Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

5683 lines
187 KiB

//===== Copyright (c) Valve Corporation, All rights reserved. ======//
//
// Purpose:
//
//===========================================================================//
#include "pch_materialsystem.h"
#ifndef _PS3
#define MATSYS_INTERNAL
#endif
#include "cmaterialsystem.h"
#include "colorspace.h"
#include "materialsystem/materialsystem_config.h"
#include "materialsystem/imaterialproxyfactory.h"
#include "IHardwareConfigInternal.h"
#include "shadersystem.h"
#include "texturemanager.h"
#include "shaderlib/ShaderDLL.h"
#include "tier1/callqueue.h"
#include "tier1/smartptr.h"
#include "vstdlib/jobthread.h"
#include "cmatnullrendercontext.h"
#include "datacache/iresourceaccesscontrol.h"
#include "filesystem/IQueuedLoader.h"
#include "filesystem/IXboxInstaller.h"
#include "cdll_int.h"
#include "vjobs_interface.h"
#include "ps3/ps3_sn.h"
#include "shaderapidx9/imeshdx8.h"
#include "tier0/perfstats.h"
#if defined( _X360 )
#include "xbox/xbox_console.h"
#include "xbox/xbox_win32stubs.h"
#elif defined(_PS3)
#include "ps3/ps3_helpers.h"
#include "ps3/ps3_console.h"
#endif
// NOTE: This must be the last file included!!!
#include "tier0/memdbgon.h"
#ifdef PLATFORM_POSIX
#define _finite finite
#endif
// this is hooked into the engines convar
ConVar mat_debugalttab( "mat_debugalttab", "0", FCVAR_CHEAT );
ConVar gpu_level( "gpu_level", "3", 0, "GPU Level - Default: High" );
ConVar mat_force_vertexfog( "mat_force_vertexfog", "0", FCVAR_DEVELOPMENTONLY );
static ConVar mat_forcemanagedtextureintohardware( "mat_forcemanagedtextureintohardware", "1", FCVAR_CHEAT | FCVAR_DEVELOPMENTONLY );
ConVar mat_supportflashlight( "mat_supportflashlight", "-1", FCVAR_CHEAT | FCVAR_DEVELOPMENTONLY, "0 - do not support flashlight (don't load flashlight shader combos), 1 - flashlight is supported" );
// Default this to zero for the press playtest!
static ConVar mat_forcehardwaresync( "mat_forcehardwaresync", /* IsPC() ? "1" : */ "0" );
// Make sure this convar gets created before videocfg.lib is initialized, so it can be driven by dxsupport.cfg
static ConVar mat_tonemapping_occlusion_use_stencil( "mat_tonemapping_occlusion_use_stencil", "0", FCVAR_DEVELOPMENTONLY );
#if defined( DX_TO_GL_ABSTRACTION ) && !defined( _PS3 )
static ConVar mat_dxlevel( "mat_dxlevel", "100", FCVAR_DEVELOPMENTONLY, "", true, 90, true, 100, NULL );
//static ConVar mat_dxlevel( "mat_dxlevel", "95", FCVAR_DEVELOPMENTONLY, "", true, 95, true, 95, NULL );
//static ConVar mat_dxlevel( "mat_dxlevel", "92", FCVAR_DEVELOPMENTONLY, "", true, 92, true, 92, NULL );
#else
static ConVar mat_dxlevel( "mat_dxlevel", "0", FCVAR_DEVELOPMENTONLY );
#endif
ConVar mat_queue_mode( "mat_queue_mode", "-1", FCVAR_RELEASE, "The queue/thread mode the material system should use: -1=default, 0=synchronous single thread, 1=queued single thread, 2=queued multithreaded" );
ConVar mat_queue_report( "mat_queue_report", "0", FCVAR_ARCHIVE, "Report thread stalls. Positive number will filter by stalls >= time in ms. -1 reports all locks." );
ConVar mat_queue_mode_force_allow( "mat_queue_mode_force_allow", IsPS3() ? "1" : "0", FCVAR_DEVELOPMENTONLY, "Whether QMS can be enabled on single threaded CPU" );
ConVar mat_queue_priority("mat_queue_priority", "1", FCVAR_RELEASE);
// FIXME: Would like to remove these, but what the hey.
#if defined( DX_TO_GL_ABSTRACTION )
static ConVar cpu_level( "cpu_level", "3", 0, "CPU Level - Default: High" );
static ConVar gpu_mem_level( "gpu_mem_level", "3", 0, "Memory Level - Default: High" );
#else
static ConVar cpu_level( "cpu_level", "2", 0, "CPU Level - Default: High" );
static ConVar mem_level( "mem_level", "2", 0, "Memory Level - Default: High" );
static ConVar gpu_mem_level( "gpu_mem_level", "2", 0, "Memory Level - Default: High" );
#endif
static ConVar mat_picmip( "mat_picmip", "0", FCVAR_NONE, "", true, -10, true, 4 );
ConVar csm_quality_level( "csm_quality_level", "0", 0, "Cascaded shadow map quality level, [0,3], 0=VERY_LOW, 3=HIGHEST" );
// Moving this here (instead of in viewpostprocess.cpp) so videocfg.cpp can modify its value early during init based off whatever setting is in video.txt
#if defined( CSTRIKE15 )
ConVar mat_software_aa_strength( "mat_software_aa_strength", "-1.0", 0, "Software AA - perform a software anti-aliasing post-process (an alternative/supplement to MSAA). This value sets the strength of the effect: (0.0 - off), (1.0 - full)" );
#else
ConVar mat_software_aa_strength( "mat_software_aa_strength", IsPS3()? "0" : "-1.0", 0, "Software AA - perform a software anti-aliasing post-process (an alternative/supplement to MSAA). This value sets the strength of the effect: (0.0 - off), (1.0 - full)" );
#endif
ConVar mat_async_tex_maxtime_ms( "mat_async_tex_maxtime_ms", "0.5", FCVAR_DEVELOPMENTONLY, "Cutoff time (in ms) spent in ServiceAsyncTextureLoads" );
// Material system console channel
BEGIN_DEFINE_LOGGING_CHANNEL( LOG_MaterialSystemConsole, "MaterialSystemConsole", LCF_CONSOLE_ONLY );
ADD_LOGGING_CHANNEL_TAG( "Console" );
END_DEFINE_LOGGING_CHANNEL();
IMaterialInternal *g_pErrorMaterial = NULL;
#if defined( INCLUDE_SCALEFORM )
extern IScaleformUI* g_pScaleformUI;
#endif
CreateInterfaceFn g_fnMatSystemConnectCreateInterface = NULL;
#ifdef _PS3
#define m_pRenderContext Ps3TlsMaterialSystemRenderContext
#elif defined(_X360)
IMatRenderContextInternal *CMaterialSystem::m_pRenderContexts[2];
#define m_pRenderContext CMaterialSystem::m_pRenderContexts[(int)ThreadInMainThread()]
#else
CTHREADLOCALPTR(IMatRenderContextInternal) CMaterialSystem::m_pRenderContext;
#endif
#if defined( _X360 )
static const unsigned int g_GamerpicSize = 64;
static const ImageFormat g_GamerpicFormat = IMAGE_FORMAT_LINEAR_BGRA8888; // note that this format is intentionally BGRA instead of ARBB
#endif // _X360
//#define PERF_TESTING 1
#ifdef DX_TO_GL_ABSTRACTION
// Uncomment if you want the material queued system to run on its own thread pool
// Otherwise it will use the global thread pool
#define MAT_QUEUED_OWN_THREADPOOL
#endif
//-----------------------------------------------------------------------------
// Implementational structures
//-----------------------------------------------------------------------------
#define MATERIAL_MAX_TREE_DEPTH 256
//-----------------------------------------------------------------------------
// Singleton instance exposed to the engine
//-----------------------------------------------------------------------------
CMaterialSystem g_MaterialSystem;
EXPOSE_SINGLE_INTERFACE_GLOBALVAR( CMaterialSystem, IMaterialSystem,
MATERIAL_SYSTEM_INTERFACE_VERSION, g_MaterialSystem );
// Expose this to the external shader DLLs
MaterialSystem_Config_t g_config;
EXPOSE_SINGLE_INTERFACE_GLOBALVAR( MaterialSystem_Config_t, MaterialSystem_Config_t, MATERIALSYSTEM_CONFIG_VERSION, g_config );
//-----------------------------------------------------------------------------
CThreadFastMutex g_MatSysMutex;
//-----------------------------------------------------------------------------
// Purpose: additional materialsystem information, internal use only
//-----------------------------------------------------------------------------
#ifndef _GAMECONSOLE
struct MaterialSystem_Config_Internal_t
{
int gpu_level;
};
MaterialSystem_Config_Internal_t g_config_internal;
#endif
//-----------------------------------------------------------------------------
// Necessary to allow the shader DLLs to get ahold of IMaterialSystemHardwareConfig
//-----------------------------------------------------------------------------
IHardwareConfigInternal* g_pHWConfig = 0;
static void *GetHardwareConfig()
{
if ( g_pHWConfig )
return (IMaterialSystemHardwareConfig*)g_pHWConfig;
// can't call QueryShaderAPI here because it calls a factory function
// and we end up in an infinite recursion
return NULL;
}
EXPOSE_INTERFACE_FN( GetHardwareConfig, IMaterialSystemHardwareConfig, MATERIALSYSTEM_HARDWARECONFIG_INTERFACE_VERSION );
//-----------------------------------------------------------------------------
// Necessary to allow the shader DLLs to get ahold of ICvar
//-----------------------------------------------------------------------------
static void *GetICVar()
{
return g_pCVar;
}
EXPOSE_INTERFACE_FN( GetICVar, ICVar, CVAR_INTERFACE_VERSION );
//-----------------------------------------------------------------------------
// Accessor to get at the material system
//-----------------------------------------------------------------------------
IMaterialSystemInternal *g_pInternalMaterialSystem = &g_MaterialSystem;
#ifndef _PS3
IShaderUtil *g_pShaderUtil = &g_MaterialSystem;
#endif
IVJobs * g_pVJobs = NULL;
#if defined( USE_SDL ) || defined( OSX )
#include "appframework/ilaunchermgr.h"
ILauncherMgr *g_pLauncherMgr = NULL; // set in CMaterialSystem::Connect
#endif
//-----------------------------------------------------------------------------
// Factory used to get at internal interfaces (used by shaderapi + shader dlls)
//-----------------------------------------------------------------------------
void *ShaderFactory( const char *pName, int *pReturnCode )
{
if (pReturnCode)
{
*pReturnCode = IFACE_OK;
}
if ( !Q_stricmp( pName, FILESYSTEM_INTERFACE_VERSION ))
return g_pFullFileSystem;
if ( !Q_stricmp( pName, QUEUEDLOADER_INTERFACE_VERSION ))
return g_pQueuedLoader;
if ( !Q_stricmp( pName, VJOBS_INTERFACE_VERSION ) )
return g_pVJobs;
#if defined( _X360 )
if ( !Q_stricmp( pName, XBOXINSTALLER_INTERFACE_VERSION ))
return g_pXboxInstaller;
#endif
if ( !Q_stricmp( pName, SHADER_UTIL_INTERFACE_VERSION ))
return g_pShaderUtil;
#if defined( USE_SDL )
if ( !Q_stricmp( pName, "SDLMgrInterface001" /*SDLMGR_INTERFACE_VERSION*/ ))
return g_pLauncherMgr;
#endif
#if PLATFORM_OSX
if ( !Q_stricmp( pName, "CocoaMgrInterface006" /*COCOAMGR_INTERFACE_VERSION*/ ))
return g_pLauncherMgr;
#endif
void * pInterface = g_MaterialSystem.QueryInterface( pName );
if ( pInterface )
return pInterface;
if ( pReturnCode )
{
*pReturnCode = IFACE_FAILED;
}
return NULL;
}
//-----------------------------------------------------------------------------
// Resource preloading for materials.
//-----------------------------------------------------------------------------
class CResourcePreloadMaterial : public CResourcePreload
{
virtual bool CreateResource( const char *pName )
{
IMaterial *pMaterial = g_MaterialSystem.FindMaterial( pName, TEXTURE_GROUP_WORLD, false );
IMaterialInternal *pMatInternal = static_cast< IMaterialInternal * >( pMaterial );
if ( pMatInternal )
{
// always work with the realtime material internally
pMatInternal = pMatInternal->GetRealTimeVersion();
// tag these for later identification (prevents an unwanted purge)
pMatInternal->MarkAsPreloaded( true );
if ( !pMatInternal->IsErrorMaterial() )
{
// force material's textures to create now
pMatInternal->Precache();
return true;
}
else
{
if ( IsPosix() )
{
printf("\n ##### CResourcePreloadMaterial::CreateResource can't find material %s\n", pName);
}
}
}
return false;
}
//-----------------------------------------------------------------------------
// Called before queued loader i/o jobs are actually performed. Must free up memory
// to ensure i/o requests have enough memory to succeed. The materials that were
// touched by the CreateResource() are inhibited from purging (as is their textures,
// by virtue of ref counts), all others are candidates. The preloaded materials
// are by definition zero ref'd until owned by the normal loading process. Any material
// that stays zero ref'd is a candidate for the post load purge.
//-----------------------------------------------------------------------------
virtual void PurgeUnreferencedResources()
{
bool bSpew = ( g_pQueuedLoader->GetSpewDetail() & LOADER_DETAIL_PURGES ) != 0;
bool bDidUncacheMaterial = false;
MaterialHandle_t hNext;
for ( MaterialHandle_t hMaterial = g_MaterialSystem.FirstMaterial(); hMaterial != g_MaterialSystem.InvalidMaterial(); hMaterial = hNext )
{
hNext = g_MaterialSystem.NextMaterial( hMaterial );
IMaterialInternal *pMatInternal = g_MaterialSystem.GetMaterialInternal( hMaterial );
Assert( pMatInternal->GetReferenceCount() >= 0 );
// preloaded materials are safe from this pre-purge
if ( !pMatInternal->IsPreloaded() )
{
// undo any possible artifical ref count
pMatInternal->ArtificialRelease();
if ( pMatInternal->GetReferenceCount() <= 0 )
{
if ( bSpew )
{
Msg( "CResourcePreloadMaterial: Purging: %s (%d)\n", pMatInternal->GetName(), pMatInternal->GetReferenceCount() );
}
bDidUncacheMaterial = true;
pMatInternal->Uncache();
pMatInternal->DeleteIfUnreferenced();
}
}
else
{
// clear the bit
pMatInternal->MarkAsPreloaded( false );
}
}
// purged materials unreference their textures
// purge any zero ref'd textures
TextureManager()->RemoveUnusedTextures();
// fixup any excluded textures, may cause some new batch requests
MaterialSystem()->UpdateExcludedTextures();
}
virtual void PurgeAll()
{
bool bSpew = ( g_pQueuedLoader->GetSpewDetail() & LOADER_DETAIL_PURGES ) != 0;
bool bDidUncacheMaterial = false;
MaterialHandle_t hNext;
for ( MaterialHandle_t hMaterial = g_MaterialSystem.FirstMaterial(); hMaterial != g_MaterialSystem.InvalidMaterial(); hMaterial = hNext )
{
hNext = g_MaterialSystem.NextMaterial( hMaterial );
IMaterialInternal *pMatInternal = g_MaterialSystem.GetMaterialInternal( hMaterial );
Assert( pMatInternal->GetReferenceCount() >= 0 );
pMatInternal->MarkAsPreloaded( false );
// undo any possible artifical ref count
pMatInternal->ArtificialRelease();
if ( pMatInternal->GetReferenceCount() <= 0 )
{
if ( bSpew )
{
Msg( "CResourcePreloadMaterial: Purging: %s (%d)\n", pMatInternal->GetName(), pMatInternal->GetReferenceCount() );
}
bDidUncacheMaterial = true;
pMatInternal->Uncache();
pMatInternal->DeleteIfUnreferenced();
}
}
// purged materials unreference their textures
// purge any zero ref'd textures
TextureManager()->RemoveUnusedTextures();
}
void OnEndMapLoading( bool bAbort )
{
CMaterialDict *pDict = g_MaterialSystem.GetMaterialDict();
for (MaterialHandle_t i = pDict->FirstMaterial(); i != pDict->InvalidMaterial(); i = pDict->NextMaterial(i) )
{
pDict->GetMaterialInternal(i)->CompactMaterialVars();
}
CompactMaterialVarHeap();
}
#if defined( _PS3 )
virtual bool RequiresRendererLock()
{
return true;
}
#endif // _PS3
};
static CResourcePreloadMaterial s_ResourcePreloadMaterial;
//-----------------------------------------------------------------------------
// Resource preloading for cubemaps.
//-----------------------------------------------------------------------------
class CResourcePreloadCubemap : public CResourcePreload
{
virtual bool CreateResource( const char *pName )
{
ITexture *pTexture = g_MaterialSystem.FindTexture( pName, TEXTURE_GROUP_CUBE_MAP, true );
ITextureInternal *pTexInternal = static_cast< ITextureInternal * >( pTexture );
if ( pTexInternal )
{
// There can be cubemaps that are unbound by materials. To prevent an unwanted purge,
// mark and increase the ref count. Otherwise the pre-purge discards these zero
// ref'd textures, and then the normal loading process hitches on the miss.
// The zombie cubemaps DO get discarded after the normal loading process completes
// if no material references them.
pTexInternal->MarkAsPreloaded( true );
pTexInternal->IncrementReferenceCount();
if ( !IsErrorTexture( pTexInternal ) )
{
return true;
}
}
return false;
}
//-----------------------------------------------------------------------------
// All valid cubemaps should have been owned by their materials. Undo the preloaded
// cubemap locks. Any zero ref'd cubemaps will be purged by the normal loading path conclusion.
//-----------------------------------------------------------------------------
virtual void OnEndMapLoading( bool bAbort )
{
int iIndex = -1;
for ( ;; )
{
ITextureInternal *pTexInternal;
iIndex = TextureManager()->FindNext( iIndex, &pTexInternal );
if ( iIndex == -1 || !pTexInternal )
{
// end of list
break;
}
if ( pTexInternal->IsPreloaded() )
{
// undo the artificial increase
pTexInternal->MarkAsPreloaded( false );
pTexInternal->DecrementReferenceCount();
}
}
}
#if defined( _PS3 )
virtual bool RequiresRendererLock()
{
return true;
}
#endif // _PS3
};
static CResourcePreloadCubemap s_ResourcePreloadCubemap;
//-----------------------------------------------------------------------------
// Creates the debugging materials
//-----------------------------------------------------------------------------
void CMaterialSystem::CreateDebugMaterials()
{
if ( !m_pDrawFlatMaterial )
{
KeyValues *pVMTKeyValues = new KeyValues( "UnlitGeneric" );
pVMTKeyValues->SetInt( "$model", 1 );
pVMTKeyValues->SetFloat( "$decalscale", 0.05f );
pVMTKeyValues->SetString( "$basetexture", "error" ); // This is the "error texture"
pVMTKeyValues->SetInt( "$gammacolorread", 1 );
pVMTKeyValues->SetInt( "$linearwrite", 1 );
g_pErrorMaterial = static_cast<IMaterialInternal*>(CreateMaterial( "___error.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "UnlitGeneric" );
pVMTKeyValues->SetInt( "$flat", 1 );
pVMTKeyValues->SetInt( "$vertexcolor", 1 );
pVMTKeyValues->SetInt( "$gammacolorread", 1 );
pVMTKeyValues->SetInt( "$linearwrite", 1 );
m_pDrawFlatMaterial = static_cast<IMaterialInternal*>(CreateMaterial( "___flat.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" );
pVMTKeyValues->SetInt( "$nocull", 1 );
m_pBufferClearObeyStencil[BUFFER_CLEAR_NONE] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil0.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" );
pVMTKeyValues->SetInt( "$nocull", 1 );
pVMTKeyValues->SetInt( "$clearcolor", 1 );
pVMTKeyValues->SetInt( "$vertexcolor", 1 );
m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil1.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" );
pVMTKeyValues->SetInt( "$nocull", 1 );
pVMTKeyValues->SetInt( "$clearalpha", 1 );
pVMTKeyValues->SetInt( "$vertexcolor", 1 );
m_pBufferClearObeyStencil[BUFFER_CLEAR_ALPHA] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil2.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" );
pVMTKeyValues->SetInt( "$nocull", 1 );
pVMTKeyValues->SetInt( "$clearcolor", 1 );
pVMTKeyValues->SetInt( "$clearalpha", 1 );
pVMTKeyValues->SetInt( "$vertexcolor", 1 );
m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR_AND_ALPHA] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil3.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" );
pVMTKeyValues->SetInt( "$nocull", 1 );
pVMTKeyValues->SetInt( "$cleardepth", 1 );
m_pBufferClearObeyStencil[BUFFER_CLEAR_DEPTH] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil4.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" );
pVMTKeyValues->SetInt( "$nocull", 1 );
pVMTKeyValues->SetInt( "$cleardepth", 1 );
pVMTKeyValues->SetInt( "$clearcolor", 1 );
pVMTKeyValues->SetInt( "$vertexcolor", 1 );
m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR_AND_DEPTH] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil5.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" );
pVMTKeyValues->SetInt( "$nocull", 1 );
pVMTKeyValues->SetInt( "$cleardepth", 1 );
pVMTKeyValues->SetInt( "$clearalpha", 1 );
pVMTKeyValues->SetInt( "$vertexcolor", 1 );
m_pBufferClearObeyStencil[BUFFER_CLEAR_ALPHA_AND_DEPTH] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil6.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" );
pVMTKeyValues->SetInt( "$nocull", 1 );
pVMTKeyValues->SetInt( "$cleardepth", 1 );
pVMTKeyValues->SetInt( "$clearcolor", 1 );
pVMTKeyValues->SetInt( "$clearalpha", 1 );
pVMTKeyValues->SetInt( "$vertexcolor", 1 );
m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR_AND_ALPHA_AND_DEPTH] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil7.vmt", pVMTKeyValues ))->GetRealTimeVersion();
if ( IsPS3() )
{
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" );
pVMTKeyValues->SetInt( "$nocull", 1 );
pVMTKeyValues->SetInt( "$cleardepth", 1 );
pVMTKeyValues->SetInt( "$vertexcolor", 1 );
pVMTKeyValues->SetInt( "$reloadzcull", 1 );
m_pReloadZcullMaterial = static_cast<IMaterialInternal*>(CreateMaterial( "__reload_zcull.vmt", pVMTKeyValues ))->GetRealTimeVersion();
}
if ( IsX360() )
{
pVMTKeyValues = new KeyValues( "RenderTargetBlit_X360" );
m_pRenderTargetBlitMaterial = static_cast<IMaterialInternal*>(CreateMaterial( "___renderTargetBlit.vmt", pVMTKeyValues ))->GetRealTimeVersion();
}
// PORTAL2 - hack to make sure BINK shaders are always precached to avoid hitches at runtime
if ( IsGameConsole() )
{
pVMTKeyValues = new KeyValues( "Bik" );
pVMTKeyValues->SetInt( "$nofog", 1 );
pVMTKeyValues->SetInt( "$spriteorientation", 3 );
pVMTKeyValues->SetInt( "$translucent", 1 );
pVMTKeyValues->SetInt( "$vertexcolor", 1 );
pVMTKeyValues->SetInt( "$vertexalpha", 1 );
pVMTKeyValues->SetInt( "$nolod", 1 );
pVMTKeyValues->SetInt( "$nomip", 1 );
pVMTKeyValues->SetInt( "$nobasetexture", 1 );
m_pBIKPreloadMaterial = static_cast<IMaterialInternal*>(CreateMaterial( "___binkprecache.vmt", pVMTKeyValues ))->GetRealTimeVersion();
}
ShaderSystem()->CreateDebugMaterials();
}
}
//-----------------------------------------------------------------------------
// Deletes the debugging materials
//-----------------------------------------------------------------------------
void CMaterialSystem::CleanUpDebugMaterials()
{
if ( m_pDrawFlatMaterial )
{
m_pDrawFlatMaterial->DecrementReferenceCount();
RemoveMaterial( m_pDrawFlatMaterial );
m_pDrawFlatMaterial = NULL;
for ( int i = BUFFER_CLEAR_NONE; i < BUFFER_CLEAR_TYPE_COUNT; ++i )
{
m_pBufferClearObeyStencil[i]->DecrementReferenceCount();
RemoveMaterial( m_pBufferClearObeyStencil[i] );
m_pBufferClearObeyStencil[i] = NULL;
}
if ( IsPS3() )
{
m_pReloadZcullMaterial->DecrementReferenceCount();
RemoveMaterial( m_pReloadZcullMaterial );
m_pReloadZcullMaterial = NULL;
}
if ( IsX360() )
{
m_pRenderTargetBlitMaterial->DecrementReferenceCount();
RemoveMaterial( m_pRenderTargetBlitMaterial );
m_pRenderTargetBlitMaterial = NULL;
}
// PORTAL2 - clean up preloaded bink shader
if ( IsGameConsole() )
{
m_pBIKPreloadMaterial->DecrementReferenceCount();
RemoveMaterial( m_pBIKPreloadMaterial );
m_pBIKPreloadMaterial = NULL;
}
ShaderSystem()->CleanUpDebugMaterials();
}
}
void CMaterialSystem::CleanUpErrorMaterial()
{
// Destruction of g_pErrorMaterial is deferred until after CMaterialDict::Shutdown.
// The global g_pErrorMaterial is set to NULL so that IMaterialInternal::DestroyMaterial will delete it.
