Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1565 lines
48 KiB

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include "cmodel.h"
#include "dispcoll_common.h"
#include "collisionutils.h"
#include "tier1/strtools.h"
#include "tier0/vprof.h"
#include "tier1/fmtstr.h"
#include "tier1/utlhash.h"
#include "tier1/generichash.h"
#include "tier0/fasttimer.h"
#include "vphysics/virtualmesh.h"
#include "tier1/datamanager.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//=============================================================================
// Cache
#ifdef ENGINE_DLL
CDataManager<CDispCollTree, CDispCollTree *, bool, CThreadFastMutex> g_DispCollTriCache( 2048*1024 );
#endif
struct DispCollPlaneIndex_t
{
Vector vecPlane;
int index;
};
class CPlaneIndexHashFuncs
{
public:
// cppcheck-suppress noExplicitConstructor
CPlaneIndexHashFuncs( int ) {}
// Compare
bool operator()( const DispCollPlaneIndex_t &lhs, const DispCollPlaneIndex_t &rhs ) const
{
return ( lhs.vecPlane == rhs.vecPlane || lhs.vecPlane == -rhs.vecPlane );
}
// Hash
unsigned int operator()( const DispCollPlaneIndex_t &item ) const
{
return HashItem( item.vecPlane ) ^ HashItem( -item.vecPlane );
}
};
CUtlHash<DispCollPlaneIndex_t, CPlaneIndexHashFuncs, CPlaneIndexHashFuncs> g_DispCollPlaneIndexHash( 512 );
//=============================================================================
// Displacement Collision Triangle
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
CDispCollTri::CDispCollTri()
{
Init();
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTri::Init( void )
{
m_vecNormal.Init();
m_flDist = 0.0f;
m_TriData[0].m_IndexDummy = m_TriData[1].m_IndexDummy = m_TriData[2].m_IndexDummy = 0;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTri::CalcPlane( CDispVector<Vector> &m_aVerts )
{
Vector vecEdges[2];
vecEdges[0] = m_aVerts[GetVert( 1 )] - m_aVerts[GetVert( 0 )];
vecEdges[1] = m_aVerts[GetVert( 2 )] - m_aVerts[GetVert( 0 )];
m_vecNormal = vecEdges[1].Cross( vecEdges[0] );
VectorNormalize( m_vecNormal );
m_flDist = m_vecNormal.Dot( m_aVerts[GetVert( 0 )] );
// Calculate the signbits for the plane - fast test.
m_ucSignBits = 0;
m_ucPlaneType = PLANE_ANYZ;
for ( int iAxis = 0; iAxis < 3 ; ++iAxis )
{
if ( m_vecNormal[iAxis] < 0.0f )
{
m_ucSignBits |= 1 << iAxis;
}
if ( m_vecNormal[iAxis] == 1.0f )
{
m_ucPlaneType = iAxis;
}
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
inline void FindMin( float v1, float v2, float v3, int &iMin )
{
float flMin = v1;
iMin = 0;
if( v2 < flMin ) { flMin = v2; iMin = 1; }
if( v3 < flMin ) { flMin = v3; iMin = 2; }
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
inline void FindMax( float v1, float v2, float v3, int &iMax )
{
float flMax = v1;
iMax = 0;
if( v2 > flMax ) { flMax = v2; iMax = 1; }
if( v3 > flMax ) { flMax = v3; iMax = 2; }
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTri::FindMinMax( CDispVector<Vector> &m_aVerts )
{
int iMin, iMax;
FindMin( m_aVerts[GetVert(0)].x, m_aVerts[GetVert(1)].x, m_aVerts[GetVert(2)].x, iMin );
FindMax( m_aVerts[GetVert(0)].x, m_aVerts[GetVert(1)].x, m_aVerts[GetVert(2)].x, iMax );
SetMin( 0, iMin );
SetMax( 0, iMax );
FindMin( m_aVerts[GetVert(0)].y, m_aVerts[GetVert(1)].y, m_aVerts[GetVert(2)].y, iMin );
FindMax( m_aVerts[GetVert(0)].y, m_aVerts[GetVert(1)].y, m_aVerts[GetVert(2)].y, iMax );
SetMin( 1, iMin );
SetMax( 1, iMax );
FindMin( m_aVerts[GetVert(0)].z, m_aVerts[GetVert(1)].z, m_aVerts[GetVert(2)].z, iMin );
FindMax( m_aVerts[GetVert(0)].z, m_aVerts[GetVert(1)].z, m_aVerts[GetVert(2)].z, iMax );
SetMin( 2, iMin );
SetMax( 2, iMax );
}
// SIMD Routines for intersecting with the quad tree
FORCEINLINE int IntersectRayWithFourBoxes( const FourVectors &rayStart, const FourVectors &invDelta, const FourVectors &rayExtents, const FourVectors &boxMins, const FourVectors &boxMaxs )
{
// SIMD Test ray against all four boxes at once
// each node stores the bboxes of its four children
FourVectors hitMins = boxMins;
hitMins -= rayStart;
FourVectors hitMaxs = boxMaxs;
hitMaxs -= rayStart;
// adjust for swept box by enlarging the child bounds to shrink the sweep down to a point
hitMins -= rayExtents;
hitMaxs += rayExtents;
// compute the parametric distance along the ray of intersection in each dimension
hitMins *= invDelta;
hitMaxs *= invDelta;
// Find the exit parametric intersection distance in each dimesion, for each box
FourVectors exitT = maximum(hitMins,hitMaxs);
// Find the entry parametric intersection distance in each dimesion, for each box
FourVectors entryT = minimum(hitMins,hitMaxs);
// now find the max overall entry distance across all dimensions for each box
fltx4 minTemp = MaxSIMD(entryT.x, entryT.y);
fltx4 boxEntryT = MaxSIMD(minTemp, entryT.z);
// now find the min overall exit distance across all dimensions for each box
fltx4 maxTemp = MinSIMD(exitT.x, exitT.y);
fltx4 boxExitT = MinSIMD(maxTemp, exitT.z);
boxEntryT = MaxSIMD(boxEntryT,Four_Zeros);
boxExitT = MinSIMD(boxExitT,Four_Ones);
// if entry<=exit for the box, we've got a hit
bi32x4 active = CmpLeSIMD(boxEntryT,boxExitT); // mask of which boxes are active
// hit at least one box?
