Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3834 lines
113 KiB

//------------------------------------------------------------------------------
// DX9AsmToGL2.cpp
//------------------------------------------------------------------------------
// Immediately include gl.h, etc. here to avoid compilation warnings.
#include <GL/gl.h>
#include <GL/glext.h>
#include "togl/rendermechanism.h"
#include "tier0/dbg.h"
#include "tier1/strtools.h"
#include "tier1/utlbuffer.h"
#include "dx9asmtogl2.h"
#include "materialsystem/IShader.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#ifdef POSIX
#define strcat_s( a, b, c) V_strcat( a, c, b )
#endif
#define DST_REGISTER 0
#define SRC_REGISTER 1
// Flags to PrintUsageAndIndexToString.
#define SEMANTIC_OUTPUT 0x01
#define SEMANTIC_INPUT 0x02
#define UNDECLARED_OUTPUT 0xFFFFFFFF
#define UNDECLARED_INPUT 0xFFFFFFFF
#ifndef POSIX
#define Debugger() Assert(0)
#endif
//#define Assert(n) if( !(n) ){ TranslationError(); }
static char *g_szVecZeros[] = { NULL, "0.0", "vec2( 0.0, 0.0 )", "vec3( 0.0, 0.0, 0.0 )", "vec4( 0.0, 0.0, 0.0, 0.0 )" };
static char *g_szVecOnes[] = { NULL, "1.0", "vec2( 1.0, 1.0 )", "vec3( 1.0, 1.0, 1.0 )", "vec4( 1.0, 1.0, 1.0, 1.0 )" };
static char *g_szDefaultSwizzle = "xyzw";
static char *g_szDefaultSwizzleStrings[] = { "x", "y", "z", "w" };
static char *g_szSamplerStrings[] = { "2D", "CUBE", "3D" };
static const char *g_pAtomicTempVarName = "atomic_temp_var";
static const char *g_pTangentAttributeName = "g_tangent";
int __cdecl SortInts( const int *a, const int *b )
{
if ( *a < *b )
return -1;
else if ( *a > *b )
return 1;
else
return 0;
}
void StripExtraTrailingZeros( char *pStr )
{
int len = (int)V_strlen( pStr );
while ( len >= 2 && pStr[len-1] == '0' && pStr[len-2] != '.' )
{
pStr[len-1] = 0;
--len;
}
}
void D3DToGL::PrintToBufWithIndents( CUtlBuffer &buf, const char *pFormat, ... )
{
va_list marker;
va_start( marker, pFormat );
char szTemp[1024];
V_vsnprintf( szTemp, sizeof( szTemp ), pFormat, marker );
va_end( marker );
PrintIndentation( (char*)buf.Base(), buf.Size() );
strcat_s( (char*)buf.Base(), buf.Size(), szTemp );
}
void PrintToBuf( CUtlBuffer &buf, const char *pFormat, ... )
{
va_list marker;
va_start( marker, pFormat );
char szTemp[1024];
V_vsnprintf( szTemp, sizeof( szTemp ), pFormat, marker );
va_end( marker );
strcat_s( (char*)buf.Base(), buf.Size(), szTemp );
}
void PrintToBuf( char *pOut, int nOutSize, const char *pFormat, ... )
{
int nStrlen = V_strlen( pOut );
pOut += nStrlen;
nOutSize -= nStrlen;
va_list marker;
va_start( marker, pFormat );
V_vsnprintf( pOut, nOutSize, pFormat, marker );
va_end( marker );
}
// Return the number of letters following the dot.
// Returns 4 if there is no dot.
// (So "r0.xy" returns 2 and "r0" returns 4).
int GetNumWriteMaskEntries( const char *pParam )
{
const char *pDot = strchr( pParam, '.' );
if ( pDot )
return V_strlen( pDot + 1 );
else
return 4;
}
const char* GetSwizzleDot( const char *pParam )
{
const char *pDot = strrchr( pParam, '.' );
const char *pSquareClose = strrchr( pParam, ']' );
if ( pSquareClose )
{
// The test against ']' catches cases like, so we point to the last dot vc[int(va_r.x) + 29].x
if ( pDot && ( pSquareClose < pDot ) )
return pDot;
else
return NULL;
}
// Make sure the next character is a valid swizzle since we want to treat strings like vec4( gl_Normal, 0.0 ) as a whole param name.
if ( pDot && ( ( *(pDot+1) == 'x' ) || ( *(pDot+1) == 'y' ) || ( *(pDot+1) == 'z' ) || ( *(pDot+1) == 'w' ) ||
( *(pDot+1) == 'r' ) || ( *(pDot+1) == 'g' ) || ( *(pDot+1) == 'b' ) || ( *(pDot+1) == 'z' ) ) )
{
return pDot;
}
return NULL;
}
int GetNumSwizzleComponents( const char *pParam )
{
// Special scalar output which won't accept a swizzle
if ( !V_stricmp( pParam, "gl_FogFragCoord" ) )
return 1;
// Special scalar output which won't accept a swizzle
if ( !V_stricmp( pParam, "gl_FragDepth" ) )
return 1;
// Special scalar output which won't accept a swizzle
if ( !V_stricmp( pParam, "a0" ) )
return 1;
const char *pDot = GetSwizzleDot( pParam );
if ( pDot )
{
pDot++; // Step over the dot
int nNumSwizzleComponents = 0;
while ( ( *pDot == 'x' ) || ( *pDot == 'y' ) || ( *pDot == 'z' ) || ( *pDot == 'w' ) ||
( *pDot == 'r' ) || ( *pDot == 'g' ) || ( *pDot == 'b' ) || ( *pDot == 'z' ) )
{
nNumSwizzleComponents++;
pDot++;
}
return nNumSwizzleComponents;
}
return 0;
}
char GetSwizzleComponent( const char *pParam, int n )
{
Assert( n < 4 );
const char *pDot = GetSwizzleDot( pParam );
if ( pDot )
{
++pDot;
int nComponents = (int)V_strlen( pDot );
Assert( nComponents > 0 );
if ( n < nComponents )
return pDot[n];
else
return pDot[nComponents-1];
}
return g_szDefaultSwizzle[n];
}
// Replace the parameter name and leave the swizzle intact.
// So "somevar.xyz" becomes "othervar.xyz".
void ReplaceParamName( const char *pSrc, const char *pNewParamName, char *pOut, int nOutLen )
{
// Start with the new parameter name.
V_strncpy( pOut, pNewParamName, nOutLen );
// Now add the swizzle if necessary.
const char *pDot = GetSwizzleDot( pSrc );
if ( pDot )
{
V_strncat( pOut, pDot, nOutLen );
}
}
void GetParamNameWithoutSwizzle( const char *pParam, char *pOut, int nOutLen )
{
char *pParamStart = (char *) pParam;
const char *pParamEnd = GetSwizzleDot( pParam ); // dot followed by valid swizzle characters
bool bAbsWrapper = false;
// Check for abs() or -abs() wrapper and strip it off during the fixup
if ( !V_strncmp( pParam, "abs(", 4 ) || !V_strncmp( pParam, "-abs(", 5 ) )
{
const char *pOpenParen = strchr( pParam, '(' ); // FIRST opening paren
const char *pClosingParen = strrchr( pParam, ')' ); // LAST closing paren
Assert ( pOpenParen && pClosingParen );
pParamStart = (char *) pOpenParen;
pParamStart++;
bAbsWrapper = true;
if ( !pParamEnd )
{
pParamEnd = pClosingParen;
}
}
if ( pParamEnd )
{
int nToCopy = MIN( nOutLen-1, pParamEnd - pParamStart );
memcpy( pOut, pParamStart, nToCopy );
pOut[nToCopy] = 0;
}
else
{
V_strncpy( pOut, pParamStart, nOutLen );
}
}
bool DoParamNamesMatch( const char *pParam1, const char *pParam2 )
{
char szTemp[2][256];
GetParamNameWithoutSwizzle( pParam1, szTemp[0], sizeof( szTemp[0] ) );
GetParamNameWithoutSwizzle( pParam2, szTemp[1], sizeof( szTemp[1] ) );
return ( V_stricmp( szTemp[0], szTemp[1] ) == 0 );
}
// Extract the n'th component of the swizzle mask.
// If n would exceed the length of the swizzle mask, then it looks up into "xyzw".
void WriteParamWithSingleMaskEntry( const char *pParam, int n, char *pOut, int nOutLen )
{
bool bCloseParen = false;
if ( !V_strncmp( pParam, "-abs(", 5 ) )
{
V_strcpy( pOut, "-abs(" );
bCloseParen = true;
pOut += 5; nOutLen -= 5;
}
else if ( !V_strncmp( pParam, "abs(", 4 ) )
{
V_strcpy( pOut, "abs(" );
bCloseParen = true;
pOut += 4; nOutLen -= 4;
}
GetParamNameWithoutSwizzle( pParam, pOut, nOutLen );
PrintToBuf( pOut, nOutLen, "." );
PrintToBuf( pOut, nOutLen, "%c", GetSwizzleComponent( pParam, n ) );
if ( bCloseParen )
{
PrintToBuf( pOut, nOutLen, ")" );
}
}
float uint32ToFloat( uint32 dw )
{
return *((float*)&dw);
}
CUtlString EnsureNumSwizzleComponents( const char *pSrcRegisterName, int nComponents )
{
int nExisting = GetNumSwizzleComponents( pSrcRegisterName );
if ( nExisting == nComponents )
return pSrcRegisterName;
bool bAbsWrapper = false; // Parameter wrapped in an abs()
bool bAbsNegative = false; // -abs()
char szSrcRegister[128];
V_strncpy( szSrcRegister, pSrcRegisterName, sizeof(szSrcRegister) );
// Check for abs() or -abs() wrapper and strip it off during the fixup
if ( !V_strncmp( pSrcRegisterName, "abs(", 4 ) || !V_strncmp( pSrcRegisterName, "-abs(", 5 ) )
{
bAbsWrapper = true;
bAbsNegative = pSrcRegisterName[0] == '-';
const char *pOpenParen = strchr( pSrcRegisterName, '(' ); // FIRST opening paren
const char *pClosingParen = strrchr( pSrcRegisterName, ')' ); // LAST closing paren
Assert ( pOpenParen && pClosingParen ); // If we start with abs( and don't get both parens, something is very wrong
// Copy out just the register name with no abs()
int nRegNameLength = pClosingParen - pOpenParen - 1;
V_strncpy( szSrcRegister, pOpenParen+1, nRegNameLength + 1 ); // Kind of a weird function...copy more than you need and slam the last char to NULL-terminate
}
char szReg[256];
GetParamNameWithoutSwizzle( szSrcRegister, szReg, sizeof( szReg ) );
if ( nComponents == 0 )
return szReg;
PrintToBuf( szReg, sizeof( szReg ), "." );
if ( nExisting > nComponents )
{
// DX ASM will sometimes have statements like "NRM r0.xyz, r1.yzww", where it just doesn't use the last part of r1. So we won't either.
for ( int i=0; i < nComponents; i++ )
{
PrintToBuf( szReg, sizeof( szReg ), "%c", GetSwizzleComponent( szSrcRegister, i ) );
}
}
else
{
if ( nExisting == 0 )
{
// We've got something like r0 and need N more components, so add as much of "xyzw" is needed.
for ( int i=0; i < nComponents; i++ )
PrintToBuf( szReg, sizeof( szReg ), "%c", g_szDefaultSwizzle[i] );
}
else
{
// We've got something like r0.x and need N more components, so replicate the X so it looks like r0.xxx
V_strncpy( szReg, szSrcRegister, sizeof( szReg ) );
char cLast = szSrcRegister[ V_strlen( szSrcRegister ) - 1 ];
for ( int i=nExisting; i < nComponents; i++ )
{
PrintToBuf( szReg, sizeof( szReg ), "%c", cLast );
}
}
}
if ( bAbsWrapper )
{
char szTemp[128];
V_strncpy( szTemp, szReg, sizeof(szTemp) );
V_snprintf( szReg, sizeof( szReg ), "%sabs(%s)", bAbsNegative ? "-" : "", szTemp ) ;
}
return szReg;
}
static void TranslationError()
{
Plat_DebugString( "D3DToGL: GLSL translation error!\n" );
DebuggerBreakIfDebugging();
Error( "D3DToGL: GLSL translation error!\n" );
}
D3DToGL::D3DToGL()
{
}
uint32 D3DToGL::GetNextToken( void )
{
uint32 dwToken = *m_pdwNextToken;
m_pdwNextToken++;
return dwToken;
}
void D3DToGL::SkipTokens( uint32 numToSkip )
{
m_pdwNextToken += numToSkip;
}
uint32 D3DToGL::Opcode( uint32 dwToken )
{
return ( dwToken & D3DSI_OPCODE_MASK );
}
uint32 D3DToGL::OpcodeSpecificData (uint32 dwToken)
{
return ( ( dwToken & D3DSP_OPCODESPECIFICCONTROL_MASK ) >> D3DSP_OPCODESPECIFICCONTROL_SHIFT );
}
uint32 D3DToGL::TextureType ( uint32 dwToken )
{
return ( dwToken & D3DSP_TEXTURETYPE_MASK ); // Note this one doesn't shift due to weird D3DSAMPLER_TEXTURE_TYPE enum
}
// Print GLSL intrinsic corresponding to particular instruction
bool D3DToGL::OpenIntrinsic( uint32 inst, char* buff, int nBufLen, uint32 destDimension, uint32 nArgumentDimension )
{
// Some GLSL intrinsics need type conversion, which we do in this routine
// As a result, the caller must sometimes close both parentheses, not just one
bool bDoubleClose = false;
if ( nArgumentDimension == 0 )
{
nArgumentDimension = 4;
}
switch ( inst )
{
case D3DSIO_RSQ:
V_snprintf( buff, nBufLen, "inversesqrt( " );
break;
case D3DSIO_DP3:
case D3DSIO_DP4:
if ( destDimension == 1 )
{
V_snprintf( buff, nBufLen, "dot( " );
}
else
{
if ( !destDimension )
destDimension = 4;
V_snprintf( buff, nBufLen, "vec%d( dot( ", destDimension );
bDoubleClose = true;
}
break;
case D3DSIO_MIN:
V_snprintf( buff, nBufLen, "min( " );
break;
case D3DSIO_MAX:
V_snprintf( buff, nBufLen, "max( " );
break;
case D3DSIO_SLT:
if ( nArgumentDimension == 1 )
{
V_snprintf( buff, nBufLen, "float( " ); // lessThan doesn't have a scalar version
}
else
{
Assert( nArgumentDimension > 1 );
V_snprintf( buff, nBufLen, "vec%d( lessThan( ", nArgumentDimension );
bDoubleClose = true;
}
break;
case D3DSIO_SGE:
if ( nArgumentDimension == 1 )
{
V_snprintf( buff, nBufLen, "float( " ); // greaterThanEqual doesn't have a scalar version
}
else
{
Assert( nArgumentDimension > 1 );
V_snprintf( buff, nBufLen, "vec%d( greaterThanEqual( ", nArgumentDimension );
bDoubleClose = true;
}
break;
case D3DSIO_EXP:
V_snprintf( buff, nBufLen, "exp( " ); // exp2 ?
break;
case D3DSIO_LOG:
V_snprintf( buff, nBufLen, "log( " ); // log2 ?
break;
case D3DSIO_LIT:
TranslationError();
V_snprintf( buff, nBufLen, "lit( " ); // gonna have to write this one
break;
case D3DSIO_DST:
V_snprintf( buff, nBufLen, "dst( " ); // gonna have to write this one
break;
case D3DSIO_LRP:
Assert( !m_bVertexShader );
V_snprintf( buff, nBufLen, "mix( " );
break;
case D3DSIO_FRC:
V_snprintf( buff, nBufLen, "fract( " );
break;
case D3DSIO_M4x4:
TranslationError();
V_snprintf( buff, nBufLen, "m4x4" );
break;
case D3DSIO_M4x3:
case D3DSIO_M3x4:
case D3DSIO_M3x3:
case D3DSIO_M3x2:
case D3DSIO_CALL:
case D3DSIO_CALLNZ:
case D3DSIO_LOOP:
case D3DSIO_RET:
case D3DSIO_ENDLOOP:
case D3DSIO_LABEL:
case D3DSIO_DCL:
TranslationError();
break;
case D3DSIO_POW:
V_snprintf( buff, nBufLen, "pow( " );
break;
case D3DSIO_CRS:
V_snprintf( buff, nBufLen, "cross( " );
break;
case D3DSIO_SGN:
TranslationError();
V_snprintf( buff, nBufLen, "sign( " );
break;
case D3DSIO_ABS:
V_snprintf( buff, nBufLen, "abs( " );
break;
case D3DSIO_NRM:
TranslationError();
V_snprintf( buff, nBufLen, "normalize( " );
break;
case D3DSIO_SINCOS:
TranslationError();
V_snprintf( buff, nBufLen, "sincos( " ); // gonna have to write this one
break;
case D3DSIO_REP:
case D3DSIO_ENDREP:
case D3DSIO_IF:
case D3DSIO_IFC:
case D3DSIO_ELSE:
case D3DSIO_ENDIF:
case D3DSIO_BREAK:
case D3DSIO_BREAKC: // TODO: these are the reason we even need GLSL...gotta make these work
TranslationError();
break;
case D3DSIO_DEFB:
case D3DSIO_DEFI:
TranslationError();
break;
case D3DSIO_TEXCOORD:
V_snprintf( buff, nBufLen, "texcoord" );
break;
case D3DSIO_TEXKILL:
V_snprintf( buff, nBufLen, "kill( " ); // wrap the discard instruction?