IMaterialInternal *pErrorMaterial = g_pErrorMaterial;
g_pErrorMaterial = NULL;
pErrorMaterial->DecrementReferenceCount();
IMaterialInternal::DestroyMaterial( pErrorMaterial );
}
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CMaterialSystem::CMaterialSystem()
{
m_nRenderThreadID = 0xFFFFFFFF;
m_ShaderHInst = 0;
m_pMaterialProxyFactory = NULL;
m_pClientMaterialSystemInterface = NULL;
m_nAdapter = 0;
m_nAdapterFlags = 0;
m_bRequestedEditorMaterials = false;
m_bRequestedGBuffers = false;
m_StandardTexturesAllocated = false;
m_bRestoreManangedResources = true;
m_bInFrame = false;
m_bThreadHasOwnership = false;
#ifdef DX_TO_GL_ABSTRACTION
m_ThreadOwnershipID = 0;
#endif
m_pShaderDLL = NULL;
m_FullbrightLightmapTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_FullbrightBumpedLightmapTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_BlackTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_BlackAlphaZeroTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_FlatNormalTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_FlatSSBumpTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_GreyTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_GreyAlphaZeroTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_WhiteTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_LinearToGammaTableTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_LinearToGammaIdentityTableTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_MaxDepthTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_bInStubMode = false;
m_pForcedTextureLoadPathID = NULL;
m_bDisableRenderTargetAllocationForever = false;
m_nAllocatingRenderTargets = false;
m_pRenderContext = &m_HardwareRenderContext;
m_iCurQueuedContext = 0;
m_bGeneratedConfig = false;
m_pMatQueueThreadPool = NULL;
m_pActiveAsyncTextureLoad = NULL;
#ifndef _PS3
m_pActiveAsyncJob = NULL;
#else
m_bQMSJobSubmitted = false;
#endif
m_IdealThreadMode = m_ThreadMode = MATERIAL_SINGLE_THREADED;
m_nServiceThread = 0;
m_nConfigurationFlags = 0;
m_bForcedSingleThreaded = true;
m_bAllowQueuedRendering = false;
m_bStereoBoolsInitialized = false;
m_bIsStereoSupported = false;
m_bIsStereoActiveThisFrame = false;
m_bLevelLoadingComplete = false;
m_pSubString = NULL;
m_bDeferredMaterialReload = false;
}
CMaterialSystem::~CMaterialSystem()
{
if (m_pShaderDLL)
{
delete[] m_pShaderDLL;
}
if ( m_pSubString )
{
free( m_pSubString );
m_pSubString = NULL;
}
}
//-----------------------------------------------------------------------------
// Creates/destroys the shader implementation for the selected API
//-----------------------------------------------------------------------------
CreateInterfaceFn CMaterialSystem::CreateShaderAPI( char const* pShaderDLL )
{
if ( !pShaderDLL )
return 0;
// Clean up the old shader
DestroyShaderAPI();
// Load the new shader
m_ShaderHInst = Sys_LoadModule( pShaderDLL );
// Error loading the shader
if ( !m_ShaderHInst )
return 0;
// Get our class factory methods...
return Sys_GetFactory( m_ShaderHInst );
}
void CMaterialSystem::DestroyShaderAPI()
{
if (m_ShaderHInst)
{
// NOTE: By unloading the library, this will destroy m_pShaderAPI
Sys_UnloadModule( m_ShaderHInst );
g_pShaderAPI = 0;
g_pHWConfig = 0;
g_pShaderShadow = 0;
m_ShaderHInst = 0;
}
}
//-----------------------------------------------------------------------------
// Sets which shader we should be using. Has to be done before connect!
//-----------------------------------------------------------------------------
void CMaterialSystem::SetShaderAPI( char const *pShaderAPIDLL )
{
#if defined( _PS3 ) || defined( _OSX )
return;
#endif
if ( m_ShaderAPIFactory )
{
Warning( "Cannot set the shader API twice!\n" );
return;
}
if ( !pShaderAPIDLL )
{
pShaderAPIDLL = "shaderapidx9";
}
// m_pShaderDLL is needed to spew driver info
Assert( pShaderAPIDLL );
int len = Q_strlen( pShaderAPIDLL ) + 1;
m_pShaderDLL = new char[len];
memcpy( m_pShaderDLL, pShaderAPIDLL, len );
m_ShaderAPIFactory = CreateShaderAPI( pShaderAPIDLL );
if ( !m_ShaderAPIFactory )
{
DestroyShaderAPI();
}
}
//-----------------------------------------------------------------------------
// Connect/disconnect
//-----------------------------------------------------------------------------
bool CMaterialSystem::Connect( CreateInterfaceFn factory )
{
if ( !factory )
return false;
if ( !BaseClass::Connect( factory ) )
return false;
if ( !g_pFullFileSystem )
{
Warning( "The material system requires the filesystem to run!\n" );
return false;
}
g_pVJobs = ( IVJobs* )factory( VJOBS_INTERFACE_VERSION, NULL );
// Get at the interfaces exported by the shader DLL
#ifndef _OSX
g_pShaderDeviceMgr = (IShaderDeviceMgr*)m_ShaderAPIFactory( SHADER_DEVICE_MGR_INTERFACE_VERSION, 0 );
if ( !g_pShaderDeviceMgr )
return false;
g_pHWConfig = (IHardwareConfigInternal*)m_ShaderAPIFactory( MATERIALSYSTEM_HARDWARECONFIG_INTERFACE_VERSION, 0 );
if ( !g_pHWConfig )
return false;
#endif
#ifndef DEDICATED
#if defined( USE_SDL )
#if !defined( LINUX )
g_pHWConfig = g_pHardwareConfig;
#endif
g_pLauncherMgr = (ILauncherMgr *)factory( "SDLMgrInterface001", NULL );
if ( !g_pLauncherMgr )
return false;
#elif defined( _PS3 )
g_pHWConfig = g_pHardwareConfig;
#elif defined( _OSX )
g_pHWConfig = g_pHardwareConfig;
// write a link to the Cocoa manager into the config record so the shader subsystem can get to it.
// alas we can't include icocoamgr.h due to a header conflict in the SDK, so the interface name here is hardwired for now
// /System/Library/Frameworks/CoreServices.framework/Frameworks/CarbonCore.framework/Headers/Threads.h:520:
// error: declaration of C function ‘OSErr CreateThreadPool(ThreadStyle, SInt16, Size)’
#define COCOAMGR_INTERFACE_VERSION "CocoaMgrInterface006"
g_pLauncherMgr = (ILauncherMgr *)factory( COCOAMGR_INTERFACE_VERSION, NULL );
if ( !g_pLauncherMgr )
return false;
#elif defined(_WIN32)
#else
#error
#endif
#endif // !DEDICATED
#ifndef _OSX
// FIXME: ShaderAPI, ShaderDevice, and ShaderShadow should only come in after setting mode
g_pShaderAPI = (IShaderAPI*)m_ShaderAPIFactory( SHADERAPI_INTERFACE_VERSION, 0 );
if ( !g_pShaderAPI )
return false;
g_pShaderDevice = (IShaderDevice*)m_ShaderAPIFactory( SHADER_DEVICE_INTERFACE_VERSION, 0 );
if ( !g_pShaderDevice )
return false;
g_pShaderShadow = (IShaderShadow*)m_ShaderAPIFactory( SHADERSHADOW_INTERFACE_VERSION, 0 );
if ( !g_pShaderShadow )
return false;
#endif
// Remember the factory for connect
g_fnMatSystemConnectCreateInterface = factory;
#if defined( INCLUDE_SCALEFORM )
g_pScaleformUI = ( IScaleformUI* ) factory( SCALEFORMUI_INTERFACE_VERSION, 0 );
#endif
return g_pShaderDeviceMgr->Connect( ShaderFactory );
}
void CMaterialSystem::Disconnect()
{
// Forget the factory for connect
g_fnMatSystemConnectCreateInterface = NULL;
if ( g_pShaderDeviceMgr )
{
g_pShaderDeviceMgr->Disconnect();
g_pShaderDeviceMgr = NULL;
// Unload the DLL
DestroyShaderAPI();
}
#if !defined( _PS3 ) && !defined( _OSX )
g_pShaderAPI = NULL;
g_pHWConfig = NULL;
g_pShaderShadow = NULL;
g_pShaderDevice = NULL;
#endif
#if defined( INCLUDE_SCALEFORM )
g_pScaleformUI = NULL;
#endif
BaseClass::Disconnect();
}
//-----------------------------------------------------------------------------
// Used to enable editor materials. Must be called before Init.
//-----------------------------------------------------------------------------
void CMaterialSystem::EnableEditorMaterials()
{
m_bRequestedEditorMaterials = true;
}
void CMaterialSystem::EnableGBuffers()
{
m_bRequestedGBuffers = true;
}
//-----------------------------------------------------------------------------
// Method to get at interfaces supported by the SHADDERAPI
//-----------------------------------------------------------------------------
void *CMaterialSystem::QueryShaderAPI( const char *pInterfaceName )
{
// Returns various interfaces supported by the shader API dll
void *pInterface = NULL;
if (m_ShaderAPIFactory)
{
pInterface = m_ShaderAPIFactory( pInterfaceName, NULL );
}
return pInterface;
}
//-----------------------------------------------------------------------------
// Method to get at different interfaces supported by the material system
//-----------------------------------------------------------------------------
void *CMaterialSystem::QueryInterface( const char *pInterfaceName )
{
// Returns various interfaces supported by the shader API dll
void *pInterface = QueryShaderAPI( pInterfaceName );
if ( pInterface )
return pInterface;
CreateInterfaceFn factory = Sys_GetFactoryThis(); // This silly construction is necessary
return factory( pInterfaceName, NULL ); // to prevent the LTCG compiler from crashing.
}
//-----------------------------------------------------------------------------
// Must be called before Init(), if you're going to call it at all...
//-----------------------------------------------------------------------------
void CMaterialSystem::SetAdapter( int nAdapter, int nAdapterFlags )
{
m_nAdapter = nAdapter;
m_nAdapterFlags = nAdapterFlags;
g_pShaderDeviceMgr->GetCurrentModeInfo( &m_nAdapterInfo, m_nAdapter );
}
//-----------------------------------------------------------------------------
// Initializes the color correction terms
//-----------------------------------------------------------------------------
void CMaterialSystem::InitColorCorrection( )
{
if ( ColorCorrectionSystem() )
{
ColorCorrectionSystem()->Init();
}
}
#ifndef _PS3 // make some empty stubs so we can use IsPS3() instead of ifdefs
static inline void PS3InitFontLibrary( unsigned fontFileCacheSizeInBytes, unsigned maxNumFonts ) {};
static inline void PS3DumpFontLibrary(){}
#define kPS3_DEFAULT_MAX_USER_FONTS 0
#endif
//-----------------------------------------------------------------------------
// Initialization + shutdown of the material system
//-----------------------------------------------------------------------------
void AllocateScratchRSXMemory();
InitReturnVal_t CMaterialSystem::Init()
{
InitReturnVal_t nRetVal = BaseClass::Init();
if ( nRetVal != INIT_OK )
return nRetVal;
// NOTE! : Overbright is 1.0 so that Hammer will work properly with the white bumped and unbumped lightmaps.
MathLib_Init( 2.2f, 2.2f, 0.0f, OVERBRIGHT );
g_pShaderDeviceMgr->SetAdapter( m_nAdapter, m_nAdapterFlags );
if ( g_pShaderDeviceMgr->Init( ) != INIT_OK )
{
DestroyShaderAPI();
return INIT_FAILED;
}
mat_forcemanagedtextureintohardware.SetValue( HardwareConfig()->PreferTexturesInHWMemory() );
mat_forcehardwaresync.SetValue( HardwareConfig()->PreferHardwareSync() );
mat_dxlevel.SetValue( HardwareConfig()->GetDXSupportLevel() );
// Texture manager...
TextureManager()->Init( m_nAdapterFlags );
// Shader system!
ShaderSystem()->Init();
#if defined( WIN32 ) && !defined( _X360 )
// HACKHACK: <sigh> This horrible hack is possibly the only way to reliably detect an old
// version of hammer initializing the material system. We need to know this so that we set
// up the editor materials properly. If we don't do this, we never allocate the white lightmap,
// for example. We can remove this when we update the SDK!!
char szExeName[_MAX_PATH];
if ( ::GetModuleFileName( ( HINSTANCE )GetModuleHandle( NULL ), szExeName, sizeof( szExeName ) ) )
{
char szRight[20];
Q_StrRight( szExeName, 11, szRight, sizeof( szRight ) );
if ( ( !Q_stricmp( szRight, "\\hammer.exe" ) ) || ( !Q_stricmp( szRight, "\\vmview.exe" ) ) )
{
m_bRequestedEditorMaterials = true;
m_bRequestedGBuffers = true;
}
}
// HACKHACK: This will go away when we get rid of tools mode in the first place.
if ( CommandLine()->FindParm( "-foundrymode" ) != 0 )
{
m_bRequestedEditorMaterials = true;
m_bRequestedGBuffers = true;
}
if ( CommandLine()->FindParm( "-tools" ) != 0 )
{
m_bRequestedGBuffers = true;
}
if ( CommandLine()->FindParm( "-buildcubemaps" ) || CommandLine()->FindParm( "-buildmodelforworld" ) )
{
mat_queue_mode.SetValue( 0 );
}
#endif // WIN32
m_nConfigurationFlags = 0;
if ( m_bRequestedEditorMaterials )
{
m_nConfigurationFlags |= MATCONFIG_FLAGS_SUPPORT_EDITOR;
}
if ( m_bRequestedGBuffers )
{
m_nConfigurationFlags |= MATCONFIG_FLAGS_SUPPORT_GBUFFER;
}
InitColorCorrection();
// Set up debug materials...
CreateDebugMaterials();
if ( IsGameConsole() )
{
g_pQueuedLoader->InstallLoader( RESOURCEPRELOAD_MATERIAL, &s_ResourcePreloadMaterial );
g_pQueuedLoader->InstallLoader( RESOURCEPRELOAD_CUBEMAP, &s_ResourcePreloadCubemap );
}
if ( IsPS3() )
{
InitializePS3Fonts();
// load the font library and keep it resident forever.
// for an alternative means, where you just load and unload
// the library as needed, look at PS3FontLibraryRAII --
// that's disabled at the moment because we evidently render
// characters ad hoc each frame always.
PS3InitFontLibrary( 256 * 1024, kPS3_DEFAULT_MAX_USER_FONTS ); // try a 256kb file cache
}
// Set up a default material system config
// GenerateConfigFromConfigKeyValues( &g_config, false );
// UpdateConfig( false );
// JAY: Added this command line parameter to force creating <32x32 mips
// to test for reported performance regressions on some systems
if ( CommandLine()->FindParm("-forceallmips") )
{
extern bool g_bForceTextureAllMips;
g_bForceTextureAllMips = true;
}
BeginRenderTargetAllocation();
m_CompositeTextureGenerator.Init();
EndRenderTargetAllocation();
m_CustomMaterialManager.Init();
return m_HardwareRenderContext.Init( this );
}
//-----------------------------------------------------------------------------
// For backwards compatability
//-----------------------------------------------------------------------------
static CreateInterfaceFn s_TempCVarFactory;
static CreateInterfaceFn s_TempFileSystemFactory;
void* TempCreateInterface( const char *pName, int *pReturnCode )
{
void *pRetVal = NULL;
if ( s_TempCVarFactory )
{
pRetVal = s_TempCVarFactory( pName, pReturnCode );
if (pRetVal)
return pRetVal;
}
pRetVal = s_TempFileSystemFactory( pName, pReturnCode );
if (pRetVal)
return pRetVal;
return NULL;
}
//-----------------------------------------------------------------------------
// Initializes and shuts down the shader API
//-----------------------------------------------------------------------------
CreateInterfaceFn CMaterialSystem::Init( char const* pShaderAPIDLL,
IMaterialProxyFactory *pMaterialProxyFactory,
CreateInterfaceFn fileSystemFactory,
CreateInterfaceFn cvarFactory )
{
SetShaderAPI( pShaderAPIDLL );
s_TempCVarFactory = cvarFactory;
s_TempFileSystemFactory = fileSystemFactory;
if ( !Connect( TempCreateInterface ) )
return 0;
if (Init() != INIT_OK)
return NULL;
// save the proxy factory
m_pMaterialProxyFactory = pMaterialProxyFactory;
return m_ShaderAPIFactory;
}
void CMaterialSystem::Shutdown( )
{
DestroyMatQueueThreadPool();
m_CustomMaterialManager.Shutdown();
m_CompositeTextureGenerator.Shutdown();
m_HardwareRenderContext.Shutdown();
// Clean up standard textures
ReleaseStandardTextures();
// Clean up the debug materials
CleanUpDebugMaterials();
g_pMorphMgr->FreeMaterials();
g_pOcclusionQueryMgr->FreeOcclusionQueryObjects();
GetLightmaps()->Shutdown();
m_MaterialDict.Shutdown();
CleanUpErrorMaterial();
// Shader system!
ShaderSystem()->Shutdown();
// Texture manager...
TextureManager()->Shutdown();
if (g_pShaderDeviceMgr)
{
g_pShaderDeviceMgr->Shutdown();
}
#if defined( _PS3 )
// this would have been called in g_pShaderDeviceMgr->Shutdown(), but since g_pShaderDeviceMgr is sometimes NULL, we'll clean up mesh manager once more, just in case
MeshMgr()->Shutdown();
#endif
if ( IsPS3() )
PS3DumpFontLibrary();
BaseClass::Shutdown();
}
void CMaterialSystem::ModInit()
{
// Set up a default material system config
GenerateConfigFromConfigKeyValues( &g_config, false );
UpdateConfig( false );
// Shader system!
ShaderSystem()->ModInit();
}
void CMaterialSystem::ModShutdown()
{
// Shader system!
ShaderSystem()->ModShutdown();
// HACK - this is here to unhook ourselves from the client interface, since we're not actually notified when it happens
m_pMaterialProxyFactory = NULL;
m_pClientMaterialSystemInterface = NULL;
}
//-----------------------------------------------------------------------------
// Returns the current adapter in use
//-----------------------------------------------------------------------------
IMaterialSystemHardwareConfig *CMaterialSystem::GetHardwareConfig( const char *pVersion, int *returnCode )
{
return ( IMaterialSystemHardwareConfig * )m_ShaderAPIFactory( pVersion, returnCode );
}
//-----------------------------------------------------------------------------
// Returns the current adapter in use
//-----------------------------------------------------------------------------
int CMaterialSystem::GetCurrentAdapter() const
{
return g_pShaderDevice->GetCurrentAdapter();
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMaterialSystem::SetThreadMode( MaterialThreadMode_t nextThreadMode, int nServiceThread )
{
m_IdealThreadMode = nextThreadMode;
m_nServiceThread = nServiceThread;
}
MaterialThreadMode_t CMaterialSystem::GetThreadMode()
{
return m_ThreadMode;
}
bool CMaterialSystem::IsRenderThreadSafe( )
{
#if defined( WIN32 ) && !defined( DX_TO_GL_ABSTRACTION )
return true;
#else
return ( m_ThreadMode != MATERIAL_QUEUED_THREADED && ThreadInMainThread() ) ||
( m_ThreadMode == MATERIAL_QUEUED_THREADED && m_nRenderThreadID == ThreadGetCurrentId() );
#endif
}
void CMaterialSystem::OnDebugEvent( const char * pEvent )
{
g_pShaderDevice->OnDebugEvent( pEvent );
}
bool CMaterialSystem::AllowThreading( bool bAllow, int nServiceThread )
{
if ( CommandLine()->ParmValue( "-threads", 2 ) < 2 ) // if -threads specified on command line to restrict all the pools then obey and not turn on QMS
bAllow = false;
bool bOldAllow = m_bAllowQueuedRendering;
if ( GetCPUInformation().m_nPhysicalProcessors >= 2 || mat_queue_mode_force_allow.GetBool() )
{
m_bAllowQueuedRendering = bAllow;
bool bQueued = m_IdealThreadMode != MATERIAL_SINGLE_THREADED;
if ( bAllow && !bQueued )
{
// go into queued mode
DevMsg( "Queued Material System: ENABLED!\n" );
OnDebugEvent( "Allow Threading");
SetThreadMode( MATERIAL_QUEUED_THREADED, nServiceThread );
}
else if ( !bAllow && bQueued )
{
// disabling queued mode just needs to stop the queuing of drawing
// but still allow other threaded access to the Material System
// flush the queue
DevMsg( "Queued Material System: DISABLED!\n" );
ForceSingleThreaded();
MaterialLock_t hMaterialLock = Lock();
SetThreadMode( MATERIAL_SINGLE_THREADED, -1 );
Unlock( hMaterialLock );
OnDebugEvent( "Disallow Threading" );
}
}
else
{
m_bAllowQueuedRendering = false;
}
return bOldAllow;
}
void CMaterialSystem::ExecuteQueued()
{
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
IMatRenderContext *CMaterialSystem::GetRenderContext()
{
IMatRenderContext *pResult = m_pRenderContext;
if ( !pResult )
{
pResult = &m_HardwareRenderContext;
m_pRenderContext = &m_HardwareRenderContext;
}
return RetAddRef( pResult );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
IMatRenderContext *CMaterialSystem::CreateRenderContext( MaterialContextType_t type )
{
switch ( type )
{
case MATERIAL_HARDWARE_CONTEXT:
return NULL;
case MATERIAL_QUEUED_CONTEXT:
{
CMatQueuedRenderContext *pQueuedContext = new CMatQueuedRenderContext;
pQueuedContext->Init( this, &m_HardwareRenderContext );
pQueuedContext->BeginQueue( &m_HardwareRenderContext );
return pQueuedContext;
}
case MATERIAL_NULL_CONTEXT:
{
CMatRenderContextBase *pNullContext = CreateNullRenderContext();
pNullContext->Init();
pNullContext->InitializeFrom( &m_HardwareRenderContext );
return pNullContext;
}
}
Assert(0);
return NULL;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
IMatRenderContext *CMaterialSystem::SetRenderContext( IMatRenderContext *pNewContext )
{
IMatRenderContext *pOldContext = m_pRenderContext;
if ( pNewContext )
{
pNewContext->AddRef();
m_pRenderContext = ( assert_cast<IMatRenderContextInternal *>(pNewContext) );
}
else
{
m_pRenderContext = NULL;
}
return pOldContext;
}
//-----------------------------------------------------------------------------
// Get/Set Material proxy factory
//-----------------------------------------------------------------------------
IMaterialProxyFactory* CMaterialSystem::GetMaterialProxyFactory()
{
return m_pMaterialProxyFactory;
}
void CMaterialSystem::SetMaterialProxyFactory( IMaterialProxyFactory* pFactory )
{
// Changing the factory requires an uncaching of all materials
// since the factory may contain different proxies
UncacheAllMaterials();
m_pMaterialProxyFactory = pFactory;
}
IClientMaterialSystem *CMaterialSystem::GetClientMaterialSystemInterface()
{
if ( m_pClientMaterialSystemInterface )
return m_pClientMaterialSystemInterface;
if ( !m_pMaterialProxyFactory )
return NULL;
CreateInterfaceFn pClientFactory = m_pMaterialProxyFactory->GetFactory();
if ( !pClientFactory )
return NULL;
m_pClientMaterialSystemInterface = (IClientMaterialSystem *)pClientFactory( VCLIENTMATERIALSYSTEM_INTERFACE_VERSION, NULL );
return m_pClientMaterialSystemInterface;
}
void CMaterialSystem::RefreshFrontBufferNonInteractive()
{
#ifdef _PS3
extern bool IsItSafeToRefreshFrontBufferNonInteractivePs3();
if ( !IsItSafeToRefreshFrontBufferNonInteractivePs3() )
#else
if ( !ThreadInMainThread() )
#endif
return;
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->RefreshFrontBufferNonInteractive();
}
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
static CThreadFastMutex s_mtFrameTimestamps;
static double s_flMstThreadBeginTimestamp = 0.0f;
static double s_flTotalFrameBeginTimestamp = 0.0f;
static ApplicationPerformanceCountersInfo_t s_apci;
void OnFrameTimestampAvailableMain( float ms )
{
AUTO_LOCK( s_mtFrameTimestamps );
s_apci.msMain = ms;
}
void OnFrameTimestampAvailableMST( float ms )
{
AUTO_LOCK( s_mtFrameTimestamps );
if ( !ms )
{
s_flMstThreadBeginTimestamp = Plat_FloatTime();
}
else
{
double flMstThreadFrameTimeSec = Plat_FloatTime() - s_flMstThreadBeginTimestamp;
s_apci.msMST = flMstThreadFrameTimeSec*1000.0f;
}
}
void OnFrameTimestampAvailableRsx( float ms )
{
AUTO_LOCK( s_mtFrameTimestamps );
s_apci.msGPU = ms;
}
void OnFrameTimestampAvailableTotal( float ms )
{
AUTO_LOCK( s_mtFrameTimestamps );
s_apci.msTotal = ms;
}
#ifdef _X360
static LARGE_INTEGER s_gpuStartTime;
static LARGE_INTEGER s_gpuTime;
void OnGpuStartFrame(uint32 context)
{
QueryPerformanceCounter( &s_gpuStartTime );
}
void OnGpuEndFrame(uint32 context)
{
LARGE_INTEGER current_time;
QueryPerformanceCounter( &current_time );
s_gpuTime.QuadPart = current_time.QuadPart - s_gpuStartTime.QuadPart;
}
#endif
#endif
uint32 CMaterialSystem::GetFrameTimestamps( ApplicationPerformanceCountersInfo_t &apci, ApplicationInstantCountersInfo_t & aici )
{
#if defined (_X360) && X360_ALLOW_TIMESTAMPS
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
s_apci.msGPU = 1000.0f * ((double)s_gpuTime.QuadPart / (double)(freq.QuadPart));
#endif
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
AUTO_LOCK( s_mtFrameTimestamps );
V_memcpy( &apci, &s_apci, sizeof( s_apci ) );
return 1000;
#else
return 0;
#endif
}
bool CMaterialSystem::CanDownloadTextures() const
{
return g_pShaderAPI->CanDownloadTextures();
}
int CMaterialSystem::GetConfigurationFlags( void ) const
{
return m_nConfigurationFlags;
}
//-----------------------------------------------------------------------------
// Can we use editor materials?
