Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

917 lines
29 KiB

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#ifndef BONE_SETUP_PS3_H
#define BONE_SETUP_PS3_H
#ifndef __SPU__
#include "studio.h"
#endif
#include "studio_PS3.h"
#ifndef __SPU__
#include "bone_setup.h"
#include "vjobs/root.h"
#include "vjobs/accumpose_shared.h"
#include <vjobs_interface.h>
#include <ps3/vjobutils.h>
#include <ps3/vjobutils_shared.h>
#endif // __SPU__
#if defined( _PS3 )
#if defined(__SPU__)
#include "ps3/spu_job_shared.h"
#define SNPROF(name) ((void)0)
#define SNPROF_ANIM(name) ((void)0)
#endif
//#define _DEBUG_SPUvPPU_ANIMATION 1
#define ANIM_EPS 0.3f
//-----------------------------------------------------------------------------
// Purpose: SPU version of data collected and required by AccumulatePose
// this data gets sent to SPU
//-----------------------------------------------------------------------------
#define MAX_ACCUMPOSECALLS (20) //(MAX_OVERLAYS)
#define MAX_LAYERS_SPU MAX_ACCUMPOSECALLS
#define MAX_PQSTACKLEVEL 4
#define MAX_IKCHAINELEMENTS 32
#define MAX_IKCHAINS 16
#define MAX_IKLOCKS 16
#define MAX_IKRULES 48
#define MAX_IKTARGETS 12
#define MAX_BLENDANIMS 4
class CBoneBitList_PS3
{
public:
CBoneBitList_PS3()
{
memset( &m_markedBones, 0, MAXSTUDIOBONES_PS3 );
}
inline void MarkBone( int iBone )
{
m_markedBones[ iBone ] = 1;
}
inline bool IsBoneMarked( int iBone )
{
return m_markedBones[ iBone ];
}
inline void ResetMarkedBones( int numbones )
{
memset( &m_markedBones, 0, numbones );
}
byte m_markedBones[ MAXSTUDIOBONES_PS3 ];
};
struct animData_SPU
{
void *pEA_animdesc; // mstudioanimdesc_t *
int animstudiohdr_numbones;
int seqdesc_anim;
float flStall;
float seqdesc_weight;
int animdesc_iLocalFrame;
void *pEA_animdesc_panim; // mstudio_rle_anim_t *
void *pEA_animdesc_pFrameanim; // mstudio_frame_anim_t_PS3 *
void *pEA_animdesc_ikrule; // mstudioikrule_t_PS3 *
void *pEA_animdesc_ikrulezeroframe; // zero frame rule of above
void *pEA_animgroup_masterbone; // int *
void *pEA_anim_bones_pos; // Vector *, start of Vector pos, Quaternion quat, RadianEuler rot, Vector posscale, Vector rotscale, matrix3x4_t poseToBone, Quaternion qAlignment, int flags
void *pEA_anim_bones_flags; // int *, start of flags
void *pEA_anim_linearBones; // mstudiolinearbone_t_PS3 *
};
struct ALIGN128 accumposeentry_SPU
{
void *pEA_seqdesc; // mstudioseqdesc_t_PS3 *
void *pEA_seqgroup_boneMap; // const int *
void *pEA_seqgroup_masterBone; // const int *
void *pEA_seqdesc_boneWeight; // float *
void *pEA_seqdesc_iklocks; // mstudioiklock_t *
// from seqstudiohdr
void *pEA_seq_linearBones; // mstudiolinearbone_t_PS3 *
void *pEA_seq_linearbones_pos; // Vector *
void *pEA_seq_linearbones_quat; // Quaternion *
void *pEA_seq_bones_pos; // mstudiobone_t_PS3 * offset to .pos
int seqdesc_flags;
int cpsPath; // CalcPoseSingle path
animData_SPU anims[ MAX_BLENDANIMS ];
int8 animIndices[ MAX_BLENDANIMS ]; // index into anims[]
int pqStackLevel;
int iSeq;
float cycle;
float weight;
int i0;
int i1;
int seqdesc_numiklocks;
int seqdesc_numikrules;
float s0;
float s1;
float cyclePoseSingle;
int numLocalLayers;
int numSequenceLayers;
#if !defined(__SPU__)
bool SetAnimData( const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int x, int y, int animIndex );