break;
case D3DSIO_TEX:
TranslationError();
V_snprintf( buff, nBufLen, "TEX" ); // We shouldn't get here
break;
case D3DSIO_TEXBEM:
case D3DSIO_TEXBEML:
case D3DSIO_TEXREG2AR:
case D3DSIO_TEXREG2GB:
case D3DSIO_TEXM3x2PAD:
case D3DSIO_TEXM3x2TEX:
case D3DSIO_TEXM3x3PAD:
case D3DSIO_TEXM3x3TEX:
case D3DSIO_TEXM3x3SPEC:
case D3DSIO_TEXM3x3VSPEC:
TranslationError();
break;
case D3DSIO_EXPP:
V_snprintf( buff, nBufLen, "exp( " );
break;
case D3DSIO_LOGP:
V_snprintf( buff, nBufLen, "log( " );
break;
case D3DSIO_CND:
TranslationError();
break;
case D3DSIO_DEF:
TranslationError();
V_snprintf( buff, nBufLen, "DEF" );
break;
case D3DSIO_TEXREG2RGB:
case D3DSIO_TEXDP3TEX:
case D3DSIO_TEXM3x2DEPTH:
case D3DSIO_TEXDP3:
case D3DSIO_TEXM3x3:
TranslationError();
break;
case D3DSIO_TEXDEPTH:
V_snprintf( buff, nBufLen, "texdepth" );
break;
case D3DSIO_CMP:
TranslationError();
Assert( !m_bVertexShader );
V_snprintf( buff, nBufLen, "CMP" );
break;
case D3DSIO_BEM:
TranslationError();
break;
case D3DSIO_DP2ADD:
TranslationError();
break;
case D3DSIO_DSX:
V_snprintf( buff, nBufLen, "dFdx" );
break;
case D3DSIO_DSY:
V_snprintf( buff, nBufLen, "dFdy" );
break;
case D3DSIO_TEXLDD:
V_snprintf( buff, nBufLen, "texldd" );
break;
case D3DSIO_SETP:
TranslationError();
break;
case D3DSIO_TEXLDL:
V_snprintf( buff, nBufLen, "texldl" );
break;
case D3DSIO_BREAKP:
case D3DSIO_PHASE:
TranslationError();
break;
}
return bDoubleClose;
}
const char* D3DToGL::GetGLSLOperatorString( uint32 inst )
{
if ( inst == D3DSIO_ADD )
return "+";
else if ( inst == D3DSIO_SUB )
return "-";
else if ( inst == D3DSIO_MUL )
return "*";
Error( "GetGLSLOperatorString: unknown operator" );
return "zzzz";
}
// Print ASM opcode
void D3DToGL::PrintOpcode( uint32 inst, char* buff, int nBufLen )
{
switch ( inst )
{
case D3DSIO_NOP:
V_snprintf( buff, nBufLen, "NOP" );
TranslationError();
break;
case D3DSIO_MOV:
V_snprintf( buff, nBufLen, "MOV" );
break;
case D3DSIO_ADD:
V_snprintf( buff, nBufLen, "ADD" );
break;
case D3DSIO_SUB:
V_snprintf( buff, nBufLen, "SUB" );
break;
case D3DSIO_MAD:
V_snprintf( buff, nBufLen, "MAD" );
break;
case D3DSIO_MUL:
V_snprintf( buff, nBufLen, "MUL" );
break;
case D3DSIO_RCP:
V_snprintf( buff, nBufLen, "RCP" );
break;
case D3DSIO_RSQ:
V_snprintf( buff, nBufLen, "RSQ" );
break;
case D3DSIO_DP3:
V_snprintf( buff, nBufLen, "DP3" );
break;
case D3DSIO_DP4:
V_snprintf( buff, nBufLen, "DP4" );
break;
case D3DSIO_MIN:
V_snprintf( buff, nBufLen, "MIN" );
break;
case D3DSIO_MAX:
V_snprintf( buff, nBufLen, "MAX" );
break;
case D3DSIO_SLT:
V_snprintf( buff, nBufLen, "SLT" );
break;
case D3DSIO_SGE:
V_snprintf( buff, nBufLen, "SGE" );
break;
case D3DSIO_EXP:
V_snprintf( buff, nBufLen, "EX2" );
break;
case D3DSIO_LOG:
V_snprintf( buff, nBufLen, "LG2" );
break;
case D3DSIO_LIT:
V_snprintf( buff, nBufLen, "LIT" );
break;
case D3DSIO_DST:
V_snprintf( buff, nBufLen, "DST" );
break;
case D3DSIO_LRP:
Assert( !m_bVertexShader );
V_snprintf( buff, nBufLen, "LRP" );
break;
case D3DSIO_FRC:
V_snprintf( buff, nBufLen, "FRC" );
break;
case D3DSIO_M4x4:
V_snprintf( buff, nBufLen, "m4x4" );
break;
case D3DSIO_M4x3:
case D3DSIO_M3x4:
case D3DSIO_M3x3:
case D3DSIO_M3x2:
case D3DSIO_CALL:
case D3DSIO_CALLNZ:
case D3DSIO_LOOP:
case D3DSIO_RET:
case D3DSIO_ENDLOOP:
case D3DSIO_LABEL:
TranslationError();
break;
case D3DSIO_DCL:
V_snprintf( buff, nBufLen, "DCL" );
break;
case D3DSIO_POW:
V_snprintf( buff, nBufLen, "POW" );
break;
case D3DSIO_CRS:
V_snprintf( buff, nBufLen, "XPD" );
break;
case D3DSIO_SGN:
TranslationError();
V_snprintf( buff, nBufLen, "SGN" );
break;
case D3DSIO_ABS:
V_snprintf( buff, nBufLen, "ABS" );
break;
case D3DSIO_NRM:
TranslationError();
V_snprintf( buff, nBufLen, "NRM" );
break;
case D3DSIO_SINCOS:
Assert( !m_bVertexShader );
V_snprintf( buff, nBufLen, "SCS" );
break;
case D3DSIO_REP:
case D3DSIO_ENDREP:
case D3DSIO_IF:
case D3DSIO_IFC:
case D3DSIO_ELSE:
case D3DSIO_ENDIF:
case D3DSIO_BREAK:
case D3DSIO_BREAKC:
TranslationError();
break;
case D3DSIO_MOVA:
Assert( m_bVertexShader );
V_snprintf( buff, nBufLen, "MOV" ); // We're always moving into a temp instead, so this is MOV instead of ARL
break;
case D3DSIO_DEFB:
case D3DSIO_DEFI:
TranslationError();
break;
case D3DSIO_TEXCOORD:
V_snprintf( buff, nBufLen, "texcoord" );
break;
case D3DSIO_TEXKILL:
V_snprintf( buff, nBufLen, "KIL" );
break;
case D3DSIO_TEX:
V_snprintf( buff, nBufLen, "TEX" );
break;
case D3DSIO_TEXBEM:
case D3DSIO_TEXBEML:
case D3DSIO_TEXREG2AR:
case D3DSIO_TEXREG2GB:
case D3DSIO_TEXM3x2PAD:
case D3DSIO_TEXM3x2TEX:
case D3DSIO_TEXM3x3PAD:
case D3DSIO_TEXM3x3TEX:
case D3DSIO_TEXM3x3SPEC:
case D3DSIO_TEXM3x3VSPEC:
TranslationError();
break;
case D3DSIO_EXPP:
V_snprintf( buff, nBufLen, "EXP" );
break;
case D3DSIO_LOGP:
V_snprintf( buff, nBufLen, "LOG" );
break;
case D3DSIO_CND:
TranslationError();
break;
case D3DSIO_DEF:
V_snprintf( buff, nBufLen, "DEF" );
break;
case D3DSIO_TEXREG2RGB:
case D3DSIO_TEXDP3TEX:
case D3DSIO_TEXM3x2DEPTH:
case D3DSIO_TEXDP3:
case D3DSIO_TEXM3x3:
TranslationError();
break;
case D3DSIO_TEXDEPTH:
V_snprintf( buff, nBufLen, "texdepth" );
break;
case D3DSIO_CMP:
Assert( !m_bVertexShader );
V_snprintf( buff, nBufLen, "CMP" );
break;
case D3DSIO_BEM:
TranslationError();
break;
case D3DSIO_DP2ADD:
TranslationError();
break;
case D3DSIO_DSX:
V_snprintf( buff, nBufLen, "dFdx" );
break;
case D3DSIO_DSY:
V_snprintf( buff, nBufLen, "dFdy" );
break;
case D3DSIO_TEXLDD:
V_snprintf( buff, nBufLen, "texldd" );
break;
case D3DSIO_SETP:
TranslationError();
break;
case D3DSIO_TEXLDL:
V_snprintf( buff, nBufLen, "texldl" );
break;
case D3DSIO_BREAKP:
case D3DSIO_PHASE:
TranslationError();
break;
}
}
CUtlString D3DToGL::GetUsageAndIndexString( uint32 dwToken, int fSemanticFlags )
{
char szTemp[1024];
PrintUsageAndIndexToString( dwToken, szTemp, sizeof( szTemp ), fSemanticFlags );
return szTemp;
}
//------------------------------------------------------------------------------
// Helper function which prints ASCII representation of usage-usageindex pair to string
//
// Strictly used by vertex shaders
// not used any more now that we have attribmap metadata
//------------------------------------------------------------------------------
void D3DToGL::PrintUsageAndIndexToString( uint32 dwToken, char* strUsageUsageIndexName, int nBufLen, int fSemanticFlags )
{
uint32 dwUsage = ( dwToken & D3DSP_DCL_USAGE_MASK );
uint32 dwUsageIndex = ( dwToken & D3DSP_DCL_USAGEINDEX_MASK ) >> D3DSP_DCL_USAGEINDEX_SHIFT;
switch ( dwUsage )
{
case D3DDECLUSAGE_POSITION:
if ( m_bVertexShader )
{
if ( fSemanticFlags & SEMANTIC_OUTPUT )
V_snprintf( strUsageUsageIndexName, nBufLen, "vTempPos" ); // effectively gl_Position
else
V_snprintf( strUsageUsageIndexName, nBufLen, "gl_Vertex" );
}
else
{
// .xy = position in viewport coordinates
// .z = depth
V_snprintf( strUsageUsageIndexName, nBufLen, "gl_FragCoord" );
}
break;
case D3DDECLUSAGE_BLENDWEIGHT:
V_snprintf( strUsageUsageIndexName, nBufLen, "vertex.attrib[1]" ); // "vertex.attrib[12]" ); // or [1]
break;
case D3DDECLUSAGE_BLENDINDICES:
V_snprintf( strUsageUsageIndexName, nBufLen, "vertex.attrib[13]" ); // "vertex.attrib[13]" ); // or [ 7 ]
break;
case D3DDECLUSAGE_NORMAL:
V_snprintf( strUsageUsageIndexName, nBufLen, "vec4( gl_Normal, 0.0 )" );
break;
case D3DDECLUSAGE_PSIZE:
TranslationError();
V_snprintf( strUsageUsageIndexName, nBufLen, "_psize" ); // no analog
break;
case D3DDECLUSAGE_TEXCOORD:
V_snprintf( strUsageUsageIndexName, nBufLen, "oT%d", dwUsageIndex );
break;
case D3DDECLUSAGE_TANGENT:
NoteTangentInputUsed();
V_strncpy( strUsageUsageIndexName, g_pTangentAttributeName, nBufLen );
break;
case D3DDECLUSAGE_BINORMAL:
V_snprintf( strUsageUsageIndexName, nBufLen, "vertex.attrib[14]" ); // aka texc[6]
break;
// case D3DDECLUSAGE_TESSFACTOR:
// TranslationError();
// V_snprintf( strUsageUsageIndexName, nBufLen, "_position" ); // no analog
// break;
// case D3DDECLUSAGE_POSITIONT:
// TranslationError();
// V_snprintf( strUsageUsageIndexName, nBufLen, "_positiont" ); // no analog
// break;
case D3DDECLUSAGE_COLOR:
Assert( dwUsageIndex <= 1 );
// if ( fSemanticFlags & SEMANTIC_OUTPUT )
// V_snprintf( strUsageUsageIndexName, nBufLen, dwUsageIndex != 0 ? "gl_BackColor" : "gl_FrontColor" );
// else
V_snprintf( strUsageUsageIndexName, nBufLen, dwUsageIndex != 0 ? "gl_SecondaryColor" : "gl_Color" );
break;
case D3DDECLUSAGE_FOG:
TranslationError();
break;
case D3DDECLUSAGE_DEPTH:
TranslationError();
V_snprintf( strUsageUsageIndexName, nBufLen, "_depth" ); // no analog
break;
case D3DDECLUSAGE_SAMPLE:
TranslationError();
V_snprintf( strUsageUsageIndexName, nBufLen, "_sample" ); // no analog
break;
default:
Debugger();
break;
}
}
uint32 D3DToGL::GetRegType( uint32 dwRegToken )
{
return ( ( dwRegToken & D3DSP_REGTYPE_MASK2 ) >> D3DSP_REGTYPE_SHIFT2 ) | ( ( dwRegToken & D3DSP_REGTYPE_MASK ) >> D3DSP_REGTYPE_SHIFT );
}
void D3DToGL::PrintIndentation( char *pBuf, int nBufLen )
{
for( int i=0; i<m_NumIndentTabs; i++ )
{
strcat_s( pBuf, nBufLen, "\t" );
}
}
CUtlString D3DToGL::GetParameterString( uint32 dwToken, uint32 dwSourceOrDest, bool bForceScalarSource, int *pARLDestReg )
{
char szTemp[1024];
PrintParameterToString( dwToken, dwSourceOrDest, szTemp, sizeof( szTemp ), bForceScalarSource, pARLDestReg );
return szTemp;
}
// If the register happens to end with ".xyzw", then this strips off the mask.
void SimplifyFourParamRegister( char *pRegister )
{
int nLen = V_strlen( pRegister );
if ( nLen > 5 && V_strcmp( &pRegister[nLen-5], ".xyzw" ) == 0 )
pRegister[nLen-5] = 0;
}
// This returns 0 for x, 1 for y, 2 for z, and 3 for w.
int GetSwizzleComponentVectorIndex( char chMask )
{
if ( chMask == 'x' )
return 0;
else if ( chMask == 'y' )
return 1;
else if ( chMask == 'z' )
return 2;
else if ( chMask == 'w' )
return 3;
Error( "GetSwizzleComponentVectorIndex( '%c' ) - invalid parameter.\n", chMask );
return 0;
}
// GLSL needs the # of src masks to match the dest write mask.
//
// So this:
// r0.xy = r1 + r2;
// becomes:
// r0.xy = r1.xy + r2.xy;
//
//
// Also, and this is the trickier one: GLSL reads the source registers from their first component on
// whereas D3D reads them as referenced in the dest register mask!