return TestSignSIMD(active);
}
// This does 4 simultaneous box intersections
// NOTE: This can be used as a 1 vs 4 test by replicating a single box into the one side
FORCEINLINE int IntersectFourBoxPairs( const FourVectors &mins0, const FourVectors &maxs0, const FourVectors &mins1, const FourVectors &maxs1 )
{
// find the max mins and min maxs in each dimension
FourVectors intersectMins = maximum(mins0,mins1);
FourVectors intersectMaxs = minimum(maxs0,maxs1);
// if intersectMins <= intersectMaxs then the boxes overlap in this dimension
bi32x4 overlapX = CmpLeSIMD(intersectMins.x,intersectMaxs.x);
bi32x4 overlapY = CmpLeSIMD(intersectMins.y,intersectMaxs.y);
bi32x4 overlapZ = CmpLeSIMD(intersectMins.z,intersectMaxs.z);
// if the boxes overlap in all three dimensions, they intersect
bi32x4 tmp = AndSIMD( overlapX, overlapY );
bi32x4 active = AndSIMD( tmp, overlapZ );
// hit at least one box?
return TestSignSIMD(active);
}
// This does 4 simultaneous box vs. sphere intersections
// NOTE: This can be used as a 1 vs 4 test by replicating a single sphere/box into one side
FORCEINLINE int IntersectFourBoxSpherePairs( const FourVectors &center, const fltx4 &radiusSq, const FourVectors &mins, const FourVectors &maxs )
{
// for each dimension of each box, compute the clamped distance from the mins side to the center (must be >= 0)
FourVectors minDist = mins;
minDist -= center;
FourVectors dist;
dist.x = MaxSIMD(Four_Zeros, minDist.x);
dist.y = MaxSIMD(Four_Zeros, minDist.y);
dist.z = MaxSIMD(Four_Zeros, minDist.z);
// now compute the distance from the maxs side to the center
FourVectors maxDist = center;
maxDist -= maxs;
// NOTE: Don't need to clamp here because we clamp against the minDist which must be >= 0, so the two clamps
// get folded together
FourVectors totalDist;
totalDist.x = MaxSIMD(dist.x, maxDist.x);
totalDist.y = MaxSIMD(dist.y, maxDist.y);
totalDist.z = MaxSIMD(dist.z, maxDist.z);
// get the total squred distance between each box & sphere center by summing the squares of each
// component/dimension
fltx4 distSq = totalDist * totalDist;
// if squared distance between each sphere center & box is less than the radiusSquared for that sphere
// we have an intersection
bi32x4 active = CmpLeSIMD(distSq,radiusSq);
// at least one intersection?
return TestSignSIMD(active);
}
int FORCEINLINE CDispCollTree::BuildRayLeafList( int iNode, rayleaflist_t &list )
{
list.nodeList[0] = iNode;
int listIndex = 0;
list.maxIndex = 0;
while ( listIndex <= list.maxIndex )
{
iNode = list.nodeList[listIndex];
// the rest are all leaves
if ( IsLeafNode(iNode) )
return listIndex;
listIndex++;
const CDispCollNode &node = m_nodes[iNode];
int mask = IntersectRayWithFourBoxes( list.rayStart, list.invDelta, list.rayExtents, node.m_mins, node.m_maxs );
if ( mask )
{
int child = Nodes_GetChild( iNode, 0 );
if ( mask & 1 )
{
++list.maxIndex;
list.nodeList[list.maxIndex] = child;
}
if ( mask & 2 )
{
++list.maxIndex;
list.nodeList[list.maxIndex] = child+1;
}
if ( mask & 4 )
{
++list.maxIndex;
list.nodeList[list.maxIndex] = child+2;
}
if ( mask & 8 )
{
++list.maxIndex;
list.nodeList[list.maxIndex] = child+3;
}
Assert(list.maxIndex < MAX_AABB_LIST);
}
}
return listIndex;
}
//-----------------------------------------------------------------------------
// Purpose: Create the AABB tree.
//-----------------------------------------------------------------------------
bool CDispCollTree::AABBTree_Create( CCoreDispInfo *pDisp )
{
// Copy the flags.
m_nFlags = pDisp->GetSurface()->GetFlags();
// Copy necessary displacement data.
AABBTree_CopyDispData( pDisp );
// Setup/create the leaf nodes first so the recusion can use this data to stop.
AABBTree_CreateLeafs();
// Create the bounding box of the displacement surface + the base face.
AABBTree_CalcBounds();
// Successful.
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::AABBTree_CopyDispData( CCoreDispInfo *pDisp )
{
// Displacement size.
m_nPower = pDisp->GetPower();
// Displacement base surface data.
CCoreDispSurface *pSurf = pDisp->GetSurface();
m_nContents = pSurf->GetContents();
pSurf->GetNormal( m_vecStabDir );
for ( int iPoint = 0; iPoint < 4; iPoint++ )
{
pSurf->GetPoint( iPoint, m_vecSurfPoints[iPoint] );
}
// Allocate collision tree data.
HUNK_ALLOC_CREDIT_( "AABBTree_CopyDispData" );
m_aVerts.SetSize( GetSize() );
m_aTris.SetSize( GetTriSize() );
int numLeaves = (GetWidth()-1) * (GetHeight()-1);
m_leaves.SetCount(numLeaves);
int numNodes = Nodes_CalcCount( m_nPower );
numNodes -= numLeaves;
m_nodes.SetCount(numNodes);
// Setup size.
m_nSize = sizeof( this );
m_nSize += sizeof( Vector ) * GetSize();
m_nSize += sizeof( CDispCollTri ) * GetTriSize();
#if OLD_DISP_AABB
m_nSize += sizeof( CDispCollAABBNode ) * Nodes_CalcCount( m_nPower );
#endif
m_nSize += sizeof(m_nodes[0]) * m_nodes.Count();
m_nSize += sizeof(m_leaves[0]) * m_leaves.Count();
m_nSize += sizeof( CDispCollTri* ) * DISPCOLL_TREETRI_SIZE;
// Copy vertex data.
for ( int iVert = 0; iVert < m_aVerts.Count(); iVert++ )
{
pDisp->GetVert( iVert, m_aVerts[iVert] );
}
// Copy and setup triangle data.
unsigned short iVerts[3];
for ( int iTri = 0; iTri < m_aTris.Count(); ++iTri )
{
pDisp->GetTriIndices( iTri, iVerts[0], iVerts[1], iVerts[2] );
m_aTris[iTri].SetVert( 0, iVerts[0] );
m_aTris[iTri].SetVert( 1, iVerts[1] );
m_aTris[iTri].SetVert( 2, iVerts[2] );
m_aTris[iTri].m_uiFlags = pDisp->GetTriTagValue( iTri );
// Calculate the surface props and set flags.