#endif
} ALIGN128_POST;
struct ALIGN128 bonejob_SPU
{
accumposeentry_SPU accumPoseEntry[ MAX_LAYERS_SPU ];
int numTotalPoses;
int numPoses_PreAutoSeq;
int numPoses_AutoSeq;
// same for all calls
int boneFlags[ MAXSTUDIOBONES_PS3 ]; // 1k
int boneParent[ MAXSTUDIOBONES_PS3 ]; // 1k
float poseparam[ MAXSTUDIOPOSEPARAM_PS3 ]; // 96B
void *pEA_IKAutoplayLocks[ MAX_IKLOCKS ]; // mstudioiklock_t
float currentTime;
int numBones;
int maxBones; // takes into account virtual bonemapping, used for SPU mem worst-case allocations
int numikchains;
int boneMask;
int studiobone_posoffset; // mstudiobone_t offset in bytes to pos field
BoneVector autoikOrigin;
QAngle autoikAngles;
int autoikFramecount;
int numikAutoplayLocks;
void *pEA_hdr; // CStudioHdr*
void *pEA_IKContext; // CIKContext *
void *pEA_studiohdr_ikchains; // mstudioikchain_t *
void *pEA_studiohdr_ikautoplaylocks; // mstudioiklock_t *
void *pEA_studiohdr_vmodel; // virtualmodel_t *
void *pEA_studiohdr_bones; // mstudiobone_t_PS3 *
void *pEA_studiohdr_bones_pos; // Vector *, start of Vector pos, Quaternion quat, RadianEuler rot, Vector posscale, Vector rotscale, matrix3x4_t poseToBone, Quaternion qAlignment, int flags
void *pEA_studiohdr_linearBones; // mstudiolinearbone_t_PS3 *
void *pEA_linearbones_posscale; // Vector *
void *pEA_linearbones_pos; // Vector *
void *pEA_linearbones_rot; // RadianEuler *
void *pEA_linearbones_rotscale; // Vector *
void *pEA_linearbones_flags; // int *
void *pEA_linearbones_quat; // Quaternion *
void *pEA_linearbones_qalignment; // Quaternion *
// dst data ea ptrs
void *pEA_pos; // BoneVector *
void *pEA_q; // BoneQuaternion *
void *pEA_addDep_IKRules; // ikcontextikrule_t *
void *pEA_addDep_numIKRules; // int *
void *pEA_flags; // int *
int debugJob; // for dynamic switching of DebuggerBreak
} ALIGN128_POST;
#if !defined(__SPU__)
struct bonejob_PPU
{
public:
matrix3x4_t parentTransform;
float cycle;
int maxBones;
int boneMask;
int bonesMaskNeedsRecalc;
int oldReadableBones;
void *pBaseAnimating; // C_BaseAnimating*
CStudioHdr *pStudioHdr;
matrix3x4a_t *pBoneToWorldOut;
};
struct ALIGN128 PS3BoneJobData
{
public:
job_accumpose::JobDescriptor_t jobDescriptor ALIGN128;
// dst. SPU in/out - could be init'd entirely from SPU, in which case it's out only
BoneVector pos[ MAXSTUDIOBONES_PS3 ] ALIGN16; // 2k
BoneQuaternion q[ MAXSTUDIOBONES_PS3 ] ALIGN16; // 2k
// dst, SPU out only
ikcontextikrule_t addDep_IKRules[ MAX_IKRULES ] ALIGN16; // 4k
int addDep_numIKRules ALIGN16; // [4] to pad to 16B
int pad[3];
// src, SPU in only, going to SPU at start of job
bonejob_SPU bonejobSPU;
// src, PPU only, work data, and data required if job needs to be executed from scratch on PPU if SPU fails
bonejob_PPU bonejobPPU;
} ALIGN128_POST;
class CBoneJobs : public VJobInstance
{
public:
CBoneJobs()
{
}
~CBoneJobs()
{
Shutdown();
}
void Init( void );
void Shutdown( void );
void OnVjobsInit( void ); // gets called after m_pRoot was created and assigned
void OnVjobsShutdown( void ); // gets called before m_pRoot is about to be destructed and NULL'ed
void StartFrame( int maxBoneJobs );
void EndFrame( void );
void ResetBoneJobs( void );
int AddBoneJob( void );
int GetNumBoneJobs( void );
int GetNextFreeSPURSPort( void );
