Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

495 lines
14 KiB

// STATIC: "ZOOM_ANIMATE_SEQ2" "0..1"
// STATIC: "DUALSEQUENCE" "0..1"
// STATIC: "ADDBASETEXTURE2" "0..1"
// STATIC: "EXTRACTGREENALPHA" "0..1"
// STATIC: "DEPTHBLEND" "0..1" [CONSOLE]
// STATIC: "DEPTHBLEND" "0..1" [PC]
// STATIC: "ANIMBLEND_OR_MAXLUMFRAMEBLEND1" "0..1"
// STATIC: "CROP" "0..1"
// STATIC: "PACKED_INTERPOLATOR" "0..1"
// STATIC: "SPRITECARDVERTEXFOG" "0..1"
// STATIC: "HARDWAREFOGBLEND" "0..0" [CONSOLE]
// STATIC: "HARDWAREFOGBLEND" "0..1" [PC] [vs20]
// STATIC: "HARDWAREFOGBLEND" "0..0" [PC] [vs30]
// STATIC: "PERPARTICLEOUTLINE" "0..1"
// DYNAMIC: "ORIENTATION" "0..4"
// If we aren't doing any sort of fog, then assume that HARDWAREFOGBLEND is forced to zero.
// SKIP: $PERPARTICLEOUTLINE && ( $ORIENTATION == 3 )
// SKIP: $DUALSEQUENCE && ( $PERPARTICLEOUTLINE || ( $ORIENTATION == 3 ) )
// SKIP: $HARDWAREFOGBLEND && !SPRITECARDVERTEXFOG
#include "common_vs_fxc.h"
// Don't want to have extra combos, so define these two to be the same base on a single combo. Bilch.
#define ANIMBLEND ANIMBLEND_OR_MAXLUMFRAMEBLEND1
#define MAXLUMFRAMEBLEND1 ANIMBLEND_OR_MAXLUMFRAMEBLEND1
// VS_OUTPUT in a common file.
#include "common_spritecard_fxc.h"
const hlsl_float4x3 cModelView : register(SHADER_SPECIFIC_CONST_0);
const float4x4 cProj : register(SHADER_SPECIFIC_CONST_3);
#if ( ZOOM_ANIMATE_SEQ2 || SPRITECARDVERTEXFOG )
const float4 ScaleParms : register(SHADER_SPECIFIC_CONST_7);
#define OLDFRM_SCALE_START (ScaleParms.x)
#define OLDFRM_SCALE_END (ScaleParms.y)
#define FOG_SCALE_FACTOR (ScaleParms.z)
#endif
const float4 SizeParms : register(SHADER_SPECIFIC_CONST_8);
const float4 SizeParms2 : register(SHADER_SPECIFIC_CONST_9);
const float4 g_vCropFactor : register(SHADER_SPECIFIC_CONST_11);
const float4 g_vDepthFeatherProjToViewZW[ 2 ] : register( SHADER_SPECIFIC_CONST_12 );
#if !defined( SHADER_MODEL_VS_1_1 )
const bool g_bUseInstancing : register( SHADER_SPECIFIC_BOOL_CONST_0 );
#endif
#if 0 // JasonM - do we want control flow? - note that we moved these slightly
const bool g_bZoomAnimateSeq2 : register( SHADER_SPECIFIC_BOOL_CONST_1 );
const bool g_bExtractGreenAlpha : register( SHADER_SPECIFIC_BOOL_CONST_2 );
#endif
#define MINIMUM_SIZE_FACTOR (SizeParms.x)
#define MAXIMUM_SIZE_FACTOR (SizeParms.y)
#define START_FADE_SIZE_FACTOR (SizeParms.z)
#define END_FADE_SIZE_FACTOR (SizeParms.w)
// alpha fade w/ distance
#define START_FAR_FADE ( SizeParms2.x )
#define FAR_FADE_FACTOR ( SizeParms2.y ) // alpha = 1-min(1,max(0, (dist-start_fade)*factor))
// Define stuff for instancing on 360
#if ( defined( _X360 ) && defined( SHADER_MODEL_VS_2_0 ) )
#define CONST_PC
#define VERTEX_INDEX_PARAM_360 ,int Index:INDEX
#define DO_INSTANCING 1
#else
#define CONST_PC const
#define VERTEX_INDEX_PARAM_360
#endif
struct VS_INPUT
{
// This is all of the stuff that we ever use.