if ( ( pDisp->GetFlags() & DISP_INFO_FLAG_HAS_MULTIBLEND ) != 0 )
{
float flTotalAlpha[3] = { 0,0,0 };
for ( int iVert = 0; iVert < 3; ++iVert )
{
Vector4D vBlend;
pDisp->GetMultiBlend( m_aTris[iTri].GetVert( iVert ), vBlend );
flTotalAlpha[0] += vBlend.y;
flTotalAlpha[1] += vBlend.z;
flTotalAlpha[2] += vBlend.w;
}
if ( ( flTotalAlpha[2] > DISP_MULTIBLEND_PROP_THRESHOLD ) && ( flTotalAlpha[2] >= flTotalAlpha[1] ) && ( flTotalAlpha[2] >= flTotalAlpha[0] ) )
{
m_aTris[iTri].m_uiFlags |= DISPSURF_FLAG_SURFPROP4;
}
else if ( ( flTotalAlpha[1] > DISP_MULTIBLEND_PROP_THRESHOLD ) && ( flTotalAlpha[1] >= flTotalAlpha[0] ) )
{
m_aTris[iTri].m_uiFlags |= DISPSURF_FLAG_SURFPROP3;
}
else if ( flTotalAlpha[0] > DISP_MULTIBLEND_PROP_THRESHOLD )
{
m_aTris[iTri].m_uiFlags |= DISPSURF_FLAG_SURFPROP2;
}
else
{
m_aTris[iTri].m_uiFlags |= DISPSURF_FLAG_SURFPROP1;
}
}
else
{
float flTotalAlpha = 0.0f;
for ( int iVert = 0; iVert < 3; ++iVert )
{
flTotalAlpha += pDisp->GetAlpha( m_aTris[iTri].GetVert( iVert ) );
}
if ( flTotalAlpha > DISP_ALPHA_PROP_DELTA )
{
m_aTris[iTri].m_uiFlags |= DISPSURF_FLAG_SURFPROP2;
}
else
{
m_aTris[iTri].m_uiFlags |= DISPSURF_FLAG_SURFPROP1;
}
}
// Add the displacement surface flag.
m_aTris[iTri].m_uiFlags |= DISPSURF_FLAG_SURFACE;
// Calculate the plane normal and the min max.
m_aTris[iTri].CalcPlane( m_aVerts );
m_aTris[iTri].FindMinMax( m_aVerts );
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::AABBTree_CreateLeafs( void )
{
int numLeaves = (GetWidth()-1) * (GetHeight()-1);
m_leaves.SetCount(numLeaves);
int numNodes = Nodes_CalcCount( m_nPower );
numNodes -= numLeaves;
m_nodes.SetCount(numNodes);
// Get the width and height of the displacement.
int nWidth = GetWidth() - 1;
int nHeight = GetHeight() - 1;
for ( int iHgt = 0; iHgt < nHeight; ++iHgt )
{
for ( int iWid = 0; iWid < nWidth; ++iWid )
{
int iLeaf = Nodes_GetIndexFromComponents( iWid, iHgt );
int iIndex = iHgt * nWidth + iWid;
int iTri = iIndex * 2;
m_leaves[iLeaf].m_tris[0] = iTri;
m_leaves[iLeaf].m_tris[1] = iTri + 1;
}
}
}
void CDispCollTree::AABBTree_GenerateBoxes_r( int nodeIndex, Vector *pMins, Vector *pMaxs )
{
// leaf
ClearBounds( *pMins, *pMaxs );
if ( nodeIndex >= m_nodes.Count() )
{
int iLeaf = nodeIndex - m_nodes.Count();
for ( int iTri = 0; iTri < 2; ++iTri )
{
int triIndex = m_leaves[iLeaf].m_tris[iTri];
const CDispCollTri &tri = m_aTris[triIndex];
AddPointToBounds( m_aVerts[tri.GetVert( 0 )], *pMins, *pMaxs );
AddPointToBounds( m_aVerts[tri.GetVert( 1 )], *pMins, *pMaxs );
AddPointToBounds( m_aVerts[tri.GetVert( 2 )], *pMins, *pMaxs );
}
}
else // node
{
Vector childMins[4], childMaxs[4];
for ( int i = 0; i < 4; i++ )
{
int child = Nodes_GetChild( nodeIndex, i );
AABBTree_GenerateBoxes_r( child, &childMins[i], &childMaxs[i] );
AddPointToBounds( childMins[i], *pMins, *pMaxs );
AddPointToBounds( childMaxs[i], *pMins, *pMaxs );
}
m_nodes[nodeIndex].m_mins.LoadAndSwizzle( childMins[0], childMins[1], childMins[2], childMins[3] );
m_nodes[nodeIndex].m_maxs.LoadAndSwizzle( childMaxs[0], childMaxs[1], childMaxs[2], childMaxs[3] );
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::AABBTree_CalcBounds( void )
{
// Check data.
if ( ( m_aVerts.Count() == 0 ) || ( m_nodes.Count() == 0 ) )
return;
AABBTree_GenerateBoxes_r( 0, &m_mins, &m_maxs );
#if INCLUDE_SURFACE_IN_BOUNDS
// Add surface points to bounds.
for ( int iPoint = 0; iPoint < 4; ++iPoint )
{
VectorMin( m_vecSurfPoints[iPoint], m_mins, m_mins );
VectorMax( m_vecSurfPoints[iPoint], m_maxs, m_maxs );
}
#endif
// Bloat a little.
for ( int iAxis = 0; iAxis < 3; ++iAxis )
{
m_mins[iAxis] -= 1.0f;
m_maxs[iAxis] += 1.0f;
}
}
static CThreadFastMutex s_CacheMutex;
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline void CDispCollTree::LockCache()
{
#ifdef ENGINE_DLL
if ( !g_DispCollTriCache.LockResource( m_hCache ) )
{
AUTO_LOCK_FM( s_CacheMutex );
// Cache may have just been created, so check once more
if ( !g_DispCollTriCache.LockResource( m_hCache ) )
{
Cache();
m_hCache = g_DispCollTriCache.CreateResource( this );
g_DispCollTriCache.LockResource( m_hCache );
//Msg( "Adding 0x%x to cache (actual %d) [%d, %d --> %.2f] %d total, %d unique\n", this, GetCacheMemorySize(), GetTriSize(), m_aEdgePlanes.Count(), (float)m_aEdgePlanes.Count()/(float)GetTriSize(), totals, uniques );
}
}
#else
Cache();
#endif
}
inline void CDispCollTree::UnlockCache()
{
#ifdef ENGINE_DLL
g_DispCollTriCache.UnlockResource( m_hCache );
#endif
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::Cache( void )
{
if ( m_aTrisCache.Count() == GetTriSize() )
{
return;
}
VPROF( "CDispCollTree::Cache" );
// Alloc.