PS3BoneJobData *GetJobData( int job );
private:
CUtlVector<PS3BoneJobData> m_boneJobData;
int m_boneJobCount;
int m_boneJobNextSPURSPort;
bool m_bEnabled;
};
extern CBoneJobs* g_pBoneJobs;
#endif // #if !defined SPU
//-----------------------------------------------------------------------------
//
// Main spu job class
//
//-----------------------------------------------------------------------------
class C_AccumulatePose_SPU
{
public:
C_AccumulatePose_SPU( bonejob_SPU *pBoneJob ) { m_pBoneJob = pBoneJob; };
inline void ResetCount() { m_iCount = 0; };
inline int GetCount() { return m_iCount; };
void AccumulatePose( BoneVector pos[], BoneQuaternion q[] );
void AddLocalLayers( accumposeentry_SPU *pAccPoseEntry, BoneVector pos[], BoneQuaternion q[] );
void AddSequenceLayers( accumposeentry_SPU *pAccPoseEntry, BoneVector pos[], BoneQuaternion q[] );
void SetIKContext( void *pIKContext ) { m_pIKContext = pIKContext; };
void *GetIKContext( void ) { return m_pIKContext; };
private:
bool CalcPoseSingle(
const bonejob_SPU *pBonejob,
accumposeentry_SPU *pPoseEntry,
BoneVector *pos,
BoneQuaternion *q,
int *boneMap,
float *boneWeight,
int sequence,
const float poseParameter[],
int boneMask,
float flTime
);
void *m_pIKContext; // CIKContext *
bonejob_SPU *m_pBoneJob;
// next index into bonejob accumposeentry to execute
int m_iCount;
};
//-----------------------------------------------------------------------------
// Purpose: blends together all the bones from two p:q lists
//
// p1 = p1 * (1 - s) + p2 * s
// q1 = q1 * (1 - s) + q2 * s
//-----------------------------------------------------------------------------
void SlerpBones_SPU(
bonejob_SPU* pSPUJob,
accumposeentry_SPU *pPoseEntry,
BoneQuaternion *q1,
BoneVector *pos1,
const BoneQuaternion *q2,
const BoneVector *pos2,
const int *boneMap,
const float *boneWeight,
float s,
int boneMask );
#if !defined(__SPU__)
class CBoneSetup_PS3;
class IBoneSetup_PS3
{
public:
IBoneSetup_PS3( const CStudioHdr *pStudioHdr, int boneMask, const float poseParameter[], bonejob_SPU *pBoneJobSPU );
~IBoneSetup_PS3( void );
void InitPose_PS3( BoneVector pos[], BoneQuaternion q[] );
void CalcAutoplaySequences_AddPoseCalls( float flRealTime );
void AccumulatePose_AddToBoneJob( bonejob_SPU* pBonejobSPU, int sequence, float cycle, float flWeight, CIKContext *pIKContext, int pqStackLevel );
int RunAccumulatePoseJobs_PPU( bonejob_SPU *pBoneJobSPU );
int RunAccumulatePoseJobs_SPU( bonejob_SPU *pBoneJobSPU, job_accumpose::JobDescriptor_t *pJobDescriptor );
CStudioHdr *GetStudioHdr();
void ResetErrorFlags();
int ErrorFlags();
bonejob_SPU *GetBoneJobSPU();
private:
CBoneSetup_PS3 *m_pBoneSetup;
};
#endif
// Given two samples of a bone separated in time by dt,
// compute the velocity and angular velocity of that bone
//void CalcBoneDerivatives( Vector &velocity, AngularImpulse &angVel, const matrix3x4_t &prev, const matrix3x4_t &current, float dt );
// Give a derivative of a bone, compute the velocity & angular velocity of that bone
//void CalcBoneVelocityFromDerivative( const QAngle &vecAngles, Vector &velocity, AngularImpulse &angVel, const matrix3x4_t &current );
// This function sets up the local transform for a single frame of animation. It doesn't handle
// pose parameters or interpolation between frames.