//
// So this code in D3D:
// r0.yz = c0.x + c1.wxyz
// Really means:
// r0.y = c0.x + c1.x
// r0.z = c0.x + c1.y
// So we translate it to this in GLSL:
// r0.yz = c0.xx + c1.wx
// r0.yz = c0.xx + c1.xy
//
CUtlString D3DToGL::FixGLSLSwizzle( const char *pDestRegisterName, const char *pSrcRegisterName )
{
bool bAbsWrapper = false; // Parameter wrapped in an abs()
bool bAbsNegative = false; // -abs()
char szSrcRegister[128];
V_strncpy( szSrcRegister, pSrcRegisterName, sizeof(szSrcRegister) );
// Check for abs() or -abs() wrapper and strip it off during the fixup
if ( !V_strncmp( pSrcRegisterName, "abs(", 4 ) || !V_strncmp( pSrcRegisterName, "-abs(", 5 ) )
{
bAbsWrapper = true;
bAbsNegative = pSrcRegisterName[0] == '-';
const char *pOpenParen = strchr( pSrcRegisterName, '(' ); // FIRST opening paren
const char *pClosingParen = strrchr( pSrcRegisterName, ')' ); // LAST closing paren
Assert ( pOpenParen && pClosingParen ); // If we start with abs( and don't get both parens, something is very wrong
// Copy out just the register name with no abs()
int nRegNameLength = pClosingParen - pOpenParen - 1;
V_strncpy( szSrcRegister, pOpenParen+1, nRegNameLength + 1 ); // Kind of a weird function...copy more than you need and slam the last char to NULL-terminate
}
int nSwizzlesInDest = GetNumSwizzleComponents( pDestRegisterName );
if ( nSwizzlesInDest == 0 )
nSwizzlesInDest = 4;
char szFixedSrcRegister[128];
GetParamNameWithoutSwizzle( szSrcRegister, szFixedSrcRegister, sizeof( szFixedSrcRegister ) );
V_strncat( szFixedSrcRegister, ".", sizeof( szFixedSrcRegister ) );
for ( int i=0; i < nSwizzlesInDest; i++ )
{
char chDestWriteMask = GetSwizzleComponent( pDestRegisterName, i );
int nVectorIndex = GetSwizzleComponentVectorIndex( chDestWriteMask );
char ch[2];
ch[0] = GetSwizzleComponent( szSrcRegister, nVectorIndex );
ch[1] = 0;
V_strncat( szFixedSrcRegister, ch, sizeof( szFixedSrcRegister ) );
}
SimplifyFourParamRegister( szFixedSrcRegister );
if ( bAbsWrapper )
{
char szTempSrcRegister[128];
V_strncpy( szTempSrcRegister, szFixedSrcRegister, sizeof(szTempSrcRegister) );
V_snprintf( szFixedSrcRegister, sizeof( szFixedSrcRegister ), "%sabs(%s)", bAbsNegative ? "-" : "", szTempSrcRegister ) ;
}
return szFixedSrcRegister;
}
// Weird encoding...bits are split apart in the dwToken
inline uint32 GetRegTypeFromToken( uint32 dwToken )
{
return ( ( dwToken & D3DSP_REGTYPE_MASK2 ) >> D3DSP_REGTYPE_SHIFT2 ) | ( ( dwToken & D3DSP_REGTYPE_MASK ) >> D3DSP_REGTYPE_SHIFT );
}
void D3DToGL::FlagIndirectRegister( uint32 dwToken, int *pARLDestReg )
{
if ( !pARLDestReg )
return;
switch ( dwToken & D3DVS_SWIZZLE_MASK & D3DVS_X_W )
{
case D3DVS_X_X:
*pARLDestReg = ARL_DEST_X;
break;
case D3DVS_X_Y:
*pARLDestReg = ARL_DEST_Y;
break;
case D3DVS_X_Z:
*pARLDestReg = ARL_DEST_Z;
break;
case D3DVS_X_W:
*pARLDestReg = ARL_DEST_W;
break;
}
}
//------------------------------------------------------------------------------
// PrintParameterToString()
//
// Helper function which prints ASCII representation of passed Parameter dwToken
// to string. Token defines parameter details. The dwSourceOrDest parameter says
// whether or not this is a source or destination register
//------------------------------------------------------------------------------
void D3DToGL::PrintParameterToString ( uint32 dwToken, uint32 dwSourceOrDest, char *pRegisterName, int nBufLen, bool bForceScalarSource, int *pARLDestReg )
{
char buff[32];
bool bAllowWriteMask = true;
bool bAllowSwizzle = true;
uint32 dwRegNum = dwToken & D3DSP_REGNUM_MASK;
uint32 dwRegType, dwSwizzle;
uint32 dwSrcModifier = D3DSPSM_NONE;
// Clear string to zero length
V_snprintf( pRegisterName, nBufLen, "" );
dwRegType = GetRegTypeFromToken( dwToken );
// If this is a dest register
if ( dwSourceOrDest == DST_REGISTER )
{
// Instruction modifiers
if ( dwToken & D3DSPDM_PARTIALPRECISION )
{
// strcat_s( pRegisterName, nBufLen, "_pp" );
}
if ( dwToken & D3DSPDM_MSAMPCENTROID)
{
// strcat_s( pRegisterName, nBufLen, "_centroid" );
}
}
// If this is a source register
if ( dwSourceOrDest == SRC_REGISTER )
{
dwSrcModifier = dwToken & D3DSP_SRCMOD_MASK;
// If there are any source modifiers, check to see if they're at
// least partially "prefix" and prepend appropriately
if ( dwSrcModifier != D3DSPSM_NONE )
{
switch ( dwSrcModifier )
{
// These four start with just minus... (some may result in "postfix" notation as well later on)
case D3DSPSM_NEG: // negate
strcat_s( pRegisterName, nBufLen, "-" );
break;
case D3DSPSM_BIASNEG: // bias and negate
case D3DSPSM_SIGNNEG: // sign and negate
case D3DSPSM_X2NEG: // *2 and negate
TranslationError();
strcat_s( pRegisterName, nBufLen, "-" );
break;
case D3DSPSM_COMP: // complement
TranslationError();
strcat_s( pRegisterName, nBufLen, "1-" );
break;
case D3DSPSM_ABS: // abs()
strcat_s( pRegisterName, nBufLen, "abs(" );
break;
case D3DSPSM_ABSNEG: // -abs()
strcat_s( pRegisterName, nBufLen, "-abs(" );
break;
case D3DSPSM_NOT: // for predicate register: "!p0"
TranslationError();
strcat_s( pRegisterName, nBufLen, "!" );
break;
}
}
}
// Register name (from type and number)
switch ( dwRegType )
{
case D3DSPR_TEMP:
V_snprintf( buff, sizeof( buff ), "r%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
m_dwTempUsageMask |= 0x00000001 << dwRegNum; // Keep track of the use of this temp
break;
case D3DSPR_INPUT:
if ( !m_bVertexShader && ( dwSourceOrDest == SRC_REGISTER ) )
{
if ( m_dwMajorVersion == 3 )
{
V_snprintf( buff, sizeof( buff ), "oTempT%d", dwRegNum );
}
else
{
V_snprintf( buff, sizeof( buff ), dwRegNum == 0 ? "gl_Color" : "gl_SecondaryColor" );
}
strcat_s( pRegisterName, nBufLen, buff );
}
else
{
V_snprintf( buff, sizeof( buff ), "v%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
}
break;
case D3DSPR_CONST:
if ( m_bConstantRegisterDefined[dwRegNum] )
{
char szConstantRegName[3];
if ( m_bVertexShader )
{
V_snprintf( szConstantRegName, 3, "vd" );
}
else
{
V_snprintf( szConstantRegName, 3, "pd" );
}
// Put defined constants into their own namespace "d"
V_snprintf( buff, sizeof( buff ), "%s%d", szConstantRegName, dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
}
else if ( dwToken & D3DSHADER_ADDRESSMODE_MASK ) // Indirect addressing (e.g. skinning in a vertex shader)
{
char szConstantRegName[16];
if ( m_bVertexShader )
{
V_snprintf( szConstantRegName, 3, "vc" );
}
else // No indirect addressing in PS, this shouldn't happen
{
TranslationError();
V_snprintf( szConstantRegName, 3, "pc" );
}
if ( ( m_bGenerateBoneUniformBuffer ) && ( dwRegNum >= DXABSTRACT_VS_FIRST_BONE_SLOT ) )
{
if( dwRegNum < DXABSTRACT_VS_LAST_BONE_SLOT )
{
dwRegNum -= DXABSTRACT_VS_FIRST_BONE_SLOT;
V_strcpy( szConstantRegName, "vcbones" );
m_nHighestBoneRegister = ( DXABSTRACT_VS_PARAM_SLOTS - 1 ) - DXABSTRACT_VS_FIRST_BONE_SLOT;
}
else
{
dwRegNum -= ( DXABSTRACT_VS_LAST_BONE_SLOT + 1 ) - DXABSTRACT_VS_FIRST_BONE_SLOT;
m_nHighestRegister = m_bGenerateBoneUniformBuffer ? ( ( DXABSTRACT_VS_PARAM_SLOTS - 1 ) - ( ( DXABSTRACT_VS_LAST_BONE_SLOT + 1 ) - DXABSTRACT_VS_FIRST_BONE_SLOT ) ): ( DXABSTRACT_VS_PARAM_SLOTS - 1 );
}
}
else
{
m_nHighestRegister = m_bGenerateBoneUniformBuffer ? ( ( DXABSTRACT_VS_PARAM_SLOTS - 1 ) - ( ( DXABSTRACT_VS_LAST_BONE_SLOT + 1 ) - DXABSTRACT_VS_FIRST_BONE_SLOT ) ): ( DXABSTRACT_VS_PARAM_SLOTS - 1 );
}
// Index into single pc/vc[] register array with relative addressing
int nDstReg = -1;
FlagIndirectRegister( GetNextToken(), &nDstReg );
if ( pARLDestReg )
*pARLDestReg = nDstReg;
Assert( nDstReg != ARL_DEST_NONE );
int nSrcSwizzle = 'x';
if ( nDstReg == ARL_DEST_Y )
nSrcSwizzle = 'y';
else if ( nDstReg == ARL_DEST_Z )
nSrcSwizzle = 'z';
else if ( nDstReg == ARL_DEST_W )
nSrcSwizzle = 'w';
V_snprintf( buff, sizeof( buff ), "%s[int(va_r.%c) + %d]", szConstantRegName, nSrcSwizzle, dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
// Must allow swizzling, otherwise this example doesn't compile right: mad r3.xyz, c27[a0.w].w, r3, r7
//bAllowSwizzle = false;
}
else // Direct addressing of constant array
{
char szConstantRegName[16];
V_snprintf( szConstantRegName, 3, m_bVertexShader ? "vc" : "pc" );
if ( ( m_bGenerateBoneUniformBuffer ) && ( dwRegNum >= DXABSTRACT_VS_FIRST_BONE_SLOT ) )
{
if( dwRegNum < DXABSTRACT_VS_LAST_BONE_SLOT )
{
dwRegNum -= DXABSTRACT_VS_FIRST_BONE_SLOT;
V_strcpy( szConstantRegName, "vcbones" );
m_nHighestBoneRegister = MAX( m_nHighestBoneRegister, (int)dwRegNum );
}
else
{
// handles case where constants after the bones are used (c217 onwards), these are to be concatenated with those before the bones (c0-c57)
// keep track of regnum for concatenated array
dwRegNum -= ( DXABSTRACT_VS_LAST_BONE_SLOT + 1 ) - DXABSTRACT_VS_FIRST_BONE_SLOT;
m_nHighestRegister = MAX( m_nHighestRegister, dwRegNum );
}
}
else
{
//// NOGO if (dwRegNum != 255) // have seen cases where dwRegNum is 0xFF... need to figure out where those opcodes are coming from
{
m_nHighestRegister = MAX( m_nHighestRegister, dwRegNum );
}
Assert( m_nHighestRegister < DXABSTRACT_VS_PARAM_SLOTS );
}
// Index into single pc/vc[] register array with absolute addressing, same for GLSL and ASM
V_snprintf( buff, sizeof( buff ), "%s[%d]", szConstantRegName, dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
}
break;
case D3DSPR_ADDR: // aliases to D3DSPR_TEXTURE
if ( m_bVertexShader )
{
Assert( dwRegNum == 0 );
V_snprintf( buff, sizeof( buff ), "va_r" );
}
else // D3DSPR_TEXTURE in the pixel shader
{
// If dest reg, this is an iterator/varying declaration
if ( dwSourceOrDest == DST_REGISTER )
{
// Is this iterator centroid?
if ( m_nCentroidMask & ( 0x00000001 << dwRegNum ) )
{
V_snprintf( buff, sizeof( buff ), "centroid varying vec4 oT%d", dwRegNum ); // centroid varying
}
else
{
V_snprintf( buff, sizeof( buff ), "varying vec4 oT%d", dwRegNum );
}
bAllowWriteMask = false;
}
else // source register
{
V_snprintf( buff, sizeof( buff ), "oT%d", dwRegNum );
}
}
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_RASTOUT: // vertex shader oPos
Assert( m_bVertexShader );
Assert( m_dwMajorVersion == 2 );
switch( dwRegNum )
{
case D3DSRO_POSITION:
strcat_s( pRegisterName, nBufLen, "vTempPos" ); // In GLSL, this ends up in gl_Position later on
m_bDeclareVSOPos = true;
break;
case D3DSRO_FOG:
strcat_s( pRegisterName, nBufLen, "gl_FogFragCoord" );
m_bDeclareVSOFog = true;
break;
default:
printf( "\nD3DSPR_RASTOUT: dwRegNum is %08x and token is %08x", dwRegNum, dwToken );
TranslationError();
break;
}
break;
case D3DSPR_ATTROUT:
Assert( m_bVertexShader );
Assert( m_dwMajorVersion == 2 );
if ( dwRegNum == 0 )
{
V_snprintf( buff, sizeof( buff ), "gl_FrontColor" );
}
else if ( dwRegNum == 1 )
{
V_snprintf( buff, sizeof( buff ), "gl_FrontSecondaryColor" );
}
else
{
Error( "Invalid D3DSPR_ATTROUT index" );
}
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_TEXCRDOUT: // aliases to D3DSPR_OUTPUT
if ( m_bVertexShader )
{
if ( m_nVSPositionOutput == (int32) dwRegNum )
{
V_snprintf( buff, sizeof( buff ), "vTempPos" ); // This output varying is the position
}
else if ( m_dwMajorVersion == 3 )
{
V_snprintf( buff, sizeof( buff ), "oTempT%d", dwRegNum );
}
else
{
V_snprintf( buff, sizeof( buff ), "oT%d", dwRegNum );
}
m_dwTexCoordOutMask |= ( 0x00000001 << dwRegNum );
}
else
{
V_snprintf( buff, sizeof( buff ), "oC%d", dwRegNum );
}
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_CONSTINT:
V_snprintf( buff, sizeof( buff ), "i%d", dwRegNum ); // Loops use these
strcat_s( pRegisterName, nBufLen, buff );
m_dwConstIntUsageMask |= 0x00000001 << dwRegNum; // Keep track of the use of this integer constant
break;
case D3DSPR_COLOROUT:
V_snprintf( buff, sizeof( buff ), "gl_FragData[%d]", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
m_bOutputColorRegister[dwRegNum] = true;
break;
case D3DSPR_DEPTHOUT:
V_snprintf( buff, sizeof( buff ), "gl_FragDepth" );
strcat_s( pRegisterName, nBufLen, buff );
m_bOutputDepthRegister = true;
break;
case D3DSPR_SAMPLER:
V_snprintf( buff, sizeof( buff ), "sampler%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_CONST2:
TranslationError();
V_snprintf( buff, sizeof( buff ), "c%d", dwRegNum+2048);
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_CONST3:
TranslationError();
V_snprintf( buff, sizeof( buff ), "c%d", dwRegNum+4096);
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_CONST4:
TranslationError();
V_snprintf( buff, sizeof( buff ), "c%d", dwRegNum+6144);
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_CONSTBOOL:
V_snprintf( buff, sizeof( buff ), m_bVertexShader ? "b%d" : "fb%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
m_dwConstBoolUsageMask |= 0x00000001 << dwRegNum; // Keep track of the use of this bool constant
break;
case D3DSPR_LOOP:
TranslationError();
V_snprintf( buff, sizeof( buff ), "aL%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_TEMPFLOAT16:
TranslationError();
V_snprintf( buff, sizeof( buff ), "temp_float16_xxx%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_MISCTYPE:
Assert( dwRegNum == 0 ); // So far, we know that MISC[0] is gl_FragCoord (aka vPos in DX ASM parlance), but we don't know about any other MISC registers
V_snprintf( buff, sizeof( buff ), "gl_FragCoord" );
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_LABEL:
TranslationError();
V_snprintf( buff, sizeof( buff ), "label%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_PREDICATE:
TranslationError();
V_snprintf( buff, sizeof( buff ), "p%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
break;
}
// If this is a dest register
if ( dwSourceOrDest == DST_REGISTER )
{
//
// Write masks
//
// If some (not all, not none) of the write masks are set, we should include them
//
if ( bAllowWriteMask && ( !((dwToken & D3DSP_WRITEMASK_ALL) == D3DSP_WRITEMASK_ALL) || ((dwToken & D3DSP_WRITEMASK_ALL) == 0x00000000) ) )
{
// Put the dot on there
strcat_s( pRegisterName, nBufLen, "." );
// Optionally put on the x, y, z or w
int nMasksWritten = 0;
if ( dwToken & D3DSP_WRITEMASK_0 )
{
strcat_s( pRegisterName, nBufLen, "x" );
++nMasksWritten;
}
if ( dwToken & D3DSP_WRITEMASK_1 )
{
strcat_s( pRegisterName, nBufLen, "y" );
++nMasksWritten;
}
if ( dwToken & D3DSP_WRITEMASK_2 )
{
strcat_s( pRegisterName, nBufLen, "z" );
++nMasksWritten;
}
if ( dwToken & D3DSP_WRITEMASK_3 )
{
strcat_s( pRegisterName, nBufLen, "w" );
++nMasksWritten;
}
}
}
else // must be a source register
{
if ( bAllowSwizzle ) // relative addressing hard-codes the swizzle on a0.x
{
uint32 dwXSwizzle, dwYSwizzle, dwZSwizzle, dwWSwizzle;
// Mask out the swizzle modifier
dwSwizzle = dwToken & D3DVS_SWIZZLE_MASK;
// If there are any swizzles at all, tack on the appropriate notation
if ( dwSwizzle != D3DVS_NOSWIZZLE )
{
// Separate out the two-bit codes for each component swizzle
dwXSwizzle = dwSwizzle & D3DVS_X_W;
dwYSwizzle = dwSwizzle & D3DVS_Y_W;
dwZSwizzle = dwSwizzle & D3DVS_Z_W;
dwWSwizzle = dwSwizzle & D3DVS_W_W;
// Put on the dot
strcat_s( pRegisterName, nBufLen, "." );
// See where X comes from
switch ( dwXSwizzle )
{
case D3DVS_X_X:
strcat_s( pRegisterName, nBufLen, "x" );
break;
case D3DVS_X_Y:
strcat_s( pRegisterName, nBufLen, "y" );
break;
case D3DVS_X_Z:
strcat_s( pRegisterName, nBufLen, "z" );
break;
case D3DVS_X_W:
strcat_s( pRegisterName, nBufLen, "w" );
break;
}
if ( !bForceScalarSource )
{
// If the source of the remaining components are aren't
// identical to the source of x, continue with swizzle
if ( ((dwXSwizzle >> D3DVS_SWIZZLE_SHIFT) != (dwYSwizzle >> (D3DVS_SWIZZLE_SHIFT + 2))) || // X and Y sources match?
((dwXSwizzle >> D3DVS_SWIZZLE_SHIFT) != (dwZSwizzle >> (D3DVS_SWIZZLE_SHIFT + 4))) || // X and Z sources match?
((dwXSwizzle >> D3DVS_SWIZZLE_SHIFT) != (dwWSwizzle >> (D3DVS_SWIZZLE_SHIFT + 6)))) // X and W sources match?