float4 vTint : COLOR;
float4 vPos : POSITION;
float4 vTexCoord0 : TEXCOORD0;
float4 vTexCoord1 : TEXCOORD1;
float4 vParms : TEXCOORD2; // frame blend, rot, radius, yaw
// FIXME: remove this vertex element for (USE_INSTANCING == 1), need to shuffle the following elements down
float2 vCornerID : TEXCOORD3; // 0,0 1,0 1,1 0,1
float4 vTexCoord2 : TEXCOORD4;
#if DUALSEQUENCE
float4 vSeq2TexCoord0 : TEXCOORD5;
float4 vSeq2TexCoord1 : TEXCOORD6;
float4 vParms1 : TEXCOORD7; // second frame blend, ?,?,?
#endif
#if PERPARTICLEOUTLINE
float4 vecOutlineTint : TEXCOORD5;
#endif
#if ( ORIENTATION == 3 ) // orient to normal
float4 vecNormal : TEXCOORD5;
#endif
};
#define BLENDFACTOR v.vParms.x
#define ROTATION v.vParms.y
#define RADIUS v.vParms.z
#define YAW (v.vParms.w)
#define ONE_OVER_255 0.00392156863
#if ( ZOOM_ANIMATE_SEQ2 )
float getlerpscaled( float l_in, float s0, float s1, float ts )
{
l_in = 2.0*(l_in-.5);
l_in *= lerp(s0,s1,ts);
return 0.5+0.5*l_in;
}
float getlerpscale_for_old_frame( float l_in, float ts )
{
return getlerpscaled( l_in, OLDFRM_SCALE_START, OLDFRM_SCALE_END, ts);
}
float getlerpscale_for_new_frame( float l_in, float ts )
{
return getlerpscaled( l_in, 1.0, OLDFRM_SCALE_START, ts );
}
#endif // ZOOM_ANIMATE_SEQ2
#ifdef DO_INSTANCING
void InstancedVertexRead( inout VS_INPUT v, int index )
{
// Duplicate each VB vertex 4 times (and generate vCornerID - the only thing that varies per-corner)
float4 vTint;
float4 vPos;
float4 vTexCoord0;
float4 vTexCoord1;
float4 vParms;
float4 vTexCoord2;
float4 vSeq_TexCoord0; // NOTE: April XDK compiler barfs on var names which have a number in the middle! (i.e. vSeq2TexCoord0)
float4 vSeq_TexCoord1;
float4 vParms1;
float4 vecOutlineTint;
float4 vecNormal;
int spriteIndex = index / 4;
int cornerIndex = index - 4*spriteIndex;
asm
{
// NOTE: using a computed index disables the post-transform cache, so there are VS perf ramifications
vfetch vTint, spriteIndex, color0;
vfetch vPos, spriteIndex, position0;
vfetch vTexCoord0, spriteIndex, texcoord0;
vfetch vTexCoord1, spriteIndex, texcoord1;
vfetch vParms, spriteIndex, texcoord2;
vfetch vTexCoord2, spriteIndex, texcoord4;
#if DUALSEQUENCE
vfetch vSeq_TexCoord0, spriteIndex, texcoord5;
vfetch vSeq_TexCoord1, spriteIndex, texcoord6;
vfetch vParms1, spriteIndex, texcoord7;
#endif
#if PERPARTICLEOUTLINE
vfetch vecOutlineTint, spriteIndex, texcoord5;
#endif
#if ( ORIENTATION == 3 ) // normal-aligned