// void SetupSingleBoneMatrix_PS3(
// CStudioHdr_PS3 *pOwnerHdr,
// int nSequence,
// int iFrame,
// int iBone,
// matrix3x4_t &mBoneLocal );
// Purpose: build boneToWorld transforms for a specific bone
void BuildBoneChain_PS3(
const int *pBoneParent,
const matrix3x4a_t &rootxform,
const BoneVector pos[],
const BoneQuaternion q[],
int iBone,
matrix3x4a_t *pBoneToWorld
);
void BuildBoneChain_PS3(
const int *pBoneParent,
const matrix3x4a_t &rootxform,
const BoneVector pos[],
const BoneQuaternion q[],
int iBone,
matrix3x4a_t *pBoneToWorld,
CBoneBitList_PS3 &boneComputed );
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
// ik info
class CIKTarget_PS3
{
public:
// void SetOwner( int entindex, const Vector &pos, const QAngle &angles );
// void ClearOwner( void );
// int GetOwner( void );
// void UpdateOwner( int entindex, const Vector &pos, const QAngle &angles );
// void SetPos( const Vector &pos );
// void SetAngles( const QAngle &angles );
// void SetQuaternion( const Quaternion &q );
// void SetNormal( const Vector &normal );
// void SetPosWithNormalOffset( const Vector &pos, const Vector &normal );
// void SetOnWorld( bool bOnWorld = true );
// bool IsActive( void );
// void IKFailed( void );
int chain;
int type;
// void MoveReferenceFrame( Vector &deltaPos, QAngle &deltaAngles );
// accumulated offset from ideal footplant location
public:
struct x2 {
char *pAttachmentName;
Vector pos;
Quaternion q;
} offset;
//private:
struct x3 {
Vector pos;
Quaternion q;
} ideal;
public:
struct x4 {
float latched;
float release;
float height;
float floor;
float radius;
float flTime;
float flWeight;
Vector pos;
Quaternion q;
bool onWorld;
} est; // estimate contact position
struct x5 {
float hipToFoot; // distance from hip
float hipToKnee; // distance from hip to knee
float kneeToFoot; // distance from knee to foot
Vector hip; // location of hip
Vector closest; // closest valid location from hip to foot that the foot can move to
Vector knee; // pre-ik location of knee
Vector farthest; // farthest valid location from hip to foot that the foot can move to
Vector lowest; // lowest position directly below hip that the foot can drop to
} trace;
//private:
// internally latched footset, position
struct x1 {
// matrix3x4a_t worldTarget;
bool bNeedsLatch;
bool bHasLatch;
float influence;
int iFramecounter;
int owner;
Vector absOrigin;
QAngle absAngles;
Vector pos;
Quaternion q;
Vector deltaPos; // accumulated error
Quaternion deltaQ;
Vector debouncePos;
Quaternion debounceQ;
} latched;
struct x6 {
float flTime; // time last error was detected
float flErrorTime;
float ramp;
bool bInError;
} error;
// friend class CIKContext_PS3;
};
struct ikchainresult_t_PS3
{
// accumulated offset from ideal footplant location
int target;
Vector pos;
Quaternion q;
float flWeight;
};
struct ikcontextikrule_t_PS3
{
int index;
int type;
int chain;
int bone;
int slot; // iktarget slot. Usually same as chain.
float height;
float radius;
float floor;
Vector pos;
float pad1;
Quaternion q;
float start; // beginning of influence
float peak; // start of full influence
float tail; // end of full influence
float end; // end of all influence
float top;
float drop;
float commit; // frame footstep target should be committed
float release; // frame ankle should end rotation from latched orientation
float flWeight; // processed version of start-end cycle
float flRuleWeight; // blending weight
float latched; // does the IK rule use a latched value?