//-----------------------------------------------------------------------------
bool CMaterialSystem::CanUseEditorMaterials( void ) const
{
return GetConfigurationFlags() & MATCONFIG_FLAGS_SUPPORT_EDITOR;
}
//-----------------------------------------------------------------------------
// Methods related to mode setting...
//-----------------------------------------------------------------------------
// Gets the number of adapters...
int CMaterialSystem::GetDisplayAdapterCount() const
{
return g_pShaderDeviceMgr->GetAdapterCount( );
}
// Returns info about each adapter
void CMaterialSystem::GetDisplayAdapterInfo( int adapter, MaterialAdapterInfo_t& info ) const
{
g_pShaderDeviceMgr->GetAdapterInfo( adapter, info );
}
// Returns the number of modes
int CMaterialSystem::GetModeCount( int adapter ) const
{
return g_pShaderDeviceMgr->GetModeCount( adapter );
}
//-----------------------------------------------------------------------------
// Compatability function, should go away eventually
//-----------------------------------------------------------------------------
static void ConvertModeStruct( ShaderDeviceInfo_t *pMode, const MaterialSystem_Config_t &config )
{
pMode->m_DisplayMode.m_nWidth = config.m_VideoMode.m_Width;
pMode->m_DisplayMode.m_nHeight = config.m_VideoMode.m_Height;
pMode->m_DisplayMode.m_Format = config.m_VideoMode.m_Format;
pMode->m_DisplayMode.m_nRefreshRateNumerator = config.m_VideoMode.m_RefreshRate;
pMode->m_DisplayMode.m_nRefreshRateDenominator = config.m_VideoMode.m_RefreshRate ? 1 : 0;
pMode->m_nBackBufferCount = ( config.m_bWantTripleBuffered && config.WaitForVSync() && !config.Windowed() ) ? 2 : 1; // Only used in ShaderAPIDX10
pMode->m_nAASamples = config.m_nAASamples;
pMode->m_nAAQuality = config.m_nAAQuality;
pMode->m_nDXLevel = config.dxSupportLevel;
pMode->m_nWindowedSizeLimitWidth = (int)config.m_WindowedSizeLimitWidth;
pMode->m_nWindowedSizeLimitHeight = (int)config.m_WindowedSizeLimitHeight;
pMode->m_bWindowed = config.Windowed();
pMode->m_bResizing = config.Resizing();
pMode->m_bUseStencil = config.Stencil();
pMode->m_bLimitWindowedSize = config.LimitWindowedSize();
pMode->m_bWaitForVSync = config.WaitForVSync();
pMode->m_bScaleToOutputResolution = config.ScaleToOutputResolution();
pMode->m_bUsingMultipleWindows = config.UsingMultipleWindows();
}
static void ConvertModeStruct( MaterialVideoMode_t *pMode, const ShaderDisplayMode_t &info )
{
pMode->m_Width = info.m_nWidth;
pMode->m_Height = info.m_nHeight;
pMode->m_Format = info.m_Format;
pMode->m_RefreshRate = info.m_nRefreshRateNumerator / info.m_nRefreshRateDenominator;
}
//-----------------------------------------------------------------------------
// Returns mode information..
//-----------------------------------------------------------------------------
void CMaterialSystem::GetModeInfo( int nAdapter, int nMode, MaterialVideoMode_t& info ) const
{
ShaderDisplayMode_t shaderInfo;
g_pShaderDeviceMgr->GetModeInfo( &shaderInfo, nAdapter, nMode );
ConvertModeStruct( &info, shaderInfo );
}
//-----------------------------------------------------------------------------
// Returns the mode info for the current display device
//-----------------------------------------------------------------------------
void CMaterialSystem::GetDisplayMode( MaterialVideoMode_t& info ) const
{
ShaderDisplayMode_t shaderInfo;
g_pShaderDeviceMgr->GetCurrentModeInfo( &shaderInfo, m_nAdapter );
ConvertModeStruct( &info, shaderInfo );
}
void CMaterialSystem::ForceSingleThreaded()
{
if ( !ThreadInMainThread() )
{
Error("Can't force single thread from within thread!\n");
}
if ( GetThreadMode() != MATERIAL_SINGLE_THREADED )
{
#ifndef _PS3
if ( m_pActiveAsyncJob && !m_pActiveAsyncJob->IsFinished() )
{
m_pActiveAsyncJob->WaitForFinish();
}
SafeRelease( m_pActiveAsyncJob );
#else
if (m_bQMSJobSubmitted)
{
g_pGcmSharedData->WaitForQMS();
m_bQMSJobSubmitted = 0;
}
#endif
#ifdef MAT_QUEUED_OWN_THREADPOOL
ThreadRelease();
#else
g_pShaderAPI->AcquireThreadOwnership();
#endif
g_pShaderAPI->EnableShaderShaderMutex( false );
m_pRenderContext = &m_HardwareRenderContext;
for ( int i = 0; i < ARRAYSIZE( m_QueuedRenderContexts ); i++ )
{
Assert( m_QueuedRenderContexts[i].IsInitialized() );
m_QueuedRenderContexts[i].EndQueue(true);
m_QueuedRenderContexts[i].Shutdown();
}
if( mat_debugalttab.GetBool() )
{
Warning("Forcing queued mode off!\n");
}
// NOTE: Must happen after EndQueue or proxies get bound again, which is bad.
m_ThreadMode = MATERIAL_SINGLE_THREADED;
m_bForcedSingleThreaded = true;
}
}
//-----------------------------------------------------------------------------
// Sets the mode...
//-----------------------------------------------------------------------------
bool CMaterialSystem::SetMode( void* hwnd, const MaterialSystem_Config_t &config )
{
Assert( m_bGeneratedConfig );
ForceSingleThreaded();
ShaderDeviceInfo_t info;
ConvertModeStruct( &info, config );
bool bPreviouslyUsingGraphics = g_pShaderDevice->IsUsingGraphics();
bool bOk = g_pShaderAPI->SetMode( hwnd, m_nAdapter, info );
if ( !bOk )
return false;
AllocateScratchRSXMemory();
TextureManager()->FreeStandardRenderTargets();
TextureManager()->AllocateStandardRenderTargets();
// FIXME: There's gotta be a better way of doing this?
// After the first mode set, make sure to download any textures created
// before the first mode set. After the first mode set, all textures
// will be reloaded via the reaquireresources call. Same goes for procedural materials
if ( !bPreviouslyUsingGraphics )
{
if ( IsPC() )
{
TextureManager()->RestoreRenderTargets();
TextureManager()->RestoreNonRenderTargetTextures();
if ( MaterialSystem()->CanUseEditorMaterials() )
{
// We are in Hammer. Allocate these here since we aren't going to allocate
// lightmaps.
// HACK!
// NOTE! : Overbright is 1.0 so that Hammer will work properly with the white bumped and unbumped lightmaps.
MathLib_Init( 2.2f, 2.2f, 0.0f, OVERBRIGHT );
AllocateStandardTextures();
}
}
if ( IsX360() || IsPS3() )
{
// shaderapi was not viable at init time, it is now
TextureManager()->ReloadTextures();
AllocateStandardTextures();
}
}
g_pShaderDevice->SetHardwareGammaRamp( config.m_fMonitorGamma, config.m_fGammaTVRangeMin, config.m_fGammaTVRangeMax,
config.m_fGammaTVExponent, config.m_bGammaTVEnabled );
// Copy over that state which isn't stored currently in convars
g_config.m_VideoMode = config.m_VideoMode;
g_config.SetFlag( MATSYS_VIDCFG_FLAGS_WINDOWED, config.Windowed() );
g_config.SetFlag( MATSYS_VIDCFG_FLAGS_STENCIL, config.Stencil() );
WriteConfigIntoConVars( config );
extern void SetupDirtyDiskReportFunc();
SetupDirtyDiskReportFunc();
return true;
}
// Creates/ destroys a child window
bool CMaterialSystem::AddView( void* hwnd )
{
return g_pShaderDevice->AddView( hwnd );
}
void CMaterialSystem::RemoveView( void* hwnd )
{
g_pShaderDevice->RemoveView( hwnd );
}
// Activates a view
void CMaterialSystem::SetView( void* hwnd )
{
g_pShaderDevice->SetView( hwnd );
}
//-----------------------------------------------------------------------------
// Installs a function to be called when we need to release vertex buffers
//-----------------------------------------------------------------------------
void CMaterialSystem::AddReleaseFunc( MaterialBufferReleaseFunc_t func )
{
// Shouldn't have two copies in our list
Assert( m_ReleaseFunc.Find( func ) == -1 );
m_ReleaseFunc.AddToTail( func );
}
void CMaterialSystem::RemoveReleaseFunc( MaterialBufferReleaseFunc_t func )
{
int i = m_ReleaseFunc.Find( func );
if( i != -1 )
m_ReleaseFunc.Remove(i);
}
//-----------------------------------------------------------------------------
// Installs a function to be called when we need to restore vertex buffers
//-----------------------------------------------------------------------------
void CMaterialSystem::AddRestoreFunc( MaterialBufferRestoreFunc_t func )
{
// Shouldn't have two copies in our list
Assert( m_RestoreFunc.Find( func ) == -1 );
m_RestoreFunc.AddToTail( func );
}
void CMaterialSystem::RemoveRestoreFunc( MaterialBufferRestoreFunc_t func )
{
int i = m_RestoreFunc.Find( func );
Assert( i != -1 );
m_RestoreFunc.Remove(i);
}
//-----------------------------------------------------------------------------
// Installs a function to be called when we need to release vertex buffers
//-----------------------------------------------------------------------------
void CMaterialSystem::AddEndFrameCleanupFunc( EndFrameCleanupFunc_t func )
{
// Shouldn't have two copies in our list
Assert( m_EndFrameCleanupFunc.Find( func ) == -1 );
m_EndFrameCleanupFunc.AddToTail( func );
}
void CMaterialSystem::RemoveEndFrameCleanupFunc( EndFrameCleanupFunc_t func )
{
int i = m_EndFrameCleanupFunc.Find( func );
if( i != -1 )
{
m_EndFrameCleanupFunc.Remove(i);
}
}
// Gets called when the level is shuts down, will call the registered callback
void CMaterialSystem::OnLevelShutdown()
{
// changing contexts away from gameplay
m_bLevelLoadingComplete = false;
int nSize = m_OnLevelShutdownFuncs.Count();
for (int i = 0 ; i < nSize ; ++i)
{
COnLevelShutdownFunc & instance = m_OnLevelShutdownFuncs[i];
instance.m_Func(instance.m_pUserData);
}
}
// Installs a function to be called when the level is shuts down
bool CMaterialSystem::AddOnLevelShutdownFunc( OnLevelShutdownFunc_t func, void * pUserData )
{
COnLevelShutdownFunc instance(func, pUserData);
int i = m_OnLevelShutdownFuncs.Find( instance );
if (i != -1)
{
return false;
}
m_OnLevelShutdownFuncs.AddToTail(instance);
return true;
}
bool CMaterialSystem::RemoveOnLevelShutdownFunc( OnLevelShutdownFunc_t func, void * pUserData )
{
COnLevelShutdownFunc instance(func, pUserData);
int i = m_OnLevelShutdownFuncs.Find( instance );
if (i == -1)
{
return false;
}
m_OnLevelShutdownFuncs.Remove(i);
return true;
}
//-----------------------------------------------------------------------------
// // Installs a function to be called when we need to perform operation before next rendering context is started
//-----------------------------------------------------------------------------
void CMaterialSystem::AddEndFramePriorToNextContextFunc( EndFramePriorToNextContextFunc_t func )
{
// Shouldn't have two copies in our list
Assert( m_EndFramePriorToNextContextFunc.Find( func ) == m_EndFramePriorToNextContextFunc.InvalidIndex() );
m_EndFramePriorToNextContextFunc.AddToTail( func );
}
void CMaterialSystem::RemoveEndFramePriorToNextContextFunc( EndFramePriorToNextContextFunc_t func )
{
int i = m_EndFramePriorToNextContextFunc.Find( func );
if( i != m_EndFramePriorToNextContextFunc.InvalidIndex() )
{
m_EndFramePriorToNextContextFunc.Remove(i);
}
}
ICustomMaterialManager *CMaterialSystem::GetCustomMaterialManager()
{
return &m_CustomMaterialManager;
}
ICompositeTextureGenerator *CMaterialSystem::GetCompositeTextureGenerator()
{
return &m_CompositeTextureGenerator;
}
void CMaterialSystem::OnLevelLoadingComplete()
{
// called from engine when level has loaded and gameplay is expected to commence
m_bLevelLoadingComplete = true;
}
//-----------------------------------------------------------------------------
// Called by the shader API when it's just about to lose video memory
//-----------------------------------------------------------------------------
void CMaterialSystem::ReleaseShaderObjects( int nChangeFlags )
{
if( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: CMaterialSystem::ReleaseShaderObjects\n" );
}
Flush( false );
m_HardwareRenderContext.OnReleaseShaderObjects();
if ( ( nChangeFlags & MATERIAL_RESTORE_VERTEX_FORMAT_CHANGED ) == 0 )
{
g_pOcclusionQueryMgr->FreeOcclusionQueryObjects();
// If we're in an alt+tab event don't release managed resources
bool bReleaseManaged = ( nChangeFlags & MATERIAL_RESTORE_RELEASE_MANAGED_RESOURCES ) ? true : false;
m_bRestoreManangedResources = bReleaseManaged;
TextureManager()->ReleaseTextures( bReleaseManaged );
ReleaseStandardTextures();
if ( bReleaseManaged )
{
GetLightmaps()->ReleaseLightmapPages();
}
}
for (int i = 0; i < m_ReleaseFunc.Count(); ++i)
{
m_ReleaseFunc[i]( nChangeFlags );
}
}
void CMaterialSystem::RestoreShaderObjects( CreateInterfaceFn shaderFactory, int nChangeFlags )
{
#if !defined( _PS3 ) && !defined( _OSX )
if ( shaderFactory )
{
g_pShaderAPI = (IShaderAPI*)shaderFactory( SHADERAPI_INTERFACE_VERSION, NULL );
g_pShaderDevice = (IShaderDevice*)shaderFactory( SHADER_DEVICE_INTERFACE_VERSION, NULL );
g_pShaderShadow = (IShaderShadow*)shaderFactory( SHADERSHADOW_INTERFACE_VERSION, NULL );
}
#endif
for( MaterialHandle_t i = m_MaterialDict.FirstMaterial(); i != m_MaterialDict.InvalidMaterial(); i = m_MaterialDict.NextMaterial( i ) )
{
IMaterialInternal *pMat = m_MaterialDict.GetMaterialInternal( i );
if ( pMat )
{
pMat->ReportVarChanged( NULL );
}
}
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: CMaterialSystem::RestoreShaderObjects\n" );
}
// Shader API sets this to the max value the card supports when it resets
// the state, so restore this value.
g_pShaderAPI->SetAnisotropicLevel( GetCurrentConfigForVideoCard().m_nForceAnisotropicLevel );
if ( ( nChangeFlags & MATERIAL_RESTORE_VERTEX_FORMAT_CHANGED ) == 0 )
{
// NOTE: render targets must be restored first, then vb/ibs, then managed textures
// FIXME: Gotta restore lightmap pages + standard textures before restore funcs are called
// because they use them both.
TextureManager()->RestoreRenderTargets();
AllocateStandardTextures();
if ( m_bRestoreManangedResources )
{
GetLightmaps()->RestoreLightmapPages();
}
g_pOcclusionQueryMgr->AllocOcclusionQueryObjects();
}
for (int i = 0; i < m_RestoreFunc.Count(); ++i)
{
m_RestoreFunc[i]( nChangeFlags );
}
if ( ( nChangeFlags & MATERIAL_RESTORE_VERTEX_FORMAT_CHANGED ) == 0 && m_bRestoreManangedResources )
{
TextureManager()->RestoreNonRenderTargetTextures();
// Reset the restore to true in the odd case that we get a RestoreShaderObjects without a ReleaseShaderObjects
m_bRestoreManangedResources = true;
}
}
//-----------------------------------------------------------------------------
// Use this to spew information about the 3D layer
//-----------------------------------------------------------------------------
void CMaterialSystem::SpewDriverInfo() const
{
Warning( "ShaderAPI: %s\n", m_pShaderDLL );
g_pShaderDevice->SpewDriverInfo();
}
//-----------------------------------------------------------------------------
// Color converting blitter
//-----------------------------------------------------------------------------
bool CMaterialSystem::ConvertImageFormat( unsigned char *src, enum ImageFormat srcImageFormat,
unsigned char *dst, enum ImageFormat dstImageFormat,
int width, int height, int srcStride, int dstStride )
{
return ImageLoader::ConvertImageFormat( src, srcImageFormat,
dst, dstImageFormat, width, height, srcStride, dstStride );
}
//-----------------------------------------------------------------------------
// Figures out the amount of memory needed by a bitmap
//-----------------------------------------------------------------------------
int CMaterialSystem::GetMemRequired( int width, int height, int depth, ImageFormat format, bool mipmap )
{
return ImageLoader::GetMemRequired( width, height, depth, format, mipmap );
}
ShaderAPITextureHandle_t CMaterialSystem::GetShaderAPITextureBindHandle( ITexture *pTexture, int nFrameVar, int nTextureChannel )
{
return ShaderSystem()->GetShaderAPITextureBindHandle( pTexture, nFrameVar, nTextureChannel );
}
//-----------------------------------------------------------------------------
// Method to allow clients access to the MaterialSystem_Config
//-----------------------------------------------------------------------------
MaterialSystem_Config_t& CMaterialSystem::GetConfig()
{
Assert( m_bGeneratedConfig );
return g_config;
}
//-----------------------------------------------------------------------------
// Gets image format info
//-----------------------------------------------------------------------------
ImageFormatInfo_t const& CMaterialSystem::ImageFormatInfo( ImageFormat fmt) const
{
return ImageLoader::ImageFormatInfo(fmt);
}
//-----------------------------------------------------------------------------
// Reads keyvalues for information
//-----------------------------------------------------------------------------
static void ReadInt( KeyValues *pGroup, const char *pName, int nDefaultVal, int nUndefinedVal, int *pDest )
{
*pDest = pGroup->GetInt( pName, nDefaultVal );
// Warning( "\t%s = %d\n", pName, *pDest );
Assert( *pDest != nUndefinedVal );
}
static void ReadFlt( KeyValues *pGroup, const char *pName, float flDefaultVal, float flUndefinedVal, float *pDest )
{
*pDest = pGroup->GetFloat( pName, flDefaultVal );
// Warning( "\t%s = %f\n", pName, *pDest );
Assert( *pDest != flUndefinedVal );
}
static void LoadFlags( KeyValues *pGroup, const char *pName, bool bDefaultValue, unsigned int nFlag, unsigned int *pFlags )
{
int nValue = pGroup->GetInt( pName, bDefaultValue ? 1 : 0 );
// Warning( "\t%s = %s\n", pName, nValue ? "true" : "false" );
if ( nValue )
{
*pFlags |= nFlag;
}
}
//-----------------------------------------------------------------------------
// This is called when the config changes
//-----------------------------------------------------------------------------
void CMaterialSystem::GenerateConfigFromConfigKeyValues( MaterialSystem_Config_t *pConfig, bool bOverwriteCommandLineValues )
{
KeyValues *pKeyValues = new KeyValues( "config" );
if ( !pKeyValues )
return;
if ( IsPC() && !GetRecommendedVideoConfig( pKeyValues ) )
{
pKeyValues->deleteThis();
return;
}
float flAspectRatio;
pConfig->m_Flags = 0;
ReadInt( pKeyValues, "setting.defaultres", 640, -1, &pConfig->m_VideoMode.m_Width );
ReadInt( pKeyValues, "setting.defaultresheight", 480, -1, &pConfig->m_VideoMode.m_Height );
ReadFlt( pKeyValues, "setting.aspectratio", ( 4.0f / 3.0f ), -1, &flAspectRatio );
int nUnsupported = 0;
ReadInt( pKeyValues, "setting.unsupported", 0, -1, &nUnsupported );
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_UNSUPPORTED, nUnsupported != 0 );
#ifdef LINUX
uint width = 0;
uint height = 0;
uint refreshHz = 0; // Not used
// query backbuffer size (window size whether FS or windowed)
if( g_pLauncherMgr )
{
g_pLauncherMgr->GetNativeDisplayInfo( -1, width, height, refreshHz );
}
pConfig->m_VideoMode.m_Width = width;
pConfig->m_VideoMode.m_Height = height;
#elif defined( _X360 )
pConfig->m_VideoMode.m_Width = GetSystemMetrics( SM_CXSCREEN );
pConfig->m_VideoMode.m_Height = GetSystemMetrics( SM_CYSCREEN );
// We can afford better aniso in standard def
if ( pConfig->m_VideoMode.m_Width == 640 )
{
static ConVarRef mat_forceaniso( "mat_forceaniso" );
mat_forceaniso.SetValue( 8 );
}
#elif defined( _PS3 )
// Shader API does the dirty work of querying cellVideo libraries for screen res, so just piggy back on it
ShaderDisplayMode_t info;
g_pShaderDeviceMgr->GetModeInfo( &info, 0, 0 );
pConfig->m_VideoMode.m_Width = info.m_nWidth;
pConfig->m_VideoMode.m_Height = info.m_nHeight;
// We can afford better aniso in standard def
if ( pConfig->m_VideoMode.m_Width == 640 )
{
static ConVarRef mat_forceaniso( "mat_forceaniso" );
mat_forceaniso.SetValue( 8 );
}
#endif
// Destroy the keys.
pKeyValues->deleteThis();
m_bGeneratedConfig = true;
}
//-----------------------------------------------------------------------------
// If mat_proxy goes to 0, we need to reload all materials, because their shader
// params might have been messed with.