// int nSize = sizeof( CDispCollTriCache ) * GetTriSize();
int nTriCount = GetTriSize();
{
MEM_ALLOC_CREDIT();
m_aTrisCache.SetSize( nTriCount );
}
for ( int iTri = 0; iTri < nTriCount; ++iTri )
{
Cache_Create( &m_aTris[iTri], iTri );
}
g_DispCollPlaneIndexHash.Purge();
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::AABBTree_Ray( const Ray_t &ray, RayDispOutput_t &output )
{
if ( IsBoxIntersectingRay( m_mins, m_maxs, ray.m_Start, ray.m_Delta, DISPCOLL_DIST_EPSILON ) )
{
return AABBTree_Ray( ray, ray.InvDelta(), output );
}
return false;
}
bool CDispCollTree::AABBTree_Ray( const Ray_t &ray, const Vector &vecInvDelta, RayDispOutput_t &output )
{
VPROF( "DispRayTest" );
// Check for ray test.
if ( CheckFlags( CCoreDispInfo::SURF_NORAY_COLL ) )
return false;
// Check for opacity.
if ( !( m_nContents & MASK_OPAQUE ) )
return false;
// Pre-calc the inverse delta for perf.
CDispCollTri *pImpactTri = NULL;
AABBTree_TreeTrisRayBarycentricTest( ray, vecInvDelta, DISPCOLL_ROOTNODE_INDEX, output, &pImpactTri );
if ( pImpactTri )
{
// Collision.
output.ndxVerts[0] = pImpactTri->GetVert( 0 );
output.ndxVerts[1] = pImpactTri->GetVert( 2 );
output.ndxVerts[2] = pImpactTri->GetVert( 1 );
Assert( (output.u <= 1.0f ) && ( output.v <= 1.0f ) );
Assert( (output.u >= 0.0f ) && ( output.v >= 0.0f ) );
return true;
}
// No collision.
return false;
}
void CDispCollTree::AABBTree_TreeTrisRayBarycentricTest( const Ray_t &ray, const Vector &vecInvDelta, int iNode, RayDispOutput_t &output, CDispCollTri **pImpactTri )
{
rayleaflist_t list;
// NOTE: This part is loop invariant - should be hoisted up as far as possible
list.invDelta.DuplicateVector(vecInvDelta);
list.rayStart.DuplicateVector(ray.m_Start);
Vector ext = ray.m_Extents + Vector(DISPCOLL_DIST_EPSILON,DISPCOLL_DIST_EPSILON,DISPCOLL_DIST_EPSILON);
list.rayExtents.DuplicateVector(ext);
int listIndex = BuildRayLeafList( iNode, list );
float flU, flV, flT;
for ( ; listIndex <= list.maxIndex; listIndex++ )
{
int leafIndex = list.nodeList[listIndex] - m_nodes.Count();
CDispCollTri *pTri0 = &m_aTris[m_leaves[leafIndex].m_tris[0]];
CDispCollTri *pTri1 = &m_aTris[m_leaves[leafIndex].m_tris[1]];
if ( ComputeIntersectionBarycentricCoordinates( ray, m_aVerts[pTri0->GetVert( 0 )], m_aVerts[pTri0->GetVert( 2 )], m_aVerts[pTri0->GetVert( 1 )], flU, flV, &flT ) )
{
// Make sure it's inside the range
if ( ( flU >= 0.0f ) && ( flV >= 0.0f ) && ( ( flU + flV ) <= 1.0f ) )
{
if( ( flT > 0.0f ) && ( flT < output.dist ) )
{
(*pImpactTri) = pTri0;
output.u = flU;
output.v = flV;
output.dist = flT;
}
}
}
if ( ComputeIntersectionBarycentricCoordinates( ray, m_aVerts[pTri1->GetVert( 0 )], m_aVerts[pTri1->GetVert( 2 )], m_aVerts[pTri1->GetVert( 1 )], flU, flV, &flT ) )
{
// Make sure it's inside the range
if ( ( flU >= 0.0f ) && ( flV >= 0.0f ) && ( ( flU + flV ) <= 1.0f ) )
{
if( ( flT > 0.0f ) && ( flT < output.dist ) )
{
(*pImpactTri) = pTri1;
output.u = flU;
output.v = flV;
output.dist = flT;
}
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::AABBTree_Ray( const Ray_t &ray, const Vector &vecInvDelta, CBaseTrace *pTrace, bool bSide )
{
VPROF("AABBTree_Ray");
// VPROF_BUDGET( "DispRayTraces", VPROF_BUDGETGROUP_DISP_RAYTRACES );
// Check for ray test.
if ( CheckFlags( CCoreDispInfo::SURF_NORAY_COLL ) )
return false;
// Check for opacity.
if ( !( m_nContents & MASK_OPAQUE ) )
return false;
// Pre-calc the inverse delta for perf.
CDispCollTri *pImpactTri = NULL;
AABBTree_TreeTrisRayTest( ray, vecInvDelta, DISPCOLL_ROOTNODE_INDEX, pTrace, bSide, &pImpactTri );
if ( pImpactTri )
{
// Collision.
VectorCopy( pImpactTri->m_vecNormal, pTrace->plane.normal );
pTrace->plane.dist = pImpactTri->m_flDist;
pTrace->dispFlags = pImpactTri->m_uiFlags;
return true;
}
// No collision.