char *szLabel;
Vector kneeDir;
float pad2;
Vector kneePos;
float pad3;
ikcontextikrule_t_PS3() {}
private:
// No copy constructors allowed
ikcontextikrule_t_PS3(const ikcontextikrule_t_PS3& vOther);
};
void Studio_AlignIKMatrix_PS3( matrix3x4a_t &mMat, const Vector &vAlignTo );
bool Studio_SolveIK_PS3( int8 iThigh, int8 iKnee, int8 iFoot, Vector &targetFoot, matrix3x4a_t* pBoneToWorld );
bool Studio_SolveIK_PS3( int8 iThigh, int8 iKnee, int8 iFoot, Vector &targetFoot, Vector &targetKneePos, Vector &targetKneeDir, matrix3x4a_t* pBoneToWorld );
class CIKContext_PS3
{
public:
CIKContext_PS3( );
// void Init( const CStudioHdr *pStudioHdr, const QAngle &angles, const BoneVector &pos, float flTime, int iFramecounter, int boneMask );
void Init( bonejob_SPU *pBonejobSPU, const QAngle &angles, const Vector &pos, float flTime, int iFramecounter, int boneMask );
// void AddDependencies( mstudioseqdesc_t_PS3 &seqdesc, int iSequence, float flCycle, const float poseParameters[], float flWeight = 1.0f );
void ClearTargets( void );
// void UpdateTargets( Vector pos[], Quaternion q[], matrix3x4a_t boneToWorld[], CBoneBitList &boneComputed );
// void AutoIKRelease( void );
void AddAutoplayLocks( bonejob_SPU *pBonejob, BoneVector pos[], BoneQuaternion q[] );
void SolveAutoplayLocks( bonejob_SPU *pBonejob, BoneVector pos[], BoneQuaternion q[] );
// void AddSequenceLocks( mstudioseqdesc_t &SeqDesc, BoneVector pos[], BoneQuaternion q[] );
void AddSequenceLocks( bonejob_SPU *pBonejob, accumposeentry_SPU* pPoseEntry, BoneVector pos[], BoneQuaternion q[] );
void SolveSequenceLocks( bonejob_SPU *pBonejob, accumposeentry_SPU* pPoseEntry, BoneVector pos[], BoneQuaternion q[] );
// void AddAllLocks( BoneVector pos[], BoneQuaternion q[] );
// void SolveAllLocks( BoneVector pos[], BoneQuaternion q[] );
void SolveLock( bonejob_SPU *pBonejob, const mstudioiklock_t_PS3 *plock, int i, BoneVector pos[], BoneQuaternion q[], matrix3x4a_t boneToWorld[], CBoneBitList_PS3 &boneComputed );
// CUtlVectorFixed< CIKTarget, 12 > m_target;
CIKTarget_PS3 m_target[ 12 ];
int m_targetCount;
int m_numTarget;
private:
// CStudioHdr const *m_pStudioHdr;
//
// bool Estimate( int iSequence, float flCycle, int iTarget, const float poseParameter[], float flWeight = 1.0f );
void BuildBoneChain( const bonejob_SPU *pBonejob, const BoneVector pos[], const BoneQuaternion q[], int iBone, matrix3x4a_t *pBoneToWorld, CBoneBitList_PS3 &boneComputed );
//
// // virtual IK rules, filtered and combined from each sequence
// CUtlVector< CUtlVector< ikcontextikrule_t_PS3 > > m_ikChainRule;
// CUtlVector< ikcontextikrule_t_PS3 > m_ikLock;
ikcontextikrule_t_PS3 m_ikLock[ MAX_IKLOCKS ];
matrix3x4a_t m_rootxform;
int m_iFramecounter;
float m_flTime;
int m_boneMask;
};
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
// replaces the bonetoworld transforms for all bones that are procedural
// bool CalcProceduralBone_PS3(
// const CStudioHdr_PS3 *pStudioHdr,
// int iBone,
// CBoneAccessor_PS3 &bonetoworld
// );
// void Studio_BuildMatrices(
// const CStudioHdr_PS3 *pStudioHdr,
// const QAngle& angles,
// const BoneVector& origin,
// const BoneVector pos[],
// const BoneQuaternion q[],
// int iBone,
// float flScale,
// matrix3x4a_t bonetoworld[MAXSTUDIOBONES],
// int boneMask
// );
// Get a bone->bone relative transform
//void Studio_CalcBoneToBoneTransform( const CStudioHdr *pStudioHdr, int inputBoneIndex, int outputBoneIndex, matrix3x4_t &matrixOut );
// Given a bone rotation value, figures out the value you need to give to the controller
// to have the bone at that value.