//-----------------------------------------------------------------------------
static void MatProxyCallback( IConVar *pConVar, const char *old, float flOldValue )
{
ConVarRef var( pConVar );
int oldVal = (int)flOldValue;
if ( var.GetInt() == 0 && oldVal != 0 )
{
g_MaterialSystem.ReloadMaterials();
}
}
//-----------------------------------------------------------------------------
// Convars that control the config record
//-----------------------------------------------------------------------------
ConVar mat_vsync( "mat_vsync", IsGameConsole() ? "1" : "0", FCVAR_NONE, "Force sync to vertical retrace", true, 0.0, true, 1.0 );
// Texture-related
static ConVar mat_forceaniso( "mat_forceaniso", "1" ); // 0 = Bilinear, 1 = Trilinear, 2+ = Aniso
static ConVar mat_filterlightmaps( "mat_filterlightmaps", "1" );
static ConVar mat_filtertextures( "mat_filtertextures", "1" );
static ConVar mat_mipmaptextures( "mat_mipmaptextures", "1" );
static void mat_showmiplevels_Callback_f( IConVar *var, const char *pOldValue, float flOldValue )
{
// turn off texture filtering if we are showing mip levels.
mat_filtertextures.SetValue( ( ( ConVar * )var )->GetInt() == 0 );
}
// Debugging textures
static ConVar mat_showmiplevels( "mat_showmiplevels", "0", FCVAR_CHEAT, "color-code miplevels 2: normalmaps, 1: everything else", mat_showmiplevels_Callback_f );
static ConVar mat_specular( "mat_specular", "1", 0, "Enable/Disable specularity for perf testing. Will cause a material reload upon change." );
static ConVar mat_bumpmap( "mat_bumpmap", "1" );
static ConVar mat_detail_tex( "mat_detail_tex", "1" );
static ConVar mat_phong( "mat_phong", "1" );
static ConVar mat_parallaxmap( "mat_parallaxmap", "1" );
static ConVar mat_reducefillrate( "mat_reducefillrate", "0" );
// moved up: static ConVar mat_picmip( "mat_picmip", "0", FCVAR_NONE, "", true, -10, true, 4 );
static ConVar mat_monitorgamma( "mat_monitorgamma", "2.2", FCVAR_ARCHIVE | FCVAR_ARCHIVE_GAMECONSOLE, "monitor gamma (typically 2.2 for CRT and 1.7 for LCD)", true, 1.6f, true, 2.6f );
static ConVar mat_monitorgamma_tv_range_min( "mat_monitorgamma_tv_range_min", "16" );
static ConVar mat_monitorgamma_tv_range_max( "mat_monitorgamma_tv_range_max", "235" );
// TV's generally have a 2.5 gamma, so we need to convert our 2.2 frame buffer into a 2.5 frame buffer for display on a TV
static ConVar mat_monitorgamma_tv_exp( "mat_monitorgamma_tv_exp", "2.5", 0, "", true, 1.0f, true, 4.0f );
static ConVar mat_monitorgamma_tv_enabled( "mat_monitorgamma_tv_enabled", IsGameConsole() ? "1" : "0", FCVAR_ARCHIVE | FCVAR_ARCHIVE_GAMECONSOLE, "" );
static ConVar mat_triplebuffered( "mat_triplebuffered", "0", 0, "This means we want triple buffering if we are fullscreen and vsync'd" );
static ConVar mat_antialias( "mat_antialias", "0" );
static ConVar mat_aaquality( "mat_aaquality", "0" );
static ConVar mat_diffuse( "mat_diffuse", "1" );
static ConVar mat_showlowresimage( "mat_showlowresimage", "0", FCVAR_CHEAT );
static ConVar mat_fullbright( "mat_fullbright","0", FCVAR_CHEAT );
static ConVar mat_normalmaps( "mat_normalmaps", "0", FCVAR_CHEAT );
static ConVar mat_measurefillrate( "mat_measurefillrate", "0", FCVAR_CHEAT );
static ConVar mat_fillrate( "mat_fillrate", "0", FCVAR_CHEAT );
static ConVar mat_reversedepth( "mat_reversedepth", "0", FCVAR_CHEAT );
#if defined( PLATFORM_POSIX ) && !defined( _PS3 )
static ConVar mat_bufferprimitives( "mat_bufferprimitives", "0" ); // I'm not seeing any benefit speed wise for buffered primitives on GLM/POSIX (checked via TF2 timedemo) - default to zero
#else
static ConVar mat_bufferprimitives( "mat_bufferprimitives", "1" );
#endif
static ConVar mat_drawflat( "mat_drawflat","0", FCVAR_CHEAT );
static ConVar mat_softwarelighting( "mat_softwarelighting", "0" );
static ConVar mat_proxy( "mat_proxy", "0", FCVAR_CHEAT, "", MatProxyCallback );
static ConVar mat_norendering( "mat_norendering", "0", FCVAR_CHEAT );
static ConVar mat_compressedtextures( "mat_compressedtextures", "1" );
static ConVar mat_fastspecular( "mat_fastspecular", "1", 0, "Enable/Disable specularity for visual testing. Will not reload materials and will not affect perf." );
static ConVar mat_fastnobump( "mat_fastnobump", "0", FCVAR_CHEAT ); // Binds 1-texel normal map for quick internal testing
static ConVar mat_drawgray( "mat_drawgray","0", FCVAR_CHEAT );
// These are not controlled by the material system, but are limited by settings in the material system
static ConVar r_shadowrendertotexture( "r_shadowrendertotexture", "0" );
#if ( defined( CSTRIKE15 ) && defined( _PS3) )
static ConVar r_flashlightdepthtexture( "r_flashlightdepthtexture", "1" );
#else
static ConVar r_flashlightdepthtexture( "r_flashlightdepthtexture", "1" );
#endif
// On non-gameconsoles mat_motion_blur_enabled now comes from video.txt/videodefaults.txt
static ConVar mat_motion_blur_enabled( "mat_motion_blur_enabled", IsGameConsole() ? "1" : "0" );
static ConVar mat_paint_enabled( "mat_paint_enabled", "0" );
uint32 g_nDebugVarsSignature = 0;
//-----------------------------------------------------------------------------
// This is called when the config changes
//-----------------------------------------------------------------------------
void CMaterialSystem::ReadConfigFromConVars( MaterialSystem_Config_t *pConfig )
{
if ( !g_pCVar )
return;
// video panel config items
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_NO_WAIT_FOR_VSYNC, !mat_vsync.GetBool() );
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_SPECULAR, !mat_specular.GetBool() );
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_BUMPMAP, !mat_bumpmap.GetBool() );
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_DETAIL, !mat_detail_tex.GetBool() );
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_PHONG, !mat_phong.GetBool() );
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_ENABLE_PARALLAX_MAPPING, mat_parallaxmap.GetBool() );
pConfig->m_nForceAnisotropicLevel = MAX( mat_forceaniso.GetInt(), 1 );
// special handling for mat_dxlevel since it must be clamped to allowable values
int nDxLevel = clamp( mat_dxlevel.GetInt(), g_pMaterialSystemHardwareConfig->GetMinDXSupportLevel(), g_pMaterialSystemHardwareConfig->GetMaxDXSupportLevel() );
pConfig->dxSupportLevel = nDxLevel;
mat_dxlevel.SetValue( nDxLevel );
pConfig->skipMipLevels = mat_picmip.GetInt();
pConfig->m_fMonitorGamma = mat_monitorgamma.GetFloat();
pConfig->m_fGammaTVRangeMin = mat_monitorgamma_tv_range_min.GetFloat();
pConfig->m_fGammaTVRangeMax = mat_monitorgamma_tv_range_max.GetFloat();
pConfig->m_fGammaTVExponent = mat_monitorgamma_tv_exp.GetFloat();
pConfig->m_bGammaTVEnabled = mat_monitorgamma_tv_enabled.GetBool();
pConfig->m_bWantTripleBuffered = mat_triplebuffered.GetBool();
pConfig->m_nAASamples = mat_antialias.GetInt();
pConfig->m_nAAQuality = mat_aaquality.GetInt();
pConfig->bShowDiffuse = mat_diffuse.GetBool();
// pConfig->bAllowCheats = false; // hack
pConfig->bShowNormalMap = mat_normalmaps.GetBool();
pConfig->bShowLowResImage = mat_showlowresimage.GetBool();
pConfig->bMeasureFillRate = mat_measurefillrate.GetBool();
pConfig->bVisualizeFillRate = mat_fillrate.GetBool();
pConfig->bFilterLightmaps = mat_filterlightmaps.GetBool();
pConfig->bFilterTextures = mat_filtertextures.GetBool();
pConfig->bMipMapTextures = mat_mipmaptextures.GetBool();
pConfig->nShowMipLevels = mat_showmiplevels.GetInt();
pConfig->bReverseDepth = mat_reversedepth.GetBool();
pConfig->bBufferPrimitives = mat_bufferprimitives.GetBool();
pConfig->bDrawFlat = mat_drawflat.GetBool();
pConfig->bSoftwareLighting = mat_softwarelighting.GetBool();
pConfig->proxiesTestMode = mat_proxy.GetInt();
pConfig->m_bSuppressRendering = mat_norendering.GetBool();
pConfig->bCompressedTextures = mat_compressedtextures.GetBool();
pConfig->bShowSpecular = mat_fastspecular.GetBool();
pConfig->nFullbright = mat_fullbright.GetInt();
pConfig->m_bFastNoBump = mat_fastnobump.GetBool();
pConfig->m_bMotionBlur = mat_motion_blur_enabled.GetBool();
pConfig->m_bSupportFlashlight = mat_supportflashlight.GetBool();
pConfig->m_bShadowDepthTexture = r_flashlightdepthtexture.GetBool();
pConfig->bDrawGray = mat_drawgray.GetBool();
// PAINT
pConfig->m_bPaintInGame = mat_paint_enabled.GetBool();
pConfig->m_bPaintInMap = GetPaintmaps()->IsEnabled();
ConVarRef csm_quality_level( "csm_quality_level" );
pConfig->m_nCSMQuality = (CSMQualityMode_t)clamp( csm_quality_level.GetInt(), CSMQUALITY_VERY_LOW, (int)CSMQUALITY_TOTAL_MODES - 1 );
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_ENABLE_HDR, HardwareConfig() && HardwareConfig()->GetHDREnabled() );
}
//-----------------------------------------------------------------------------
// This is called when the config changes
//-----------------------------------------------------------------------------
void CMaterialSystem::WriteConfigIntoConVars( const MaterialSystem_Config_t &config )
{
if ( !g_pCVar )
return;
mat_vsync.SetValue( config.WaitForVSync() );
mat_specular.SetValue( config.UseSpecular() );
mat_bumpmap.SetValue( config.UseBumpmapping() );
mat_detail_tex.SetValue( config.UseDetailTexturing() );
mat_parallaxmap.SetValue( config.UseParallaxMapping() );
mat_forceaniso.SetValue( config.m_nForceAnisotropicLevel );
mat_dxlevel.SetValue( config.dxSupportLevel );
mat_picmip.SetValue( config.skipMipLevels );
mat_phong.SetValue( config.UsePhong() );
mat_monitorgamma.SetValue( config.m_fMonitorGamma );
mat_monitorgamma_tv_range_min.SetValue( config.m_fGammaTVRangeMin );
mat_monitorgamma_tv_range_max.SetValue( config.m_fGammaTVRangeMax );
mat_monitorgamma_tv_exp.SetValue( config.m_fGammaTVExponent );
mat_monitorgamma_tv_enabled.SetValue( config.m_bGammaTVEnabled );
mat_triplebuffered.SetValue( config.m_bWantTripleBuffered ? 1 : 0 );
mat_antialias.SetValue( config.m_nAASamples );
mat_aaquality.SetValue( config.m_nAAQuality );
mat_diffuse.SetValue( config.bShowDiffuse ? 1 : 0 );
// config.bAllowCheats = false; // hack
mat_normalmaps.SetValue( config.bShowNormalMap ? 1 : 0 );
mat_showlowresimage.SetValue( config.bShowLowResImage ? 1 : 0 );
mat_measurefillrate.SetValue( config.bMeasureFillRate ? 1 : 0 );
mat_fillrate.SetValue( config.bVisualizeFillRate ? 1 : 0 );
mat_filterlightmaps.SetValue( config.bFilterLightmaps ? 1 : 0 );
mat_filtertextures.SetValue( config.bFilterTextures ? 1 : 0 );
mat_mipmaptextures.SetValue( config.bMipMapTextures ? 1 : 0 );
mat_showmiplevels.SetValue( config.nShowMipLevels );
mat_reversedepth.SetValue( config.bReverseDepth ? 1 : 0 );
mat_bufferprimitives.SetValue( config.bBufferPrimitives ? 1 : 0 );
mat_drawflat.SetValue( config.bDrawFlat ? 1 : 0 );
mat_softwarelighting.SetValue( config.bSoftwareLighting ? 1 : 0 );
mat_proxy.SetValue( config.proxiesTestMode );
mat_norendering.SetValue( config.m_bSuppressRendering ? 1 : 0 );
mat_compressedtextures.SetValue( config.bCompressedTextures ? 1 : 0 );
mat_fastspecular.SetValue( config.bShowSpecular ? 1 : 0 );
mat_fullbright.SetValue( config.nFullbright );
mat_fastnobump.SetValue( config.m_bFastNoBump ? 1 : 0 );
bool hdre = config.HDREnabled();
HardwareConfig()->SetHDREnabled( hdre );
r_flashlightdepthtexture.SetValue( config.m_bShadowDepthTexture ? 1 : 0 );
mat_motion_blur_enabled.SetValue( config.m_bMotionBlur ? 1 : 0 );
mat_supportflashlight.SetValue( config.m_bSupportFlashlight ? 1 : 0 );
mat_drawgray.SetValue( config.bDrawGray ? 1 : 0 );
ConVarRef csm_quality_level( "csm_quality_level" );
csm_quality_level.SetValue( clamp<int>( config.m_nCSMQuality, CSMQUALITY_VERY_LOW, CSMQUALITY_TOTAL_MODES - 1 ) );
}
//-----------------------------------------------------------------------------
// This is called constantly to catch for config changes
//-----------------------------------------------------------------------------
bool CMaterialSystem::OverrideConfig( const MaterialSystem_Config_t &_config, bool forceUpdate )
{
Assert( m_bGeneratedConfig );
// internal config settings
#ifndef _GAMECONSOLE
MaterialSystem_Config_Internal_t config_internal;
config_internal.gpu_level = gpu_level.GetInt();
#endif
if (
!memcmp( &_config, &g_config, sizeof(_config) )
#ifndef _GAMECONSOLE
&& !memcmp( &config_internal, &g_config_internal, sizeof(config_internal) )
#endif
)
return false;
MaterialLock_t hLock = Lock();
MaterialSystem_Config_t config = _config;
// It's illegal to create a window larger than the screen resolution
if ( config.Windowed() )
{
config.m_VideoMode.m_Width = clamp( config.m_VideoMode.m_Width, 0, m_nAdapterInfo.m_nWidth );
config.m_VideoMode.m_Height = clamp( config.m_VideoMode.m_Height, 0, m_nAdapterInfo.m_nHeight );
}
bool bRedownloadLightmaps = false;
bool bRedownloadTextures = false;
bool recomputeSnapshots = false;
bool bReloadMaterials = false;
bool bResetAnisotropy = false;
bool bSetStandardVertexShaderConstants = false;
bool bMonitorGammaChanged = false;
bool bVideoModeChange = false;
bool bResetTextureFilter = false;
bool bForceAltTab = false;
if ( !g_pShaderDevice->IsUsingGraphics() )
{
g_config = config;
#ifndef _GAMECONSOLE
g_config_internal = config_internal;
#endif
// Shouldn't call this more than once.
ColorSpace::SetGamma( 2.2f, 2.2f, OVERBRIGHT, g_config.bAllowCheats, false );
Unlock( hLock );
return bRedownloadLightmaps;
}
// set the default state since we might be changing the number of
// texture units, etc. (i.e. we don't want to leave unit 2 in overbright mode
// if it isn't going to be reset upon each SetDefaultState because there is
// effectively only one texture unit.)
g_pShaderAPI->SetDefaultState();
// toggle dx emulation level
if ( config.dxSupportLevel != g_config.dxSupportLevel )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: Setting bReloadMaterials because new dxlevel = %d and old dxlevel = %d\n",
( int )config.dxSupportLevel, g_config.dxSupportLevel );
}
// Necessary for DXSupportLevelChanged to work
g_config.dxSupportLevel = config.dxSupportLevel;
// This will reset config to match whatever the dxlevel wants
g_pShaderAPI->DXSupportLevelChanged( config.dxSupportLevel );
bReloadMaterials = true;
}
if ( config.m_nCSMQuality != g_config.m_nCSMQuality )
{
//forceUpdate = true;
bReloadMaterials = true;
recomputeSnapshots = true;
}
if ( config.HDREnabled() != g_config.HDREnabled() )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: Setting forceUpdate, bReloadMaterials, and bForceAltTab because new hdr level = %d and old hdr level = %d\n",
( int )config.HDREnabled(), g_config.HDREnabled() );
}
forceUpdate = true;
bReloadMaterials = true;
bForceAltTab = true;
}
if ( config.ShadowDepthTexture() != g_config.ShadowDepthTexture() )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: Setting forceUpdate, bReloadMaterials and recomputeSnapshots (ShadowDepthTexture changed: %d -> %d)\n",
g_config.ShadowDepthTexture() ? 1 : 0, config.ShadowDepthTexture() ? 1 : 0 );
}
if ( !IsGameConsole() )
{
// On the 360, we don't actually destroy or recreate any render targets when r_shadowdepthtexture changes,
// so we don't have to do any of this stuff
forceUpdate = true;
bReloadMaterials = true;
recomputeSnapshots = true;
}
}
if ( forceUpdate )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: forceUpdate is true, therefore setting recomputeSnapshots, bRedownloadLightmaps, bRedownloadTextures, bResetAnisotropy, and bSetStandardVertexShaderConstants\n" );
}
GetLightmaps()->EnableLightmapFiltering( config.bFilterLightmaps );
recomputeSnapshots = true;
bRedownloadLightmaps = true;
bRedownloadTextures = true;
bResetAnisotropy = true;
bSetStandardVertexShaderConstants = true;
}
// toggle bump mapping
if ( config.UseBumpmapping() != g_config.UseBumpmapping() )
{
if( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: forceUpdate is true, therefore setting recomputeSnapshots, bRedownloadLightmaps, bRedownloadTextures, bResetAnisotropy, and bSetStandardVertexShaderConstants\n" );
}
recomputeSnapshots = true;
bReloadMaterials = true;
bResetAnisotropy = true;
}
// toggle detail texturing
if ( config.UseDetailTexturing() != g_config.UseDetailTexturing() )
{
if( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: forceUpdate is true, therefore setting recomputeSnapshots, bRedownloadLightmaps, bRedownloadTextures, bResetAnisotropy, and bSetStandardVertexShaderConstants\n" );
}
recomputeSnapshots = true;
bReloadMaterials = true;
bResetAnisotropy = true;
}
// toggle specularity
if ( config.UseSpecular() != g_config.UseSpecular() )
{
if( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: new usespecular=%d, old usespecular=%d, setting recomputeSnapshots, bReloadMaterials, and bResetAnisotropy\n",
( int )config.UseSpecular(), ( int )g_config.UseSpecular() );
}
recomputeSnapshots = true;
bReloadMaterials = true;
bResetAnisotropy = true;
}
// toggle parallax mapping
if ( config.UseParallaxMapping() != g_config.UseParallaxMapping() )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: new UseParallaxMapping=%d, old UseParallaxMapping=%d, setting bReloadMaterials\n",
( int )config.UseParallaxMapping(), ( int )g_config.UseParallaxMapping() );
}
bReloadMaterials = true;
}
// toggle phong
if ( config.UsePhong() != g_config.UsePhong() )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: new UsePhong=%d, old UsePhong=%d, setting bReloadMaterials\n",
( int )config.UsePhong(), ( int )g_config.UsePhong() );
}
bReloadMaterials = true;
}
// toggle reverse depth
if ( config.bReverseDepth != g_config.bReverseDepth )
{
if( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: new ReduceFillrate=%d, old ReduceFillrate=%d, setting bReloadMaterials\n",
( int )config.bReverseDepth, ( int )g_config.bReverseDepth );
}
recomputeSnapshots = true;
bResetAnisotropy = true;
}
// toggle no transparency
if ( config.bNoTransparency != g_config.bNoTransparency )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: new bNoTransparency=%d, old bNoTransparency=%d, setting recomputeSnapshots and bResetAnisotropy\n",
( int )config.bNoTransparency, ( int )g_config.bNoTransparency );
}
recomputeSnapshots = true;
bResetAnisotropy = true;
}
// toggle lightmap filtering
if ( config.bFilterLightmaps != g_config.bFilterLightmaps )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: new bFilterLightmaps=%d, old bFilterLightmaps=%d, setting EnableLightmapFiltering\n",
( int )config.bFilterLightmaps, ( int )g_config.bFilterLightmaps );
}
GetLightmaps()->EnableLightmapFiltering( config.bFilterLightmaps );
}
// toggle software lighting
if ( config.bSoftwareLighting != g_config.bSoftwareLighting )
{
if( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: new bSoftwareLighting=%d, old bSoftwareLighting=%d, setting bReloadMaterials\n",
( int )config.bFilterLightmaps, ( int )g_config.bFilterLightmaps );
}
bReloadMaterials = true;
}
#ifndef _GAMECONSOLE
if ( config_internal.gpu_level != g_config_internal.gpu_level )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: new gpu_level=%d, old gpu_level=%d, setting bReloadMaterials\n",
( int )config_internal.gpu_level, ( int )g_config_internal.gpu_level );
}
bReloadMaterials = true;
}
#endif
// generic things that cause us to redownload lightmaps
if ( config.bAllowCheats != g_config.bAllowCheats )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: new bAllowCheats=%d, old bAllowCheats=%d, setting bRedownloadLightmaps\n",
( int )config.bAllowCheats, ( int )g_config.bAllowCheats );
}
bRedownloadLightmaps = true;
}
// generic things that cause us to redownload textures
if ( config.bAllowCheats != g_config.bAllowCheats ||
config.skipMipLevels != g_config.skipMipLevels ||
config.nShowMipLevels != g_config.nShowMipLevels ||
( config.bCompressedTextures != g_config.bCompressedTextures ) ||
config.bShowLowResImage != g_config.bShowLowResImage ||
config.bDrawGray != g_config.bDrawGray
)
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: setting bRedownloadTextures, recomputeSnapshots, and bResetAnisotropy\n" );
}
bRedownloadTextures = true;
recomputeSnapshots = true;
bResetAnisotropy = true;
}
if ( config.m_nForceAnisotropicLevel != g_config.m_nForceAnisotropicLevel )
{
if( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: new m_nForceAnisotropicLevel: %d, old m_nForceAnisotropicLevel: %d, setting bResetAnisotropy and bResetTextureFilter\n",
( int )config.m_nForceAnisotropicLevel, ( int )g_config.m_nForceAnisotropicLevel );
}
bResetAnisotropy = true;
bResetTextureFilter = true;
}
if ( config.m_fMonitorGamma != g_config.m_fMonitorGamma || config.m_fGammaTVRangeMin != g_config.m_fGammaTVRangeMin ||
config.m_fGammaTVRangeMax != g_config.m_fGammaTVRangeMax || config.m_fGammaTVExponent != g_config.m_fGammaTVExponent ||
config.m_bGammaTVEnabled != g_config.m_bGammaTVEnabled )
{
if( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: new monitorgamma: %f, old monitorgamma: %f, setting bMonitorGammaChanged\n",
config.m_fMonitorGamma, g_config.m_fMonitorGamma );
}
bMonitorGammaChanged = true;
}
if ( config.m_VideoMode.m_Width != g_config.m_VideoMode.m_Width ||
config.m_VideoMode.m_Height != g_config.m_VideoMode.m_Height ||
config.m_VideoMode.m_RefreshRate != g_config.m_VideoMode.m_RefreshRate ||
config.m_nAASamples != g_config.m_nAASamples ||
config.m_nAAQuality != g_config.m_nAAQuality ||
config.Windowed() != g_config.Windowed() ||
config.NoWindowBorder() != g_config.NoWindowBorder() ||
config.Stencil() != g_config.Stencil() )
{
if( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: video mode changed for one of various reasons\n" );
}
bVideoModeChange = true;
}
// Toggle triple buffering
if ( config.m_bWantTripleBuffered != g_config.m_bWantTripleBuffered )
{
// Only force a video mode change if we are fullscreen and vsync'd
if ( ( IsGameConsole() || !config.Windowed() ) && ( config.WaitForVSync() ) )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: video mode changed because triple buffering changed\n" );
}
bVideoModeChange = true;
}
}
// toggle wait for vsync
if ( (IsGameConsole() || !config.Windowed()) && (config.WaitForVSync() != g_config.WaitForVSync()) )
{
# if ( !defined( _X360 ) )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: video mode changed due to toggle of wait for vsync\n" );
}
bVideoModeChange = true;
}
# else
{
g_pShaderAPI->EnableVSync_360( config.WaitForVSync() );
}
# endif
}
g_config = config;
#ifndef _GAMECONSOLE
g_config_internal = config_internal;
#endif
if ( bRedownloadTextures || bRedownloadLightmaps )
{
// Get rid of this?
ColorSpace::SetGamma( 2.2f, 2.2f, OVERBRIGHT, g_config.bAllowCheats, false );
}
// 360 does not support various configuration changes and cannot reload materials
if ( !IsGameConsole() )
{
if ( bResetAnisotropy || recomputeSnapshots || bRedownloadLightmaps ||
bRedownloadTextures || bResetAnisotropy || bVideoModeChange ||
bSetStandardVertexShaderConstants || bResetTextureFilter )
{
Unlock( hLock );
ForceSingleThreaded();
hLock = Lock();
}
}
if ( bReloadMaterials && !IsGameConsole() )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: ReloadMaterials\n" );
}
ReloadMaterials();
}
// 360 does not support various configuration changes and cannot reload textures
// 360 has no reason to reload textures, it's unnecessary and massively expensive
// 360 does not use this path as an init affect to get its textures into memory
if ( bRedownloadTextures && !IsGameConsole() )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: redownloading textures\n" );
}
if ( CanDownloadTextures() )
{
TextureManager()->RestoreRenderTargets();
TextureManager()->RestoreNonRenderTargetTextures();
}
}
else if ( bResetTextureFilter )
{
if( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: ResetTextureFilteringState\n" );
}
TextureManager()->ResetTextureFilteringState();
}
// Recompute all state snapshots
if ( recomputeSnapshots )
{
if( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: RecomputeAllStateSnapshots\n" );
}
RecomputeAllStateSnapshots();
}
if ( bResetAnisotropy )
{
if( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: SetAnisotropicLevel\n" );
}
g_pShaderAPI->SetAnisotropicLevel( config.m_nForceAnisotropicLevel );
}
if ( bSetStandardVertexShaderConstants )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: SetStandardVertexShaderConstants\n" );
}
g_pShaderAPI->SetStandardVertexShaderConstants( OVERBRIGHT );
}
if ( bMonitorGammaChanged )
{
if( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: SetHardwareGammaRamp\n" );
}
g_pShaderDevice->SetHardwareGammaRamp( config.m_fMonitorGamma, config.m_fGammaTVRangeMin, config.m_fGammaTVRangeMax,
config.m_fGammaTVExponent, config.m_bGammaTVEnabled );
}
if ( bVideoModeChange )
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: ChangeVideoMode\n" );
}
ShaderDeviceInfo_t info;
ConvertModeStruct( &info, config );
g_pShaderAPI->ChangeVideoMode( info );
}
if ( bForceAltTab )
{
// Simulate an Alt-Tab
// g_pShaderAPI->ReleaseResources();
// g_pShaderAPI->ReacquireResources();
}
Unlock( hLock );
if ( bVideoModeChange )
{
ForceSingleThreaded();
}
return bRedownloadLightmaps;
}
//-----------------------------------------------------------------------------
// This is called when the config changes
//-----------------------------------------------------------------------------
bool CMaterialSystem::UpdateConfig( bool forceUpdate )
{
int nUpdateFlags = 0;
if ( g_pCVar && g_pCVar->HasQueuedMaterialThreadConVarSets() )
{
ForceSingleThreaded();
nUpdateFlags = g_pCVar->ProcessQueuedMaterialThreadConVarSets();
}
MaterialSystem_Config_t config = g_config;
#ifndef DEDICATED
ReadConfigFromConVars( &config );
#endif
return OverrideConfig( config, forceUpdate );
}
void CMaterialSystem::ReleaseResources()
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: CMaterialSystem::ReleaseResources\n" );
}
g_pShaderDevice->ReleaseResources();
#if defined( FEATURE_SUBD_SUPPORT )
g_pSubDMgr->ReleaseResources();
#endif
}
void CMaterialSystem::ReacquireResources()
{
if ( mat_debugalttab.GetBool() )
{
Warning( "mat_debugalttab: CMaterialSystem::ReacquireResources\n" );
}
g_pShaderDevice->ReacquireResources();
#if defined( FEATURE_SUBD_SUPPORT )
g_pSubDMgr->ReacquireResources();
#endif
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMaterialSystem::OnDrawMesh( IMesh *pMesh, int firstIndex, int numIndices )
{
if ( IsInStubMode() )
{
return false;
}
return GetRenderContextInternal()->OnDrawMesh( pMesh, firstIndex, numIndices );
}
bool CMaterialSystem::OnDrawMesh( IMesh *pMesh, CPrimList *pLists, int nLists )
{
if ( IsInStubMode() )
return false;
return GetRenderContextInternal()->OnDrawMesh( pMesh, pLists, nLists );
}
bool CMaterialSystem::OnDrawMeshModulated( IMesh *pMesh, const Vector4D &diffuseModulation, int firstIndex, int numIndices )
{
if ( IsInStubMode() )
return false;
return GetRenderContextInternal()->OnDrawMeshModulated( pMesh, diffuseModulation, firstIndex, numIndices );
}
void CMaterialSystem::OnThreadEvent( uint32 threadEvent )
{
m_threadEvents.AddToTail( threadEvent );
}
//-----------------------------------------------------------------------------
// Creates a procedural texture
//-----------------------------------------------------------------------------
ITexture *CMaterialSystem::CreateProceduralTexture(
const char *pTextureName,
const char *pTextureGroupName,
int w,
int h,
ImageFormat fmt,
int nFlags )
{
ITextureInternal* pTex = TextureManager()->CreateProceduralTexture( pTextureName, pTextureGroupName, w, h, 1, fmt, nFlags );
return pTex;
}
#if defined( _X360 )
//-----------------------------------------------------------------------------
// Create a texture for displaying gamerpics.