return false;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::AABBTree_TreeTrisRayTest( const Ray_t &ray, const Vector &vecInvDelta, int iNode, CBaseTrace *pTrace, bool bSide, CDispCollTri **pImpactTri )
{
rayleaflist_t list;
// NOTE: This part is loop invariant - should be hoisted up as far as possible
list.invDelta.DuplicateVector(vecInvDelta);
list.rayStart.DuplicateVector(ray.m_Start);
Vector ext = ray.m_Extents + Vector(DISPCOLL_DIST_EPSILON,DISPCOLL_DIST_EPSILON,DISPCOLL_DIST_EPSILON);
list.rayExtents.DuplicateVector(ext);
int listIndex = BuildRayLeafList( iNode, list );
for ( ;listIndex <= list.maxIndex; listIndex++ )
{
int leafIndex = list.nodeList[listIndex] - m_nodes.Count();
CDispCollTri *pTri0 = &m_aTris[m_leaves[leafIndex].m_tris[0]];
CDispCollTri *pTri1 = &m_aTris[m_leaves[leafIndex].m_tris[1]];
float flFrac = IntersectRayWithTriangle( ray, m_aVerts[pTri0->GetVert( 0 )], m_aVerts[pTri0->GetVert( 2 )], m_aVerts[pTri0->GetVert( 1 )], bSide );
if( ( flFrac >= 0.0f ) && ( flFrac < pTrace->fraction ) )
{
pTrace->fraction = flFrac;
(*pImpactTri) = pTri0;
}
flFrac = IntersectRayWithTriangle( ray, m_aVerts[pTri1->GetVert( 0 )], m_aVerts[pTri1->GetVert( 2 )], m_aVerts[pTri1->GetVert( 1 )], bSide );
if( ( flFrac >= 0.0f ) && ( flFrac < pTrace->fraction ) )
{
pTrace->fraction = flFrac;
(*pImpactTri) = pTri1;
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
int CDispCollTree::AABBTree_GetTrisInSphere( const Vector &center, float radius, unsigned short *pIndexOut, int indexMax )
{
return AABBTree_BuildTreeTrisInSphere_r( center, radius, DISPCOLL_ROOTNODE_INDEX, pIndexOut, indexMax );
}
int CDispCollTree::AABBTree_BuildTreeTrisInSphere_r( const Vector &center, float radius, int iNode, unsigned short *pIndexOut, unsigned short indexMax )
{
int nodeList[MAX_AABB_LIST];
nodeList[0] = iNode;
int nTriCount = 0;
int listIndex = 0;
int maxIndex = 0;
// NOTE: This part is loop invariant - should be hoisted up as far as possible
FourVectors sphereCenters;
sphereCenters.DuplicateVector(center);
float radiusSq = radius * radius;
fltx4 sphereRadSq = ReplicateX4(radiusSq);
while ( listIndex <= maxIndex )
{
iNode = nodeList[listIndex];
listIndex++;
// the rest are all leaves
if ( IsLeafNode(iNode) )
{
VPROF("Tris");
for ( --listIndex; listIndex <= maxIndex; listIndex++ )
{
if ( (nTriCount+2) <= indexMax )
{
int leafIndex = nodeList[listIndex] - m_nodes.Count();
pIndexOut[nTriCount] = m_leaves[leafIndex].m_tris[0];
pIndexOut[nTriCount+1] = m_leaves[leafIndex].m_tris[1];
nTriCount += 2;
}
}
break;
}
else
{
const CDispCollNode &node = m_nodes[iNode];
int mask = IntersectFourBoxSpherePairs( sphereCenters, sphereRadSq, node.m_mins, node.m_maxs );
if ( mask )
{
int child = Nodes_GetChild( iNode, 0 );
if ( mask & 1 )
{
++maxIndex;
nodeList[maxIndex] = child;
}
if ( mask & 2 )
{
++maxIndex;
nodeList[maxIndex] = child+1;
}
if ( mask & 4 )
{
++maxIndex;
nodeList[maxIndex] = child+2;
}
if ( mask & 8 )
{
++maxIndex;
nodeList[maxIndex] = child+3;
}
Assert(maxIndex < MAX_AABB_LIST);
}
}
}
return nTriCount;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::AABBTree_IntersectAABB( const Vector &absMins, const Vector &absMaxs )
{
// Check for hull test.
if ( CheckFlags( CCoreDispInfo::SURF_NOHULL_COLL ) )
return false;
cplane_t plane;
Vector center = 0.5f *(absMins + absMaxs);
Vector extents = absMaxs - center;
int nodeList[MAX_AABB_LIST];
nodeList[0] = 0;
int listIndex = 0;
int maxIndex = 0;
// NOTE: This part is loop invariant - should be hoisted up as far as possible
FourVectors mins0;
mins0.DuplicateVector(absMins);
FourVectors maxs0;
maxs0.DuplicateVector(absMaxs);
FourVectors rayExtents;
while ( listIndex <= maxIndex )
{
int iNode = nodeList[listIndex];
listIndex++;
// the rest are all leaves
if ( IsLeafNode(iNode) )
{
VPROF("Tris");
for ( --listIndex; listIndex <= maxIndex; listIndex++ )
{
int leafIndex = nodeList[listIndex] - m_nodes.Count();
CDispCollTri *pTri0 = &m_aTris[m_leaves[leafIndex].m_tris[0]];
CDispCollTri *pTri1 = &m_aTris[m_leaves[leafIndex].m_tris[1]];
VectorCopy( pTri0->m_vecNormal, plane.normal );
plane.dist = pTri0->m_flDist;
plane.signbits = pTri0->m_ucSignBits;
plane.type = pTri0->m_ucPlaneType;
if ( IsBoxIntersectingTriangle( center, extents,
m_aVerts[pTri0->GetVert( 0 )],
m_aVerts[pTri0->GetVert( 2 )],
m_aVerts[pTri0->GetVert( 1 )],
plane, 0.0f ) )
return true;
VectorCopy( pTri1->m_vecNormal, plane.normal );
plane.dist = pTri1->m_flDist;
plane.signbits = pTri1->m_ucSignBits;
plane.type = pTri1->m_ucPlaneType;
if ( IsBoxIntersectingTriangle( center, extents,
m_aVerts[pTri1->GetVert( 0 )],
m_aVerts[pTri1->GetVert( 2 )],
m_aVerts[pTri1->GetVert( 1 )],
plane, 0.0f ) )
return true;
}
break;
}
else
{
const CDispCollNode &node = m_nodes[iNode];
int mask = IntersectFourBoxPairs( mins0, maxs0, node.m_mins, node.m_maxs );
if ( mask )
{
int child = Nodes_GetChild( iNode, 0 );
if ( mask & 1 )
{
++maxIndex;
nodeList[maxIndex] = child;
}
if ( mask & 2 )
{
++maxIndex;
nodeList[maxIndex] = child+1;
}
if ( mask & 4 )
{
++maxIndex;
nodeList[maxIndex] = child+2;
}
if ( mask & 8 )
{
++maxIndex;
nodeList[maxIndex] = child+3;
}
Assert(maxIndex < MAX_AABB_LIST);
}
}
}
// no collision
return false;
}
static const Vector g_Vec3DispCollEpsilons(DISPCOLL_DIST_EPSILON,DISPCOLL_DIST_EPSILON,DISPCOLL_DIST_EPSILON);
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::AABBTree_SweepAABB( const Ray_t &ray, const Vector &vecInvDelta, CBaseTrace *pTrace )
{
VPROF( "Disp_AABBTree_SweepAABB" );
// VPROF_BUDGET( "DispHullTraces", VPROF_BUDGETGROUP_DISP_HULLTRACES );
// Check for hull test.
if ( CheckFlags( CCoreDispInfo::SURF_NOHULL_COLL ) )
return false;
// Test ray against the triangles in the list.
