 0 );
}
// If the caller wants the index of the originating plane of each triangle, put it in the output.
if( pTrianglePlaneIndices )
pTrianglePlaneIndices->Swap( trianglePlaneIndices );
}
// Optimized version where there is no need to copy, planes are modified in place (assuming that the list has been created dynamically), and we use VMX intensively
void HullFromPlanes_SIMD( CMesh *pOutMesh, CUtlVector<uint16> *pTrianglePlaneIndices, fltx4 *pPlanesInput, int nPlaneCount, float flCoplanarEpsilon )
{
#if _DEBUG
CUtlVector<VPlane> planes;
planes.SetCount( nPlaneCount );
const float *pPlane = (const float *)pPlanesInput;
for ( int i = 0; i < nPlaneCount; i++, pPlane += 4 )
{
planes[i].m_Normal.Init( pPlane[0], pPlane[1], pPlane[2] );
planes[i].m_Dist = pPlane[3];
}
// the clipping code returns polys IN FRONT of the plane, whereas our interface has planes pointing out of the solid
InvertPlanes( planes.Base(), planes.Count() );
#endif
// the clipping code returns polys IN FRONT of the plane, whereas our interface has planes pointing out of the solid
InvertPlanes_SIMD( pPlanesInput, nPlaneCount ); // Too bad we are doing this here instead of in the caller code (when creating the array).
// At the same time, this is implementation specific that the caller should not be aware of
CUtlVector<fltx4> verts;
CUtlVector<uint32> index;
CUtlVector<uint16> trianglePlaneIndices;
CSGPlaneList_SIMD( verts, index, trianglePlaneIndices, pPlanesInput, nPlaneCount, flCoplanarEpsilon );
#if _DEBUG
CUtlVector<Vector> vertsSlow;
CUtlVector<uint32> indexSlow;
CUtlVector<uint32> trianglePlaneIndicesSlow;
CSGPlaneList( vertsSlow, indexSlow, trianglePlaneIndicesSlow, planes.Base(), planes.Count(), flCoplanarEpsilon );
Assert( verts.Count() == vertsSlow.Count() );
Assert( index.Count() == indexSlow.Count() );
Assert( trianglePlaneIndices.Count() == trianglePlaneIndicesSlow.Count() );
for (int i = 0 ; i < verts.Count() ; ++i )
{
Assert( SubFloat( verts[i], 0 ) == vertsSlow[i].x );
Assert( SubFloat( verts[i], 1 ) == vertsSlow[i].y );
Assert( SubFloat( verts[i], 2 ) == vertsSlow[i].z );
}
for (int i = 0 ; i < index.Count() ; ++i )
{
Assert( index[i] == indexSlow[i] );
}
for (int i = 0 ; i < trianglePlaneIndices.Count() ; ++i )
{
Assert( trianglePlaneIndices[i] == trianglePlaneIndicesSlow[i] );
}
#endif
// Do we really need a mesh in our use case?
if ( verts.Count() )
{
pOutMesh->AllocateAndCopyMesh( verts.Count(), (float *)verts.Base(), index.Count(), index.Base(), 4, 0, 0 );
}
// If the caller wants the index of the originating plane of each triangle, put it in the output.
if( pTrianglePlaneIndices )
{
pTrianglePlaneIndices->Swap( trianglePlaneIndices );
}
}