// This function allocates the texture in the correct gamerpic format, but it does not fill in the gamerpic data.
//-----------------------------------------------------------------------------
ITexture *CMaterialSystem::CreateGamerpicTexture(
const char *pTextureName,
const char *pTextureGroupName,
int nFlags )
{
return CreateProceduralTexture( pTextureName, pTextureGroupName, g_GamerpicSize, g_GamerpicSize, g_GamerpicFormat, nFlags );
}
//-----------------------------------------------------------------------------
// Update the given texture with the player gamerpic for the local player at the given index.
// Note: this texture must be the correct size and format. Use CreateGamerpicTexture.
//-----------------------------------------------------------------------------
bool CMaterialSystem::UpdateLocalGamerpicTexture(
ITexture *pTexture,
DWORD userIndex )
{
Assert( pTexture != NULL );
Assert( pTexture->GetActualWidth() == g_GamerpicSize && pTexture->GetActualHeight() == g_GamerpicSize );
Assert( pTexture->GetImageFormat() == g_GamerpicFormat );
Assert( userIndex >= 0 && userIndex < 4 );
// lock
CPixelWriter writer;
g_pShaderAPI->ModifyTexture( ((ITextureInternal*)pTexture)->GetTextureHandle( 0 ) );
g_pShaderAPI->TexLock( 0, 0, 0, 0, g_GamerpicSize, g_GamerpicSize, writer );
// Write the gamerpic to the texture.
BYTE *pBuf = (BYTE*)writer.GetPixelMemory();
DWORD retVal = XUserReadGamerPicture( userIndex, FALSE, pBuf, g_GamerpicSize * writer.GetPixelSize(), g_GamerpicSize * writer.GetPixelSize(), NULL );
// unlock
g_pShaderAPI->TexUnlock();
return (retVal == ERROR_SUCCESS);
}
//-----------------------------------------------------------------------------
// Update the given texture with a remote player's gamerpic.
// Note: this texture must be the correct size and format. Use CreateGamerpicTexture.
//-----------------------------------------------------------------------------
bool CMaterialSystem::UpdateRemoteGamerpicTexture(
ITexture *pTexture,
XUID xuid )
{
Assert( pTexture != NULL );
Assert( pTexture->GetActualWidth() == g_GamerpicSize && pTexture->GetActualHeight() == g_GamerpicSize );
Assert( pTexture->GetImageFormat() == g_GamerpicFormat );
//
// Read the remote player's profile.
//
const DWORD xuidCount = 1;
XUID xuids[xuidCount];
xuids[0] = xuid;
const DWORD settingIdCount = 1;
DWORD settingIds[settingIdCount];
settingIds[0] = XPROFILE_GAMERCARD_PICTURE_KEY;
// Get the size of the results.
DWORD resultsSize = 0;
DWORD retVal = XUserReadProfileSettingsByXuid( 0, XBX_GetPrimaryUserId(), xuidCount, xuids, settingIdCount, settingIds, &resultsSize, 0, 0 );
if ( retVal != ERROR_INSUFFICIENT_BUFFER )
{
return false;
}
Assert( resultsSize > 0 );
// Get the profile with the correct results size.
CArrayAutoPtr<unsigned char> spResultsBuffer( new unsigned char[resultsSize] );
XUSER_READ_PROFILE_SETTING_RESULT *pResults = (XUSER_READ_PROFILE_SETTING_RESULT*)spResultsBuffer.Get();
retVal = XUserReadProfileSettingsByXuid( 0, 0, xuidCount, xuids, settingIdCount, settingIds, &resultsSize, pResults, 0 );
if ( retVal != ERROR_SUCCESS || pResults->dwSettingsLen == 0 )
{
return false;
}
// lock
CPixelWriter writer;
g_pShaderAPI->ModifyTexture( ((ITextureInternal*)pTexture)->GetTextureHandle( 0 ) );
g_pShaderAPI->TexLock( 0, 0, 0, 0, g_GamerpicSize, g_GamerpicSize, writer );
// Write the gamerpic to the texture.
BYTE *pBuf = (BYTE*)writer.GetPixelMemory();
retVal = XUserReadGamerPictureByKey( &(pResults->pSettings[0].data), FALSE, pBuf, g_GamerpicSize * writer.GetPixelSize(), g_GamerpicSize * writer.GetPixelSize(), NULL );
// unlock
g_pShaderAPI->TexUnlock();
return (retVal == ERROR_SUCCESS);
}
#endif // _X360
//-----------------------------------------------------------------------------
// Create new materials (currently only used by the editor!)
//-----------------------------------------------------------------------------
IMaterial *CMaterialSystem::CreateMaterial( const char *pMaterialName, KeyValues *pVMTKeyValues )
{
// For not, just create a material with no default settings
IMaterialInternal* pMaterial = IMaterialInternal::CreateMaterial( pMaterialName, TEXTURE_GROUP_OTHER, pVMTKeyValues );
pMaterial->IncrementReferenceCount();
AddMaterialToMaterialList( pMaterial );
return pMaterial->GetQueueFriendlyVersion();
}
//-----------------------------------------------------------------------------
// Finds or creates a procedural material
//-----------------------------------------------------------------------------
IMaterial *CMaterialSystem::FindProceduralMaterial( const char *pMaterialName, const char *pTextureGroupName, KeyValues *pVMTKeyValues )
{
// We need lower-case symbols for this to work
int nLen = Q_strlen( pMaterialName ) + 1;
char *pTemp = (char*)stackalloc( nLen );
Q_strncpy( pTemp, pMaterialName, nLen );
Q_strlower( pTemp );
Q_FixSlashes( pTemp, '/' );
// 'true' causes the search to find procedural materials
IMaterialInternal *pMaterial = m_MaterialDict.FindMaterial( pTemp, true );
if ( pMaterial )
{
if ( pVMTKeyValues != NULL )
{
pVMTKeyValues->deleteThis();
}
}
else
{
if ( pVMTKeyValues != NULL )
{
pMaterial = IMaterialInternal::CreateMaterial( pMaterialName, pTextureGroupName, pVMTKeyValues );
AddMaterialToMaterialList( static_cast<IMaterialInternal*>( pMaterial ) );
}
else
{
pMaterial = g_pErrorMaterial;
}
}
return pMaterial->GetQueueFriendlyVersion();
}
//-----------------------------------------------------------------------------
// Search by name
//-----------------------------------------------------------------------------
IMaterial* CMaterialSystem::FindMaterial( char const *pMaterialName, const char *pTextureGroupName, bool bComplain, const char *pComplainPrefix )
{
if ( g_pResourceAccessControl )
{
if ( !g_pResourceAccessControl->IsAccessAllowed( RESOURCE_MATERIAL, pMaterialName ) )
return g_pErrorMaterial->GetRealTimeVersion();
}
if ( !pMaterialName )
{
return g_pErrorMaterial->GetQueueFriendlyVersion();
}
// We need lower-case symbols for this to work
int nLen = Q_strlen( pMaterialName ) + 1;
char *pFixedNameTemp = (char*)stackalloc( nLen );
char *pTemp = (char*)stackalloc( nLen );
Q_strncpy( pFixedNameTemp, pMaterialName, nLen );
Q_strlower( pFixedNameTemp );
#ifdef PLATFORM_POSIX
// strip extensions needs correct slashing for the OS, so fix it up early for Posix
Q_FixSlashes( pFixedNameTemp, '/' );
#endif
Q_StripExtension( pFixedNameTemp, pTemp, nLen );
#ifndef PLATFORM_POSIX
Q_FixSlashes( pTemp, '/' );
#endif
Assert( nLen >= Q_strlen( pTemp ) + 1 );
IMaterialInternal *pExistingMaterial = m_MaterialDict.FindMaterial( pTemp, false ); // 'false' causes the search to find only file-created materials
if ( pExistingMaterial )
return pExistingMaterial->GetQueueFriendlyVersion();
#if defined( DEVELOPMENT_ONLY ) || defined( ALLOW_TEXT_MODE )
static bool s_bTextMode = CommandLine()->HasParm( "-textmode" );
if ( s_bTextMode )
return g_pErrorMaterial->GetQueueFriendlyVersion();
#endif
// if ( !m_MaterialDict.IsMissing(pTemp) )
{
// It hasn't been seen yet, so let's check to see if it's in the filesystem.
nLen = Q_strlen( "materials/" ) + Q_strlen( pTemp ) + Q_strlen( ".vmt" ) + 1;
char *vmtName = (char *)stackalloc( nLen );
// Check to see if this is a UNC-specified material name
bool bIsUNC = pTemp[0] == '/' && pTemp[1] == '/' && pTemp[2] != '/';
if ( !bIsUNC )
{
Q_strncpy( vmtName, "materials/", nLen );
Q_strncat( vmtName, pTemp, nLen, COPY_ALL_CHARACTERS );
}
else
{
Q_strncpy( vmtName, pTemp, nLen );
}
//Q_strncat( vmtName, ".vmt", nLen, COPY_ALL_CHARACTERS );
Assert( nLen >= (int)Q_strlen( vmtName ) + 1 );
CUtlVector<FileNameHandle_t> includes;
KeyValues *pKeyValues = new KeyValues("vmt");
KeyValues *pPatchKeyValues = new KeyValues( "vmt_patches" );
if ( !LoadVMTFile( *pKeyValues, *pPatchKeyValues, vmtName, true, &includes ) )
{
pKeyValues->deleteThis();
pKeyValues = NULL;
pPatchKeyValues->deleteThis();
pPatchKeyValues = NULL;
}
else
{
char *matNameWithExtension;
nLen = Q_strlen( pTemp ) + Q_strlen( ".vmt" ) + 1;
matNameWithExtension = (char *)stackalloc( nLen );
Q_strncpy( matNameWithExtension, pTemp, nLen );
Q_strncat( matNameWithExtension, ".vmt", nLen, COPY_ALL_CHARACTERS );
IMaterialInternal *pMat = NULL;
if ( !Q_stricmp( pKeyValues->GetName(), "subrect" ) )
{
pMat = m_MaterialDict.AddMaterialSubRect( matNameWithExtension, pTextureGroupName, pKeyValues, pPatchKeyValues );
}
else
{
pMat = m_MaterialDict.AddMaterial( matNameWithExtension, pTextureGroupName );
if ( g_pShaderDevice->IsUsingGraphics() )
{
if ( !bIsUNC )
{
m_pForcedTextureLoadPathID = "GAME";
}
pMat->PrecacheVars( pKeyValues, pPatchKeyValues, &includes );
m_pForcedTextureLoadPathID = NULL;
}
}
pKeyValues->deleteThis();
pPatchKeyValues->deleteThis();
return pMat->GetQueueFriendlyVersion();
}
if ( bComplain )
{
Assert( pTemp );
// convert to lowercase
nLen = Q_strlen(pTemp) + 1 ;
char *name = (char*)stackalloc( nLen );
Q_strncpy( name, pTemp, nLen );
Q_strlower( name );
if ( m_MaterialDict.NoteMissing( name ) )
{
if ( pComplainPrefix )
{
DevWarning( "%s", pComplainPrefix );
}
DevWarning( "material \"%s\" not found.\n", name );
}
}
}
return g_pErrorMaterial->GetQueueFriendlyVersion();
}
bool CMaterialSystem::LoadKeyValuesFromVMTFile( KeyValues &vmtKeyValues, const char *pMaterialName, bool bUsesUNCFilename )
{
CUtlVector<FileNameHandle_t> includes;
KeyValues *pPatchKeyValues = new KeyValues( "vmt_patches" );
bool bResult = LoadVMTFile( vmtKeyValues, *pPatchKeyValues, pMaterialName, bUsesUNCFilename, &includes );
// we don't need these, they were applied to vmtKeyValues
pPatchKeyValues->deleteThis();
pPatchKeyValues = NULL;
return bResult;
}
static char const *TextureAliases[] =
{
// this table is only here for backwards compatibility where a render target change was made,
// and we wish to redirect an existing old client.dll for hl2 to reference this texture. It's
// not meant as a general texture aliasing system.
"_rt_FullFrameFB1", "_rt_FullScreen"
};
ITexture *CMaterialSystem::FindTexture( char const *pTextureName, const char *pTextureGroupName, bool bComplain /* = false */, int nAdditionalCreationFlags /* = 0 */ )
{
ITextureInternal *pTexture = TextureManager()->FindOrLoadTexture( pTextureName, pTextureGroupName, nAdditionalCreationFlags );
Assert( pTexture );
if ( pTexture->IsError() && !CommandLine()->HasParm( "-textmode" ) )
{
if ( IsPC() )
{
for ( int i=0; i<NELEMS( TextureAliases ); i+=2 )
{
if ( !Q_stricmp( pTextureName, TextureAliases[i] ) )
{
return FindTexture( TextureAliases[i+1], pTextureGroupName, bComplain, nAdditionalCreationFlags );
}
}
}
if ( bComplain )
{
DevWarning( "Texture '%s' not found.\n", pTextureName );
}
}
return pTexture;
}
bool CMaterialSystem::IsTextureLoaded( char const* pTextureName ) const
{
return TextureManager()->IsTextureLoaded( pTextureName );
}
bool CMaterialSystem::GetTextureInformation( char const *szTextureName, MaterialTextureInfo_t &info ) const
{
return TextureManager()->GetTextureInformation( szTextureName, info );
}
void CMaterialSystem::AddTextureAlias( const char *pAlias, const char *pRealName )
{
TextureManager()->AddTextureAlias( pAlias, pRealName );
}
void CMaterialSystem::RemoveTextureAlias( const char *pAlias )
{
TextureManager()->RemoveTextureAlias( pAlias );
}
void CMaterialSystem::SetExcludedTextures( const char *pScriptName, bool bUsingWeaponModelCache )
{
TextureManager()->SetExcludedTextures( pScriptName, bUsingWeaponModelCache );
}
void CMaterialSystem::UpdateExcludedTextures( void )
{
TextureManager()->UpdateExcludedTextures();
// Have to re-setup the representative textures since they may have been removed out from under us by the queued loader.
for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial( i ) )
{
GetMaterialInternal( i )->FindRepresentativeTexture();
GetMaterialInternal( i )->PrecacheMappingDimensions();
}
}
void CMaterialSystem::ClearForceExcludes( void )
{
TextureManager()->ClearForceExcludes();
}
//-----------------------------------------------------------------------------
// Recomputes state snapshots for all materials
//-----------------------------------------------------------------------------
void CMaterialSystem::RecomputeAllStateSnapshots()
{
g_pShaderAPI->ClearSnapshots();
for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) )
{
GetMaterialInternal(i)->RecomputeStateSnapshots();
}
g_pShaderAPI->ResetRenderState();
}
//-----------------------------------------------------------------------------
// Uncache all materials
//-----------------------------------------------------------------------------
void CMaterialSystem::UncacheAllMaterials()
{
MaterialLock_t hLock = Lock();
Flush( true );
for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial( i ) )
{
Assert( GetMaterialInternal(i)->GetReferenceCount() >= 0 );
GetMaterialInternal(i)->Uncache();
}
TextureManager()->RemoveUnusedTextures();
Unlock( hLock );
}
//-----------------------------------------------------------------------------
// Uncache unused materials
//-----------------------------------------------------------------------------
void CMaterialSystem::UncacheUnusedMaterials( bool bRecomputeStateSnapshots )
{
MaterialLock_t hLock = Lock();
Flush( true );
// We need two loops to make sure we don't reset the snapshots if nothing got removed,
// otherwise the snapshot recomputation is expensive and avoided at load time
bool bDidUncacheMaterial = false;
for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) )
{
IMaterialInternal *pMatInternal = GetMaterialInternal( i );
Assert( pMatInternal->GetReferenceCount() >= 0 );
if ( pMatInternal->GetReferenceCount() <= 0 )
{
bDidUncacheMaterial = true;
pMatInternal->Uncache();
}
}
if ( IsX360() && bRecomputeStateSnapshots )
{
// Always recompute snapshots because the queued loading process skips it during pre-purge,
// allowing it to happen just once, here.
bDidUncacheMaterial = true;
}
if ( bDidUncacheMaterial && bRecomputeStateSnapshots )
{
// Clear the state snapshots since we are going to rebuild all of them.
g_pShaderAPI->ClearSnapshots();
g_pShaderAPI->ClearVertexAndPixelShaderRefCounts();
for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) )
{
IMaterialInternal *pMatInternal = GetMaterialInternal(i);
if ( pMatInternal->GetReferenceCount() > 0 )
{
// Recompute the state snapshots for the materials that we are keeping
// since we blew all of them away above.
pMatInternal->RecomputeStateSnapshots();
}
}
g_pShaderAPI->PurgeUnusedVertexAndPixelShaders();
}
if ( bRecomputeStateSnapshots )
{
// kick out all per material context datas
for( MaterialHandle_t i = m_MaterialDict.FirstMaterial(); i != m_MaterialDict.InvalidMaterial(); i = m_MaterialDict.NextMaterial( i ) )
{
GetMaterialInternal(i)->ClearContextData();
}
}
TextureManager()->RemoveUnusedTextures();
Unlock( hLock );
}
//-----------------------------------------------------------------------------
// Release temporary HW memory...
//-----------------------------------------------------------------------------
void CMaterialSystem::ResetTempHWMemory( bool bExitingLevel )
{
if( !IsPS3() )
{
// Doing this on map transitions is not beneficial on PS3 (in fact it may fragment our RSX allocator)
g_pShaderAPI->DestroyVertexBuffers( bExitingLevel );
}
TextureManager()->ReleaseTempRenderTargetBits();
}
//-----------------------------------------------------------------------------
// Get GPU memory usage stats
//-----------------------------------------------------------------------------
void CMaterialSystem::GetGPUMemoryStats( GPUMemoryStats &stats )
{
g_pShaderAPI->GetGPUMemoryStats( stats );
}
bool CMaterialSystem::IsLevelLoadingComplete() const
{
return m_bLevelLoadingComplete;
}
void CMaterialSystem::OnAsyncTextureDataComplete( AsyncTextureContext_t *pContext, void *pData, int nNumReadBytes, AsyncTextureLoadError_t loadError )
{
// queue the async loaded texture data, cannot deal with update the texture data until end-of-frame on the main thread
AsyncTextureLoad_t textureLoad;
textureLoad.m_pContext = pContext;
textureLoad.m_pData = pData;
textureLoad.m_nNumReadBytes = nNumReadBytes;
textureLoad.m_LoadError = loadError;
m_QueuedAsyncTextureLoads.PushItem( textureLoad );
}
void CMaterialSystem::ServiceAsyncTextureLoads()
{
if ( !m_QueuedAsyncTextureLoads.Count() && !m_pActiveAsyncTextureLoad )
{
// nothing to do
return;
}
// We don't necessarily process all the elements in the queue in order to avoid
// large spikes on the main thread
// Spreading the cost of creating the async textures across multiple frames
double flStartTime = Plat_FloatTime();
float flRemainingMaxTimeMs = mat_async_tex_maxtime_ms.GetFloat();
// Resume FinishAsyncDownload() that was interrupted on the previous frame
// Need to do it first (before processing any other async textures from the queue)
// otherwise the VTF texture created on the previous frame will be invalid !
if ( m_pActiveAsyncTextureLoad )
{
m_pActiveAsyncTextureLoad->m_pContext->m_pTexture->FinishAsyncDownload(
m_pActiveAsyncTextureLoad->m_pContext,
m_pActiveAsyncTextureLoad->m_pData,
m_pActiveAsyncTextureLoad->m_nNumReadBytes,
!m_bLevelLoadingComplete || (m_pActiveAsyncTextureLoad->m_LoadError != ASYNCTEXTURE_LOADERROR_NONE),
flRemainingMaxTimeMs );
m_pActiveAsyncTextureLoad = NULL;
// Limit the amount of time spent creating D3D resources
float flElapsedMs = (Plat_FloatTime() - flStartTime) * 1000.0f;
flRemainingMaxTimeMs = mat_async_tex_maxtime_ms.GetFloat() - flElapsedMs;
if (flRemainingMaxTimeMs < 0.0f)
{
return;
}
}
// async texture loads are only valid AFTER the level has completed loading
// abort data incorrectly delivered during loading or on any data error
while ( m_QueuedAsyncTextureLoads.PopItem( &m_AsyncTextureLoad ) )
{
bool bDownloadCompleted = m_AsyncTextureLoad.m_pContext->m_pTexture->FinishAsyncDownload(
m_AsyncTextureLoad.m_pContext,
m_AsyncTextureLoad.m_pData,
m_AsyncTextureLoad.m_nNumReadBytes,
!m_bLevelLoadingComplete || ( m_AsyncTextureLoad.m_LoadError != ASYNCTEXTURE_LOADERROR_NONE ),
flRemainingMaxTimeMs );
if ( !bDownloadCompleted )
{
// FinishAsyncDownload has been interrupted and need to resume at the next frame
m_pActiveAsyncTextureLoad = &m_AsyncTextureLoad;
break;
}
else
{
m_pActiveAsyncTextureLoad = NULL;
}
// Limit the amount of time spent creating D3D resources
float flElapsedMs = ( Plat_FloatTime() - flStartTime ) * 1000.0f;
flRemainingMaxTimeMs = mat_async_tex_maxtime_ms.GetFloat() - flElapsedMs;
if ( flRemainingMaxTimeMs < 0.0f )
{
break;
}
}
}
//#define SPEW_SERVICE_END_FRAME_TIME
void CMaterialSystem::ServiceEndFramePriorToNextContext()
{
#if !defined( _CERT ) && defined( SPEW_SERVICE_END_FRAME_TIME )
double flStartTime = Plat_FloatTime();
#endif
// All these callers are highly specialized handlers aware of
// this precise calling state. These handlers all need to perform some
// operation that must be on the main thread while no rendering
// is concurrent.
bool bDataProcessed = false;
volatile int nLastCallIndex;
volatile EndFramePriorToNextContextFunc_t pLastCallSite;
for ( int i = 0; i < m_EndFramePriorToNextContextFunc.Count(); ++i )
{
nLastCallIndex = i;
pLastCallSite = m_EndFramePriorToNextContextFunc[ i ];
bDataProcessed |= m_EndFramePriorToNextContextFunc[ i ]();
}
if ( !bDataProcessed )
{
// Because this is at the main thread frame boundary, the async texture loading can simply be delayed until the next frame,
// to lighten the amount of a burst of main thread work. The async texture loading is tolerant of getting delayed because
// it's only driving a resident texture to a higher/lower resolution. This is more of a specific assist because the above caller
// is known to be the modelloader handling of weapon meshes eviction/restore.