Vector rayDir;
VectorCopy( ray.m_Delta, rayDir );
VectorNormalize( rayDir );
// Save fraction.
float flFrac = pTrace->fraction;
rayleaflist_t list;
// NOTE: This part is loop invariant - should be hoisted up as far as possible
list.invDelta.DuplicateVector(vecInvDelta);
list.rayStart.DuplicateVector(ray.m_Start);
Vector ext = ray.m_Extents + g_Vec3DispCollEpsilons;
list.rayExtents.DuplicateVector(ext);
int listIndex = BuildRayLeafList( 0, list );
if ( listIndex <= list.maxIndex )
{
VPROF( "DispHullTest_Tris" );
LockCache();
for ( ; listIndex <= list.maxIndex; listIndex++ )
{
int leafIndex = list.nodeList[listIndex] - m_nodes.Count();
int iTri0 = m_leaves[leafIndex].m_tris[0];
int iTri1 = m_leaves[leafIndex].m_tris[1];
CDispCollTri *pTri0 = &m_aTris[iTri0];
CDispCollTri *pTri1 = &m_aTris[iTri1];
SweepAABBTriIntersect( ray, rayDir, iTri0, pTri0, pTrace );
SweepAABBTriIntersect( ray, rayDir, iTri1, pTri1, pTrace );
}
UnlockCache();
}
// Collision.
if ( pTrace->fraction < flFrac )
return true;
// No collision.
return false;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CDispCollTree::ResolveRayPlaneIntersect( float flStart, float flEnd, const Vector &vecNormal, float flDist, CDispCollHelper *pHelper )
{
if( ( flStart > 0.0f ) && ( flEnd > 0.0f ) )
return false;
if( ( flStart < 0.0f ) && ( flEnd < 0.0f ) )
return true;
float flDenom = flStart - flEnd;
bool bDenomIsZero = ( flDenom == 0.0f );
if( ( flStart >= 0.0f ) && ( flEnd <= 0.0f ) )
{
// Find t - the parametric distance along the trace line.
float t = ( !bDenomIsZero ) ? ( flStart - DISPCOLL_DIST_EPSILON ) / flDenom : 0.0f;
if( t > pHelper->m_flStartFrac )
{
pHelper->m_flStartFrac = t;
VectorCopy( vecNormal, pHelper->m_vecImpactNormal );
pHelper->m_flImpactDist = flDist;
}
}
else
{
// Find t - the parametric distance along the trace line.
float t = ( !bDenomIsZero ) ? ( flStart + DISPCOLL_DIST_EPSILON ) / flDenom : 0.0f;
if( t < pHelper->m_flEndFrac )
{
pHelper->m_flEndFrac = t;
}
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline bool CDispCollTree::FacePlane( const Ray_t &ray, const Vector &rayDir, CDispCollTri *pTri, CDispCollHelper *pHelper )
{
// Calculate the closest point on box to plane (get extents in that direction).
Vector vecExtent;
CalcClosestExtents( pTri->m_vecNormal, ray.m_Extents, vecExtent );
float flExpandDist = pTri->m_flDist - pTri->m_vecNormal.Dot( vecExtent );
float flStart = pTri->m_vecNormal.Dot( ray.m_Start ) - flExpandDist;
float flEnd = pTri->m_vecNormal.Dot( ( ray.m_Start + ray.m_Delta ) ) - flExpandDist;
return ResolveRayPlaneIntersect( flStart, flEnd, pTri->m_vecNormal, pTri->m_flDist, pHelper );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool FORCEINLINE CDispCollTree::AxisPlanesXYZ( const Ray_t &ray, CDispCollTri *pTri, CDispCollHelper *pHelper )
{
static const TableVector g_ImpactNormalVecs[2][3] =
{
{
{ -1, 0, 0 },
{ 0, -1, 0 },
{ 0, 0, -1 },
},
{
{ 1, 0, 0 },
{ 0, 1, 0 },
{ 0, 0, 1 },
}
};
Vector vecImpactNormal;
float flDist, flExpDist, flStart, flEnd;
int iAxis;
for ( iAxis = 2; iAxis >= 0; --iAxis )
{
const float rayStart = ray.m_Start[iAxis];
const float rayExtent = ray.m_Extents[iAxis];
const float rayDelta = ray.m_Delta[iAxis];
// Min
flDist = m_aVerts[pTri->GetVert(pTri->GetMin(iAxis))][iAxis];
flExpDist = flDist - rayExtent;
flStart = flExpDist - rayStart;
flEnd = flStart - rayDelta;
if ( !ResolveRayPlaneIntersect( flStart, flEnd, g_ImpactNormalVecs[0][iAxis], flDist, pHelper ) )
return false;
// Max
flDist = m_aVerts[pTri->GetVert(pTri->GetMax(iAxis))][iAxis];
flExpDist = flDist + rayExtent;
flStart = rayStart - flExpDist;
flEnd = flStart + rayDelta;
if ( !ResolveRayPlaneIntersect( flStart, flEnd, g_ImpactNormalVecs[1][iAxis], flDist, pHelper ) )
return false;
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose: Testing!
//-----------------------------------------------------------------------------
void CDispCollTree::Cache_Create( CDispCollTri *pTri, int iTri )
{
MEM_ALLOC_CREDIT();
Vector *pVerts[3];
pVerts[0] = &m_aVerts[pTri->GetVert( 0 )];
pVerts[1] = &m_aVerts[pTri->GetVert( 1 )];
pVerts[2] = &m_aVerts[pTri->GetVert( 2 )];
CDispCollTriCache *pCache = &m_aTrisCache[iTri];
Vector vecEdge;
// Edge 1
VectorSubtract( *pVerts[1], *pVerts[0], vecEdge );
Cache_EdgeCrossAxisX( vecEdge, *pVerts[0], *pVerts[2], pTri, pCache->m_iCrossX[0] );
Cache_EdgeCrossAxisY( vecEdge, *pVerts[0], *pVerts[2], pTri, pCache->m_iCrossY[0] );
Cache_EdgeCrossAxisZ( vecEdge, *pVerts[0], *pVerts[2], pTri, pCache->m_iCrossZ[0] );
// Edge 2
VectorSubtract( *pVerts[2], *pVerts[1], vecEdge );
Cache_EdgeCrossAxisX( vecEdge, *pVerts[1], *pVerts[0], pTri, pCache->m_iCrossX[1] );
Cache_EdgeCrossAxisY( vecEdge, *pVerts[1], *pVerts[0], pTri, pCache->m_iCrossY[1] );
Cache_EdgeCrossAxisZ( vecEdge, *pVerts[1], *pVerts[0], pTri, pCache->m_iCrossZ[1] );
// Edge 3
VectorSubtract( *pVerts[0], *pVerts[2], vecEdge );
Cache_EdgeCrossAxisX( vecEdge, *pVerts[2], *pVerts[1], pTri, pCache->m_iCrossX[2] );
Cache_EdgeCrossAxisY( vecEdge, *pVerts[2], *pVerts[1], pTri, pCache->m_iCrossY[2] );
Cache_EdgeCrossAxisZ( vecEdge, *pVerts[2], *pVerts[1], pTri, pCache->m_iCrossZ[2] );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CDispCollTree::AddPlane( const Vector &vecNormal )
{
UtlHashHandle_t handle;
DispCollPlaneIndex_t planeIndex;
bool bDidInsert;
planeIndex.vecPlane = vecNormal;
planeIndex.index = m_aEdgePlanes.Count();
handle = g_DispCollPlaneIndexHash.Insert( planeIndex, &bDidInsert );
if ( !bDidInsert )
{
DispCollPlaneIndex_t &existingEntry = g_DispCollPlaneIndexHash[handle];
if ( existingEntry.vecPlane == vecNormal )
{
return existingEntry.index;
}
else
{
return ( existingEntry.index | 0x8000 );
}
}
return m_aEdgePlanes.AddToTail( vecNormal );
}
//-----------------------------------------------------------------------------
// Purpose:
// NOTE: The plane distance get stored in the normal x position since it isn't
// used.