{
// OpenGL seems to want us to have either 1 or 4 components in a swizzle, so just plow on through the rest
switch ( dwYSwizzle )
{
case D3DVS_Y_X:
strcat_s( pRegisterName, nBufLen, "x" );
break;
case D3DVS_Y_Y:
strcat_s( pRegisterName, nBufLen, "y" );
break;
case D3DVS_Y_Z:
strcat_s( pRegisterName, nBufLen, "z" );
break;
case D3DVS_Y_W:
strcat_s( pRegisterName, nBufLen, "w" );
break;
}
switch ( dwZSwizzle )
{
case D3DVS_Z_X:
strcat_s( pRegisterName, nBufLen, "x" );
break;
case D3DVS_Z_Y:
strcat_s( pRegisterName, nBufLen, "y" );
break;
case D3DVS_Z_Z:
strcat_s( pRegisterName, nBufLen, "z" );
break;
case D3DVS_Z_W:
strcat_s( pRegisterName, nBufLen, "w" );
break;
}
switch ( dwWSwizzle )
{
case D3DVS_W_X:
strcat_s( pRegisterName, nBufLen, "x" );
break;
case D3DVS_W_Y:
strcat_s( pRegisterName, nBufLen, "y" );
break;
case D3DVS_W_Z:
strcat_s( pRegisterName, nBufLen, "z" );
break;
case D3DVS_W_W:
strcat_s( pRegisterName, nBufLen, "w" );
break;
}
}
} // end !bForceScalarSource
}
else // dwSwizzle == D3DVS_NOSWIZZLE
{
// If this is a MOVA / ARL, GL on the Mac requires us to tack the .x onto the source register
if ( bForceScalarSource )
{
strcat_s( pRegisterName, nBufLen, ".x" );
}
}
} // bAllowSwizzle
// If there are any source modifiers, check to see if they're at
// least partially "postfix" and tack them on as appropriate
if ( dwSrcModifier != D3DSPSM_NONE )
{
switch ( dwSrcModifier )
{
case D3DSPSM_BIAS: // bias
case D3DSPSM_BIASNEG: // bias and negate
TranslationError();
strcat_s( pRegisterName, nBufLen, "_bx2" );
break;
case D3DSPSM_SIGN: // sign
case D3DSPSM_SIGNNEG: // sign and negate
TranslationError();
strcat_s( pRegisterName, nBufLen, "_sgn" );
break;
case D3DSPSM_X2: // *2
case D3DSPSM_X2NEG: // *2 and negate
TranslationError();
strcat_s( pRegisterName, nBufLen, "_x2" );
break;
case D3DSPSM_ABS: // abs()
case D3DSPSM_ABSNEG: // -abs()
strcat_s( pRegisterName, nBufLen, ")" );
break;
case D3DSPSM_DZ: // divide through by z component
TranslationError();
strcat_s( pRegisterName, nBufLen, "_dz" );
break;
case D3DSPSM_DW: // divide through by w component
TranslationError();
strcat_s( pRegisterName, nBufLen, "_dw" );
break;
}
} // end postfix modifiers (really only ps.1.x)
}
}
void D3DToGL::RecordInputAndOutputPositions()
{
// Remember where we are in the token stream.
m_pRecordedInputTokenStart = m_pdwNextToken;
// Remember where our outputs are.
m_nRecordedParamCodeStrlen = V_strlen( (char*)m_pBufParamCode->Base() );
m_nRecordedALUCodeStrlen = V_strlen( (char*)m_pBufALUCode->Base() );
m_nRecordedAttribCodeStrlen = V_strlen( (char*)m_pBufAttribCode->Base() );
}
void D3DToGL::AddTokenHexCodeToBuffer( char *pBuffer, int nSize, int nLastStrlen )
{
int nCurStrlen = V_strlen( pBuffer );
if ( nCurStrlen == nLastStrlen )
return;
// Build a string with all the hex codes of the tokens since last time.
char szHex[512];
szHex[0] = '\n';
V_snprintf( &szHex[1], sizeof( szHex )-1, HEXCODE_HEADER );
int nTokens = MIN( 10, m_pdwNextToken - m_pRecordedInputTokenStart );
for ( int i=0; i < nTokens; i++ )
{
char szTemp[32];
V_snprintf( szTemp, sizeof( szTemp ), "0x%x ", m_pRecordedInputTokenStart[i] );
V_strncat( szHex, szTemp, sizeof( szHex ) );
}
V_strncat( szHex, "\n", sizeof( szHex ) );
// Insert the hex codes into the string.
int nBytesToInsert = V_strlen( szHex );
if ( nCurStrlen + nBytesToInsert + 1 >= nSize )
Error( "Buffer overflow writing token hex codes" );
if ( m_bPutHexCodesAfterLines )
{
// Put it at the end of the last line.
if ( pBuffer[nCurStrlen-1] == '\n' )
pBuffer[nCurStrlen-1] = 0;
V_strncat( pBuffer, &szHex[1], nSize );
}
else
{
memmove( pBuffer + nLastStrlen + nBytesToInsert, pBuffer + nLastStrlen, nCurStrlen - nLastStrlen + 1 );
memcpy( pBuffer + nLastStrlen, szHex, nBytesToInsert );
}
}
void D3DToGL::AddTokenHexCode()
{
if ( m_pdwNextToken > m_pRecordedInputTokenStart )
{
AddTokenHexCodeToBuffer( (char*)m_pBufParamCode->Base(), m_pBufParamCode->Size(), m_nRecordedParamCodeStrlen );
AddTokenHexCodeToBuffer( (char*)m_pBufALUCode->Base(), m_pBufALUCode->Size(), m_nRecordedALUCodeStrlen );
AddTokenHexCodeToBuffer( (char*)m_pBufAttribCode->Base(), m_pBufAttribCode->Size(), m_nRecordedAttribCodeStrlen );
}
}
uint32 D3DToGL::MaintainAttributeMap( uint32 dwToken, uint32 dwRegToken )
{
// Check that this reg index has not been used before - if it has, let Houston know
uint dwRegIndex = dwRegToken & D3DSP_REGNUM_MASK;
if ( m_dwAttribMap[ dwRegIndex ] == 0xFFFFFFFF )
{
// log it
// semantic/usage in the higher nibble
// usage index in the low nibble
uint usage = dwToken & D3DSP_DCL_USAGE_MASK;
uint usageindex = ( dwToken & D3DSP_DCL_USAGEINDEX_MASK ) >> D3DSP_DCL_USAGEINDEX_SHIFT;
m_dwAttribMap[ dwRegIndex ] = ( usage << 4 ) | usageindex;
// avoid writing 0xBB since runtime code uses that for an 'unused' marker
if ( m_dwAttribMap[ dwRegIndex ] == 0xBB )
{
Debugger();
}
}
else
{
//not OK
Debugger();
}
return dwRegIndex;
}
void D3DToGL::Handle_DCL()
{
uint32 dwToken = GetNextToken(); // What kind of dcl is this...
uint32 dwRegToken = GetNextToken(); // Look ahead to register token
uint32 dwUsage = ( dwToken & D3DSP_DCL_USAGE_MASK );
uint32 dwUsageIndex = ( dwToken & D3DSP_DCL_USAGEINDEX_MASK ) >> D3DSP_DCL_USAGEINDEX_SHIFT;
uint32 dwRegNum = dwRegToken & D3DSP_REGNUM_MASK;
uint32 nRegType = GetRegTypeFromToken( dwRegToken );
if ( m_bVertexShader )
{
// If this is an output, remember the index (what the ASM code calls o0, o1, o2..) and the semantic.
// When GetParameterString( DST_REGISTER ) hits this one, we'll return "oN".
// At the end of the main() function, we'll insert a bunch of statements like "gl_Color = o2" based on what we remembered here.
if ( ( m_dwMajorVersion >= 3 ) && ( nRegType == D3DSPR_OUTPUT ) )
{
// uint32 dwRegComponents = ( dwRegToken & D3DSP_WRITEMASK_ALL ) >> 16; // Components used by the output register (1 means float, 3 means vec2, 7 means vec3, f means vec4)
if ( dwRegNum >= MAX_DECLARED_OUTPUTS )
Error( "Output register number (%d) too high (only %d supported).", dwRegNum, MAX_DECLARED_OUTPUTS );
if ( m_DeclaredOutputs[dwRegNum] != UNDECLARED_OUTPUT )
Error( "Output dcl_ hit for register #%d more than once!", dwRegNum );
Assert( dwToken != UNDECLARED_OUTPUT );
m_DeclaredOutputs[dwRegNum] = dwToken;
//uint32 dwUsage = ( dwToken & D3DSP_DCL_USAGE_MASK );
//uint32 dwUsageIndex = ( dwToken & D3DSP_DCL_USAGEINDEX_MASK ) >> D3DSP_DCL_USAGEINDEX_SHIFT;
// Flag which o# output register maps to gl_Position
if ( dwUsage == D3DDECLUSAGE_POSITION )
{
m_nVSPositionOutput = dwUsageIndex;
m_bDeclareVSOPos = true;
}
if ( m_bAddHexCodeComments )
{
CUtlString sParam2 = GetUsageAndIndexString( dwToken, SEMANTIC_OUTPUT );
PrintToBuf( *m_pBufHeaderCode, "// [GL remembering that oT%d maps to %s]\n", dwRegNum, sParam2.String() );
}
}
else if ( GetRegType( dwRegToken ) == D3DSPR_SAMPLER )
{
// We can support vertex texturing if necessary, but I can't find a use case in any branch. (HW morphing in L4D2 isn't enabled, and the comments indicate that r_hwmorph isn't compatible with mat_queue_mode anyway, and CS:GO/DoTA don't use vertex shader texturing.)
TranslationError();
int nRegNum = dwRegToken & D3DSP_REGNUM_MASK;
switch ( TextureType( dwToken ) )
{
default:
case D3DSTT_UNKNOWN:
case D3DSTT_2D:
m_dwSamplerTypes[nRegNum] = SAMPLER_TYPE_2D;
break;
case D3DSTT_CUBE:
m_dwSamplerTypes[nRegNum] = SAMPLER_TYPE_CUBE;
break;
case D3DSTT_VOLUME:
m_dwSamplerTypes[nRegNum] = SAMPLER_TYPE_3D;
break;
}
// Track sampler declarations
m_dwSamplerUsageMask |= 1 << nRegNum;
}
else
{
Assert( GetRegType( dwRegToken ) == D3DSPR_INPUT);
CUtlString sParam1 = GetParameterString( dwRegToken, DST_REGISTER, false, NULL );
CUtlString sParam2 = GetUsageAndIndexString( dwToken, SEMANTIC_INPUT );
sParam2 = FixGLSLSwizzle( sParam1, sParam2 );
PrintToBuf( *m_pBufHeaderCode, "attribute vec4 %s; // ", sParam1.String() );
MaintainAttributeMap( dwToken, dwRegToken );
char temp[128];
// regnum goes straight into the vertex.attrib[n] index
sprintf( temp, "%08x %08x\n", dwToken, dwRegToken );
StrcatToHeaderCode( temp );
}
}
else // Pixel shader
{
// If the register is a sampler, the dcl has a dimension decorator that we have to save for subsequent TEX instructions
uint32 nRegType = GetRegType( dwRegToken );
if ( nRegType == D3DSPR_SAMPLER )
{
int nRegNum = dwRegToken & D3DSP_REGNUM_MASK;
switch ( TextureType( dwToken ) )
{
default:
case D3DSTT_UNKNOWN:
case D3DSTT_2D:
m_dwSamplerTypes[nRegNum] = SAMPLER_TYPE_2D;
break;
case D3DSTT_CUBE:
m_dwSamplerTypes[nRegNum] = SAMPLER_TYPE_CUBE;
break;
case D3DSTT_VOLUME:
m_dwSamplerTypes[nRegNum] = SAMPLER_TYPE_3D;
break;
}
// Track sampler declarations
m_dwSamplerUsageMask |= 1 << nRegNum;
}
else // Not a sampler, we're going to generate varying declaration code
{
// In pixel shaders we only declare texture coordinate varyings since they may be using centroid
if ( ( m_dwMajorVersion == 3 ) && ( nRegType == D3DSPR_INPUT ) )
{
Assert( m_DeclaredInputs[dwRegNum] == UNDECLARED_INPUT );
m_DeclaredInputs[dwRegNum] = dwToken;
if ( ( dwUsage != D3DDECLUSAGE_COLOR ) && ( dwUsage != D3DDECLUSAGE_TEXCOORD ) )
{
TranslationError(); // Not supported yet, but can be if we need it.
}
if ( dwUsage == D3DDECLUSAGE_TEXCOORD )
{
char buf[256];
if ( m_nCentroidMask & ( 0x00000001 << dwUsageIndex ) )
{
V_snprintf( buf, sizeof( buf ), "centroid varying vec4 oT%d;\n", dwUsageIndex ); // centroid varying
}
else
{
V_snprintf( buf, sizeof( buf ), "varying vec4 oT%d;\n", dwUsageIndex );
}
StrcatToHeaderCode( buf );
}
}
else if ( nRegType == D3DSPR_TEXTURE )
{
char buff[256];
PrintParameterToString( dwRegToken, DST_REGISTER, buff, sizeof( buff ), false, NULL );
PrintToBuf( *m_pBufHeaderCode, "%s;\n",buff );
}
else
{
// No need to declare anything (probably D3DSPR_MISCTYPE either VPOS or VFACE)
}
}
}
}
static bool IsFloatNaN( float f )
{
const uint nBits = *reinterpret_cast<uint*>(&f);
const uint nExponent = ( nBits >> 23 ) & 0xFF;
return ( nExponent == 255 );
}
static inline bool EqualTol( double a, double b, double t )
{
return fabs( a - b ) <= ( ( MAX( fabs( a ), fabs( b ) ) + 1.0 ) * t );
}
// Originally written by Bruce Dawson, see:
// See http://randomascii.wordpress.com/2012/03/08/float-precisionfrom-zero-to-100-digits-2/
// This class represents a very limited high-precision number with 'count' 32-bit
// unsigned elements.
template <int count>
struct HighPrec
{
typedef unsigned T;
typedef unsigned long long Product_t;
static const int kWordShift = 32;
HighPrec()
{
memset(m_data, 0, sizeof(m_data));
m_nLowestNonZeroIndex = ARRAYSIZE(m_data);
}
// Insert the bits from value into m_data, shifted in from the bottom (least
// significant end) by the specified number of bits. A shift of zero or less
// means that none of the bits will be shifted in. A shift of one means that
// the high bit of value will be in the bottom of the last element of m_data -
// the least significant bit. A shift of kWordShift means that value will be
// in the least significant element of m_data, and so on.
void InsertLowBits(T value, int shiftAmount)
{
if (shiftAmount <= 0)
return;
int subShift = shiftAmount & (kWordShift - 1);
int bigShift = shiftAmount / kWordShift;
Product_t result = (Product_t)value << subShift;
T resultLow = (T)result;
T resultHigh = result >> kWordShift;
// Use an unsigned type so that negative numbers will become large,
// which makes the range checking below simpler.
unsigned highIndex = ARRAYSIZE(m_data) - 1 - bigShift;
// Write the results to the data array. If the index is too large
// then that means that the data was shifted off the edge.
if ( (highIndex < ARRAYSIZE(m_data)) && ( resultHigh ) )
{
m_data[highIndex] |= resultHigh;
m_nLowestNonZeroIndex = MIN( m_nLowestNonZeroIndex, highIndex );
}
if ( ( highIndex + 1 < ARRAYSIZE(m_data)) && ( resultLow ) )
{
m_data[highIndex + 1] |= resultLow;
m_nLowestNonZeroIndex = MIN( m_nLowestNonZeroIndex, highIndex + 1 );
}
}
// Insert the bits from value into m_data, shifted in from the top (most
// significant end) by the specified number of bits. A shift of zero or less
// means that none of the bits will be shifted in. A shift of one means that
// the low bit of value will be in the top of the first element of m_data -
// the most significant bit. A shift of kWordShift means that value will be
// in the most significant element of m_data, and so on.
void InsertTopBits(T value, int shiftAmount)
{
InsertLowBits(value, (ARRAYSIZE(m_data) + 1) * kWordShift - shiftAmount);
}
// Return true if all elements of m_data are zero.
bool IsZero() const
{
bool bIsZero = ( m_nLowestNonZeroIndex == ARRAYSIZE(m_data) );
#ifdef DEBUG
for (int i = 0; i < ARRAYSIZE(m_data); ++i)
{
if (m_data[i])
{
Assert( !bIsZero );
return false;
}
}
Assert( bIsZero );
#endif
return bIsZero;
}
// Divide by div and return the remainder, from 0 to div-1.
// Standard long-division algorithm.
T DivReturnRemainder(T divisor)
{
T remainder = 0;
#ifdef DEBUG
for (uint j = 0; j < m_nLowestNonZeroIndex; ++j)
{
Assert( m_data[j] == 0 );
}
#endif
int nNewLowestNonZeroIndex = ARRAYSIZE(m_data);
for (int i = m_nLowestNonZeroIndex; i < ARRAYSIZE(m_data); ++i)
{
Product_t dividend = ((Product_t)remainder << kWordShift) + m_data[i];
Product_t result = dividend / divisor;
remainder = T(dividend % divisor);
m_data[i] = T(result);
if ( ( result ) && ( nNewLowestNonZeroIndex == ARRAYSIZE(m_data) ) )
nNewLowestNonZeroIndex = i;
}
m_nLowestNonZeroIndex = nNewLowestNonZeroIndex;
return remainder;
}
// The individual 'digits' (32-bit unsigned integers actually) that
// make up the number. The most-significant digit is in m_data[0].
T m_data[count];
uint m_nLowestNonZeroIndex;
};
union Double_t
{
Double_t(double num = 0.0f) : f(num) {}
// Portable extraction of components.
bool Negative() const { return (i >> 63) != 0; }
int64_t RawMantissa() const { return i & ((1LL << 52) - 1); }
int64_t RawExponent() const { return (i >> 52) & 0x7FF; }
int64_t i;
double f;
};
static uint PrintDoubleInt( char *pBuf, uint nBufSize, double f, uint nMinChars )
{
static const char *pDigits = "00010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899";
Assert( !nMinChars || ( ( nMinChars % 6 ) == 0 ) );
char *pLastChar = pBuf + nBufSize - 1;
char *pDst = pLastChar;
*pDst-- = '\0';
// Put the double in our magic union so we can grab the components.
union Double_t num(f);
// Get the character that represents the sign.