ServiceAsyncTextureLoads();
}
#if !defined( _CERT ) && defined( SPEW_SERVICE_END_FRAME_TIME )
float flElapsed = ( Plat_FloatTime() - flStartTime ) * 1000.0f;
if ( flElapsed > 1.0f )
{
DevWarning( "ServiceEndFramePriorToNextContext: %.2f ms\n", flElapsed );
}
#endif
bool bDeviceReady = g_pShaderAPI->CanDownloadTextures();
if ( m_bDeferredMaterialReload && bDeviceReady)
{
m_bDeferredMaterialReload = false;
char *pReloadSubString = m_pSubString;
m_pSubString = NULL;
ReloadMaterials( pReloadSubString );
if ( pReloadSubString )
{
free( pReloadSubString );
}
}
}
//-----------------------------------------------------------------------------
// Cache used materials
//-----------------------------------------------------------------------------
void CMaterialSystem::CacheUsedMaterials( )
{
IMatRenderContextInternal *pRenderContext = GetRenderContextInternal();
pRenderContext->EvictManagedResources();
for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) )
{
IMaterialInternal* pMat = GetMaterialInternal(i);
Assert( pMat->GetReferenceCount() >= 0 );
if( pMat->GetReferenceCount() > 0 )
{
pMat->Precache();
}
}
if( mat_forcemanagedtextureintohardware.GetBool() )
{
TextureManager()->ForceAllTexturesIntoHardware();
}
}
//-----------------------------------------------------------------------------
// Reloads textures + materials
//-----------------------------------------------------------------------------
void CMaterialSystem::ReloadTextures( void )
{
ForceSingleThreaded();
// 360 should not have gotten here
Assert( !IsX360() );
TextureManager()->RestoreRenderTargets();
TextureManager()->RestoreNonRenderTargetTextures();
}
void CMaterialSystem::ReloadMaterials( const char *pSubString )
{
bool bDeviceReady = g_pShaderAPI->CanDownloadTextures();
if ( !bDeviceReady )
{
if ( m_bDeferredMaterialReload && !m_pSubString )
return; // ignore request, all materials already pending a reload (otherwise malicious user can request only a subset of materials to reload)
if ( m_pSubString )
{
free( m_pSubString );
m_pSubString = NULL;
}
if ( pSubString )
{
m_pSubString = strdup( pSubString );
}
m_bDeferredMaterialReload = true;
return;
}
ForceSingleThreaded();
bool bVertexFormatChanged = false;
if( pSubString == NULL )
{
bVertexFormatChanged = true;
UncacheAllMaterials();
CacheUsedMaterials();
}
else
{
Flush( false );
char const chMultiDelim = '*';
CUtlVector< char > arrSearchSubString;
CUtlVector< char const * > arrSearchItems;
if ( strchr( pSubString, chMultiDelim ) )
{
arrSearchSubString.SetCount( strlen( pSubString ) + 1 );
strcpy( arrSearchSubString.Base(), pSubString );
for ( char * pch = arrSearchSubString.Base(); pch; )
{
char *pchEnd = strchr( pch, chMultiDelim );
pchEnd ? *( pchEnd ++ ) = 0 : 0;
arrSearchItems.AddToTail( pch );
pch = pchEnd;
}
}
for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) )
{
if( GetMaterialInternal(i)->GetReferenceCount() <= 0 )
continue;
char const *szMatName = GetMaterialInternal(i)->GetName();
if ( arrSearchItems.Count() > 1 )
{
bool bMatched = false;
for ( int k = 0; !bMatched && ( k < arrSearchItems.Count() ); ++ k )
if( Q_stristr( szMatName, arrSearchItems[k] ) )
bMatched = true;
if ( !bMatched )
continue;
}
else
{
if( !Q_stristr( szMatName, pSubString ) )
continue;
}
if ( !GetMaterialInternal(i)->IsPrecached() )
{
if ( GetMaterialInternal(i)->IsPrecachedVars() )
{
GetMaterialInternal(i)->Uncache( );
}
}
else
{
VertexFormat_t oldVertexFormat = GetMaterialInternal(i)->GetVertexFormat();
GetMaterialInternal(i)->Uncache();
GetMaterialInternal(i)->Precache();
GetMaterialInternal(i)->ReloadTextures();
if( GetMaterialInternal(i)->GetVertexFormat() != oldVertexFormat )
{
bVertexFormatChanged = true;
}
}
}
}
if( bVertexFormatChanged )
{
// Reloading materials could cause a vertex format change, so
// we need to release and restore
// NOTE: Not calling ReleaseShaderObjects/RestoreShaderObjects
// because we don't want to free anything other than vbs
// FIXME: Should I add a flags to the release func? Probably.
ReleaseShaderObjects( MATERIAL_RESTORE_VERTEX_FORMAT_CHANGED );
RestoreShaderObjects( NULL, MATERIAL_RESTORE_VERTEX_FORMAT_CHANGED );
}
}
#define NOMINAL_LIGHTMAP 1.0f
//-----------------------------------------------------------------------------
// Allocates the standard textures used by the material system
//-----------------------------------------------------------------------------
void CMaterialSystem::AllocateStandardTextures()
{
if ( m_StandardTexturesAllocated )
return;
m_StandardTexturesAllocated = true;
// This texture is where subdivision patch list goes
#if defined( FEATURE_SUBD_SUPPORT )
if ( g_pSubDMgr->ShouldAllocateTextures() )
{
g_pSubDMgr->AllocateTextures();
}
#endif
float nominal_lightmap_value = NOMINAL_LIGHTMAP;
if ( HardwareConfig()->GetHDRType() == HDR_TYPE_INTEGER )
{
nominal_lightmap_value = NOMINAL_LIGHTMAP/16.0;
}
unsigned char texel[4];
texel[3] = 255;
// using a pixel writer to hide platform endian issues
// the PC passes through, the 360 has endian swapped formats
// NOTE: the IMAGE_FORMAT_BGRA8888 is used when expecting a IMAGE_FORMAT_BGRX8888 to ensure the alpha component gets converted/swapped
CPixelWriter pixelWriter;
unsigned char outTexel[4];
int tcFlags = TEXTURE_CREATE_MANAGED;
int tcFlagsSRGB = TEXTURE_CREATE_MANAGED | (IsPS3()?0:TEXTURE_CREATE_SRGB);
if ( IsX360() )
{
// during init time, ok to allow any pixel conversion operations
tcFlags |= TEXTURE_CREATE_CANCONVERTFORMAT;
tcFlagsSRGB |= TEXTURE_CREATE_CANCONVERTFORMAT;
}
// allocate a black single texel texture
m_BlackTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[BLACK_TEXID]", TEXTURE_GROUP_OTHER );
g_pShaderAPI->ModifyTexture( m_BlackTextureHandle );
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
texel[0] = texel[1] = texel[2] = 0;
pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 );
pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] );
g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, outTexel );
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_BLACK, m_BlackTextureHandle );
// allocate a fully white single texel texture
m_WhiteTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[WHITE_TEXID]", TEXTURE_GROUP_OTHER );
g_pShaderAPI->ModifyTexture( m_WhiteTextureHandle );
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
texel[0] = texel[1] = texel[2] = 255;
pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 );
pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] );
g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, outTexel );
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_WHITE, m_WhiteTextureHandle );
// allocate a grey single texel texture with an alpha of zero (for mat_fullbright 2)
m_GreyTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlagsSRGB, "[GREY_TEXID]", TEXTURE_GROUP_OTHER );
g_pShaderAPI->ModifyTexture( m_GreyTextureHandle );
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
texel[0] = texel[1] = texel[2] = 128;
texel[3] = 255; // needs to be 255 so that mat_fullbright 2 stuff isn't translucent.
pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 );
pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] );
g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, outTexel );
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_GREY, m_GreyTextureHandle );
// allocate a grey single texel texture with an alpha of zero (for mat_fullbright 2)
m_GreyAlphaZeroTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_RGBA8888, 1, 1, tcFlagsSRGB, "[GREYALPHAZERO_TEXID]", TEXTURE_GROUP_OTHER );
g_pShaderAPI->ModifyTexture( m_GreyAlphaZeroTextureHandle );
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
texel[0] = texel[1] = texel[2] = 128;
texel[3] = 0; // needs to be 0 so that self-illum doens't affect mat_fullbright 2
pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 );
pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] );
g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_RGBA8888, false, outTexel );
texel[3] = 255; // set back to default value so we don't affect the rest of this code.
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_GREY_ALPHA_ZERO, m_GreyAlphaZeroTextureHandle );
// allocate a black single texel texture with an alpha of zero ( for paintmap not allocated or not enabled )
m_BlackAlphaZeroTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_RGBA8888, 1, 1, tcFlags, "[BLACKALPHAZERO_TEXID]", TEXTURE_GROUP_OTHER );
g_pShaderAPI->ModifyTexture( m_BlackAlphaZeroTextureHandle );
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
texel[0] = texel[1] = texel[2] = texel[3] = 0;
pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 );
pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] );
g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_RGBA8888, false, outTexel );
texel[3] = 255; // set back to default value so we don't affect the rest of this code.
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_GREY_ALPHA_ZERO, m_BlackAlphaZeroTextureHandle );
// allocate a white, single texel texture for the fullbright lightmap
// note: make sure and redo this when changing gamma, etc.
// don't mipmap lightmaps
// 360 expects RGBE encoded lightmaps, PC does not
ImageFormat targetFormat = IsX360() ? IMAGE_FORMAT_BGRA8888 : IMAGE_FORMAT_BGRX8888;
m_FullbrightLightmapTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, targetFormat, 1, 1, tcFlagsSRGB, "[FULLBRIGHT_LIGHTMAP_TEXID]", TEXTURE_GROUP_LIGHTMAP );
g_pShaderAPI->ModifyTexture( m_FullbrightLightmapTextureHandle );
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 );
if ( HardwareConfig()->GetHDREnabled() )
{
// We use 4.12 fixed point lightmaps on all platforms currently.
// Since we are using an eight-bit texture, here, the closest representation to one is:
// ~( 1.0/16.0 * 255 )
texel[0] = texel[1] = texel[2] = clamp( 256.0f / g_pShaderAPI->GetLightMapScaleFactor(), 0, 255 );
}
else
{
float tmpVect[3] = { nominal_lightmap_value, nominal_lightmap_value, nominal_lightmap_value };
ColorSpace::LinearToLightmap( texel, tmpVect );
}
pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] );
g_pShaderAPI->TexImage2D( 0, 0, targetFormat, 0, 1, 1, targetFormat, false, outTexel );
// allocate a single texel flat normal texture
m_FlatNormalTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[FLAT_NORMAL_TEXTURE]", TEXTURE_GROUP_OTHER );
g_pShaderAPI->ModifyTexture( m_FlatNormalTextureHandle );
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
texel[0] = 127; // R
texel[1] = 127; // G
texel[2] = 255; // B
// using pixel writer to hide platform endian issues
pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 );
pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] );
g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, outTexel );
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_NORMALMAP_FLAT, m_FlatNormalTextureHandle );
// allocate a single texel flat normal ssbump texture
m_FlatSSBumpTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[FLAT_SSBUMP_TEXTURE]", TEXTURE_GROUP_OTHER );
g_pShaderAPI->ModifyTexture( m_FlatSSBumpTextureHandle );
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
texel[0] = 85; // 1/3*255
texel[1] = 85; // 1/3*255
texel[2] = 85; // 1/3*255
// using pixel writer to hide platform endian issues
pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 );
pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] );
g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, outTexel );
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_SSBUMP_FLAT, m_FlatSSBumpTextureHandle );
// allocate a single texel fullbright 1 lightmap for use with bump textures
targetFormat = IsX360() ? IMAGE_FORMAT_BGRA8888 : IMAGE_FORMAT_BGRX8888;
m_FullbrightBumpedLightmapTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, targetFormat, 1, 1, tcFlags, "[FULLBRIGHT_BUMPED_LIGHTMAP_TEXID]", TEXTURE_GROUP_LIGHTMAP );
g_pShaderAPI->ModifyTexture( m_FullbrightBumpedLightmapTextureHandle );
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
// using pixel writer to hide platform endian issues
if ( HardwareConfig()->GetHDREnabled() )
{
// We use 4.12 fixed point lightmaps on all platforms currently.
// Since we are using an eight-bit texture, here, the closest representation to one is:
// ~( 1.0/16.0 * 255 )
texel[0] = texel[1] = texel[2] = clamp( 256.0f / g_pShaderAPI->GetLightMapScaleFactor(), 0, 255 );
}
else
{
float linearColor[3] = { nominal_lightmap_value, nominal_lightmap_value, nominal_lightmap_value };
unsigned char dummy[3];
ColorSpace::LinearToBumpedLightmap( linearColor, linearColor, linearColor, linearColor,
dummy, texel, dummy, dummy );
}
pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 );
pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] );
g_pShaderAPI->TexImage2D( 0, 0, targetFormat, 0, 1, 1, targetFormat, false, outTexel );
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_LIGHTMAP_BUMPED_FULLBRIGHT, m_FullbrightBumpedLightmapTextureHandle );
#if defined( GAMMA_TEX1D_LOOKUP )
{
int iGammaLookupFlags = tcFlags;
ImageFormat gammalookupfmt;
gammalookupfmt = IMAGE_FORMAT_I8;
// generate the linear->gamma conversion table texture.
{
const int LINEAR_TO_GAMMA_TABLE_WIDTH = 512;
m_LinearToGammaTableTextureHandle = g_pShaderAPI->CreateTexture( LINEAR_TO_GAMMA_TABLE_WIDTH, 1, 1, gammalookupfmt, 1, 1, iGammaLookupFlags, "[LINEAR_TO_GAMMA_LOOKUP_SRGBON_TEXID]", TEXTURE_GROUP_PIXEL_SHADERS );
g_pShaderAPI->ModifyTexture( m_LinearToGammaTableTextureHandle );
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_CLAMP );
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_CLAMP );
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_CLAMP );
float pixelData[LINEAR_TO_GAMMA_TABLE_WIDTH]; //sometimes used as float, sometimes as uint8, sizeof(float) > sizeof(uint8)
for( int i = 0; i != LINEAR_TO_GAMMA_TABLE_WIDTH; ++i )
{
float fLookupResult = ((float)i) / ((float)(LINEAR_TO_GAMMA_TABLE_WIDTH - 1));
fLookupResult = g_pShaderAPI->LinearToGamma_HardwareSpecific( fLookupResult );
//do an extra srgb conversion because we'll be converting back on texture read
fLookupResult = g_pShaderAPI->LinearToGamma_HardwareSpecific( fLookupResult ); //that's right, linear->gamma->gamma2x so that that gamma->linear srgb read still ends up in gamma
int iColor = RoundFloatToInt( fLookupResult * 255.0f );
if( iColor > 255 )
iColor = 255;
((uint8 *)pixelData)[i] = (uint8)iColor;
}
g_pShaderAPI->TexImage2D( 0, 0, gammalookupfmt, 0, LINEAR_TO_GAMMA_TABLE_WIDTH, 1, gammalookupfmt, false, (void *)pixelData );
}
// generate the identity conversion table texture.
{
const int LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH = 256;
m_LinearToGammaIdentityTableTextureHandle = g_pShaderAPI->CreateTexture( LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH, 1, 1, gammalookupfmt, 1, 1, tcFlags, "[LINEAR_TO_GAMMA_LOOKUP_SRGBOFF_TEXID]", TEXTURE_GROUP_PIXEL_SHADERS );
g_pShaderAPI->ModifyTexture( m_LinearToGammaIdentityTableTextureHandle );
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_CLAMP );
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_CLAMP );
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_CLAMP );
float pixelData[LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH]; //sometimes used as float, sometimes as uint8, sizeof(float) > sizeof(uint8)
for( int i = 0; i != LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH; ++i )
{
float fLookupResult = ((float)i) / ((float)(LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH - 1));
//do an extra srgb conversion because we'll be converting back on texture read
fLookupResult = g_pShaderAPI->LinearToGamma_HardwareSpecific( fLookupResult );
int iColor = RoundFloatToInt( fLookupResult * 255.0f );
if ( iColor > 255 )
iColor = 255;
((uint8 *)pixelData)[i] = (uint8)iColor;
}
g_pShaderAPI->TexImage2D( 0, 0, gammalookupfmt, 0, LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH, 1, gammalookupfmt, false, (void *)pixelData );
}
}
//only the shaderapi can handle switching between textures correctly, so pass off the textures to it.
g_pShaderAPI->SetLinearToGammaConversionTextures( m_LinearToGammaTableTextureHandle, m_LinearToGammaIdentityTableTextureHandle );
#endif
// create the maximum depth texture
m_MaxDepthTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_RGBA8888, 1, 1, tcFlags, "[MAXDEPTH_TEXID]", TEXTURE_GROUP_OTHER );
g_pShaderAPI->ModifyTexture( m_MaxDepthTextureHandle );
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
// 360 gets depth out of the red channel (which doubles as depth in D24S8) and may be 0/1 depending on REVERSE_DEPTH_ON_X360
// PC gets depth out of the alpha channel
texel[0] = texel[1] = texel[2] = ReverseDepthOnX360() ? 0 : 255;
texel[3] = 255;
pixelWriter.SetPixelMemory( IMAGE_FORMAT_RGBA8888, outTexel, 0 );
pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] );
g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_RGBA8888, 0, 1, 1, IMAGE_FORMAT_RGBA8888, false, outTexel );
}
void CMaterialSystem::ReleaseStandardTextures()
{
if ( m_StandardTexturesAllocated )
{
g_pShaderAPI->DeleteTexture( m_WhiteTextureHandle );
g_pShaderAPI->DeleteTexture( m_BlackTextureHandle );
g_pShaderAPI->DeleteTexture( m_BlackAlphaZeroTextureHandle );
g_pShaderAPI->DeleteTexture( m_GreyTextureHandle );
g_pShaderAPI->DeleteTexture( m_GreyAlphaZeroTextureHandle );
#if defined( FEATURE_SUBD_SUPPORT )
g_pSubDMgr->FreeTextures();
#endif
g_pShaderAPI->DeleteTexture( m_FullbrightLightmapTextureHandle );
g_pShaderAPI->DeleteTexture( m_FlatNormalTextureHandle );
g_pShaderAPI->DeleteTexture( m_FlatSSBumpTextureHandle );
g_pShaderAPI->DeleteTexture( m_FullbrightBumpedLightmapTextureHandle );
#if defined( GAMMA_TEX1D_LOOKUP )
g_pShaderAPI->DeleteTexture( m_LinearToGammaTableTextureHandle );
g_pShaderAPI->DeleteTexture( m_LinearToGammaIdentityTableTextureHandle );
g_pShaderAPI->SetLinearToGammaConversionTextures( INVALID_SHADERAPI_TEXTURE_HANDLE, INVALID_SHADERAPI_TEXTURE_HANDLE );
#endif
g_pShaderAPI->DeleteTexture( m_MaxDepthTextureHandle );
m_StandardTexturesAllocated = false;
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMaterialSystem::BeginFrame( float frameTime )
{
// Safety measure (calls should only come from the main thread, also check correct pairing)
if ( !ThreadInMainThread() || IsInFrame() )
return;
// check debug vars. we will use these to setup g_nDebugVarsSignature so that materials will
// rebuild their draw lists when debug modes changed.
g_nDebugVarsSignature = (
(mat_specular.GetInt() != 0 ) + ( mat_normalmaps.GetInt() << 1 ) +
( mat_fullbright.GetInt() << 2 ) + ( mat_fastnobump.GetInt() << 4 ) + ( mat_fastspecular.GetInt() << 5 ) ) << 24;
Assert( m_bGeneratedConfig );
VPROF_BUDGET( "CMaterialSystem::BeginFrame", VPROF_BUDGETGROUP_SWAP_BUFFERS );
IMatRenderContextInternal *pRenderContext = GetRenderContextInternal();
if ( mat_forcehardwaresync.GetBool() && (IsPC() || m_ThreadMode != MATERIAL_QUEUED_THREADED) )
{
pRenderContext->ForceHardwareSync();
}
pRenderContext->MarkRenderDataUnused( true );
pRenderContext->BeginFrame();
pRenderContext->SetFrameTime( frameTime );
pRenderContext->SetToneMappingScaleLinear( Vector( 1,1,1) );
//g_pMDLCache->UpdateCombiner();
Assert( !m_bInFrame );
m_bInFrame = true;
}
bool CMaterialSystem::IsInFrame( ) const
{
return m_bInFrame;
}
void CMaterialSystem::ThreadExecuteQueuedContext( CMatQueuedRenderContext *pContext )
{
#ifdef _PS3
#if GCM_ALLOW_NULL_FLIPS
extern void Ps3NullFlipsStartSceneTime();
Ps3NullFlipsStartSceneTime();
#endif
// This function takes up a lot of global thread pool time in GPU-bound levels, and it's convenient
// to have it as a bar in snTuner profiler. Making it PS3-only to avoid polluting X360 bars
VPROF_BUDGET( "ThreadExecuteQueuedContext", "All Threaded Rendering" );
#endif
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
OnFrameTimestampAvailableMST( 0.0f ); // signals frame start
#endif
m_nRenderThreadID = ThreadGetCurrentId();
IMatRenderContextInternal* pSavedRenderContext = m_pRenderContext;
m_pRenderContext = &m_HardwareRenderContext;
pContext->EndQueue( true );
for (int i = 0; i < m_EndFrameCleanupFunc.Count(); ++i)
{
m_EndFrameCleanupFunc[ i ]();
}
m_pRenderContext = pSavedRenderContext;
m_nRenderThreadID = 0xFFFFFFFF;
}
IThreadPool *CMaterialSystem::CreateMatQueueThreadPool()
{
if( IsX360() )
{
return g_pThreadPool;
}
else if( !m_pMatQueueThreadPool )
{
ThreadPoolStartParams_t startParams;
startParams.nThreads = 1;
startParams.nStackSize = 256*1024;
startParams.fDistribute = TRS_TRUE;
// The rendering thread has the GL context and the main thread is coming in and
// "helping" finish jobs - that breaks OpenGL, which requires TLS. This flag states
// that only the threadpool threads should execute these jobs.
startParams.bExecOnThreadPoolThreadsOnly = true;
m_pMatQueueThreadPool = CreateNewThreadPool();
m_pMatQueueThreadPool->Start( startParams, "MatQueue" );
}
return m_pMatQueueThreadPool;
}
void CMaterialSystem::DestroyMatQueueThreadPool()
{
if( m_pMatQueueThreadPool )
{
m_pMatQueueThreadPool->Stop();
delete m_pMatQueueThreadPool;
m_pMatQueueThreadPool = NULL;
}
}
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
static double s_flMainThreadBeginTimestampSec = 0.0f;
#endif
//
// On OSX, Forced Single Threaded needs to last for more frames than windows that the window resizing/switch to
// and from fullscreen don't force GL calls at the same time as the render thread.
//
#if defined ( OSX )
static void CheckOsxForcedNextThreadMode( MaterialThreadMode_t* pNextThreadMode, bool* pbForcedSingleThreaded )
{
const int nOsxFramesAtSingleThreaded = 2;
static int nOsxFrames = nOsxFramesAtSingleThreaded;
if ( *pbForcedSingleThreaded )
{
*pNextThreadMode = MATERIAL_SINGLE_THREADED;
if ( nOsxFrames == 0 )
{
*pbForcedSingleThreaded = false;
nOsxFrames = nOsxFramesAtSingleThreaded;
}
else
{
nOsxFrames--;
}
}
else
{
nOsxFrames = nOsxFramesAtSingleThreaded;
}
}
#endif
void CMaterialSystem::EndFrame( void )
{
SNPROF("CMaterialSystem::EndFrame");
// Safety measure (calls should only come from the main thread, also check correct pairing)
if ( !ThreadInMainThread() || !IsInFrame() )
return;
Assert( m_bGeneratedConfig );
VPROF_BUDGET( "CMaterialSystem::EndFrame", VPROF_BUDGETGROUP_SWAP_BUFFERS );
GetRenderContextInternal()->EndFrame();
//-------------------------------------------------------------
UpdateConfig( false );
int iConVarThreadMode = mat_queue_mode.GetInt();
MaterialThreadMode_t nextThreadMode = ( iConVarThreadMode >= 0 ) ? (MaterialThreadMode_t)iConVarThreadMode : m_IdealThreadMode;
// note: This is a hack because there is no explicit query for the device being deactivated due to device lost.
// however, that is all the current implementation of CanDownloadTextures actually does.
bool bDeviceReady = g_pShaderAPI->CanDownloadTextures();
if ( !bDeviceReady || !m_bAllowQueuedRendering )
{
nextThreadMode = MATERIAL_SINGLE_THREADED;
}
#if !defined ( OSX )
if ( m_bForcedSingleThreaded )
{
nextThreadMode = MATERIAL_SINGLE_THREADED;
m_bForcedSingleThreaded = false;
}
#else
CheckOsxForcedNextThreadMode(&nextThreadMode, &m_bForcedSingleThreaded );
#endif
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
{
// This is called on the main thread and here the main thread is finished
double flMainThreadEndTimestampSec = Plat_FloatTime();
double flMainThreadTimeInSeconds = flMainThreadEndTimestampSec - s_flMainThreadBeginTimestampSec;
OnFrameTimestampAvailableMain( flMainThreadTimeInSeconds*1000.0f );
}
#endif
switch ( m_ThreadMode )
{
case MATERIAL_SINGLE_THREADED:
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
{
double flCurrentTime = Plat_FloatTime();
OnFrameTimestampAvailableTotal( (flCurrentTime-s_flTotalFrameBeginTimestamp)*1000.0f );
s_flTotalFrameBeginTimestamp = flCurrentTime;
OnFrameTimestampAvailableMST( 0.0f ); // signals frame start
}
#endif
ServiceEndFramePriorToNextContext();
g_pfnSwapBufferMarker();
break;
#ifndef _PS3
case MATERIAL_QUEUED_THREADED:
{
VPROF_BUDGET( "Mat_ThreadedEndframe", "Mat_ThreadedEndframe" );
{
TM_ZONE_PLOT( TELEMETRY_LEVEL1, "Endframe_Wait", TELEMETRY_ZONE_PLOT_SLOT_3 );
PERF_STATS_BLOCK( "Endframe_Wait", PERF_STATS_SLOT_END_FRAME );
while ( m_pActiveAsyncJob && !m_pActiveAsyncJob->IsFinished() )
{
// [jason]
// Potential fix for a deadlock on threaded rendering: we were occasionally seeing deadlocks on the main thread,
// waiting for work to be completed on the rendering job threads. Every time we break into this with the debugger,
// there are no job threads that are stalled - everything is waiting for new work to be sent down. I suspect that
// in the gap between the main thread determining there is still outstanding work and the main thread locking, we
// occasionally get a context switch to the job thread that completes its work. When we switch back to the main
// thread, we begin to wait on a thread that will never signal (because it's already done working) so we deadlock.
// The fix is to break this infinite wait into a busy loop of 1/2 second waits - either the worker thread will signal
// and we'll resume processing, or at worst we'll wait 1/2 second and then double-check there is actually work running
// on the job queue and find there is nothing left to wait for.