// [in] flValue = the desired bone rotation value
// [out] ctlValue = the (0-1) value to set the controller t.
// return value = flValue, unwrapped to lie between the controller's start and end.
//float Studio_SetController( const CStudioHdr *pStudioHdr, int iController, float flValue, float &ctlValue );
// Given a 0-1 controller value, maps it into the controller's start and end and returns the bone rotation angle.
// [in] ctlValue = value in controller space (0-1).
// return value = value in bone space
//float Studio_GetController( const CStudioHdr *pStudioHdr, int iController, float ctlValue );
//void Studio_CalcDefaultPoseParameters( const CStudioHdr *pStudioHdr, float flPoseParameter[MAXSTUDIOPOSEPARAM], int nCount );
//float Studio_GetPoseParameter( const CStudioHdr *pStudioHdr, int iParameter, float ctlValue );
//float Studio_SetPoseParameter( const CStudioHdr *pStudioHdr, int iParameter, float flValue, float &ctlValue );
// converts a global 0..1 pose parameter into the local sequences blending value
//int Studio_LocalPoseParameter( const CStudioHdr *pStudioHdr, const float poseParameter[], mstudioseqdesc_t &seqdesc, int iSequence, int iLocalIndex, float &flSetting );
//void Studio_SeqAnims( const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[], mstudioanimdesc_t *panim[4], float *weight );
//int Studio_MaxFrame( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[] );
//float Studio_FPS( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[] );
//float Studio_CPS( const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[] );
//float Studio_Duration( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[] );
//void Studio_MovementRate( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], Vector *pVec );
//float Studio_SeqMovementAndDuration( const CStudioHdr *pStudioHdr, int iSequence, float flCycleFrom, float flCycleTo, const float poseParameter[], Vector &deltaPos );
// void Studio_Movement( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], Vector *pVec );
//void Studio_AnimPosition( mstudioanimdesc_t *panim, float flCycle, Vector &vecPos, Vector &vecAngle );
//void Studio_AnimVelocity( mstudioanimdesc_t *panim, float flCycle, Vector &vecVelocity );
//float Studio_FindAnimDistance( mstudioanimdesc_t *panim, float flDist );
// bool Studio_AnimMovement( mstudioanimdesc_t *panim, float flCycleFrom, float flCycleTo, Vector &deltaPos, QAngle &deltaAngle );
// bool Studio_SeqMovement( const CStudioHdr *pStudioHdr, int iSequence, float flCycleFrom, float flCycleTo, const float poseParameter[], Vector &deltaMovement, QAngle &deltaAngle );
// bool Studio_SeqVelocity( const CStudioHdr *pStudioHdr, int iSequence, float flCycle, const float poseParameter[], Vector &vecVelocity );
// float Studio_FindSeqDistance( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], float flDist );
// float Studio_FindSeqVelocity( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], float flVelocity );
// int Studio_FindAttachment( const CStudioHdr *pStudioHdr, const char *pAttachmentName );
// int Studio_FindRandomAttachment( const CStudioHdr *pStudioHdr, const char *pAttachmentName );
// int Studio_BoneIndexByName( const CStudioHdr *pStudioHdr, const char *pName );
// const char *Studio_GetDefaultSurfaceProps( CStudioHdr *pstudiohdr );
// float Studio_GetMass( CStudioHdr *pstudiohdr );