//-----------------------------------------------------------------------------
bool CDispCollTree::Cache_EdgeCrossAxisX( const Vector &vecEdge, const Vector &vecOnEdge,
const Vector &vecOffEdge, CDispCollTri *pTri,
unsigned short &iPlane )
{
// Calculate the normal - edge x axisX = ( 0.0, edgeZ, -edgeY )
Vector vecNormal( 0.0f, vecEdge.z, -vecEdge.y );
VectorNormalize( vecNormal );
// Check for zero length normals.
if( ( vecNormal.y == 0.0f ) || ( vecNormal.z == 0.0f ) )
{
iPlane = DISPCOLL_NORMAL_UNDEF;
return false;
}
// if ( pTri->m_vecNormal.Dot( vecNormal ) )
// {
// iPlane = DISPCOLL_NORMAL_UNDEF;
// return false;
// }
// Finish the plane definition - get distance.
float flDist = ( vecNormal.y * vecOnEdge.y ) + ( vecNormal.z * vecOnEdge.z );
// Special case the point off edge in plane
float flOffDist = ( vecNormal.y * vecOffEdge.y ) + ( vecNormal.z * vecOffEdge.z );
if ( !( FloatMakePositive( flOffDist - flDist ) < DISPCOLL_DIST_EPSILON ) && ( flOffDist > flDist ) )
{
// Adjust plane facing - triangle should be behind the plane.
vecNormal.x = -flDist;
vecNormal.y = -vecNormal.y;
vecNormal.z = -vecNormal.z;
}
else
{
vecNormal.x = flDist;
}
// Add edge plane to edge plane list.
iPlane = static_cast<unsigned short>( AddPlane( vecNormal ) );
// Created the cached edge.
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
// NOTE: The plane distance get stored in the normal y position since it isn't
// used.
//-----------------------------------------------------------------------------
bool CDispCollTree::Cache_EdgeCrossAxisY( const Vector &vecEdge, const Vector &vecOnEdge,
const Vector &vecOffEdge, CDispCollTri *pTri,
unsigned short &iPlane )
{
// Calculate the normal - edge x axisY = ( -edgeZ, 0.0, edgeX )
Vector vecNormal( -vecEdge.z, 0.0f, vecEdge.x );
VectorNormalize( vecNormal );
// Check for zero length normals
if( ( vecNormal.x == 0.0f ) || ( vecNormal.z == 0.0f ) )
{
iPlane = DISPCOLL_NORMAL_UNDEF;
return false;
}
// if ( pTri->m_vecNormal.Dot( vecNormal ) )
// {
// iPlane = DISPCOLL_NORMAL_UNDEF;
// return false;
// }
// Finish the plane definition - get distance.
float flDist = ( vecNormal.x * vecOnEdge.x ) + ( vecNormal.z * vecOnEdge.z );
// Special case the point off edge in plane
float flOffDist = ( vecNormal.x * vecOffEdge.x ) + ( vecNormal.z * vecOffEdge.z );
if ( !( FloatMakePositive( flOffDist - flDist ) < DISPCOLL_DIST_EPSILON ) && ( flOffDist > flDist ) )
{
// Adjust plane facing if necessay - triangle should be behind the plane.
vecNormal.x = -vecNormal.x;
vecNormal.y = -flDist;
vecNormal.z = -vecNormal.z;
}
else
{
vecNormal.y = flDist;
}
// Add edge plane to edge plane list.
iPlane = static_cast<unsigned short>( AddPlane( vecNormal ) );
// Created the cached edge.
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::Cache_EdgeCrossAxisZ( const Vector &vecEdge, const Vector &vecOnEdge,
const Vector &vecOffEdge, CDispCollTri *pTri,
unsigned short &iPlane )
{
// Calculate the normal - edge x axisY = ( edgeY, -edgeX, 0.0 )
Vector vecNormal( vecEdge.y, -vecEdge.x, 0.0f );
VectorNormalize( vecNormal );
// Check for zero length normals
if( ( vecNormal.x == 0.0f ) || ( vecNormal.y == 0.0f ) )
{
iPlane = DISPCOLL_NORMAL_UNDEF;
return false;
}
// if ( pTri->m_vecNormal.Dot( vecNormal ) )
// {
// iPlane = DISPCOLL_NORMAL_UNDEF;
// return false;
// }
// Finish the plane definition - get distance.
float flDist = ( vecNormal.x * vecOnEdge.x ) + ( vecNormal.y * vecOnEdge.y );
// Special case the point off edge in plane
float flOffDist = ( vecNormal.x * vecOffEdge.x ) + ( vecNormal.y * vecOffEdge.y );
if ( !( FloatMakePositive( flOffDist - flDist ) < DISPCOLL_DIST_EPSILON ) && ( flOffDist > flDist ) )
{
// Adjust plane facing if necessay - triangle should be behind the plane.
vecNormal.x = -vecNormal.x;
vecNormal.y = -vecNormal.y;
vecNormal.z = -flDist;
}
else
{
vecNormal.z = flDist;
}
// Add edge plane to edge plane list.
iPlane = static_cast<unsigned short>( AddPlane( vecNormal ) );
// Created the cached edge.
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
template <int AXIS>
bool CDispCollTree::EdgeCrossAxis( const Ray_t &ray, unsigned short iPlane, CDispCollHelper *pHelper )
{
if ( iPlane == DISPCOLL_NORMAL_UNDEF )
return true;
// Get the edge plane.
Vector vecNormal;
if ( ( iPlane & 0x8000 ) != 0 )
{
VectorCopy( m_aEdgePlanes[(iPlane&0x7fff)], vecNormal );
vecNormal.Negate();
}
else
{
VectorCopy( m_aEdgePlanes[iPlane], vecNormal );
}
const int OTHER_AXIS1 = ( AXIS + 1 ) % 3;
const int OTHER_AXIS2 = ( AXIS + 2 ) % 3;
// Get the pland distance are "fix" the normal.
float flDist = vecNormal[AXIS];
vecNormal[AXIS] = 0.0f;
// Calculate the closest point on box to plane (get extents in that direction).