vfetch vecNormal, spriteIndex, texcoord5;
#endif
};
v.vTint = vTint;
v.vPos = vPos;
v.vTexCoord0 = vTexCoord0;
v.vTexCoord1 = vTexCoord1;
v.vParms = vParms;
#if ADDBASETEXTURE2
v.vTexCoord2 = vTexCoord2;
#endif
#if DUALSEQUENCE
v.vSeq2TexCoord0 = vSeq_TexCoord0;
v.vSeq2TexCoord1 = vSeq_TexCoord1;
v.vParms1 = vParms1;
#endif
#if PERPARTICLEOUTLINE
v.vecOutlineTint = vecOutlineTint;
#endif
#if ORIENTATION == 3
v.vecNormal = vecNormal;
#endif
// Compute vCornerID - order is: (0,0) (1,0) (1,1) (0,1)
// float2 IDs[4] = { {0,0}, {1,0}, {1,1}, {0,1} };
// v.vCornerID.xy = IDs[ cornerIndex ];
// This compiles to 2 ops on 360 (MADDs with abs/sat register read/write modifiers):
v.vCornerID.xy = float2( 1.5f, 0.0f ) + cornerIndex*float2( -1.0f, 1.0f );
v.vCornerID.xy = saturate( float2(1.5f, -3.0f) + float2( -1.0f, 2.0f )*abs( v.vCornerID.xy ) );
}
#endif
VS_OUTPUT main( CONST_PC VS_INPUT v
VERTEX_INDEX_PARAM_360 )
{
VS_OUTPUT o;
#ifdef DO_INSTANCING
if ( g_bUseInstancing )
{
InstancedVertexRead( v, Index );
}
#endif
#if ( !DUALSEQUENCE )
{
#if ( PERPARTICLEOUTLINE )
{
o.vecOutlineTint = GammaToLinear( v.vecOutlineTint );
}
#else
{
o.vecOutlineTint = 1;
}
#endif
}
#endif
#if SHADER_MODEL_VS_1_1
float4 tint = v.vTint;
#else
float4 tint = GammaToLinear( v.vTint );
#endif
float2 sc_yaw;
sincos( YAW, sc_yaw.y, sc_yaw.x );
float2 sc;
sincos( ROTATION, sc.y, sc.x );
float2 ix = 2 * v.vCornerID.xy - 1;
#if ( CROP )
{
ix *= g_vCropFactor.xy;
}
#endif
float x1 = dot( ix, sc );
float y1 = sc.x * ix.y - sc.y * ix.x;
float4 projPos;
float3 worldPos;
worldPos = mul4x3( v.vPos, cModel[0] );
float rad = RADIUS;
float3 v2p = ( worldPos - cEyePos );
float l = length(v2p);
rad=max(rad, MINIMUM_SIZE_FACTOR * l);
// now, perform fade out
#ifndef SHADER_MODEL_VS_1_1
if ( rad > START_FADE_SIZE_FACTOR * l )
{
if ( rad > END_FADE_SIZE_FACTOR *l )
{
tint = 0;
rad = 0; // cull so we emit 0-sized sprite
}
else
{
tint *= 1-(rad-START_FADE_SIZE_FACTOR*l)/(END_FADE_SIZE_FACTOR*l-START_FADE_SIZE_FACTOR*l);
}
}
#endif
#ifndef SHADER_MODEL_VS_1_1
// perform far fade
float tscale = 1-min(1, max(0, (l-START_FAR_FADE)*FAR_FADE_FACTOR) );
tint *= tscale;
if ( tscale <= 0 )
rad = 0; // cull so we emit 0-sized sprite
#endif
#if ( SPRITECARDVERTEXFOG )
{
// fade tint.a based upon fog amount
float ffactor = 0.0f;
#if ( HARDWAREFOGBLEND )
{
// On ps20 hardware, we use fixed-function fog blending, which has a fog factor of 1 for no fog, and 0 for fully fogged.