// [Michael Dorgan]
// Alas, the thread system ignores the timeout value passed in right now and always does a Sleep(0)
// Still, a Sleep(0) yield does seem to fix this, so removed the 500 param.
m_pActiveAsyncJob->WaitForFinish();
if ( !m_pActiveAsyncJob->IsFinished() )
DevMsg( "CMaterialSystem::EndFrame - waiting on additional threaded work for MatQueuedThreaded.\n" );
if ( !IsPC() && mat_forcehardwaresync.GetBool() )
{
g_pShaderAPI->ForceHardwareSync();
}
}
}
SafeRelease( m_pActiveAsyncJob );
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
{
double flCurrentTime = Plat_FloatTime();
OnFrameTimestampAvailableTotal( (flCurrentTime-s_flTotalFrameBeginTimestamp)*1000.0f );
s_flTotalFrameBeginTimestamp = flCurrentTime;
}
#endif
ServiceEndFramePriorToNextContext();
g_pfnSwapBufferMarker();
CMatQueuedRenderContext *pPrevContext = &m_QueuedRenderContexts[m_iCurQueuedContext];
#ifdef MAT_QUEUED_OWN_THREADPOOL
// Needs to be done after calling ServiceEndFramePriorToNextContext to ensure the render thread
// will have ownership, as ServiceEndFramePriorToNextContext could locking the material system
// => RenderThread would then lose ownership
if ( !m_bThreadHasOwnership )
{
ThreadAcquire();
}
#endif
#ifndef MAT_QUEUED_OWN_THREADPOOL
m_QueuedRenderContexts[m_iCurQueuedContext].GetCallQueueInternal()->QueueCall( g_pShaderAPI, &IShaderAPI::ReleaseThreadOwnership );
#endif
m_iCurQueuedContext = ( ( m_iCurQueuedContext + 1 ) % ARRAYSIZE( m_QueuedRenderContexts) );
m_QueuedRenderContexts[m_iCurQueuedContext].BeginQueue( pPrevContext );
#ifndef MAT_QUEUED_OWN_THREADPOOL
m_QueuedRenderContexts[m_iCurQueuedContext].GetCallQueueInternal()->QueueCall( g_pShaderAPI, &IShaderAPI::AcquireThreadOwnership );
#endif
m_pRenderContext = &m_QueuedRenderContexts[m_iCurQueuedContext];
m_pActiveAsyncJob = new CFunctorJob( CreateFunctor( this, &CMaterialSystem::ThreadExecuteQueuedContext, pPrevContext ) );
if ( !IsPC() )
{
if ( m_nServiceThread >= 0 )
{
m_pActiveAsyncJob->SetServiceThread( m_nServiceThread );
}
}
if ( mat_queue_priority.GetBool() )
{
m_pActiveAsyncJob->SetFlags( m_pActiveAsyncJob->GetFlags() | JF_QUEUE );
}
#ifdef MAT_QUEUED_OWN_THREADPOOL
IThreadPool *pThreadPool = CreateMatQueueThreadPool();
#else
IThreadPool *pThreadPool = g_pThreadPool;
#endif
pThreadPool->AddJob( m_pActiveAsyncJob );
break;
}
#else
case MATERIAL_QUEUED_THREADED:
{
// Wait for previous submitted QMS run
if (m_bQMSJobSubmitted)
{
g_pGcmSharedData->WaitForQMS();
m_bQMSJobSubmitted = 0;
if ( !IsPC() && mat_forcehardwaresync.GetBool() )
{
g_pShaderAPI->ForceHardwareSync();
}
}
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
{
double flCurrentTime = Plat_FloatTime();
OnFrameTimestampAvailableTotal( (flCurrentTime-s_flTotalFrameBeginTimestamp)*1000.0f );
s_flTotalFrameBeginTimestamp = flCurrentTime;
}
#endif
ServiceEndFramePriorToNextContext();
g_pfnSwapBufferMarker();
// Switch Render Contexts
CMatQueuedRenderContext *pPrevContext = &m_QueuedRenderContexts[m_iCurQueuedContext];
m_QueuedRenderContexts[m_iCurQueuedContext].GetCallQueueInternal()->QueueCall( g_pShaderAPI, &IShaderAPI::ReleaseThreadOwnership );
m_iCurQueuedContext = ( ( m_iCurQueuedContext + 1 ) % ARRAYSIZE( m_QueuedRenderContexts) );
m_QueuedRenderContexts[m_iCurQueuedContext].BeginQueue( pPrevContext );
m_QueuedRenderContexts[m_iCurQueuedContext].GetCallQueueInternal()->QueueCall( g_pShaderAPI, &IShaderAPI::AcquireThreadOwnership );
m_pRenderContext = &m_QueuedRenderContexts[m_iCurQueuedContext];
// Run QMS on prevContext
g_pGcmSharedData->RunQMS(&RunQMS, (void*)this, (void*)pPrevContext);
m_bQMSJobSubmitted = 1;
break;
}
#endif
case MATERIAL_QUEUED_SINGLE_THREADED:
{
VPROF_BUDGET( "Mat_ThreadedEndframe", "Mat_QueuedEndframe" );
g_pShaderAPI->SetDisallowAccess( false );
m_pRenderContext = &m_HardwareRenderContext;
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
OnFrameTimestampAvailableMST( 0.0f ); // signals frame start
#endif
m_QueuedRenderContexts[m_iCurQueuedContext].CallQueued();
// Set up for next frame, we don't cycle through m_iCurQueuedContext though
m_QueuedRenderContexts[m_iCurQueuedContext].CycleDynamicBuffers();
m_pRenderContext = &m_QueuedRenderContexts[m_iCurQueuedContext];
g_pShaderAPI->SetDisallowAccess( true );
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
double flCurrentTime = Plat_FloatTime();
OnFrameTimestampAvailableTotal( (flCurrentTime-s_flTotalFrameBeginTimestamp)*1000.0f );
s_flTotalFrameBeginTimestamp = flCurrentTime;
#endif
ServiceEndFramePriorToNextContext();
g_pfnSwapBufferMarker();
break;
}
}
// Tick perfstats. We measure the main thread time from the point just after we finish waiting
// for the render thread.
g_PerfStats.Tick();
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
s_flMainThreadBeginTimestampSec = Plat_FloatTime();
#endif
bool bRelease = false;
if ( !bDeviceReady )
{
if ( nextThreadMode != MATERIAL_SINGLE_THREADED )
{
Assert( nextThreadMode == MATERIAL_SINGLE_THREADED );
bRelease = true;
nextThreadMode = MATERIAL_SINGLE_THREADED;
if( mat_debugalttab.GetBool() )
{
Warning("Handling alt-tab in queued mode!\n");
}
}
}
if ( m_threadEvents.Count() )
{
nextThreadMode = MATERIAL_SINGLE_THREADED;
}
if ( m_ThreadMode != nextThreadMode )
{
// Shut down the current mode & set new mode
switch ( m_ThreadMode )
{
case MATERIAL_SINGLE_THREADED:
break;
case MATERIAL_QUEUED_THREADED:
{
#ifndef _PS3
if ( m_pActiveAsyncJob )
{
m_pActiveAsyncJob->WaitForFinish();
SafeRelease( m_pActiveAsyncJob );
}
#else
if (m_bQMSJobSubmitted)
{
g_pGcmSharedData->WaitForQMS();
m_bQMSJobSubmitted = 0;
}
#endif
// We have a queued context set here, need hardware to flush the queue if the job isn't active
m_pRenderContext = &m_HardwareRenderContext;
m_QueuedRenderContexts[m_iCurQueuedContext].EndQueue( true );
#ifdef MAT_QUEUED_OWN_THREADPOOL
ThreadRelease();
#else
g_pShaderAPI->AcquireThreadOwnership();
#endif
}
break;
case MATERIAL_QUEUED_SINGLE_THREADED:
{
g_pShaderAPI->SetDisallowAccess( false );
// We have a queued context set here, need hardware to flush the queue if the job isn't active
m_pRenderContext = &m_HardwareRenderContext;
m_QueuedRenderContexts[m_iCurQueuedContext].EndQueue( true );
break;
}
}
m_ThreadMode = nextThreadMode;
#ifndef DX_TO_GL_ABSTRACTION
Assert( g_MatSysMutex.GetOwnerId() == 0 );
#endif
g_pShaderAPI->EnableShaderShaderMutex( m_ThreadMode != MATERIAL_SINGLE_THREADED ); // use mutex even for queued to allow "disalow access" to function properly
g_pShaderAPI->EnableBuffer2FramesAhead( true );
switch ( m_ThreadMode )
{
case MATERIAL_SINGLE_THREADED:
m_pRenderContext = &m_HardwareRenderContext;
for ( int i = 0; i < ARRAYSIZE( m_QueuedRenderContexts ); i++ )
{
Assert( m_QueuedRenderContexts[i].IsInitialized() );
m_QueuedRenderContexts[i].Shutdown();
}
g_pScaleformUI->SetSingleThreadedMode(true);
break;
case MATERIAL_QUEUED_SINGLE_THREADED:
case MATERIAL_QUEUED_THREADED:
for ( int i = 0; i < ARRAYSIZE( m_QueuedRenderContexts ); i++ )
{
if ( !m_QueuedRenderContexts[i].IsInitialized() )
{
m_QueuedRenderContexts[i].Init( this, &m_HardwareRenderContext );
}
}
m_iCurQueuedContext = 0;
m_QueuedRenderContexts[m_iCurQueuedContext].BeginQueue( &m_HardwareRenderContext );
m_pRenderContext = &m_QueuedRenderContexts[m_iCurQueuedContext];
if ( m_ThreadMode == MATERIAL_QUEUED_SINGLE_THREADED )
{
g_pShaderAPI->SetDisallowAccess( true );
g_pScaleformUI->SetSingleThreadedMode(true);
}
else
{
#ifdef MAT_QUEUED_OWN_THREADPOOL
ThreadAcquire();
#else
g_pShaderAPI->ReleaseThreadOwnership();
m_QueuedRenderContexts[m_iCurQueuedContext].GetCallQueueInternal()->QueueCall( g_pShaderAPI, &IShaderAPI::AcquireThreadOwnership );
#endif
g_pScaleformUI->SetSingleThreadedMode(false);
}
break;
}
}
if ( m_ThreadMode == MATERIAL_SINGLE_THREADED )
{
for ( int i = 0; i < m_threadEvents.Count(); i++ )
{
g_pShaderDevice->HandleThreadEvent(m_threadEvents[i]);
}
m_threadEvents.RemoveAll();
}
if ( m_ThreadMode == MATERIAL_SINGLE_THREADED || m_ThreadMode == MATERIAL_QUEUED_SINGLE_THREADED )
{
for (int i = 0; i < m_EndFrameCleanupFunc.Count(); ++i)
{
m_EndFrameCleanupFunc[ i ]();
}
}
Assert( m_bInFrame );
m_bInFrame = false;
}
void CMaterialSystem::SetInStubMode( bool bInStubMode )
{
m_bInStubMode = bInStubMode;
}
bool CMaterialSystem::IsInStubMode()
{
return m_bInStubMode;
}
void CMaterialSystem::Flush( bool flushHardware )
{
GetRenderContextInternal()->Flush( flushHardware );
}
uint32 CMaterialSystem::GetCurrentFrameCount()
{
return g_FrameNum;
}
//-----------------------------------------------------------------------------
// Flushes managed textures from the texture cacher
//-----------------------------------------------------------------------------
void CMaterialSystem::EvictManagedResources()
{
g_pShaderAPI->EvictManagedResources();
}
int __cdecl MaterialNameCompareFunc( const void *elem1, const void *elem2 )
{
IMaterialInternal *pMaterialA = g_MaterialSystem.GetMaterialInternal( *(MaterialHandle_t *)elem1 );
IMaterialInternal *pMaterialB = g_MaterialSystem.GetMaterialInternal( *(MaterialHandle_t *)elem2 );
// case insensitive to group similar named materials
return stricmp( pMaterialA->GetName(), pMaterialB->GetName() );
}
void CMaterialSystem::DebugPrintUsedMaterials( const char *pSearchSubString, bool bVerbose )
{
MaterialHandle_t h;
int i;
int nNumCached;
int nRefCount;
int nSortedMaterials;
int nNumErrors;
// build a mapping to sort the material names
MaterialHandle_t *pSorted = (MaterialHandle_t*)stackalloc( GetNumMaterials() * sizeof(MaterialHandle_t) );
nSortedMaterials = 0;
for (h = FirstMaterial(); h != InvalidMaterial(); h = NextMaterial(h) )
{
pSorted[nSortedMaterials++] = h;
}
qsort( pSorted, nSortedMaterials, sizeof(MaterialHandle_t), MaterialNameCompareFunc );
nNumCached = 0;
nNumErrors = 0;
for (i = 0; i < nSortedMaterials; i++)
{
// iterate using sort mapping
IMaterialInternal *pMaterial = GetMaterialInternal(pSorted[i]);
nRefCount = pMaterial->GetReferenceCount();
if ( nRefCount < 0 )
{
nNumErrors++;
continue;
}
if (!nRefCount)
{
if (pMaterial->IsPrecached() || pMaterial->IsPrecachedVars())
{
nNumErrors++;
}
continue;
}
// nonzero reference count
// tally the valid ones
nNumCached++;
if( pSearchSubString )
{
if( !Q_stristr( pMaterial->GetName(), pSearchSubString ) &&
(!pMaterial->GetShader() || !Q_stristr( pMaterial->GetShader()->GetName(), pSearchSubString )) )
{
continue;
}
}
DevMsg( "%s (shader: %s) refCount: %d.\n", pMaterial->GetName(),
pMaterial->GetShader() ? pMaterial->GetShader()->GetName() : "unknown\n", nRefCount );
if( !bVerbose )
continue;
if( !pMaterial->IsPrecached() )
continue;
if( !pMaterial->GetShader() )
continue;
for( int j = 0; j < pMaterial->GetShader()->GetParamCount(); j++ )
{
IMaterialVar *var;
var = pMaterial->GetShaderParams()[j];
if( !var )
continue;
switch( var->GetType() )
{
case MATERIAL_VAR_TYPE_TEXTURE:
{
ITextureInternal *texture = static_cast<ITextureInternal *>( var->GetTextureValue() );
if( !texture )
{
DevWarning( "Programming error: CMaterialSystem::DebugPrintUsedMaterialsCallback: NULL texture\n" );
continue;
}
if( IsTextureInternalEnvCubemap( texture ) )
{
DevMsg( " \"%s\" \"env_cubemap\"\n", var->GetName() );
}
else
{
DevMsg( " \"%s\" \"%s\"\n",
var->GetName(),
texture->GetName() );
DevMsg( " %dx%d refCount: %d numframes: %d\n", texture->GetActualWidth(), texture->GetActualHeight(),
texture->GetReferenceCount(), texture->GetNumAnimationFrames() );
}
}
break;
case MATERIAL_VAR_TYPE_UNDEFINED:
break;
default:
DevMsg( " \"%s\" \"%s\"\n", var->GetName(), var->GetStringValue() );
break;
}
}
}
// list the critical errors after, otherwise the console log scrolls them away
if (nNumErrors)
{
for (i = 0; i < nSortedMaterials; i++)
{
// iterate using sort mapping
IMaterialInternal *pMaterial = GetMaterialInternal(pSorted[i]);
nRefCount = pMaterial->GetReferenceCount();
if ( nRefCount < 0 )
{
// reference counts should not be negative
DevWarning( "DebugPrintUsedMaterials: refCount (%d) < 0 for material: \"%s\"\n",
nRefCount, pMaterial->GetName() );
}
else if (!nRefCount)
{
// ensure that it stayed uncached after the post loading uncache
// this is effectively a coding bug thats needs to be fixed
// a material is being precached without incrementing its reference
if (pMaterial->IsPrecached() || pMaterial->IsPrecachedVars())
{
DevWarning( "DebugPrintUsedMaterials: material: \"%s\" didn't unache\n",
pMaterial->GetName() );
}
}
}
DevWarning( "%d Errors\n", nNumErrors );
}
if (!pSearchSubString)
{
DevMsg( "%d Cached, %d Total Materials\n", nNumCached, GetNumMaterials() );
}
}
void CMaterialSystem::DebugPrintUsedTextures( void )
{
TextureManager()->DebugPrintUsedTextures();
}
#if defined( _X360 ) || defined( _PS3 )
void CMaterialSystem::ListUsedMaterials( void )
{
int numMaterials = GetNumMaterials();
xMaterialList_t* pMaterialList = (xMaterialList_t *)stackalloc( numMaterials * sizeof( xMaterialList_t ) );
numMaterials = 0;
for ( MaterialHandle_t hMaterial = FirstMaterial(); hMaterial != InvalidMaterial(); hMaterial = NextMaterial( hMaterial ) )
{
IMaterialInternal *pMaterial = GetMaterialInternal( hMaterial );
pMaterialList[numMaterials].pName = pMaterial->GetName();
pMaterialList[numMaterials].pShaderName = pMaterial->GetShader() ? pMaterial->GetShader()->GetName() : "???";
pMaterialList[numMaterials].refCount = pMaterial->GetReferenceCount();
numMaterials++;
}
XBX_rMaterialList( numMaterials, pMaterialList );
}
#endif
void CMaterialSystem::ToggleSuppressMaterial( char const* pMaterialName )
{
/*
// This version suppresses all but the material
IMaterial *pMaterial = GetFirstMaterial();
while (pMaterial)
{
if (stricmp(pMaterial->GetName(), pMaterialName))
{
IMaterialInternal* pMatInt = static_cast<IMaterialInternal*>(pMaterial);
pMatInt->ToggleSuppression();
}
pMaterial = GetNextMaterial();
}
*/
// Note: if we use this function a lot, we'll want to do something else, like have them
// pass in a texture group or reuse whatever texture group the material already had.
// As it is, this is rarely used, so if it's not in TEXTURE_GROUP_OTHER, it'll go in
// TEXTURE_GROUP_SHARED.
IMaterial* pMaterial = FindMaterial( pMaterialName, TEXTURE_GROUP_OTHER, true, NULL );
if ( !IsErrorMaterial( pMaterial ) )
{
IMaterialInternal* pMatInt = static_cast<IMaterialInternal*>(pMaterial);
pMatInt = pMatInt->GetRealTimeVersion(); //always work with the realtime material internally
pMatInt->ToggleSuppression();
}
}
void CMaterialSystem::ToggleDebugMaterial( char const* pMaterialName )
{
// Note: if we use this function a lot, we'll want to do something else, like have them
// pass in a texture group or reuse whatever texture group the material already had.
// As it is, this is rarely used, so if it's not in TEXTURE_GROUP_OTHER, it'll go in
// TEXTURE_GROUP_SHARED.
IMaterial* pMaterial = FindMaterial( pMaterialName, TEXTURE_GROUP_OTHER, false, NULL );
if ( !IsErrorMaterial( pMaterial ) )
{
IMaterialInternal* pMatInt = static_cast<IMaterialInternal*>(pMaterial);
pMatInt = pMatInt->GetRealTimeVersion(); //always work with the realtime material internally
pMatInt->ToggleDebugTrace();
}
else
{
Warning("Unknown material %s\n", pMaterialName );
}
}
//-----------------------------------------------------------------------------
// Used to iterate over all shaders for editing purposes
//-----------------------------------------------------------------------------
int CMaterialSystem::ShaderCount() const
{
return ShaderSystem()->ShaderCount();
}
int CMaterialSystem::GetShaders( int nFirstShader, int nMaxCount, IShader **ppShaderList ) const
{
return ShaderSystem()->GetShaders( nFirstShader, nMaxCount, ppShaderList );
}
//-----------------------------------------------------------------------------
// FIXME: Is there a better way of doing this?
// Returns shader flag names for editors to be able to edit them
//-----------------------------------------------------------------------------
int CMaterialSystem::ShaderFlagCount() const
{
return ShaderSystem()->ShaderStateCount( );
}
const char *CMaterialSystem::ShaderFlagName( int nIndex ) const
{
return ShaderSystem()->ShaderStateString( nIndex );
}
//-----------------------------------------------------------------------------
// Returns the currently active shader fallback for a particular shader
//-----------------------------------------------------------------------------
void CMaterialSystem::GetShaderFallback( const char *pShaderName, char *pFallbackShader, int nFallbackLength )
{
// FIXME: This is pretty much a hack. We need a better way for the
// editor to get ahold of shader fallbacks
int nCount = ShaderCount();
IShader** ppShaderList = (IShader**)stackalloc( nCount * sizeof(IShader) );
GetShaders( 0, nCount, ppShaderList );
do
{
int i;
for ( i = 0; i < nCount; ++i )
{
if ( !Q_stricmp( pShaderName, ppShaderList[i]->GetName() ) )
break;
}
// Didn't find a match!
if ( i == nCount )
{
Q_strncpy( pFallbackShader, "wireframe", nFallbackLength );
return;
}
// Found a match
// FIXME: Theoretically, getting fallbacks should require a param list
// In practice, it looks rare or maybe even neved done
const char *pFallback = ppShaderList[i]->GetFallbackShader( NULL );
if ( !pFallback )
{
Q_strncpy( pFallbackShader, pShaderName, nFallbackLength );
return;
}
else
{
pShaderName = pFallback;
}
} while (true);
}
//-----------------------------------------------------------------------------
// Triggers OpenGL shader preloading at game startup
//-----------------------------------------------------------------------------
#if defined( DX_TO_GL_ABSTRACTION ) && !defined( _GAMECONSOLE )
void CMaterialSystem::DoStartupShaderPreloading( void )
{
GetRenderContextInternal()->DoStartupShaderPreloading();
}
#endif
void CMaterialSystem::SwapBuffers( void )
{
VPROF_BUDGET( "CMaterialSystem::SwapBuffers", VPROF_BUDGETGROUP_SWAP_BUFFERS );
GetRenderContextInternal()->SwapBuffers();
g_FrameNum++;
}
bool CMaterialSystem::InEditorMode() const
{
Assert( m_bGeneratedConfig );
return g_config.bEditMode && CanUseEditorMaterials();
}
void CMaterialSystem::NoteAnisotropicLevel( int currentLevel )
{
Assert( m_bGeneratedConfig );
g_config.m_nForceAnisotropicLevel = currentLevel;
}
// Get the current config for this video card (as last set by control panel or the default if not)
const MaterialSystem_Config_t &CMaterialSystem::GetCurrentConfigForVideoCard() const
{
Assert( m_bGeneratedConfig );
return g_config;
}
// Does the device support the given MSAA level?
bool CMaterialSystem::SupportsMSAAMode( int nNumSamples )
{
return g_pShaderAPI->SupportsMSAAMode( nNumSamples );
}
void CMaterialSystem::ReloadFilesInList( IFileList *pFilesToReload )
{
if ( IsPC() )
{
// We have to flush the materials in 2 steps because they have recursive dependencies. The problem case
// is if you have two materials, A and B, that depend on C. You tell A to reload and it also reloads C. Then
// the filesystem thinks C doesn't need to be reloaded anymore. So when you get to B, it decides not to reload
// either since C doesn't need to be reloaded. To fix this, we ask all materials if they want to reload in
// one stage, then in the next stage we actually reload the appropriate ones.
MaterialHandle_t hNext;
for ( MaterialHandle_t h=m_MaterialDict.FirstMaterial(); h != m_MaterialDict.InvalidMaterial(); h=hNext )
{
hNext = m_MaterialDict.NextMaterial( h );
IMaterialInternal *pMat = m_MaterialDict.GetMaterialInternal( h );
pMat->DecideShouldReloadFromWhitelist( pFilesToReload );
}
// Now reload the materials that wanted to be reloaded.
for ( MaterialHandle_t h=m_MaterialDict.FirstMaterial(); h != m_MaterialDict.InvalidMaterial(); h=hNext )
{
hNext = m_MaterialDict.NextMaterial( h );
IMaterialInternal *pMat = m_MaterialDict.GetMaterialInternal( h );
pMat->ReloadFromWhitelistIfMarked();
}
// Flush out necessary textures.
TextureManager()->ReloadFilesInList( pFilesToReload );
}
}
// Does the device support the given CSAA level?
bool CMaterialSystem::SupportsCSAAMode( int nNumSamples, int nQualityLevel )
{
return g_pShaderAPI->SupportsCSAAMode( nNumSamples, nQualityLevel );
}
void CMaterialSystem::SetShadowDepthBiasFactors( float fShadowSlopeScaleDepthBias, float fShadowDepthBias )
{
g_pShaderAPI->SetShadowDepthBiasFactors( fShadowSlopeScaleDepthBias, fShadowDepthBias );
}
void CMaterialSystem::FlipCulling( bool bFlipCulling )
{
g_pShaderAPI->FlipCulling( bFlipCulling );
}
bool CMaterialSystem::SupportsHDRMode( HDRType_t nHDRMode )
{
return HardwareConfig()->SupportsHDRMode( nHDRMode );
}
bool CMaterialSystem::UsesSRGBCorrectBlending( void ) const
{
return HardwareConfig()->UsesSRGBCorrectBlending();
}
// Get video card identitier
const MaterialSystemHardwareIdentifier_t &CMaterialSystem::GetVideoCardIdentifier( void ) const
{
static MaterialSystemHardwareIdentifier_t foo;
Assert( 0 );
return foo;
}
void CMaterialSystem::AddModeChangeCallBack( ModeChangeCallbackFunc_t func )
{
g_pShaderDeviceMgr->AddModeChangeCallback( func );
}
void CMaterialSystem::RemoveModeChangeCallBack( ModeChangeCallbackFunc_t func )
{
g_pShaderDeviceMgr->RemoveModeChangeCallback( func );
}
//-----------------------------------------------------------------------------
// Gets configuration information associated with the display card.
// It will return a list of key values to set.