// const char *Studio_GetKeyValueText( const CStudioHdr *pStudioHdr, int iSequence );
// FORWARD_DECLARE_HANDLE( memhandle_t );
// struct bonecacheparams_t
// {
// CStudioHdr *pStudioHdr;
// matrix3x4a_t *pBoneToWorld;
// float curtime;
// int boneMask;
// };
//
// class CBoneCache
// {
// public:
//
// // you must implement these static functions for the ResourceManager
// // -----------------------------------------------------------
// static CBoneCache *CreateResource( const bonecacheparams_t &params );
// static unsigned int EstimatedSize( const bonecacheparams_t &params );
// // -----------------------------------------------------------
// // member functions that must be present for the ResourceManager
// void DestroyResource();
// CBoneCache *GetData() { return this; }
// unsigned int Size() { return m_size; }
// // -----------------------------------------------------------
//
// CBoneCache();
//
// // was constructor, but placement new is messy wrt memdebug - so cast & init instead
// void Init( const bonecacheparams_t &params, unsigned int size, short *pStudioToCached, short *pCachedToStudio, int cachedBoneCount );
//
// void UpdateBones( const matrix3x4a_t *pBoneToWorld, int numbones, float curtime );
// matrix3x4a_t *GetCachedBone( int studioIndex );
// void ReadCachedBones( matrix3x4a_t *pBoneToWorld );
// void ReadCachedBonePointers( matrix3x4_t **bones, int numbones );
//
// bool IsValid( float curtime, float dt = 0.1f );
//
// public:
// float m_timeValid;
// int m_boneMask;
//
// private:
// matrix3x4a_t *BoneArray();
// short *StudioToCached();
// short *CachedToStudio();
//
// unsigned int m_size;
// unsigned short m_cachedBoneCount;
// unsigned short m_matrixOffset;
// unsigned short m_cachedToStudioOffset;
// unsigned short m_boneOutOffset;
// };
//
// void Studio_LockBoneCache();
// void Studio_UnlockBoneCache();
//
// CBoneCache *Studio_GetBoneCache( memhandle_t cacheHandle, bool bLock = false );
// void Studio_ReleaseBoneCache( memhandle_t cacheHandle );
// memhandle_t Studio_CreateBoneCache( bonecacheparams_t &params );
// void Studio_DestroyBoneCache( memhandle_t cacheHandle );
// void Studio_InvalidateBoneCacheIfNotMatching( memhandle_t cacheHandle, float flTimeValid );
// Given a ray, trace for an intersection with this studiomodel. Get the array of bones from StudioSetupHitboxBones
// bool TraceToStudio( class IPhysicsSurfaceProps *pProps, const Ray_t& ray, CStudioHdr *pStudioHdr, mstudiohitboxset_t *set, matrix3x4_t **hitboxbones, int fContentsMask, const Vector &vecOrigin, float flScale, trace_t &trace );
// TERROR: TraceToStudio variant that prioritizes hitgroups, so bullets can pass through arms and chest to hit the head, for instance
// bool TraceToStudioGrouped( IPhysicsSurfaceProps *pProps, const Ray_t& ray, CStudioHdr *pStudioHdr, mstudiohitboxset_t *set,
// matrix3x4_t **hitboxbones, int fContentsMask, trace_t &tr, const CUtlVector< int > &sortedHitgroups );
void QuaternionSM_PS3( float s, const Quaternion &p, const Quaternion &q, Quaternion &qt );
void QuaternionMA_PS3( const Quaternion &p, float s, const Quaternion &q, Quaternion &qt );
//
// bool Studio_PrefetchSequence( const CStudioHdr *pStudioHdr, int iSequence );
//
// void Studio_RunBoneFlexDrivers( float *pFlexController, const CStudioHdr *pStudioHdr, const Vector *pPositions, const matrix3x4_t *pBoneToWorld, const matrix3x4_t &mRootToWorld );