// Note that the shader constants for fog params are different in both states of HARDWAREFOGBLEND.
ffactor = CalcRangeFogFactorFixedFunction( worldPos, cEyePos, cRadialFogMaxDensity, cFogEndOverFogRange, cOOFogRange );
}
#else
{
// On ps2b and up, we blend fog in the pixel shader in such a way that we have a fog factor of 0 for no fog, and 1 for fully fogged.
// We want to multiply by 1 where there is no fog, so invert.
// Note that the shader constants for fog params are different in both states of HARDWAREFOGBLEND.
ffactor = CalcRangeFogFactorNonFixedFunction( worldPos, cEyePos, cRadialFogMaxDensity, cFogEndOverFogRange, cOOFogRange );
ffactor = 1.0f - ffactor; // map from [0,1]->[1,0] Want 0 to be fully fogged instead of 1.
}
#endif
ffactor = lerp( 1, ffactor, FOG_SCALE_FACTOR );
tint.a *= ffactor;
}
#endif
if ( tint.a < ONE_OVER_255 )
{
// save fillrate by transforming completely transparent particles to a point
rad = 0;
}
rad = min( rad, MAXIMUM_SIZE_FACTOR * l );
#if ( ORIENTATION == 0 )
{
// Screen-aligned case
float3 viewPos;
viewPos = mul4x3( v.vPos, cModelView );
float3 disp = float3( -x1, y1, 0 );
float tmpx = disp.x * sc_yaw.x + disp.z * sc_yaw.y;
disp.z = disp.z * sc_yaw.x - disp.x * sc_yaw.y;
disp.x = tmpx;
viewPos.xyz += disp * rad;
projPos = mul( float4( viewPos, 1.0f ), cProj );
}
#endif
#if ( ( ORIENTATION == 1 ) || ( ORIENTATION == 3 ) || ( ORIENTATION == 4 ) )
{
// Z-aligned case
if (l > rad/2)
{
float3 up = float3(0,0,1);
float3 right = normalize(cross(up, v2p));
#if ( ORIENTATION == 4 )
{
up = normalize(cross(right, v2p));
}
#endif
#if ( ORIENTATION == 3 )
{
float3 vNormal = v.vecNormal.xyz;
float3 vTrialVector = float3( 0, 0, 1 );
if ( abs( vNormal.z ) > 0.9 )
{
vTrialVector = float3( 1, 0, 0 );
}
up = normalize( cross( vNormal, vTrialVector ) );
right = cross( vNormal, up );
}
#else // no yaw support for normal aligned
{
float tmpx = right.x * sc_yaw.x + right.y * sc_yaw.y;
right.y = right.y * sc_yaw.x - right.x * sc_yaw.y;
right.x = tmpx;
}
#endif
worldPos += ( x1 * rad ) * right;
worldPos += ( y1 * rad ) * up;
#ifndef SHADER_MODEL_VS_1_1
if (l < rad*2 )
{
tint *= smoothstep(rad/2,rad,l);
}
#endif
}
projPos = mul( float4(worldPos, 1.0f), cViewProj );
}
#endif // ( ( ORIENTATION == 1 ) || ( ORIENTATION == 3 ) || ( ORIENTATION == 4 ) )
#if ( ORIENTATION == 2 )
{
// aligned with z plane case - easy
// Need to rotate it into the space of the control point though
// We're using cModelView to store that transformation since it's
// only used as cModelView in ORIENTATION mode 0.