//-----------------------------------------------------------------------------
bool CMaterialSystem::GetRecommendedVideoConfig( KeyValues *pKeyValues )
{
MaterialLock_t hLock = Lock();
bool bResult = g_pShaderDeviceMgr->GetRecommendedVideoConfig( m_nAdapter, pKeyValues );
Unlock( hLock );
return bResult;
}
//-----------------------------------------------------------------------------
// Gets configuration information associated with a particular DX level.
// It will return a list of key values to set.
//-----------------------------------------------------------------------------
bool CMaterialSystem::GetRecommendedConfigurationInfo( int nDXLevel, KeyValues *pKeyValues )
{
MaterialLock_t hLock = Lock();
bool bResult = g_pShaderDeviceMgr->GetRecommendedConfigurationInfo( m_nAdapter, nDXLevel, pKeyValues );
Unlock( hLock );
return bResult;
}
//-----------------------------------------------------------------------------
// For dealing with device lost in cases where SwapBuffers isn't called all the time (Hammer)
//-----------------------------------------------------------------------------
void CMaterialSystem::HandleDeviceLost()
{
if ( IsGameConsole() )
return;
g_pShaderAPI->HandleDeviceLost();
}
bool CMaterialSystem::UsingFastClipping( void )
{
return (HardwareConfig()->UseFastClipping() || (HardwareConfig()->MaxUserClipPlanes() < 1));
};
int CMaterialSystem::StencilBufferBits( void )
{
return HardwareConfig()->StencilBufferBits();
}
ITexture* CMaterialSystem::CreateRenderTargetTexture(
int w,
int h,
RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format,
MaterialRenderTargetDepth_t depth )
{
return CreateNamedRenderTargetTextureEx( NULL, w, h, sizeMode, format, depth, TEXTUREFLAGS_CLAMPS|TEXTUREFLAGS_CLAMPT, 0 );
}
ITexture* CMaterialSystem::CreateNamedRenderTargetTexture(
const char *pRTName,
int w,
int h,
RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format,
MaterialRenderTargetDepth_t depth,
bool bClampTexCoords,
bool bAutoMipMap )
{
unsigned int textureFlags = 0;
if ( bClampTexCoords )
{
textureFlags |= TEXTUREFLAGS_CLAMPS | TEXTUREFLAGS_CLAMPT;
}
unsigned int renderTargetFlags = 0;
if ( bAutoMipMap )
{
renderTargetFlags |= CREATERENDERTARGETFLAGS_AUTOMIPMAP;
}
return CreateNamedRenderTargetTextureEx( pRTName, w, h, sizeMode, format, depth, textureFlags, renderTargetFlags );
}
inline RenderTargetType_t DepthTypeToRenderTargetType( MaterialRenderTargetDepth_t depth )
{
// GR - determine RT type based on depth buffer requirements
switch ( depth )
{
case MATERIAL_RT_DEPTH_SEPARATE:
// using own depth buffer
return RENDER_TARGET_WITH_DEPTH;
case MATERIAL_RT_DEPTH_NONE:
// no depth buffer
return RENDER_TARGET_NO_DEPTH;
case MATERIAL_RT_DEPTH_ONLY:
// only depth buffer
return RENDER_TARGET_ONLY_DEPTH;
case MATERIAL_RT_DEPTH_SHARED:
default:
// using shared depth buffer
return RENDER_TARGET;
}
}
ITexture* CMaterialSystem::CreateNamedRenderTargetTextureEx(
const char *pRTName,
int w,
int h,
RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format,
MaterialRenderTargetDepth_t depth,
unsigned int textureFlags,
unsigned int renderTargetFlags )
{
if ( !m_nAllocatingRenderTargets )
{
Warning( "Tried to create render target outside of CMaterialSystem::BeginRenderTargetAllocation/EndRenderTargetAllocation block\n" );
return NULL;
}
RenderTargetType_t rtType = DepthTypeToRenderTargetType( depth );
ITextureInternal* pTex = TextureManager()->CreateRenderTargetTexture( pRTName, w, h, sizeMode, format, rtType, textureFlags, renderTargetFlags, false );
pTex->IncrementReferenceCount();
#if defined( _X360 )
if ( !( renderTargetFlags & CREATERENDERTARGETFLAGS_NOEDRAM ) )
{
// create the EDRAM surface that is bound to the RT Texture
pTex->CreateRenderTargetSurface( 0, 0, IMAGE_FORMAT_UNKNOWN, true );
}
#endif
return pTex;
}
//-----------------------------------------------------------------------------------------------------
// New version which must be called inside BeginRenderTargetAllocation-EndRenderTargetAllocation block
//-----------------------------------------------------------------------------------------------------
ITexture *CMaterialSystem::CreateNamedRenderTargetTextureEx2(
const char *pRTName,
int w,
int h,
RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format,
MaterialRenderTargetDepth_t depth,
unsigned int textureFlags,
unsigned int renderTargetFlags )
{
// Only proceed if we are between BeginRenderTargetAllocation and EndRenderTargetAllocation
if ( !m_nAllocatingRenderTargets )
{
Warning( "Tried to create render target outside of CMaterialSystem::BeginRenderTargetAllocation/EndRenderTargetAllocation block\n" );
return NULL;
}
ITexture* pTexture = CreateNamedRenderTargetTextureEx( pRTName, w, h, sizeMode, format, depth, textureFlags, renderTargetFlags );
pTexture->DecrementReferenceCount(); // Follow the same convention as CTextureManager::LoadTexture (return refcount of 0).
return pTexture;
}
ITexture *CMaterialSystem::CreateNamedMultiRenderTargetTexture(
const char *pRTName,
int w,
int h,
RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format,
MaterialRenderTargetDepth_t depth,
unsigned int textureFlags,
unsigned int renderTargetFlags )
{
// Only proceed if we are between BeginRenderTargetAllocation and EndRenderTargetAllocation
if ( !m_nAllocatingRenderTargets )
{
Warning( "Tried to create render target outside of CMaterialSystem::BeginRenderTargetAllocation/EndRenderTargetAllocation block\n" );
return NULL;
}
RenderTargetType_t rtType = DepthTypeToRenderTargetType( depth );
ITextureInternal* pTex =TextureManager()->CreateRenderTargetTexture( pRTName, w, h, sizeMode, format, rtType, textureFlags, renderTargetFlags, true );
#if defined( _X360 )
if ( !( renderTargetFlags & CREATERENDERTARGETFLAGS_NOEDRAM ) )
{
// create the EDRAM surface that is bound to the RT Texture
pTex->CreateRenderTargetSurface( 0, 0, IMAGE_FORMAT_UNKNOWN, true );
}
#endif
return pTex; //ref count is 0
}
void CMaterialSystem::BeginRenderTargetAllocation( void )
{
if ( m_bDisableRenderTargetAllocationForever )
{
Warning( "Tried BeginRenderTargetAllocation after game startup. If I let you do this, all users would suffer.\n" );
return;
}
m_nAllocatingRenderTargets++;
}
void CMaterialSystem::EndRenderTargetAllocation( void )
{
if ( m_bDisableRenderTargetAllocationForever )
return;
m_nAllocatingRenderTargets--;
if ( ! m_nAllocatingRenderTargets )
{
if ( IsPC() && CanDownloadTextures() )
{
// Simulate an Alt-Tab...will cause RTs to be allocated first
g_pShaderDevice->ReleaseResources();
g_pShaderDevice->ReacquireResources();
}
TextureManager()->CacheExternalStandardRenderTargets();
}
}
void CMaterialSystem::FinishRenderTargetAllocation( void )
{
// disable all future render target allocation to prevent re-load bugs from creeping in.
if (
( CommandLine()->CheckParm( "-tools" ) == NULL ) &&
( ! m_bRequestedEditorMaterials ) )
{
m_bDisableRenderTargetAllocationForever = true;
}
}
void CMaterialSystem::ReEnableRenderTargetAllocation_IRealizeIfICallThisAllTexturesWillBeUnloadedAndLoadTimeWillSufferHorribly( void )
{
m_bDisableRenderTargetAllocationForever = false;
}
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
void CMaterialSystem::UpdateLightmap( int lightmapPageID, int lightmapSize[2],
int offsetIntoLightmapPage[2],
float *pFloatImage, float *pFloatImageBump1,
float *pFloatImageBump2, float *pFloatImageBump3 )
{
CMatCallQueue *pCallQueue = GetRenderCallQueue();
if ( !pCallQueue )
{
m_Lightmaps.UpdateLightmap( lightmapPageID, lightmapSize, offsetIntoLightmapPage, pFloatImage, pFloatImageBump1, pFloatImageBump2, pFloatImageBump3 );
}
else
{
ExecuteOnce( DebuggerBreakIfDebugging() );
}
}
void CMaterialSystem::UpdatePaintmap( int paintmap, BYTE* pPaintData, int numRects, Rect_t* pRects )
{
CMatCallQueue *pCallQueue = GetRenderCallQueue();
if ( !pCallQueue )
{
m_Paintmaps.UpdatePaintmap( paintmap, pPaintData, numRects, pRects );
}
else
{
ExecuteOnce( DebuggerBreakIfDebugging() );
}
}
//-----------------------------------------------------------------------------------------------------
// NVIDIA stereo
//-----------------------------------------------------------------------------------------------------
void CMaterialSystem::NVStereoUpdate()
{
g_pShaderAPI->UpdateStereoTexture( TextureManager()->StereoParamTexture()->GetTextureHandle( 0 ), &m_bIsStereoActiveThisFrame );
}
bool CMaterialSystem::IsStereoSupported()
{
if ( !m_bStereoBoolsInitialized )
{
m_bIsStereoSupported = g_pShaderAPI->IsStereoSupported();
m_bStereoBoolsInitialized = true;
}
return m_bIsStereoSupported;
}
bool CMaterialSystem::IsStereoActiveThisFrame() const
{
// NOTE: This is updated in NVStereoUpdate above
return m_bIsStereoActiveThisFrame;
}
//-----------------------------------------------------------------------------------------------------
// 360 TTF Font Support
//-----------------------------------------------------------------------------------------------------
#if defined( _X360 )
HXUIFONT CMaterialSystem::OpenTrueTypeFont( const char *pFontname, int tall, int style )
{
MaterialLock_t hLock = Lock();
HXUIFONT result = g_pShaderAPI->OpenTrueTypeFont( pFontname, tall, style );
Unlock( hLock );
return result;
}
void CMaterialSystem::CloseTrueTypeFont( HXUIFONT hFont )
{
MaterialLock_t hLock = Lock();
g_pShaderAPI->CloseTrueTypeFont( hFont );
Unlock( hLock );
}
bool CMaterialSystem::GetTrueTypeFontMetrics( HXUIFONT hFont, wchar_t wchFirst, wchar_t wchLast, XUIFontMetrics *pFontMetrics, XUICharMetrics *pCharMetrics )
{
MaterialLock_t hLock = Lock();
bool result = g_pShaderAPI->GetTrueTypeFontMetrics( hFont, wchFirst, wchLast, pFontMetrics, pCharMetrics );
Unlock( hLock );
return result;
}
bool CMaterialSystem::GetTrueTypeGlyphs( HXUIFONT hFont, int numChars, wchar_t *pWch, int *pOffsetX, int *pOffsetY, int *pWidth, int *pHeight, unsigned char *pRGBA, int *pRGBAOffset )
{
MaterialLock_t hLock = Lock();
bool result = g_pShaderAPI->GetTrueTypeGlyphs( hFont, numChars, pWch, pOffsetX, pOffsetY, pWidth, pHeight, pRGBA, pRGBAOffset );
Unlock( hLock );
return result;
}
#endif
//-----------------------------------------------------------------------------------------------------
// 360 Back Buffer access. Due to hardware, RT data must be blitted from EDRAM
// and converted.
//-----------------------------------------------------------------------------------------------------
#if defined( _X360 )
void CMaterialSystem::ReadBackBuffer( Rect_t *pSrcRect, Rect_t *pDstRect, unsigned char *pDstData, ImageFormat dstFormat, int dstStride )
{
Assert( pSrcRect && pDstRect && pDstData );
int fbWidth, fbHeight;
g_pShaderAPI->GetBackBufferDimensions( fbWidth, fbHeight );
if ( pDstRect->width > fbWidth || pDstRect->height > fbHeight )
{
Assert( 0 );
return;
}
// intermediate results will be placed at (0,0)
Rect_t rect;
rect.x = 0;
rect.y = 0;
rect.width = pDstRect->width;
rect.height = pDstRect->height;
ITexture *pTempRT;
bool bStretch = ( pSrcRect->width != pDstRect->width || pSrcRect->height != pDstRect->height );
if ( !bStretch )
{
// hijack an unused RT (no surface required) for 1:1 resolve work, fastest path
pTempRT = FindTexture( "_rt_FullFrameFB", TEXTURE_GROUP_RENDER_TARGET );
}
else
{
// hijack an unused RT (with surface abilities) for stretch work, slower path
pTempRT = FindTexture( "_rt_WaterReflection", TEXTURE_GROUP_RENDER_TARGET );
}
Assert( !pTempRT->IsError() && pDstRect->width <= pTempRT->GetActualWidth() && pDstRect->height <= pTempRT->GetActualHeight() );
GetRenderContextInternal()->CopyRenderTargetToTextureEx( pTempRT, 0, pSrcRect, &rect );
// access the RT bits
CPixelWriter writer;
g_pShaderAPI->ModifyTexture( ((ITextureInternal*)pTempRT)->GetTextureHandle( 0 ) );
if ( !g_pShaderAPI->TexLock( 0, 0, 0, 0, pTempRT->GetActualWidth(), pTempRT->GetActualHeight(), writer ) )
return;
// this will be adequate for non-block formats
int srcStride = pTempRT->GetActualWidth() * ImageLoader::SizeInBytes( pTempRT->GetImageFormat() );
// untile intermediate RT in place to achieve linear access
XGUntileTextureLevel(
pTempRT->GetActualWidth(),
pTempRT->GetActualHeight(),
0,
XGGetGpuFormat( ImageLoader::ImageFormatToD3DFormat( pTempRT->GetImageFormat() ) ),
0,
(char*)writer.GetPixelMemory(),
srcStride,
NULL,
writer.GetPixelMemory(),
NULL );
// swap back to x86 order as expected by image conversion
ImageLoader::ByteSwapImageData( (unsigned char*)writer.GetPixelMemory(), srcStride*pTempRT->GetActualHeight(), pTempRT->GetImageFormat() );
// convert to callers format
Assert( dstFormat == IMAGE_FORMAT_RGB888 );
ImageLoader::ConvertImageFormat( (unsigned char*)writer.GetPixelMemory(), pTempRT->GetImageFormat(), pDstData, dstFormat, pDstRect->width, pDstRect->height, srcStride, dstStride );
g_pShaderAPI->TexUnlock();
}
#endif
#if defined( _X360 )
void CMaterialSystem::PersistDisplay()
{
g_pShaderAPI->PersistDisplay();
}
#endif
#if defined( _X360 )
void *CMaterialSystem::GetD3DDevice()
{
return g_pShaderAPI->GetD3DDevice();
}
#endif
#if defined( _X360 )
bool CMaterialSystem::OwnGPUResources( bool bEnable )
{
return g_pShaderAPI->OwnGPUResources( bEnable );
}
#endif
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
class CThreadRelease : public CJob
{
virtual JobStatus_t DoExecute()
{
g_pShaderAPI->ReleaseThreadOwnership();
return JOB_OK;
}
};
void CMaterialSystem::ThreadRelease( )
{
if ( !m_bThreadHasOwnership )
{
return;
}
double flStartTime, flEndThreadRelease, flEndTime;
if ( mat_queue_report.GetInt() )
{
flStartTime = Plat_FloatTime();
}
CJob *pActiveAsyncJob = new CThreadRelease();
CreateMatQueueThreadPool()->AddJob( pActiveAsyncJob );
pActiveAsyncJob->WaitForFinish();
SafeRelease( pActiveAsyncJob );
if ( mat_queue_report.GetInt() )
{
flEndThreadRelease = Plat_FloatTime();
}
g_pShaderAPI->AcquireThreadOwnership();
m_bThreadHasOwnership = false;
if ( mat_queue_report.GetInt() )
{
flEndTime = Plat_FloatTime();
double flResult = ( flEndTime - flStartTime ) * 1000.0;
if ( mat_queue_report.GetInt() == -1 || flResult > mat_queue_report.GetFloat() )
{
Color red( 200, 20, 20, 255 );
ConColorMsg( red, "CMaterialSystem::ThreadRelease: %0.2fms = Release:%0.2fms + Acquire:%0.2fms\n", flResult, ( flEndThreadRelease - flStartTime ) * 1000.0, ( flEndTime - flEndThreadRelease ) * 1000.0 );
}
}
}
class CThreadAcquire : public CJob
{
virtual JobStatus_t DoExecute()
{
g_pShaderAPI->AcquireThreadOwnership();
return JOB_OK;
}
};
void CMaterialSystem::ThreadAcquire( )
{
double flStartTime, flEndTime;
if ( mat_queue_report.GetInt() )
{
flStartTime = Plat_FloatTime();
}
g_pShaderAPI->ReleaseThreadOwnership();
CJob *pActiveAsyncJob = new CThreadAcquire();
CreateMatQueueThreadPool()->AddJob( pActiveAsyncJob );
// while we could wait for this job to finish, there's no reason too
// pActiveAsyncJob->WaitForFinish();
SafeRelease( pActiveAsyncJob );
m_bThreadHasOwnership = true;
if ( mat_queue_report.GetInt() )
{
flEndTime = Plat_FloatTime();
double flResult = ( flEndTime - flStartTime ) * 1000.0;
if ( mat_queue_report.GetInt() == -1 || flResult > mat_queue_report.GetFloat() )
{
Color red( 200, 20, 20, 255 );
ConColorMsg( red, "CMaterialSystem::ThreadAcquire: %0.2fms\n", flResult );
}
}
}
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
MaterialLock_t CMaterialSystem::Lock()
{
IMatRenderContextInternal *pCurContext = GetRenderContextInternal();
#ifdef _X360
// use this to help catch synchronization blocks in PIX timing captures
PIXEVENT( pCurContext, "CMaterialSystem::Lock" );
#endif
#ifndef _PS3
if ( pCurContext != &m_HardwareRenderContext && m_pActiveAsyncJob )
{
m_pActiveAsyncJob->WaitForFinishAndRelease();
m_pActiveAsyncJob = NULL;
}
#else
if ( pCurContext != &m_HardwareRenderContext && m_bQMSJobSubmitted )
{
g_pGcmSharedData->WaitForQMS();
m_bQMSJobSubmitted = 0;
}
#endif
g_MatSysMutex.Lock();
MaterialLock_t hMaterialLock = (MaterialLock_t)pCurContext;
m_pRenderContext = &m_HardwareRenderContext;
if ( m_ThreadMode != MATERIAL_SINGLE_THREADED )
{
g_pShaderAPI->SetDisallowAccess( false );
if ( pCurContext->GetCallQueueInternal() )
{
#ifdef MAT_QUEUED_OWN_THREADPOOL
ThreadRelease();
#else
g_pShaderAPI->AcquireThreadOwnership();
#endif
}
}
g_pShaderAPI->ShaderLock();
return hMaterialLock;
}
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
void CMaterialSystem::Unlock( MaterialLock_t hMaterialLock )
{
IMatRenderContextInternal *pRenderContext = (IMatRenderContextInternal *)hMaterialLock;
m_pRenderContext = pRenderContext ;
g_pShaderAPI->ShaderUnlock();
if ( m_ThreadMode == MATERIAL_QUEUED_SINGLE_THREADED )
{
g_pShaderAPI->SetDisallowAccess( true );
}
else if ( m_ThreadMode == MATERIAL_QUEUED_THREADED )
{
if ( pRenderContext->GetCallQueueInternal() )
{
#ifndef MAT_QUEUED_OWN_THREADPOOL
g_pShaderAPI->ReleaseThreadOwnership();
#endif
}
}
g_MatSysMutex.Unlock();
}
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
CMatCallQueue *CMaterialSystem::GetRenderCallQueue()
{
IMatRenderContextInternal *pRenderContext = m_pRenderContext;
return pRenderContext ? pRenderContext->GetCallQueueInternal() : NULL;
}
void CMaterialSystem::UnbindMaterial( IMaterial *pMaterial )
{
Assert( (pMaterial == NULL) || ((IMaterialInternal *)pMaterial)->IsRealTimeVersion() );
if ( m_HardwareRenderContext.GetCurrentMaterial() == pMaterial )
{
m_HardwareRenderContext.Bind( g_pErrorMaterial, NULL );
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMaterialSystem::CompactMemory()
{
for ( int i = 0; i < ARRAYSIZE(m_QueuedRenderContexts); i++)
{
m_QueuedRenderContexts[i].CompactMemory();
}
}
//-----------------------------------------------------------------------------
// Material + texture related commands
//-----------------------------------------------------------------------------
void CMaterialSystem::DebugPrintUsedMaterials( const CCommand &args )
{
if( args.ArgC() == 1 )
{
DebugPrintUsedMaterials( NULL, false );
}
else
{
DebugPrintUsedMaterials( args[ 1 ], false );
}
}
void CMaterialSystem::DebugPrintUsedMaterialsVerbose( const CCommand &args )
{
if( args.ArgC() == 1 )
{
DebugPrintUsedMaterials( NULL, true );
}
else
{
DebugPrintUsedMaterials( args[ 1 ], true );
}
}
void CMaterialSystem::DebugPrintAspectRatioInfo( const CCommand &args )
{
int width, height;
GetBackBufferDimensions( width, height );
const AspectRatioInfo_t &aspectRatioInfo = GetAspectRatioInfo();
DevMsg( "========================\n" );
DevMsg( "m_bIsWidescreen: %s\n", aspectRatioInfo.m_bIsWidescreen ? "true" : "false" );
DevMsg( "m_bIsHidef: %s\n", aspectRatioInfo.m_bIsHidef ? "true" : "false" );
DevMsg( "m_flFrameBufferAspectRatio: %f\n", aspectRatioInfo.m_flFrameBufferAspectRatio );
DevMsg( "m_flPhysicalAspectRatio: %f\n", aspectRatioInfo.m_flPhysicalAspectRatio );
DevMsg( "m_flFrameBuffertoPhysicalScalar: %f\n", aspectRatioInfo.m_flFrameBuffertoPhysicalScalar );
DevMsg( "fb width: %d fb height: %d\n", width, height );
DevMsg( "========================\n" );
}
void CMaterialSystem::DebugPrintUsedTextures( const CCommand &args )
{
DebugPrintUsedTextures();
}
#if defined( _X360 ) || defined( _PS3 )
void CMaterialSystem::ListUsedMaterials( const CCommand &args )
{
ListUsedMaterials();
}
#endif // !_X360
void CMaterialSystem::ReloadAllMaterials( const CCommand &args )
{
ReloadMaterials( NULL );
}
void CMaterialSystem::ReloadMaterials( const CCommand &args )
{
if( args.ArgC() != 2 )
{
Log_Warning( LOG_MaterialSystemConsole, "Usage: mat_reloadmaterial material_name_substring\n"
" or mat_reloadmaterial substring1*substring2*...*substringN\n" );
return;
}
ReloadMaterials( args[ 1 ] );
}
void CMaterialSystem::ReloadTextures( const CCommand &args )
{
ReloadTextures();
}
#ifdef _PS3
//void CMaterialSystem::GetVRAMScreenShotInfo( char **pointerToRawImageData, uint32 *uWidth, uint32 *uHeight, uint32 *uPitch, VRAMScreenShotInfoColor_t *colour )
void CMaterialSystem::TransmitScreenshotToVX()
{
extern char *GetScreenShotInfoForVX( IDirect3DDevice9 *pDevice, uint32 *uWidth, uint32 *uHeight, uint32 *uPitch, uint32 *colour );
uint32 uWidth, uHeight, uPitch, uColor;
char *pFrameBuffer = GetScreenShotInfoForVX( Dx9Device(), &uWidth, &uHeight, &uPitch, &uColor );
if ( pFrameBuffer )
{
g_pValvePS3Console->TransmitScreenshot( pFrameBuffer, uWidth, uHeight, uPitch, uColor );
}
//return GetVRAMScreenShotInfoGCM( pointerToRawImageData, Dx9Device(), uWidth, uHeight, uPitch, colour);
}
void CMaterialSystem::CompactRsxLocalMemory( char const *szReason )
{
extern void Ps3gcmLocalMemoryAllocator_CompactWithReason( char const *szReason );
Ps3gcmLocalMemoryAllocator_CompactWithReason( szReason );
}
void CMaterialSystem::SetFlipPresentFrequency( int nNumVBlanks )
{
extern void Ps3gcmFlip_SetFlipPresentFrequency( int nNumVBlanks );
// 7ltodo Ps3gcmFlip_SetFlipPresentFrequency( nNumVBlanks );
}
#endif
void CMaterialSystem::SpinPresent( uint nFrames )
{
for( uint i = 0; i < nFrames; ++i )
{
// BeginScene(); // do we need this?
g_pShaderAPI->ClearColor3ub( 0, 0, 0 );
g_pShaderAPI->ClearBuffers( true, true, true, -1, -1 );
g_pShaderDevice->Present();
// EndScene(); // do we need this?
}
}
CON_COMMAND( mat_hdr_enabled, "Report if HDR is enabled for debugging" )
{
if( HardwareConfig() && HardwareConfig()->GetHDREnabled() )
{
Log_Warning( LOG_MaterialSystemConsole, "HDR Enabled\n" );
}
else
{
Log_Warning( LOG_MaterialSystemConsole, "HDR Disabled\n" );
}
}
#ifdef _PS3
#include "shaderutil_ps3nonvirt.inl"
#endif