// Check for NaNs or infinity.
if (num.RawExponent() == 2047)
{
TranslationError();
}
// Adjust for the exponent bias.
int exponentValue = int(num.RawExponent() - 1023);
// Add the implied one to the mantissa.
uint64_t mantissaValue = (1ll << 52) + num.RawMantissa();
// Special-case for denormals - no special exponent value and
// no implied one.
if (num.RawExponent() == 0)
{
exponentValue = -1022;
mantissaValue = num.RawMantissa();
}
uint32_t mantissaHigh = mantissaValue >> 32;
uint32_t mantissaLow = mantissaValue & 0xFFFFFFFF;
// The first bit of the mantissa has an implied value of one and this can
// be shifted 1023 positions to the left, so that's 1024 bits to the left
// of the binary point, or 32 32-bit words for the integer part.
HighPrec<32> intPart;
// When our exponentValue is zero (a number in the 1.0 to 2.0 range)
// we have a 53-bit mantissa and the implied value of the highest bit
// is 1. We need to shift 12 bits in from the bottom to get that 53rd bit
// into the ones spot in the integral portion.
// To complicate it a bit more we have to insert the mantissa as two parts.
intPart.InsertLowBits(mantissaHigh, 12 + exponentValue);
intPart.InsertLowBits(mantissaLow, 12 + exponentValue - 32);
bool bAnyDigitsLeft;
do
{
uint remainder = intPart.DivReturnRemainder( 1000000 ); // 10^6
uint origRemainer = remainder; (void)origRemainer;
bAnyDigitsLeft = !intPart.IsZero();
if ( bAnyDigitsLeft )
{
uint n = remainder % 100U; remainder /= 100U; *reinterpret_cast<uint16*>(pDst - 1) = reinterpret_cast<const uint16*>(pDigits)[n];
n = remainder % 100U; remainder /= 100U; *reinterpret_cast<uint16*>(pDst - 1 - 2) = reinterpret_cast<const uint16*>(pDigits)[n];
Assert( remainder < 100U );
*reinterpret_cast<uint16*>(pDst - 1 - 4) = reinterpret_cast<const uint16*>(pDigits)[remainder];
pDst -= 6;
}
else
{
uint n = remainder % 100U; remainder /= 100U; *reinterpret_cast<uint16*>(pDst - 1) = reinterpret_cast<const uint16*>(pDigits)[n]; --pDst; if ( ( n >= 10 ) || ( remainder ) ) --pDst;
if ( remainder )
{
n = remainder % 100U; remainder /= 100U; *reinterpret_cast<uint16*>(pDst - 1) = reinterpret_cast<const uint16*>(pDigits)[n]; --pDst; if ( ( n >= 10 ) || ( remainder ) ) --pDst;
if ( remainder )
{
Assert( remainder < 100U );
*reinterpret_cast<uint16*>(pDst - 1) = reinterpret_cast<const uint16*>(pDigits)[remainder]; --pDst; if ( remainder >= 10 ) --pDst;
}
}
}
} while ( bAnyDigitsLeft );
uint l = pLastChar - pDst;
while ( ( l - 1 ) < nMinChars )
{
*pDst-- = '0';
l++;
}
Assert( (int)l == ( pLastChar - pDst ) );
Assert( l <= nBufSize );
memmove( pBuf, pDst + 1, l );
return l - 1;
}
// FloatToString is equivalent to sprintf( "%.12f" ), but doesn't have any dependencies on the current locale setting.
// Unfortunately, high accuracy radix conversion is actually pretty tricky to do right.
// Most importantly, this function has the same max roundtrip (IEEE->ASCII->IEEE) error as the MS CRT functions and can reliably handle extremely large inputs.
static void FloatToString( char *pBuf, uint nBufSize, double fConst )
{
char *pEnd = pBuf + nBufSize;
char *pDst = pBuf;
double flVal = fConst;
if ( IsFloatNaN( flVal ) )
{
flVal = 0;
}
if ( flVal < 0.0f )
{
*pDst++ = '-';
flVal = -flVal;
}
double flInt;
double flFract = modf( flVal, &flInt );
flFract = floor( flFract * 1000000000000.0 + .5 );
if ( !flInt )
{
*pDst++ = '0';
}
else
{
uint l = PrintDoubleInt( pDst, pEnd - pDst, flInt, 0 );
pDst += l;
}
*pDst++ = '.';
if ( !flFract )
{
*pDst++ = '0';
*pDst++ = '\0';
}
else
{
uint l = PrintDoubleInt( pDst, pEnd - pDst, flFract, 12 );
pDst += l;
StripExtraTrailingZeros( pBuf ); // Turn 1.00000 into 1.0
}
}
#if 0
#include "vstdlib/random.h"
static void TestFloatConversion()
{
for ( ; ; )
{
double fConst;
switch ( rand() % 4 )
{
case 0:
fConst = RandomFloat( -1e-30, 1e+30 ); break;
case 1:
fConst = RandomFloat( -1e-10, 1e+10 ); break;
case 2:
fConst = RandomFloat( -1e-5, 1e+5 ); break;
default:
fConst = RandomFloat( -1, 1 ); break;
}
char szTemp[1024];
// FloatToString does not rely on V_snprintf(), so it can't be affected by the current locale setting.
FloatToString( szTemp, sizeof( szTemp ), fConst );
static double flMaxErr1;
static double flMaxErr2;
// Compare FloatToString()'s results vs. V_snprintf()'s, also track maximum error of each.
double flCheck = atof( szTemp );
double flErr = fabs( flCheck - fConst );
flMaxErr1 = MAX( flMaxErr1, flErr );
Assert( EqualTol( flCheck, fConst, .000000125 ) );
char szTemp2[256];
V_snprintf( szTemp2, sizeof( szTemp2 ), "%.12f", fConst );
StripExtraTrailingZeros( szTemp2 );
if ( !strchr( szTemp2, '.' ) )
{
V_strncat( szTemp2, ".0", sizeof( szTemp2 ) );
}
double flCheck2 = atof( szTemp2 );
double flErr2 = fabs( flCheck2 - fConst );
flMaxErr2 = MAX( flMaxErr2, flErr2 );
Assert( EqualTol( flCheck2, fConst, .000000125 ) );
if ( flMaxErr1 > flMaxErr2 )
{
Plat_DebugString( "!\n" );
}
}
}
#endif
void D3DToGL::Handle_DEFIB( uint32 instruction )
{
Assert( ( instruction == D3DSIO_DEFI ) || ( instruction == D3DSIO_DEFB ) );
// which register is being defined
uint32 dwToken = GetNextToken();
uint32 nRegNum = dwToken & D3DSP_REGNUM_MASK;
uint32 regType = GetRegTypeFromToken( dwToken );
if ( regType == D3DSPR_CONSTINT )
{
m_dwDefConstIntUsageMask |= ( 1 << nRegNum );
uint x = GetNextToken();
uint y = GetNextToken();
uint z = GetNextToken();
uint w = GetNextToken();
NOTE_UNUSED(y); NOTE_UNUSED(z); NOTE_UNUSED(w);
Assert( nRegNum < 32 );
if ( nRegNum < 32 )
{
m_dwDefConstIntIterCount[nRegNum] = x;
}
}
else
{
TranslationError();
}
}
void D3DToGL::Handle_DEF()
{
//TestFloatConversion();
//
// JasonM TODO: catch D3D's sincos-specific D3DSINCOSCONST1 and D3DSINCOSCONST2 constants and filter them out here
//
// Which register is being defined
uint32 dwToken = GetNextToken();
// Note that this constant was explicitly defined
m_bConstantRegisterDefined[dwToken & D3DSP_REGNUM_MASK] = true;
CUtlString sParamName = GetParameterString( dwToken, DST_REGISTER, false, NULL );
PrintIndentation( (char*)m_pBufParamCode->Base(), m_pBufParamCode->Size() );
PrintToBuf( *m_pBufParamCode, "vec4 %s = vec4( ", sParamName.String() );
// Run through the 4 floats
for ( int i=0; i < 4; i++ )
{
float fConst = uint32ToFloat( GetNextToken() );
char szTemp[1024];
FloatToString( szTemp, sizeof( szTemp ), fConst );
#if 0
static double flMaxErr1;
static double flMaxErr2;
// Compare FloatToString()'s results vs. V_snprintf()'s, also track maximum error of each.
double flCheck = atof( szTemp );
double flErr = fabs( flCheck - fConst );
flMaxErr1 = MAX( flMaxErr1, flErr );
Assert( EqualTol( flCheck, fConst, .000000125 ) );
char szTemp2[256];
V_snprintf( szTemp2, sizeof( szTemp2 ), "%.12f", fConst );
StripExtraTrailingZeros( szTemp2 );
if ( !strchr( szTemp2, '.' ) )
{
V_strncat( szTemp2, ".0", sizeof( szTemp2 ) );
}
double flCheck2 = atof( szTemp2 );
double flErr2 = fabs( flCheck2 - fConst );
flMaxErr2 = MAX( flMaxErr2, flErr2 );
Assert( EqualTol( flCheck2, fConst, .000000125 ) );
if ( flMaxErr1 > flMaxErr2 )
{
Plat_DebugString( "!\n" );
}
#endif
PrintToBuf( *m_pBufParamCode, i != 3 ? "%s, " : "%s", szTemp ); // end with comma-space
}
PrintToBuf( *m_pBufParamCode, " );\n" );
}
void D3DToGL::Handle_MAD( uint32 nInstruction )
{
uint32 nDestToken = GetNextToken();
CUtlString sParam1 = GetParameterString( nDestToken, DST_REGISTER, false, NULL );
int nARLComp0 = ARL_DEST_NONE;
CUtlString sParam2 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp0 );
int nARLComp1 = ARL_DEST_NONE;
CUtlString sParam3 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp1 );
int nARLComp2 = ARL_DEST_NONE;
CUtlString sParam4 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp2 );
// This optionally inserts a move from our dummy address register to the .x component of the real one
InsertMoveFromAddressRegister( m_pBufALUCode, nARLComp0, nARLComp1, nARLComp2 );
sParam2 = FixGLSLSwizzle( sParam1, sParam2 );
sParam3 = FixGLSLSwizzle( sParam1, sParam3 );
sParam4 = FixGLSLSwizzle( sParam1, sParam4 );
PrintToBufWithIndents( *m_pBufALUCode, "%s = %s * %s + %s;\n", sParam1.String(), sParam2.String(), sParam3.String(), sParam4.String() );
// If the _SAT instruction modifier is used, then do a saturate here.
if ( nDestToken & D3DSPDM_SATURATE )
{
int nComponents = GetNumSwizzleComponents( sParam1.String() );
if ( nComponents == 0 )
nComponents = 4;
PrintToBufWithIndents( *m_pBufALUCode, "%s = clamp( %s, %s, %s );\n", sParam1.String(), sParam1.String(), g_szVecZeros[nComponents], g_szVecOnes[nComponents] );
}
}
void D3DToGL::Handle_DP2ADD()
{
char pDestReg[64], pSrc0Reg[64], pSrc1Reg[64], pSrc2Reg[64];
uint32 nDestToken = GetNextToken();
PrintParameterToString( nDestToken, DST_REGISTER, pDestReg, sizeof( pDestReg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc0Reg, sizeof( pSrc0Reg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc1Reg, sizeof( pSrc1Reg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc2Reg, sizeof( pSrc2Reg ), false, NULL );
// We should only be assigning to a single component of the dest.
Assert( GetNumSwizzleComponents( pDestReg ) == 1 );
Assert( GetNumSwizzleComponents( pSrc2Reg ) == 1 );
// This is a 2D dot product, so we only want two entries from the middle components.
CUtlString sArg0 = EnsureNumSwizzleComponents( pSrc0Reg, 2 );
CUtlString sArg1 = EnsureNumSwizzleComponents( pSrc1Reg, 2 );
PrintToBufWithIndents( *m_pBufALUCode, "%s = dot( %s, %s ) + %s;\n", pDestReg, sArg0.String(), sArg1.String(), pSrc2Reg );
// If the _SAT instruction modifier is used, then do a saturate here.
if ( nDestToken & D3DSPDM_SATURATE )
{
int nComponents = GetNumSwizzleComponents( pDestReg );
if ( nComponents == 0 )
nComponents = 4;
PrintToBufWithIndents( *m_pBufALUCode, "%s = clamp( %s, %s, %s );\n", pDestReg, pDestReg, g_szVecZeros[nComponents], g_szVecOnes[nComponents] );
}
}
void D3DToGL::Handle_SINCOS()
{
char pDestReg[64], pSrc0Reg[64];
PrintParameterToString( GetNextToken(), DST_REGISTER, pDestReg, sizeof( pDestReg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc0Reg, sizeof( pSrc0Reg ), true, NULL );
m_bNeedsSinCosDeclarations = true;
CUtlString sDest( pDestReg );
CUtlString sArg0 = EnsureNumSwizzleComponents( pSrc0Reg, 1 );// Ensure input is scalar
CUtlString sResult( "vSinCosTmp.xy" ); // Always going to populate this
sResult = FixGLSLSwizzle( sDest, sResult ); // Make sure we match the desired output reg
PrintToBufWithIndents( *m_pBufALUCode, "vSinCosTmp.z = %s * %s;\n", sArg0.String(), sArg0.String() );
PrintToBufWithIndents( *m_pBufALUCode, "vSinCosTmp.xy = vSinCosTmp.zz * scA.xy + scA.wz;\n" );
PrintToBufWithIndents( *m_pBufALUCode, "vSinCosTmp.xy = vSinCosTmp.xy * vSinCosTmp.zz + scB.xy;\n" );
PrintToBufWithIndents( *m_pBufALUCode, "vSinCosTmp.xy = vSinCosTmp.xy * vSinCosTmp.zz + scB.wz;\n" );
PrintToBufWithIndents( *m_pBufALUCode, "vSinCosTmp.x = vSinCosTmp.x * %s;\n", sArg0.String() );
PrintToBufWithIndents( *m_pBufALUCode, "vSinCosTmp.xy = vSinCosTmp.xy * vSinCosTmp.xx;\n" );
PrintToBufWithIndents( *m_pBufALUCode, "vSinCosTmp.xy = vSinCosTmp.xy + vSinCosTmp.xy;\n" );
PrintToBufWithIndents( *m_pBufALUCode, "vSinCosTmp.x = -vSinCosTmp.x + scB.z;\n" );
PrintToBufWithIndents( *m_pBufALUCode, "%s = %s;\n", sDest.String(), sResult.String() );
if ( m_dwMajorVersion < 3 )
{
// Eat two more tokens since D3D defines Taylor series constants that we won't need
// Only valid for pixel and vertex shader version earlier than 3_0
// (http://msdn.microsoft.com/en-us/library/windows/hardware/ff569710(v=vs.85).aspx)
SkipTokens( 2 );
}
}
void D3DToGL::Handle_LRP( uint32 nInstruction )
{
uint32 nDestToken = GetNextToken();
CUtlString sDest = GetParameterString( nDestToken, DST_REGISTER, false, NULL );
int nARLComp0 = ARL_DEST_NONE;
CUtlString sParam0 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp0 );
int nARLComp1 = ARL_DEST_NONE;
CUtlString sParam1 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp1 );
int nARLComp2 = ARL_DEST_NONE;
CUtlString sParam2 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp2 );
// This optionally inserts a move from our dummy address register to the .x component of the real one
InsertMoveFromAddressRegister( m_pBufALUCode, nARLComp0, nARLComp1, nARLComp2 );
sParam0 = FixGLSLSwizzle( sDest, sParam0 );
sParam1 = FixGLSLSwizzle( sDest, sParam1 );
sParam2 = FixGLSLSwizzle( sDest, sParam2 );
// dest = src0 * (src1 - src2) + src2;
PrintToBufWithIndents( *m_pBufALUCode, "%s = %s * ( %s - %s ) + %s;\n", sDest.String(), sParam0.String(), sParam1.String(), sParam2.String(), sParam2.String() );
// If the _SAT instruction modifier is used, then do a saturate here.
if ( nDestToken & D3DSPDM_SATURATE )
{
int nComponents = GetNumSwizzleComponents( sDest.String() );
if ( nComponents == 0 )
nComponents = 4;
PrintToBufWithIndents( *m_pBufALUCode, "%s = clamp( %s, %s, %s );\n", sDest.String(), sDest.String(), g_szVecZeros[nComponents], g_szVecOnes[nComponents] );
}
}
void D3DToGL::Handle_TEX( uint32 dwToken, bool bIsTexLDL )
{
char pDestReg[64], pSrc0Reg[64], pSrc1Reg[64];
PrintParameterToString( GetNextToken(), DST_REGISTER, pDestReg, sizeof( pDestReg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc0Reg, sizeof( pSrc0Reg ), false, NULL );
DWORD dwSrc1Token = GetNextToken();
PrintParameterToString( dwSrc1Token, SRC_REGISTER, pSrc1Reg, sizeof( pSrc1Reg ), false, NULL );
Assert( (dwSrc1Token & D3DSP_REGNUM_MASK) < ARRAYSIZE( m_dwSamplerTypes ) );
uint32 nSamplerType = m_dwSamplerTypes[dwSrc1Token & D3DSP_REGNUM_MASK];
if ( nSamplerType == SAMPLER_TYPE_2D )
{
const bool bIsShadowSampler = ( ( 1 << ( (int) ( dwSrc1Token & D3DSP_REGNUM_MASK ) ) ) & m_nShadowDepthSamplerMask ) != 0;
if ( bIsTexLDL )
{
CUtlString sCoordVar = EnsureNumSwizzleComponents( pSrc0Reg, bIsShadowSampler ? 3 : 2 );
// Strip out the W component of the pSrc0Reg and pass that as the LOD to texture2DLod.
char szLOD[128], szExtra[8];
GetParamNameWithoutSwizzle( pSrc0Reg, szLOD, sizeof( szLOD ) );
V_snprintf( szExtra, sizeof( szExtra ), ".%c", GetSwizzleComponent( pSrc0Reg, 3 ) );
V_strncat( szLOD, szExtra, sizeof( szLOD ) );
PrintToBufWithIndents( *m_pBufALUCode, "%s = %s( %s, %s, %s );\n", pDestReg, bIsShadowSampler ? "shadow2DLod" : "texture2DLod", pSrc1Reg, sCoordVar.String(), szLOD );
}
else if ( bIsShadowSampler )
{
// .z is meant to contain the object depth, while .xy contains the 2D tex coords
CUtlString sCoordVar3D = EnsureNumSwizzleComponents( pSrc0Reg, 3 );
PrintToBufWithIndents( *m_pBufALUCode, "%s = shadow2D( %s, %s );\n", pDestReg, pSrc1Reg, sCoordVar3D.String() );
Assert( m_dwSamplerTypes[dwSrc1Token & D3DSP_REGNUM_MASK] == SAMPLER_TYPE_2D );
}
else if( ( OpcodeSpecificData( dwToken ) << D3DSP_OPCODESPECIFICCONTROL_SHIFT ) == D3DSI_TEXLD_PROJECT )
{
// This projective case is after the shadow case intentionally, due to the way that "projective"
// loads are overloaded in our D3D shaders for shadow lookups.
