Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

332 lines
6.1 KiB

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#ifndef NMATRIX_H
#define NMATRIX_H
#ifdef _WIN32
#pragma once
#endif
#include <assert.h>
#include "nvector.h"
#define NMatrixMN NMatrix<M,N>
template<int M, int N>
class NMatrix
{
public:
NMatrixMN() {}
static NMatrixMN SetupNMatrixNull(); // Return a matrix of all zeros.
static NMatrixMN SetupNMatrixIdentity(); // Return an identity matrix.
NMatrixMN const& operator=( NMatrixMN const &other );
NMatrixMN operator+( NMatrixMN const &v ) const;
NMatrixMN const& operator+=( NMatrixMN const &v );
NMatrixMN operator-() const;
NMatrixMN operator-( NMatrixMN const &v ) const;
// Multiplies the column vector on the right-hand side.
NVector<M> operator*( NVector<N> const &v ) const;
// Can't get the compiler to work with a real MxN * NxR matrix multiply...
NMatrix<M,M> operator*( NMatrix<N,M> const &b ) const;
NMatrixMN operator*( float val ) const;
bool InverseGeneral( NMatrixMN &mInverse ) const;
NMatrix<N,M> Transpose() const;
public:
float m[M][N];
};
// Return the matrix generated by multiplying a column vector 'a' by row vector 'b'.
template<int N>
inline NMatrix<N,N> OuterProduct( NVectorN const &a, NVectorN const &b )
{
NMatrix<N,N> ret;
for( int i=0; i < N; i++ )
for( int j=0; j < N; j++ )
ret.m[i][j] = a.v[i] * b.v[j];
return ret;
}
// -------------------------------------------------------------------------------- //
// NMatrix inlines.
// -------------------------------------------------------------------------------- //
template<int M, int N>
inline NMatrixMN NMatrixMN::SetupNMatrixNull()
{
NMatrix ret;
memset( ret.m, 0, sizeof(float)*M*N );
return ret;
}
template<int M, int N>
inline NMatrixMN NMatrixMN::SetupNMatrixIdentity()
{
assert( M == N ); // Identity matrices must be square.
NMatrix ret;
memset( ret.m, 0, sizeof(float)*M*N );
for( int i=0; i < N; i++ )
ret.m[i][i] = 1;
return ret;
}
template<int M, int N>
inline NMatrixMN const &NMatrixMN::operator=( NMatrixMN const &v )
{
memcpy( m, v.m, sizeof(float)*M*N );
return *this;
}
template<int M, int N>
inline NMatrixMN NMatrixMN::operator+( NMatrixMN const &v ) const
{
NMatrixMN ret;
for( int i=0; i < M; i++ )
for( int j=0; j < N; j++ )
ret.m[i][j] = m[i][j] + v.m[i][j];
return ret;
}
template<int M, int N>
inline NMatrixMN const &NMatrixMN::operator+=( NMatrixMN const &v )
{
for( int i=0; i < M; i++ )
for( int j=0; j < N; j++ )
m[i][j] += v.m[i][j];
return *this;
}
template<int M, int N>
inline NMatrixMN NMatrixMN::operator-() const
{
NMatrixMN ret;
for( int i=0; i < M*N; i++ )
((float*)ret.m)[i] = -((float*)m)[i];
return ret;
}
template<int M, int N>
inline NMatrixMN NMatrixMN::operator-( NMatrixMN const &v ) const
{
NMatrixMN ret;
for( int i=0; i < M; i++ )
for( int j=0; j < N; j++ )
ret.m[i][j] = m[i][j] - v.m[i][j];
return ret;
}
template<int M, int N>
inline NVector<M> NMatrixMN::operator*( NVectorN const &v ) const
{
NVectorN ret;
for( int i=0; i < M; i++ )
{
ret.v[i] = 0;
for( int j=0; j < N; j++ )
ret.v[i] += m[i][j] * v.v[j];
}
return ret;
}
template<int M, int N>
inline NMatrix<M,M> NMatrixMN::operator*( NMatrix<N,M> const &b ) const
{
NMatrix<M,M> ret;
for( int myRow=0; myRow < M; myRow++ )
{
for( int otherCol=0; otherCol < M; otherCol++ )
{
ret[myRow][otherCol] = 0;
for( int i=0; i < N; i++ )
ret[myRow][otherCol] += a.m[myRow][i] * b.m[i][otherCol];
}
}
return ret;
}
template<int M, int N>
inline NMatrixMN NMatrixMN::operator*( float val ) const
{
NMatrixMN ret;
for( int i=0; i < N*M; i++ )
((float*)ret.m)[i] = ((float*)m)[i] * val;
return ret;
}
template<int M, int N>
bool NMatrixMN::InverseGeneral( NMatrixMN &mInverse ) const
{
int iRow, i, j, iTemp, iTest;
float mul, fTest, fLargest;
float mat[N][2*N];
int rowMap[N], iLargest;
float *pOut, *pRow, *pScaleRow;
// Can only invert square matrices.
if( M != N )
{
assert( !"Tried to invert a non-square matrix" );
return false;
}
// How it's done.
// AX = I
// A = this
// X = the matrix we're looking for
// I = identity
// Setup AI
for(i=0; i < N; i++)
{
const float *pIn = m[i];
pOut = mat[i];
for(j=0; j < N; j++)
{
pOut[j] = pIn[j];
}
for(j=N; j < 2*N; j++)
pOut[j] = 0;
pOut[i+N] = 1.0f;
rowMap[i] = i;
}
// Use row operations to get to reduced row-echelon form using these rules:
// 1. Multiply or divide a row by a nonzero number.
// 2. Add a multiple of one row to another.
// 3. Interchange two rows.
for(iRow=0; iRow < N; iRow++)
{
// Find the row with the largest element in this column.
fLargest = 1e-6f;
iLargest = -1;
for(iTest=iRow; iTest < N; iTest++)
{
fTest = (float)fabs(mat[rowMap[iTest]][iRow]);
if(fTest > fLargest)
{
iLargest = iTest;
fLargest = fTest;
}
}
// They're all too small.. sorry.
if(iLargest == -1)
{
return false;
}
// Swap the rows.
iTemp = rowMap[iLargest];
rowMap[iLargest] = rowMap[iRow];
rowMap[iRow] = iTemp;
pRow = mat[rowMap[iRow]];
// Divide this row by the element.
mul = 1.0f / pRow[iRow];
for(j=0; j < 2*N; j++)
pRow[j] *= mul;
pRow[iRow] = 1.0f; // Preserve accuracy...
// Eliminate this element from the other rows using operation 2.
for(i=0; i < N; i++)
{
if(i == iRow)
continue;
pScaleRow = mat[rowMap[i]];
// Multiply this row by -(iRow*the element).
mul = -pScaleRow[iRow];
for(j=0; j < 2*N; j++)
{
pScaleRow[j] += pRow[j] * mul;
}
pScaleRow[iRow] = 0.0f; // Preserve accuracy...
}
}
// The inverse is on the right side of AX now (the identity is on the left).
for(i=0; i < N; i++)
{
const float *pIn = mat[rowMap[i]] + N;
pOut = mInverse.m[i];
for(j=0; j < N; j++)
{
pOut[j] = pIn[j];
}
}
return true;
}
template<int M, int N>
inline NMatrix<N,M> NMatrixMN::Transpose() const
{
NMatrix<N,M> ret;
for( int i=0; i < M; i++ )
for( int j=0; j < N; j++ )
ret.m[j][i] = m[i][j];
return ret;
}
#endif // NMATRIX_H