//-----------------------------------------------------------------------------
// Computes a number of twist bones given a parent/child pair
// pqTwists, pflWeights, pqTwistBinds must all have at least nCount elements
//-----------------------------------------------------------------------------
// void ComputeTwistBones(
// Quaternion *pqTwists,
// int nCount,
// bool bInverse,
// const Vector &vUp,
// const Quaternion &qParent,
// const matrix3x4_t &mChild,
// const Quaternion &qBaseInv,
// const float *pflWeights,
// const Quaternion *pqTwistBinds );
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
// round up to next 16B boundary, then add 16B
#define ROUNDUPTONEXT16B( a ) (0x10 + (a + (0x10 - (a%0x10))))
//-----------------------------------------------------------------------------
// Squeezing memory for SPU - manual float and int allocs
//-----------------------------------------------------------------------------
#define LS_FLOATSTACK_SIZE ((MAXSTUDIOBONES_PS3 + 32) * 4 * 3 * 3) // 24k
#define LS_INTSTACK_SIZE ((MAXSTUDIOBONES_PS3 * 2) + 16) // 1k
extern ALIGN16 byte g_ls_Stack[ (LS_FLOATSTACK_SIZE * sizeof(float)) + (LS_INTSTACK_SIZE * sizeof(int)) ];
extern byte *g_ls_StackPtr;
extern byte *g_ls_StackPtr_MAX;
// init when starting Job
FORCEINLINE void InitLSStack()
{
g_ls_StackPtr = g_ls_Stack;
}
// term when exiting Job
FORCEINLINE void TermLSStack()
{
#if !defined( _CERT )
// ensure pop'd to start
if( g_ls_StackPtr != g_ls_Stack )
{
Msg("*** IMPROPER LS STACK ON TERM ***\n");
Msg("*** IMPROPER LS STACK ON TERM ***\n");
Msg("*** IMPROPER LS STACK ON TERM ***\n");
Msg("*** IMPROPER LS STACK ON TERM ***\n");
DebuggerBreak();
}
#endif
// float watermark
// Msg("LS stack - high: %d, max: %d\n", (int)(g_ls_StackPtr_MAX - g_ls_Stack), (int)sizeof(g_ls_Stack) );
}
// keep it simple, ensure allocation is multiple of 16B to keep vectors aligned
// size is number of bytes
FORCEINLINE byte *PushLSStack( int size )
{
byte *pStack = g_ls_StackPtr;
g_ls_StackPtr += ROUNDUPTONEXT16B( size );
#if !defined( _CERT )
if( g_ls_StackPtr > (g_ls_Stack + sizeof(g_ls_Stack)) )
{
Msg("*** EXCEEDED LS STACK ***\n");
Msg("*** EXCEEDED LS STACK ***\n");
Msg("*** EXCEEDED LS STACK ***\n");
Msg("*** EXCEEDED LS STACK ***\n");
DebuggerBreak();
}
#endif
// maintain watermark
if( g_ls_StackPtr > g_ls_StackPtr_MAX )
{
g_ls_StackPtr_MAX = g_ls_StackPtr;
}
return pStack;
}
FORCEINLINE void PopLSStack( int size )
{
g_ls_StackPtr -= ROUNDUPTONEXT16B( size );
#if !defined( _CERT )
if( g_ls_StackPtr < g_ls_Stack )
{
Msg("*** EXCEEDED LS STACK - POP ***\n");
Msg("*** EXCEEDED LS STACK - POP ***\n");
Msg("*** EXCEEDED LS STACK - POP ***\n");
Msg("*** EXCEEDED LS STACK - POP ***\n");
DebuggerBreak();
}
#endif
}
// class CLSStack
// {
// public:
// CLSStack( int size )
// {
// ;
// }
// ~CLSStack()
// {
// ;
// }
// };
//
// #define LSSTACK(size) CLSStack
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
#if defined(__SPU__)
extern BoneVector *g_posInit;
extern BoneQuaternion *g_qInit;
extern ikcontextikrule_t_PS3 *g_addDep_IKRules;
extern int g_addDep_numIKRules;
#else
extern BoneVector g_posInit[ MAXSTUDIOBONES_PS3 ];
extern BoneQuaternion g_qInit[ MAXSTUDIOBONES_PS3 ];
extern ikcontextikrule_t_PS3 g_addDep_IKRules[ MAX_IKRULES ] ALIGN16;
extern int g_addDep_numIKRules;
#endif
#endif // _PS3
#endif // BONE_SETUP_H