//
// We use the vec4 variant of texture2DProj() intentionally here, since it lines up well with Direct3D.
CUtlString s4DProjCoords = EnsureNumSwizzleComponents( pSrc0Reg, 4 ); // Ensure vec4 variant
PrintToBufWithIndents( *m_pBufALUCode, "%s = texture2DProj( %s, %s );\n", pDestReg, pSrc1Reg, s4DProjCoords.String() );
}
else
{
CUtlString sCoordVar = EnsureNumSwizzleComponents( pSrc0Reg, bIsShadowSampler ? 3 : 2 );
PrintToBufWithIndents( *m_pBufALUCode, "%s = texture2D( %s, %s );\n", pDestReg, pSrc1Reg, sCoordVar.String() );
}
}
else if ( nSamplerType == SAMPLER_TYPE_3D )
{
if ( bIsTexLDL )
{
TranslationError();
}
CUtlString sCoordVar = EnsureNumSwizzleComponents( pSrc0Reg, 3 );
PrintToBufWithIndents( *m_pBufALUCode, "%s = texture3D( %s, %s );\n", pDestReg, pSrc1Reg, sCoordVar.String() );
}
else if ( nSamplerType == SAMPLER_TYPE_CUBE )
{
if ( bIsTexLDL )
{
TranslationError();
}
CUtlString sCoordVar = EnsureNumSwizzleComponents( pSrc0Reg, 3 );
PrintToBufWithIndents( *m_pBufALUCode, "%s = textureCube( %s, %s );\n", pDestReg, pSrc1Reg, sCoordVar.String() );
}
else
{
Error( "TEX instruction: unsupported sampler type used" );
}
}
void D3DToGL::StrcatToHeaderCode( const char *pBuf )
{
strcat_s( (char*)m_pBufHeaderCode->Base(), m_pBufHeaderCode->Size(), pBuf );
}
void D3DToGL::StrcatToALUCode( const char *pBuf )
{
PrintIndentation( (char*)m_pBufALUCode->Base(), m_pBufALUCode->Size() );
strcat_s( (char*)m_pBufALUCode->Base(), m_pBufALUCode->Size(), pBuf );
}
void D3DToGL::StrcatToParamCode( const char *pBuf )
{
strcat_s( (char*)m_pBufParamCode->Base(), m_pBufParamCode->Size(), pBuf );
}
void D3DToGL::StrcatToAttribCode( const char *pBuf )
{
strcat_s( (char*)m_pBufAttribCode->Base(), m_pBufAttribCode->Size(), pBuf );
}
void D3DToGL::Handle_TexLDD( uint32 nInstruction )
{
TranslationError(); // Not supported yet, but can be if we need it.
}
void D3DToGL::Handle_TexCoord()
{
TranslationError();
// If ps_1_4, this is texcrd
if ( (m_dwMajorVersion == 1) && (m_dwMinorVersion == 4) && (!m_bVertexShader) )
{
StrcatToALUCode( "texcrd" );
}
else // else it's texcoord
{
TranslationError();
StrcatToALUCode( "texcoord" );
}
char buff[256];
PrintParameterToString( GetNextToken(), DST_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
// If ps_1_4, texcrd also has a source parameter
if ((m_dwMajorVersion == 1) && (m_dwMinorVersion == 4) && (!m_bVertexShader))
{
StrcatToALUCode( ", " );
PrintParameterToString( GetNextToken(), SRC_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
}
StrcatToALUCode( ";\n" );
}
void D3DToGL::Handle_BREAKC( uint32 dwToken )
{
uint nComparison = ( dwToken & D3DSHADER_COMPARISON_MASK ) >> D3DSHADER_COMPARISON_SHIFT;
const char *pComparison = "?";
switch ( nComparison )
{
case D3DSPC_GT: pComparison = ">"; break;
case D3DSPC_EQ: pComparison = "=="; break;
case D3DSPC_GE: pComparison = ">="; break;
case D3DSPC_LT: pComparison = "<"; break;
case D3DSPC_NE: pComparison = "!="; break;
case D3DSPC_LE: pComparison = "<="; break;
default:
TranslationError();
}
char src0[256];
uint32 src0Token = GetNextToken();
PrintParameterToString( src0Token, SRC_REGISTER, src0, sizeof( src0 ), false, NULL );
char src1[256];
uint32 src1Token = GetNextToken();
PrintParameterToString( src1Token, SRC_REGISTER, src1, sizeof( src1 ), false, NULL );
PrintToBufWithIndents( *m_pBufALUCode, "if (%s %s %s) break;\n", src0, pComparison, src1 );
}
void D3DToGL::HandleBinaryOp_GLSL( uint32 nInstruction )
{
uint32 nDestToken = GetNextToken();
CUtlString sParam1 = GetParameterString( nDestToken, DST_REGISTER, false, NULL );
int nARLComp0 = ARL_DEST_NONE;
CUtlString sParam2 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp0 );
int nARLComp1 = ARL_DEST_NONE;
CUtlString sParam3 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp1 );
// This optionally inserts a move from our dummy address register to the .x component of the real one
InsertMoveFromAddressRegister( m_pBufALUCode, nARLComp0, nARLComp1 );
// Since DP3 and DP4 have a scalar as the dest and vectors as the src, don't screw with the swizzle specifications.
if ( nInstruction == D3DSIO_DP3 )
{
sParam2 = EnsureNumSwizzleComponents( sParam2, 3 );
sParam3 = EnsureNumSwizzleComponents( sParam3, 3 );
}
else if ( nInstruction == D3DSIO_DP4 )
{
sParam2 = EnsureNumSwizzleComponents( sParam2, 4 );
sParam3 = EnsureNumSwizzleComponents( sParam3, 4 );
}
else if ( nInstruction == D3DSIO_DST )
{
m_bUsesDSTInstruction = true;
sParam2 = EnsureNumSwizzleComponents( sParam2, 4 );
sParam3 = EnsureNumSwizzleComponents( sParam3, 4 );
}
else
{
sParam2 = FixGLSLSwizzle( sParam1, sParam2 );
sParam3 = FixGLSLSwizzle( sParam1, sParam3 );
}
char buff[256];
if ( nInstruction == D3DSIO_ADD || nInstruction == D3DSIO_SUB || nInstruction == D3DSIO_MUL )
{
// These all look like x = y op z
PrintToBufWithIndents( *m_pBufALUCode, "%s = %s %s %s;\n", sParam1.String(), sParam2.String(), GetGLSLOperatorString( nInstruction ), sParam3.String() );
}
else
{
int nDestComponents = GetNumSwizzleComponents( sParam1.String() );
int nSrcComponents = GetNumSwizzleComponents( sParam2.String() );
// All remaining instructions can use GLSL intrinsics like dot() and cross().
bool bDoubleClose = OpenIntrinsic( nInstruction, buff, sizeof( buff ), nDestComponents, nSrcComponents );
if ( ( nSrcComponents == 1 ) && ( nInstruction == D3DSIO_SGE ) )
{
PrintToBufWithIndents( *m_pBufALUCode, "%s = %s%s >= %s );\n", sParam1.String(), buff, sParam2.String(), sParam3.String() );
}
else if ( ( nSrcComponents == 1 ) && ( nInstruction == D3DSIO_SLT ) )
{
PrintToBufWithIndents( *m_pBufALUCode, "%s = %s%s < %s );\n", sParam1.String(), buff, sParam2.String(), sParam3.String() );
}
else
{
PrintToBufWithIndents( *m_pBufALUCode, "%s = %s%s, %s %s;\n", sParam1.String(), buff, sParam2.String(), sParam3.String(), bDoubleClose ? ") )" : ")" );
}
}
// If the _SAT instruction modifier is used, then do a saturate here.
if ( nDestToken & D3DSPDM_SATURATE )
{
int nComponents = GetNumSwizzleComponents( sParam1.String() );
if ( nComponents == 0 )
nComponents = 4;
PrintToBufWithIndents( *m_pBufALUCode, "%s = clamp( %s, %s, %s );\n", sParam1.String(), sParam1.String(), g_szVecZeros[nComponents], g_szVecOnes[nComponents] );
}
}
void D3DToGL::HandleBinaryOp_ASM( uint32 nInstruction )
{
CUtlString sParam1 = GetParameterString( GetNextToken(), DST_REGISTER, false, NULL );
int nARLComp0 = ARL_DEST_NONE;
CUtlString sParam2 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp0 );
int nARLComp1 = ARL_DEST_NONE;
CUtlString sParam3 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp1 );
// This optionally inserts a move from our dummy address register to the .x component of the real one
InsertMoveFromAddressRegister( m_pBufALUCode, nARLComp0, nARLComp1 );
char buff[256];
PrintOpcode( nInstruction, buff, sizeof( buff ) );
PrintToBufWithIndents( *m_pBufALUCode, "%s%s, %s, %s;\n", buff, sParam1.String(), sParam2.String(), sParam3.String() );
}
void D3DToGL::WriteGLSLCmp( const char *pDestReg, const char *pSrc0Reg, const char *pSrc1Reg, const char *pSrc2Reg )
{
int nWriteMaskEntries = GetNumWriteMaskEntries( pDestReg );
for ( int i=0; i < nWriteMaskEntries; i++ )
{
char params[4][256];
WriteParamWithSingleMaskEntry( pDestReg, i, params[0], sizeof( params[0] ) );
WriteParamWithSingleMaskEntry( pSrc0Reg, i, params[1], sizeof( params[1] ) );
WriteParamWithSingleMaskEntry( pSrc1Reg, i, params[2], sizeof( params[2] ) );
WriteParamWithSingleMaskEntry( pSrc2Reg, i, params[3], sizeof( params[3] ) );
PrintToBufWithIndents( *m_pBufALUCode, "%s = ( %s >= 0.0 ) ? %s : %s;\n", params[0], params[1], params[2], params[3] );
}
}
void D3DToGL::Handle_CMP()
{
// In Direct3D, result = (src0 >= 0.0) ? src1 : src2
// In OpenGL, result = (src0 < 0.0) ? src1 : src2
//
// As a result, arguments are effectively in a different order than Direct3D! !#$&*!%#$&
char pDestReg[64], pSrc0Reg[64], pSrc1Reg[64], pSrc2Reg[64];
uint32 nDestToken = GetNextToken();
PrintParameterToString( nDestToken, DST_REGISTER, pDestReg, sizeof( pDestReg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc0Reg, sizeof( pSrc0Reg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc1Reg, sizeof( pSrc1Reg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc2Reg, sizeof( pSrc2Reg ), false, NULL );
// These are a tricky case.. we have to expand it out into multiple statements.
char szDestBase[256];
GetParamNameWithoutSwizzle( pDestReg, szDestBase, sizeof( szDestBase ) );
V_strncpy( pSrc0Reg, FixGLSLSwizzle( pDestReg, pSrc0Reg ), sizeof( pSrc0Reg ) );
V_strncpy( pSrc1Reg, FixGLSLSwizzle( pDestReg, pSrc1Reg ), sizeof( pSrc1Reg ) );
V_strncpy( pSrc2Reg, FixGLSLSwizzle( pDestReg, pSrc2Reg ), sizeof( pSrc2Reg ) );
// This isn't reliable!
//if ( DoParamNamesMatch( pDestReg, pSrc0Reg ) && GetNumSwizzleComponents( pDestReg ) > 1 )
if ( 1 )
{
// So the dest register is the same as the comparand. We're in danger of screwing up our results.
//
// For example, this code:
// CMP r0.xy, r0.xx, r1, r2
// would generate this:
// r0.x = (r0.x >= 0) ? r1.x : r2.x;
// r0.y = (r0.x >= 0) ? r1.x : r2.x;
//
// But the first lines changes r0.x and thus screws the atomicity of the CMP instruction for the second line.
// So we assign r0 to a temporary first and then write to the temporary.
PrintToBufWithIndents( *m_pBufALUCode, "%s = %s;\n", g_pAtomicTempVarName, szDestBase );
char szTempVar[256];
ReplaceParamName( pDestReg, g_pAtomicTempVarName, szTempVar, sizeof( szTempVar ) );
WriteGLSLCmp( szTempVar, pSrc0Reg, pSrc1Reg, pSrc2Reg );
PrintToBufWithIndents( *m_pBufALUCode, "%s = %s;\n", szDestBase, g_pAtomicTempVarName );
m_bUsedAtomicTempVar = true;
}
else
{
// Just write out the simple expanded version of the CMP. No need to use atomic_temp_var.
WriteGLSLCmp( pDestReg, pSrc0Reg, pSrc1Reg, pSrc2Reg );
}
// If the _SAT instruction modifier is used, then do a saturate here.
if ( nDestToken & D3DSPDM_SATURATE )
{
int nComponents = GetNumSwizzleComponents( pDestReg );
if ( nComponents == 0 )
nComponents = 4;
PrintToBufWithIndents( *m_pBufALUCode, "%s = clamp( %s, %s, %s );\n", pDestReg, pDestReg, g_szVecZeros[nComponents], g_szVecOnes[nComponents] );
}
}
void D3DToGL::Handle_NRM()
{
char pDestReg[64];
char pSrc0Reg[64];
PrintParameterToString( GetNextToken(), DST_REGISTER, pDestReg, sizeof( pDestReg ), false, NULL );
int nARLSrcComp = ARL_DEST_NONE;
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc0Reg, sizeof( pSrc0Reg ), false, &nARLSrcComp );
if ( nARLSrcComp != -1 )
{
InsertMoveFromAddressRegister( m_pBufALUCode, nARLSrcComp, -1, -1 );
}
CUtlString sSrc = EnsureNumSwizzleComponents( pSrc0Reg, 3 );
PrintToBufWithIndents( *m_pBufALUCode, "%s = normalize( %s );\n", pDestReg, sSrc.String() );
}
void D3DToGL::Handle_UnaryOp( uint32 nInstruction )
{
uint32 nDestToken = GetNextToken();
CUtlString sParam1 = GetParameterString( nDestToken, DST_REGISTER, false, NULL );
CUtlString sParam2 = GetParameterString( GetNextToken(), SRC_REGISTER, false, NULL );
sParam2 = FixGLSLSwizzle( sParam1, sParam2 );
if ( nInstruction == D3DSIO_MOV )
{
PrintToBufWithIndents( *m_pBufALUCode, "%s = %s;\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_RSQ )
{
PrintToBufWithIndents( *m_pBufALUCode, "%s = inversesqrt( %s );\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_RCP )
{
PrintToBufWithIndents( *m_pBufALUCode, "%s = 1.0 / %s;\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_EXP )
{
PrintToBufWithIndents( *m_pBufALUCode, "%s = exp2( %s );\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_FRC )
{
PrintToBufWithIndents( *m_pBufALUCode, "%s = fract( %s );\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_LOG ) // d3d 'log' is log base 2
{
PrintToBufWithIndents( *m_pBufALUCode, "%s = log2( %s );\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_ABS ) // rbarris did this one, Jason please check
{
PrintToBufWithIndents( *m_pBufALUCode, "%s = abs( %s );\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_MOVA )
{
m_bDeclareAddressReg = true;
PrintToBufWithIndents( *m_pBufALUCode, "%s = %s;\n", sParam1.String(), sParam2.String() );
if ( !m_bGenerateBoneUniformBuffer )
{
m_nHighestRegister = DXABSTRACT_VS_PARAM_SLOTS - 1;
}
}
else if ( nInstruction == D3DSIO_DSX )
{
PrintToBufWithIndents( *m_pBufALUCode, "%s = dFdx( %s );\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_DSY )
{
PrintToBufWithIndents( *m_pBufALUCode, "%s = dFdy( %s );\n", sParam1.String(), sParam2.String() );
}
else
{
Error( "Unsupported instruction" );
}
// If the _SAT instruction modifier is used, then do a saturate here.