float3 vOffset = mul3x3( float3( y1, x1, 0 ), ( float3x3 )cModelView );
float3 wpos = v.vPos.xyz + RADIUS * vOffset;
projPos = mul( float4(wpos, 1.0f), cModelViewProj );
}
#endif
#if ( HAS_BLENDFACTOR0 )
{
o.blendfactor0 = float4( v.vParms.x, 0, 0, 0 );
}
#endif
o.projPos = projPos;
#if ( CROP )
{
o.texCoord0_1.xy = lerp( v.vTexCoord0.zw, v.vTexCoord0.xy, v.vCornerID.xy * g_vCropFactor.xy + g_vCropFactor.zw );
o.texCoord0_1.wz = lerp( v.vTexCoord1.zw, v.vTexCoord1.xy, v.vCornerID.xy * g_vCropFactor.xy + g_vCropFactor.zw );
}
#else
{
o.texCoord0_1.xy = lerp( v.vTexCoord0.zw, v.vTexCoord0.xy, v.vCornerID.xy );
o.texCoord0_1.wz = lerp( v.vTexCoord1.zw, v.vTexCoord1.xy, v.vCornerID.xy );
}
#endif
#if ( ADDBASETEXTURE2 )
{
o.texCoord2.xy = lerp( v.vTexCoord2.zw, v.vTexCoord2.xy, v.vCornerID.xy );
}
#endif
#if ( DUALSEQUENCE )
{
float2 lerpold = v.vCornerID.xy;
float2 lerpnew = v.vCornerID.xy;
#if ( ZOOM_ANIMATE_SEQ2 )
{
lerpold.x = getlerpscale_for_old_frame( v.vCornerID.x, v.vParms1.x );
lerpold.y = getlerpscale_for_old_frame( v.vCornerID.y, v.vParms1.x );
lerpnew.x = getlerpscale_for_new_frame( v.vCornerID.x, v.vParms1.x );
lerpnew.y = getlerpscale_for_new_frame( v.vCornerID.y, v.vParms1.x );
}
#endif
o.vSeq2TexCoord0_1.xy = lerp( v.vSeq2TexCoord0.zw, v.vSeq2TexCoord0.xy, lerpold.xy );
o.vSeq2TexCoord0_1.wz = lerp( v.vSeq2TexCoord1.zw, v.vSeq2TexCoord1.xy, lerpnew.xy );
o.blendfactor0.z = v.vParms1.x;
}
#endif
#if ( EXTRACTGREENALPHA )
{
o.blendfactor1 = float4( 0.0f, 0.0f, 0.0f, 0.0f );
// Input range Output range
if ( v.vParms.x < 0.25f ) // 0.0 .. 0.25
{
o.blendfactor0.a = v.vParms.x * 2 + 0.5f; // 0.5 .. 1.0
o.blendfactor0.g = 1 - o.blendfactor0.a; // 0.5 .. 0.0
}
else if ( v.vParms.x < 0.75f ) // 0.25 .. 0.75
{
o.blendfactor1.g = v.vParms.x * 2 - 0.5f; // 0.0 .. 1.0
o.blendfactor0.a = 1 - o.blendfactor1.g; // 1.0 .. 0.0
}
else // 0.75 .. 1.0
{
o.blendfactor1.a = v.vParms.x * 2 - 1.5f; // 0.0 .. 0.5
o.blendfactor1.g = 1 - o.blendfactor1.a; // 1.0 .. 0.5
}
}
#endif
#if DEPTHBLEND
o.vProjPos = projPos;
// Compute fragment's viewspace Z from its projection space coord, saves PS
o.vProjPos.z = dot( projPos, g_vDepthFeatherProjToViewZW[0] );
o.vProjPos.z /= dot( projPos, g_vDepthFeatherProjToViewZW[1] );
#endif
#if ( PACKED_INTERPOLATOR == 1 )
{
o.texCoord0_1.zw = tint.ra; // use red to lerp between two colors in pixel shaders, alpha to modulate opacity
}
#else
{
o.argbcolor = tint;
}
#endif
#if ( !defined( _X360 ) && !defined( SHADER_MODEL_VS_3_0 ) )
{
o.fog = 1.0f;
}
#endif
#ifdef _PS3
// Account for OpenGL's flipped y coordinate and expanded z range [-1,1] instead of [0,1]
o.projPos.y = -o.projPos.y;
o.projPos.z = 2.0f * o.projPos.z - o.projPos.w;
#endif // _PS3
return o;
}