if ( nDestToken & D3DSPDM_SATURATE )
{
int nComponents = GetNumSwizzleComponents( sParam1.String() );
if ( nComponents == 0 )
{
nComponents = 4;
}
PrintToBufWithIndents( *m_pBufALUCode, "%s = clamp( %s, %s, %s );\n", sParam1.String(), sParam1.String(), g_szVecZeros[nComponents], g_szVecOnes[nComponents] );
}
}
void D3DToGL::WriteGLSLSamplerDefinitions()
{
int nSamplersWritten = 0;
for ( int i=0; i < ARRAYSIZE( m_dwSamplerTypes ); i++ )
{
if ( m_dwSamplerTypes[i] == SAMPLER_TYPE_2D )
{
if ( ( ( 1 << i ) & m_nShadowDepthSamplerMask ) != 0 )
{
PrintToBuf( *m_pBufHeaderCode, "uniform sampler2DShadow sampler%d;\n", i );
}
else
{
PrintToBuf( *m_pBufHeaderCode, "uniform sampler2D sampler%d;\n", i );
}
++nSamplersWritten;
}
else if ( m_dwSamplerTypes[i] == SAMPLER_TYPE_3D )
{
PrintToBuf( *m_pBufHeaderCode, "uniform sampler3D sampler%d;\n", i );
++nSamplersWritten;
}
else if ( m_dwSamplerTypes[i] == SAMPLER_TYPE_CUBE )
{
PrintToBuf( *m_pBufHeaderCode, "uniform samplerCube sampler%d;\n", i );
++nSamplersWritten;
}
else if ( m_dwSamplerTypes[i] != SAMPLER_TYPE_UNUSED )
{
Error( "Unknown sampler type." );
}
}
if ( nSamplersWritten > 0 )
PrintToBuf( *m_pBufHeaderCode, "\n\n" );
}
void D3DToGL::WriteGLSLOutputVariableAssignments()
{
if ( m_bVertexShader )
{
// Map output "oN" registers back to GLSL output variables.
if ( m_bAddHexCodeComments )
{
PrintToBuf( *m_pBufAttribCode, "\n// Now we're storing the oN variables from the output dcl_ statements back into their GLSL equivalents.\n" );
}
for ( int i=0; i < ARRAYSIZE( m_DeclaredOutputs ); i++ )
{
if ( m_DeclaredOutputs[i] == UNDECLARED_OUTPUT )
continue;
if ( ( m_dwTexCoordOutMask & ( 1 << i ) ) == 0 )
continue;
uint32 dwToken = m_DeclaredOutputs[i];
uint32 dwUsage = ( dwToken & D3DSP_DCL_USAGE_MASK );
uint32 dwUsageIndex = ( dwToken & D3DSP_DCL_USAGEINDEX_MASK ) >> D3DSP_DCL_USAGEINDEX_SHIFT;
if ( ( dwUsage == D3DDECLUSAGE_FOG ) || ( dwUsage == D3DDECLUSAGE_PSIZE ) )
{
TranslationError(); // Not supported yet, but can be if we need it.
}
if ( dwUsage == D3DDECLUSAGE_COLOR )
{
PrintToBufWithIndents( *m_pBufALUCode, "%s = oTempT%d;\n", dwUsageIndex ? "gl_FrontSecondaryColor" : "gl_FrontColor", i );
}
else if ( dwUsage == D3DDECLUSAGE_TEXCOORD )
{
char buf[256];
if ( m_nCentroidMask & ( 0x00000001 << dwUsageIndex ) )
{
V_snprintf( buf, sizeof( buf ), "centroid varying vec4 oT%d;\n", dwUsageIndex ); // centroid varying
}
else
{
V_snprintf( buf, sizeof( buf ), "varying vec4 oT%d;\n", dwUsageIndex );
}
StrcatToHeaderCode( buf );
PrintToBufWithIndents( *m_pBufALUCode, "oT%d = oTempT%d;\n", dwUsageIndex, i );
}
}
}
}
void D3DToGL::WriteGLSLInputVariableAssignments()
{
if ( m_bVertexShader )
return;
for ( int i=0; i < ARRAYSIZE( m_DeclaredInputs ); i++ )
{
if ( m_DeclaredInputs[i] == UNDECLARED_INPUT )
continue;
uint32 dwToken = m_DeclaredInputs[i];
uint32 dwUsage = ( dwToken & D3DSP_DCL_USAGE_MASK );
uint32 dwUsageIndex = ( dwToken & D3DSP_DCL_USAGEINDEX_MASK ) >> D3DSP_DCL_USAGEINDEX_SHIFT;
if ( dwUsage == D3DDECLUSAGE_COLOR )
{
PrintToBufWithIndents( *m_pBufAttribCode, "vec4 oTempT%d = %s;\n", i, dwUsageIndex ? "gl_SecondaryColor" : "gl_Color" );
}
else if ( dwUsage == D3DDECLUSAGE_TEXCOORD )
{
PrintToBufWithIndents( *m_pBufAttribCode, "vec4 oTempT%d = oT%d;\n", i, dwUsageIndex );
}
}
}
void D3DToGL::Handle_DeclarativeNonDclOp( uint32 nInstruction )
{
char buff[128];
uint32 dwToken = GetNextToken();
PrintParameterToString( dwToken, DST_REGISTER, buff, sizeof( buff ), false, NULL );
if ( nInstruction == D3DSIO_TEXKILL )
{
// TEXKILL is supposed to discard the pixel if any of the src register's X, Y, or Z components are less than zero.
// We have to translate it to something like:
// if ( r0.x < 0.0 || r0.y < 0.0 )
// discard;
char c[3];
c[0] = GetSwizzleComponent( buff, 0 );
c[1] = GetSwizzleComponent( buff, 1 );
c[2] = GetSwizzleComponent( buff, 2 );
// Get the unique components.
char cUnique[3];
cUnique[0] = c[0];
int nUnique = 1;
if ( c[1] != c[0] )
cUnique[nUnique++] = c[1];
if ( c[2] != c[1] && c[2] != c[0] )
cUnique[nUnique++] = c[2];
// Get the src register base name.
char szBase[256];
GetParamNameWithoutSwizzle( buff, szBase, sizeof( szBase ) );
PrintToBufWithIndents( *m_pBufALUCode, "if ( %s.%c < 0.0 ", szBase, cUnique[0] );
for ( int i=1; i < nUnique; i++ )
{
PrintToBuf( *m_pBufALUCode, "|| %s.%c < 0.0 ", szBase, cUnique[i] );
}
PrintToBuf( *m_pBufALUCode, ")\n{\n\tdiscard;\n}\n" );
}
else
{
char szOpcode[128];
PrintOpcode( nInstruction, szOpcode, sizeof( szOpcode ) );
StrcatToALUCode( szOpcode );
StrcatToALUCode( buff );
StrcatToALUCode( ";\n" );
}
}
void D3DToGL::NoteTangentInputUsed()
{
if ( !m_bTangentInputUsed )
{
m_bTangentInputUsed = true;
// PrintToBuf( *m_pBufParamCode, "attribute vec4 %s;\n", g_pTangentAttributeName );
}
}
// These are the only ARL instructions that should appear in the instruction stream
void D3DToGL::InsertMoveInstruction( CUtlBuffer *pCode, int nARLComponent )
{
PrintIndentation( ( char * )pCode->Base(), pCode->Size() );
switch ( nARLComponent )
{
case ARL_DEST_X:
strcat_s( ( char * )pCode->Base(), pCode->Size(), "a0 = int( va_r.x );\n" );
break;
case ARL_DEST_Y:
strcat_s( ( char * )pCode->Base(), pCode->Size(), "a0 = int( va_r.y );\n" );
break;
case ARL_DEST_Z:
strcat_s( ( char * )pCode->Base(), pCode->Size(), "a0 = int( va_r.z );\n" );
break;
case ARL_DEST_W:
strcat_s( ( char * )pCode->Base(), pCode->Size(), "a0 = int( va_r.w );\n" );
break;
}
}
// This optionally inserts a move from our dummy address register to the .x component of the real one
void D3DToGL::InsertMoveFromAddressRegister( CUtlBuffer *pCode, int nARLComp0, int nARLComp1, int nARLComp2 /* = ARL_DEST_NONE */ )
{
// We no longer need to do this in GLSL - we put the cast to int from the dummy address register va_r.x, va_r.y, etc. directly into the instruction
return;
}
//------------------------------------------------------------------------------
// TranslateShader()
//
// This is the main function that the outside world sees. A pointer to the
// uint32 stream returned from the D3DX compile routine is parsed and used
// to write human-readable asm code into the character array pointed to by
// pDisassembledCode. An error code is returned.
//------------------------------------------------------------------------------
int D3DToGL::TranslateShader( uint32* code, CUtlBuffer *pBufDisassembledCode, bool *bVertexShader, uint32 options, int32 nShadowDepthSamplerMask, uint32 nCentroidMask, char *debugLabel )
{
CUtlString sLine, sParamName;
uint32 i, dwToken, nInstruction, nNumTokensToSkip;
char buff[256];
// obey options
m_bUseEnvParams = (options & D3DToGL_OptionUseEnvParams) != 0;
m_bDoFixupZ = (options & D3DToGL_OptionDoFixupZ) != 0;
m_bDoFixupY = (options & D3DToGL_OptionDoFixupY) != 0;
m_bDoUserClipPlanes = (options & D3DToGL_OptionDoUserClipPlanes) != 0;
m_bAddHexCodeComments = (options & D3DToGL_AddHexComments) != 0;
m_bPutHexCodesAfterLines = (options & D3DToGL_PutHexCommentsAfterLines) != 0;
m_bGeneratingDebugText = (options & D3DToGL_GeneratingDebugText) != 0;
m_bGenerateSRGBWriteSuffix = (options & D3DToGL_OptionSRGBWriteSuffix) != 0;
m_NumIndentTabs = 1; // start code indented one tab
m_nLoopDepth = 0;
// debugging
m_bSpew = (options & D3DToGL_OptionSpew) != 0;
// These are not accessed below in a way that will cause them to glow, so
// we could overflow these and/or the buffer pointed to by pDisassembledCode
m_pBufAttribCode = new CUtlBuffer( 100, 10000, CUtlBuffer::TEXT_BUFFER );
m_pBufParamCode = new CUtlBuffer( 100, 10000, CUtlBuffer::TEXT_BUFFER );
m_pBufALUCode = new CUtlBuffer( 100, 60000, CUtlBuffer::TEXT_BUFFER );
// Pointers to text buffers for assembling sections of the program
m_pBufHeaderCode = pBufDisassembledCode;
char *pAttribMapStart = NULL;
((char*)m_pBufHeaderCode->Base())[0] = 0;
((char*)m_pBufAttribCode->Base())[0] = 0;
((char*)m_pBufParamCode->Base())[0] = 0;
((char*)m_pBufALUCode->Base())[0] = 0;
for ( i=0; i<MAX_SHADER_CONSTANTS; i++ )
{
m_bConstantRegisterDefined[i] = false;
}
// Track shadow sampler usage for proper declaration
m_nShadowDepthSamplerMask = nShadowDepthSamplerMask;
m_bDeclareShadowOption = false;
// Various flags set while parsing code to drive various declaration instructions
m_bNeedsD2AddTemp = false;
m_bNeedsLerpTemp = false;
m_bNeedsNRMTemp = false;
m_bNeedsSinCosDeclarations = false;
m_bDeclareAddressReg = false;
m_bDeclareVSOPos = false;
m_bDeclareVSOFog = false;
m_dwTexCoordOutMask = 0x00000000;
m_nVSPositionOutput = -1;
m_bOutputColorRegister[0] = false;
m_bOutputColorRegister[1] = false;
m_bOutputColorRegister[2] = false;
m_bOutputColorRegister[3] = false;
m_bOutputDepthRegister = false;
m_bTangentInputUsed = false;
m_bUsesDSTInstruction = false;
m_dwTempUsageMask = 0x00000000;
m_dwSamplerUsageMask = 0x00000000;
m_dwConstIntUsageMask = 0x00000000;
m_dwDefConstIntUsageMask = 0x00000000;
memset( m_dwDefConstIntIterCount, 0, sizeof( m_dwDefConstIntIterCount ) );
m_dwConstBoolUsageMask = 0x00000000;
m_nCentroidMask = nCentroidMask;
m_nHighestRegister = 0;
m_nHighestBoneRegister = -1;
m_bGenerateBoneUniformBuffer = false;
m_bUseBindlessTexturing = ((options & D3DToGL_OptionUseBindlessTexturing) != 0);
m_bUsedAtomicTempVar = false;
for ( int i=0; i < ARRAYSIZE( m_dwSamplerTypes ); i++ )
{
m_dwSamplerTypes[i] = SAMPLER_TYPE_UNUSED;
}
for ( int i=0; i < ARRAYSIZE( m_DeclaredOutputs ); i++ )
{
m_DeclaredOutputs[i] = UNDECLARED_OUTPUT;
}
for ( int i=0; i < ARRAYSIZE( m_DeclaredInputs ); i++ )
{
m_DeclaredInputs[i] = UNDECLARED_INPUT;
}
memset( m_dwAttribMap, 0xFF, sizeof(m_dwAttribMap) );
m_pdwBaseToken = m_pdwNextToken = code; // Initialize dwToken pointers
dwToken = GetNextToken();
m_dwMajorVersion = D3DSHADER_VERSION_MAJOR( dwToken );
m_dwMinorVersion = D3DSHADER_VERSION_MINOR( dwToken );
// If pixel shader
const char *glslExtText = "#extension GL_ARB_shader_texture_lod : require\n";//m_bUseBindlessTexturing ? "#extension GL_NV_bindless_texture : require\n" : "";
const char *glslVersionText = m_bUseBindlessTexturing ? "330 compatibility" : "120";
if ( ( dwToken & 0xFFFF0000 ) == 0xFFFF0000 )
{
// must explicitly enable extensions if emitting GLSL
V_snprintf( (char *)m_pBufHeaderCode->Base(), m_pBufHeaderCode->Size(), "#version %s\n%s", glslVersionText, glslExtText );
m_bVertexShader = false;
}
else // vertex shader
{
m_bGenerateSRGBWriteSuffix = false;
V_snprintf( (char *)m_pBufHeaderCode->Base(), m_pBufHeaderCode->Size(), "#version %s\n%s//ATTRIBMAP-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx\n", glslVersionText, glslExtText );
// find that first '-xx' which is where the attrib map will be written later.
pAttribMapStart = strstr( (char *)m_pBufHeaderCode->Base(), "-xx" ) + 1;
m_bVertexShader = true;
}
*bVertexShader = m_bVertexShader;
m_bGenerateBoneUniformBuffer = m_bVertexShader && ((options & D3DToGL_OptionGenerateBoneUniformBuffer) != 0);
if ( m_bAddHexCodeComments )
{
RecordInputAndOutputPositions();
}
if ( m_bSpew )
{
printf("\n************* translating shader " );
}
int opcounter = 0;
// Loop until we hit the end dwToken...note that D3DPS_END() == D3DVS_END() so this works for either
while ( dwToken != D3DPS_END() )
{
if ( m_bAddHexCodeComments )
{
AddTokenHexCode();
RecordInputAndOutputPositions();
}
#ifdef POSIX
int tokenIndex = m_pdwNextToken - code;
#endif
int aluCodeLength0 = V_strlen( (char *) m_pBufALUCode->Base() );
dwToken = GetNextToken(); // Get next dwToken in the stream
nInstruction = Opcode( dwToken ); // Mask out the instruction opcode
if ( m_bSpew )
{
#ifdef POSIX
printf("\n** token# %04x inst# %04d opcode %s (%08x)", tokenIndex, opcounter, GLMDecode(eD3D_SIO, nInstruction), dwToken );
#endif
opcounter++;
}
switch ( nInstruction )
{
// -- No arguments at all -----------------------------------------------
case D3DSIO_NOP:
// D3D compiler outputs NOPs when shader debugging/optimizations are disabled.
break;
case D3DSIO_PHASE:
case D3DSIO_RET:
case D3DSIO_ENDLOOP:
case D3DSIO_BREAK:
TranslationError();
PrintOpcode( nInstruction, buff, sizeof( buff ) );
StrcatToALUCode( buff );
StrcatToALUCode( ";\n" );
break;
// -- "Declarative" non dcl ops ----------------------------------------
case D3DSIO_TEXDEPTH:
case D3DSIO_TEXKILL:
Handle_DeclarativeNonDclOp( nInstruction );
break;
// -- Unary ops -------------------------------------------------
case D3DSIO_BEM:
case D3DSIO_TEXBEM:
case D3DSIO_TEXBEML:
case D3DSIO_TEXDP3:
case D3DSIO_TEXDP3TEX:
case D3DSIO_TEXM3x2DEPTH:
case D3DSIO_TEXM3x2TEX:
case D3DSIO_TEXM3x3:
case D3DSIO_TEXM3x3PAD:
case D3DSIO_TEXM3x3TEX:
case D3DSIO_TEXM3x3VSPEC:
case D3DSIO_TEXREG2AR:
case D3DSIO_TEXREG2GB:
case D3DSIO_TEXREG2RGB:
case D3DSIO_LABEL:
case D3DSIO_CALL:
case D3DSIO_LOOP:
case D3DSIO_BREAKP:
TranslationError();
break;
case D3DSIO_DSX:
case D3DSIO_DSY:
Handle_UnaryOp( nInstruction );
break;
case D3DSIO_IFC:
{
static const char *s_szCompareStrings[ 7 ] =
{
"__INVALID__",
">",
"==",
">=",
"<",
"!=",
"<="
};
// Compare mode is encoded in instruction token
uint32 dwCompareMode = OpcodeSpecificData( dwToken );
Assert( ( dwCompareMode >= 1 ) && ( dwCompareMode <= 6 ) );
// Get left side of compare
dwToken = GetNextToken();
char szLeftSide[32];
PrintParameterToString( dwToken, SRC_REGISTER, szLeftSide, sizeof( szLeftSide ), false, NULL );
// Get right side of compare
dwToken = GetNextToken();
char szRightSide[32];
PrintParameterToString( dwToken, SRC_REGISTER, szRightSide, sizeof( szRightSide ), false, NULL );
PrintToBufWithIndents( *m_pBufALUCode, "if ( %s %s %s )\n", szLeftSide, s_szCompareStrings[dwCompareMode], szRightSide );
StrcatToALUCode( "{\n" );
m_NumIndentTabs++;
break;
}
case D3DSIO_IF:
dwToken = GetNextToken();
PrintParameterToString( dwToken, SRC_REGISTER, buff, sizeof( buff ), false, NULL );
PrintToBufWithIndents( *m_pBufALUCode, "if ( %s )\n", buff );
StrcatToALUCode( "{\n" );
m_NumIndentTabs++;
break;
case D3DSIO_ELSE:
m_NumIndentTabs--;
StrcatToALUCode( "}\n" );
StrcatToALUCode( "else\n" );
StrcatToALUCode( "{\n" );
m_NumIndentTabs++;
break;
case D3DSIO_ENDIF:
m_NumIndentTabs--;
StrcatToALUCode( "}\n" );
break;
case D3DSIO_REP:
dwToken = GetNextToken();
PrintParameterToString( dwToken, SRC_REGISTER, buff, sizeof( buff ), false, NULL );
// In practice, this is the only form of for loop that will appear in DX asm
PrintToBufWithIndents( *m_pBufALUCode, "for( int i=0; i < %s; i++ )\n", buff );
StrcatToALUCode( "{\n" );
m_nLoopDepth++;
// For now, we don't deal with loop nesting
// Easy enough to fix later with an array of loop names i, j, k etc
Assert( m_nLoopDepth <= 1 );
m_NumIndentTabs++;
break;
case D3DSIO_ENDREP:
m_nLoopDepth--;
m_NumIndentTabs--;
StrcatToALUCode( "}\n" );
break;
case D3DSIO_NRM:
Handle_NRM();
break;
case D3DSIO_MOVA:
Handle_UnaryOp( nInstruction );
break;
// Unary operations
case D3DSIO_MOV:
case D3DSIO_RCP:
case D3DSIO_RSQ:
case D3DSIO_EXP:
case D3DSIO_EXPP:
case D3DSIO_LOG:
case D3DSIO_LOGP:
case D3DSIO_FRC:
case D3DSIO_LIT:
case D3DSIO_ABS:
Handle_UnaryOp( nInstruction );
break;
// -- Binary ops -------------------------------------------------
case D3DSIO_TEXM3x3SPEC:
case D3DSIO_M4x4:
case D3DSIO_M4x3:
case D3DSIO_M3x4:
case D3DSIO_M3x3:
case D3DSIO_M3x2:
case D3DSIO_CALLNZ:
case D3DSIO_SETP:
TranslationError();
break;
case D3DSIO_BREAKC:
Handle_BREAKC( dwToken );
break;
// Binary Operations
case D3DSIO_ADD:
case D3DSIO_SUB:
case D3DSIO_MUL:
case D3DSIO_DP3:
case D3DSIO_DP4:
case D3DSIO_MIN:
case D3DSIO_MAX:
case D3DSIO_DST:
case D3DSIO_SLT:
case D3DSIO_SGE:
case D3DSIO_CRS:
case D3DSIO_POW:
HandleBinaryOp_GLSL( nInstruction );
break;
// -- Ternary ops -------------------------------------------------
case D3DSIO_DP2ADD:
Handle_DP2ADD();
break;
case D3DSIO_LRP:
Handle_LRP( nInstruction );
break;
case D3DSIO_SGN:
Assert( m_bVertexShader );
TranslationError(); // TODO emulate with SLT etc
break;
case D3DSIO_CND:
TranslationError();
break;
case D3DSIO_CMP:
Handle_CMP();
break;
case D3DSIO_SINCOS:
Handle_SINCOS();
break;
case D3DSIO_MAD:
Handle_MAD( nInstruction );
break;
// -- Quaternary op ------------------------------------------------
case D3DSIO_TEXLDD:
Handle_TexLDD( nInstruction );
break;
// -- Special cases: texcoord vs texcrd and tex vs texld -----------
case D3DSIO_TEXCOORD:
Handle_TexCoord();
break;
case D3DSIO_TEX:
Handle_TEX( dwToken, false );
break;
case D3DSIO_TEXLDL:
Handle_TEX( nInstruction, true );
break;
case D3DSIO_DCL:
Handle_DCL();
break;
case D3DSIO_DEFB:
case D3DSIO_DEFI:
Handle_DEFIB( nInstruction );
break;
case D3DSIO_DEF:
Handle_DEF();
break;
case D3DSIO_COMMENT:
// Using OpcodeSpecificData() can fail here since the comments can be longer than 0xff dwords
nNumTokensToSkip = ( dwToken & 0x0fff0000 ) >> 16;
SkipTokens( nNumTokensToSkip );
break;
case D3DSIO_END:
break;
}
if ( m_bSpew )
{
int aluCodeLength1 = V_strlen( (char *) m_pBufALUCode->Base() );
if ( aluCodeLength1 != aluCodeLength0 )
{
// code was emitted
printf( "\n > %s", ((char *)m_pBufALUCode->Base()) + aluCodeLength0 );
aluCodeLength0 = aluCodeLength1;
}
}
}
// Note that this constant packing expects .wzyx swizzles in case we ever use the SINCOS code in a ps_2_x shader
//
// The Microsoft documentation on this is all kinds of broken and, strangely, these numbers don't even
// match the D3DSINCOSCONST1 and D3DSINCOSCONST2 constants used by the D3D assembly sincos instruction...
if ( m_bNeedsSinCosDeclarations )
{
PrintIndentation( (char*)m_pBufParamCode->Base(), m_pBufParamCode->Size() );
StrcatToParamCode( "vec4 scA = vec4( -1.55009923e-6, -2.17013894e-5, 0.00260416674, 0.00026041668 );\n" );
PrintIndentation( (char*)m_pBufParamCode->Base(), m_pBufParamCode->Size() );
StrcatToParamCode( "vec4 scB = vec4( -0.020833334, -0.125, 1.0, 0.5 );\n" );
}
// Stick in the sampler mask in hex
PrintToBuf( *m_pBufHeaderCode, "%sSAMPLERMASK-%x\n", "//", m_dwSamplerUsageMask );
uint nSamplerTypes = 0;
for ( int i = 0; i < 16; i++ )
{
Assert( m_dwSamplerTypes[i] < 4);
nSamplerTypes |= ( m_dwSamplerTypes[i] << ( i * 2 ) );
}
PrintToBuf( *m_pBufHeaderCode, "%sSAMPLERTYPES-%x\n", "//", nSamplerTypes );
// fragData outputs referenced
uint nFragDataMask = 0;
for ( int i = 0; i < 4; i++ )
{
nFragDataMask |= m_bOutputColorRegister[ i ] ? ( 1 << i ) : 0;
}
PrintToBuf( *m_pBufHeaderCode, "%sFRAGDATAMASK-%x\n", "//", nFragDataMask );
// Uniforms
PrintToBuf( *m_pBufHeaderCode, "//HIGHWATER-%d\n", m_nHighestRegister + 1 );
if ( ( m_bVertexShader ) && ( m_bGenerateBoneUniformBuffer ) )
{
PrintToBuf( *m_pBufHeaderCode, "//HIGHWATERBONE-%i\n", m_nHighestBoneRegister + 1 );
}
PrintToBuf( *m_pBufHeaderCode, "\nuniform vec4 %s[%d];\n", m_bVertexShader ? "vc" : "pc", m_nHighestRegister + 1 );
if ( ( m_nHighestBoneRegister >= 0 ) && ( m_bVertexShader ) && ( m_bGenerateBoneUniformBuffer ) )
{
PrintToBuf( *m_pBufHeaderCode, "\nuniform vec4 %s[%d];\n", "vcbones", m_nHighestBoneRegister + 1 );
}
if ( m_bVertexShader )
{
PrintToBuf( *m_pBufHeaderCode, "\nuniform vec4 vcscreen;\n" );
}
for( int i=0; i<32; i++ )
{
if ( ( m_dwConstIntUsageMask & ( 0x00000001 << i ) ) &&
( !( m_dwDefConstIntUsageMask & ( 0x00000001 << i ) ) )
)
{
PrintToBuf( *m_pBufHeaderCode, "uniform int i%d ;\n", i );
}
}
for( int i=0; i<32; i++ )
{
if ( m_dwDefConstIntUsageMask & ( 0x00000001 << i ) )
{
PrintToBuf( *m_pBufHeaderCode, "const int i%d = %i;\n", i, m_dwDefConstIntIterCount[i] );
}
}
for( int i=0; i<32; i++ )
{
if ( m_dwConstBoolUsageMask & ( 0x00000001 << i ) )
{
PrintToBuf( *m_pBufHeaderCode, m_bVertexShader ? "uniform bool b%d;\n" : "uniform bool fb%d;\n", i );
}
}
// Control bit for sRGB Write suffix
if ( m_bGenerateSRGBWriteSuffix )
{
// R500 Hookup
// Set this guy to 1 when the sRGBWrite state is true, otherwise 0
StrcatToHeaderCode( "uniform float flSRGBWrite;\n" );
}
PrintToBuf( *m_pBufHeaderCode, "\n" );
// Write samplers
WriteGLSLSamplerDefinitions();
if ( m_bUsesDSTInstruction )
{
PrintToBuf( *m_pBufHeaderCode, "vec4 dst(vec4 src0,vec4 src1) { return vec4(1.0f,src0.y*src1.y,src0.z,src1.w); }\n" );
}
if ( m_bDeclareAddressReg )
{
if ( !m_bGenerateBoneUniformBuffer )
{
m_nHighestRegister = DXABSTRACT_VS_PARAM_SLOTS - 1;
}
PrintIndentation( (char*)m_pBufParamCode->Base(), m_pBufParamCode->Size() );
StrcatToParamCode( "vec4 va_r;\n" );
}
char *pTempVarStr = "TEMP";
pTempVarStr = "vec4";
// Declare temps in Param code buffer
for( int i=0; i<32; i++ )
{
if ( m_dwTempUsageMask & ( 0x00000001 << i ) )
{
PrintIndentation( (char*)m_pBufParamCode->Base(), m_pBufParamCode->Size() );
PrintToBuf( *m_pBufParamCode, "%s r%d;\n", pTempVarStr, i );
}
}
if ( m_bVertexShader && (m_bDoUserClipPlanes || m_bDoFixupZ || m_bDoFixupY ) )
{
PrintIndentation( (char*)m_pBufParamCode->Base(), m_pBufParamCode->Size() );
StrcatToParamCode( "vec4 vTempPos;\n" );
}
if ( ( m_bVertexShader ) && ( m_dwMajorVersion == 3 ) )
{
for ( int i = 0; i < 32; i++ )
{
if ( m_dwTexCoordOutMask & ( 1 << i ) )
{
PrintIndentation( (char*)m_pBufParamCode->Base(), m_pBufParamCode->Size() );
char buf[256];
V_snprintf( buf, sizeof( buf ), "vec4 oTempT%i = vec4( 0, 0, 0, 0 );\n", i );
StrcatToParamCode( buf );
}
}
}
if ( m_bNeedsSinCosDeclarations )
{
StrcatToParamCode( "vec3 vSinCosTmp;\n" ); // declare temp used by GLSL sin and cos intrinsics
}
// Optional temps needed to emulate d2add instruction in DX pixel shaders
if ( m_bNeedsD2AddTemp )
{
PrintToBuf( *m_pBufParamCode, "%s DP2A0;\n%s DP2A1;\n", pTempVarStr, pTempVarStr );
}
// Optional temp needed to emulate lerp instruction in DX vertex shaders
if ( m_bNeedsLerpTemp )
{
PrintToBuf( *m_pBufParamCode, "%s LRP_TEMP;\n", pTempVarStr );
}
// Optional temp needed to emulate NRM instruction in DX shaders
if ( m_bNeedsNRMTemp )
{
PrintToBuf( *m_pBufParamCode, "%s NRM_TEMP;\n", pTempVarStr );
}
if ( m_bDeclareVSOPos && m_bVertexShader )
{
if ( m_bDoUserClipPlanes )
{
StrcatToALUCode( "gl_ClipVertex = vTempPos;\n" ); // if user clip is enabled, jam clip space position into gl_ClipVertex
}
if ( m_bDoFixupZ || m_bDoFixupY )
{
// TODO: insert clip distance computation something like this:
//
// StrcatToALUCode( "DP4 oCLP[0].x, oPos, vc[215]; \n" );
//
if ( m_bDoFixupZ )
{
StrcatToALUCode( "vTempPos.z = vTempPos.z * vc[0].z - vTempPos.w; // z' = (2*z)-w\n" );
}
if ( m_bDoFixupY )
{
// append instructions to flip Y over
// new Y = -(old Y)
StrcatToALUCode( "vTempPos.y = -vTempPos.y; // y' = -y \n" );
}
StrcatToALUCode( "vTempPos.xy += vcscreen.xy * vTempPos.w;\n" );
StrcatToALUCode( "gl_Position = vTempPos;\n" );
}
else
{
StrcatToParamCode( "OUTPUT oPos = result.position;\n" );
// TODO: insert clip distance computation something like this:
//
// StrcatToALUCode( "DP4 oCLP[0].x, oPos, c[215]; \n" );
//
}
}
if ( m_bVertexShader )
{
if ( m_dwMajorVersion == 3 )
{
WriteGLSLOutputVariableAssignments();
}
else
{
for ( int i=0; i<32; i++ )
{
char outTexCoordBuff[64];
// Don't declare a varying for the output that is mapped to the position output
if ( i != m_nVSPositionOutput )
{
if ( m_dwTexCoordOutMask & ( 0x00000001 << i ) )
{
if ( m_nCentroidMask & ( 0x00000001 << i ) )
{
V_snprintf( outTexCoordBuff, sizeof( outTexCoordBuff ), "centroid varying vec4 oT%d;\n", i ); // centroid varying
StrcatToHeaderCode( outTexCoordBuff );
}
else
{
V_snprintf( outTexCoordBuff, sizeof( outTexCoordBuff ), "varying vec4 oT%d;\n", i );
StrcatToHeaderCode( outTexCoordBuff );
}
}
}
}
}
}
else
{
if ( m_dwMajorVersion == 3 )
{
WriteGLSLInputVariableAssignments();
}
}
// do some annotation at the end of the attrib block
{
char temp[1000];
if ( m_bVertexShader )
{
// write attrib map into the text starting at pAttribMapStart - two hex digits per attrib
for( int i=0; i<16; i++ )
{
if ( m_dwAttribMap[i] != 0xFFFFFFFF )
{
V_snprintf( temp, sizeof(temp), "%02X", m_dwAttribMap[i] );
memcpy( pAttribMapStart + (i*3), temp, 2 );
}
}
}
PrintIndentation( (char*)m_pBufAttribCode->Base(), m_pBufAttribCode->Size() );
// This used to write out a translation counter into the shader as a comment. However, the order that shaders get in here
// is non-deterministic between runs, and the change in this comment would cause shaders to appear different to the GL disk cache,
// significantly increasing app load time.
// Other code looks for trans#%d, so we can't just remove it. Instead, output it as 0.
V_snprintf( temp, sizeof(temp), "%s trans#%d label:%s\n", "//", 0, debugLabel ? debugLabel : "none" );
StrcatToAttribCode( temp );
}
// If we actually sample from a shadow depth sampler, we need to declare the shadow option at the top
if ( m_bDeclareShadowOption )
{
StrcatToHeaderCode( "OPTION ARB_fragment_program_shadow;\n" );
}
StrcatToHeaderCode( "\nvoid main()\n{\n" );
if ( m_bUsedAtomicTempVar )
{
PrintToBufWithIndents( *m_pBufHeaderCode, "vec4 %s;\n\n", g_pAtomicTempVarName );
}
// sRGB Write suffix
if ( m_bGenerateSRGBWriteSuffix )
{
StrcatToALUCode( "vec3 sRGBFragData;\n" );
StrcatToALUCode( "sRGBFragData.xyz = log( gl_FragData[0].xyz );\n" );
StrcatToALUCode( "sRGBFragData.xyz = sRGBFragData.xyz * vec3( 0.454545f, 0.454545f, 0.454545f );\n" );
StrcatToALUCode( "sRGBFragData.xyz = exp( sRGBFragData.xyz );\n" );
StrcatToALUCode( "gl_FragData[0].xyz = mix( gl_FragData[0].xyz, sRGBFragData, flSRGBWrite );\n" );
}
strcat_s( (char*)m_pBufALUCode->Base(), m_pBufALUCode->Size(), "}\n" );
// Put all of the strings together for final program ( pHeaderCode + pAttribCode + pParamCode + pALUCode )
StrcatToHeaderCode( (char*)m_pBufAttribCode->Base() );
StrcatToHeaderCode( (char*)m_pBufParamCode->Base() );
StrcatToHeaderCode( (char*)m_pBufALUCode->Base() );
// Cleanup - don't touch m_pBufHeaderCode, as it is managed by the caller
delete m_pBufAttribCode;
delete m_pBufParamCode;
delete m_pBufALUCode;
m_pBufAttribCode = m_pBufParamCode = m_pBufALUCode = NULL;
if ( m_bSpew )
{
printf("\n************* translation complete\n\n " );
}
return DISASM_OK;
}