Vector vecExtent;
//vecExtent[AXIS] = 0.0f;
vecExtent[OTHER_AXIS1] = ( vecNormal[OTHER_AXIS1] < 0.0f ) ? ray.m_Extents[OTHER_AXIS1] : -ray.m_Extents[OTHER_AXIS1];
vecExtent[OTHER_AXIS2] = ( vecNormal[OTHER_AXIS2] < 0.0f ) ? ray.m_Extents[OTHER_AXIS2] : -ray.m_Extents[OTHER_AXIS2];
// Expand the plane by the extents of the box to reduce the swept box/triangle
// test to a ray/extruded triangle test (one of the triangles extruded planes
// was just calculated above).
Vector vecEnd;
vecEnd[AXIS] = 0;
vecEnd[OTHER_AXIS1] = ray.m_Start[OTHER_AXIS1] + ray.m_Delta[OTHER_AXIS1];
vecEnd[OTHER_AXIS2] = ray.m_Start[OTHER_AXIS2] + ray.m_Delta[OTHER_AXIS2];
float flExpandDist = flDist - ( ( vecNormal[OTHER_AXIS1] * vecExtent[OTHER_AXIS1] ) + ( vecNormal[OTHER_AXIS2] * vecExtent[OTHER_AXIS2] ) );
float flStart = ( vecNormal[OTHER_AXIS1] * ray.m_Start[OTHER_AXIS1] ) + ( vecNormal[OTHER_AXIS2] * ray.m_Start[OTHER_AXIS2] ) - flExpandDist;
float flEnd = ( vecNormal[OTHER_AXIS1] * vecEnd[OTHER_AXIS1] ) + ( vecNormal[OTHER_AXIS2] * vecEnd[OTHER_AXIS2] ) - flExpandDist;
return ResolveRayPlaneIntersect( flStart, flEnd, vecNormal, flDist, pHelper );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline bool CDispCollTree::EdgeCrossAxisX( const Ray_t &ray, unsigned short iPlane, CDispCollHelper *pHelper )
{
return EdgeCrossAxis<0>( ray, iPlane, pHelper );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline bool CDispCollTree::EdgeCrossAxisY( const Ray_t &ray, unsigned short iPlane, CDispCollHelper *pHelper )
{
return EdgeCrossAxis<1>( ray, iPlane, pHelper );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline bool CDispCollTree::EdgeCrossAxisZ( const Ray_t &ray, unsigned short iPlane, CDispCollHelper *pHelper )
{
return EdgeCrossAxis<2>( ray, iPlane, pHelper );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDispCollTree::SweepAABBTriIntersect( const Ray_t &ray, const Vector &rayDir, int iTri, CDispCollTri *pTri, CBaseTrace *pTrace )
{
// Init test data.
CDispCollHelper helper;
helper.m_flEndFrac = 1.0f;
helper.m_flStartFrac = DISPCOLL_INVALID_FRAC;
// Make sure objects are traveling toward one another.
float flDistAlongNormal = pTri->m_vecNormal.Dot( ray.m_Delta );
if( flDistAlongNormal > DISPCOLL_DIST_EPSILON )
return;
// Test against the axis planes.
if ( !AxisPlanesXYZ( ray, pTri, &helper ) )
{
return;
}
//
// There are 9 edge tests - edges 1, 2, 3 cross with the box edges (symmetry) 1, 2, 3. However, the box
// is axis-aligned resulting in axially directional edges -- thus each test is edges 1, 2, and 3 vs.
// axial planes x, y, and z
//
// There are potentially 9 more tests with edges, the edge's edges and the direction of motion!
// NOTE: I don't think these tests are necessary for a manifold surface.
//
CDispCollTriCache *pCache = &m_aTrisCache[iTri];
// Edges 1-3, interleaved - axis tests are 2d tests
if ( !EdgeCrossAxisX( ray, pCache->m_iCrossX[0], &helper ) ) { return; }
if ( !EdgeCrossAxisX( ray, pCache->m_iCrossX[1], &helper ) ) { return; }
if ( !EdgeCrossAxisX( ray, pCache->m_iCrossX[2], &helper ) ) { return; }
if ( !EdgeCrossAxisY( ray, pCache->m_iCrossY[0], &helper ) ) { return; }
if ( !EdgeCrossAxisY( ray, pCache->m_iCrossY[1], &helper ) ) { return; }
if ( !EdgeCrossAxisY( ray, pCache->m_iCrossY[2], &helper ) ) { return; }
if ( !EdgeCrossAxisZ( ray, pCache->m_iCrossZ[0], &helper ) ) { return; }
if ( !EdgeCrossAxisZ( ray, pCache->m_iCrossZ[1], &helper ) ) { return; }
if ( !EdgeCrossAxisZ( ray, pCache->m_iCrossZ[2], &helper ) ) { return; }
// Test against the triangle face plane.
if ( !FacePlane( ray, rayDir, pTri, &helper ) )
return;
if ( ( helper.m_flStartFrac < helper.m_flEndFrac ) || ( FloatMakePositive( helper.m_flStartFrac - helper.m_flEndFrac ) < 0.001f ) )
{
if ( ( helper.m_flStartFrac != DISPCOLL_INVALID_FRAC ) && ( helper.m_flStartFrac < pTrace->fraction ) )
{
// Clamp -- shouldn't really ever be here!???
if ( helper.m_flStartFrac < 0.0f )
{
helper.m_flStartFrac = 0.0f;
}
pTrace->fraction = helper.m_flStartFrac;
VectorCopy( helper.m_vecImpactNormal, pTrace->plane.normal );
pTrace->plane.dist = helper.m_flImpactDist;
pTrace->dispFlags = pTri->m_uiFlags;
}
}
}
//-----------------------------------------------------------------------------
// Purpose: constructor
//-----------------------------------------------------------------------------
CDispCollTree::CDispCollTree()
{
m_nPower = 0;
m_nFlags = 0;
for ( int iPoint = 0; iPoint < 4; ++iPoint )
{
m_vecSurfPoints[iPoint].Init();
}
m_nContents = -1;
m_nSurfaceProps[0] = 0;
m_nSurfaceProps[1] = 0;
m_nSurfaceProps[2] = 0;
m_nSurfaceProps[3] = 0;
m_vecStabDir.Init();
m_mins.Init( FLT_MAX, FLT_MAX, FLT_MAX );
m_maxs.Init( -FLT_MAX, -FLT_MAX, -FLT_MAX );
m_iCounter = 0;
m_aVerts.Purge();
m_aTris.Purge();
m_aEdgePlanes.Purge();
#ifdef ENGINE_DLL
m_hCache = INVALID_MEMHANDLE;
#endif
}
//-----------------------------------------------------------------------------
// Purpose: deconstructor
//-----------------------------------------------------------------------------
CDispCollTree::~CDispCollTree()
{
#ifdef ENGINE_DLL
if ( m_hCache != INVALID_MEMHANDLE )
g_DispCollTriCache.DestroyResource( m_hCache );
#endif
m_aVerts.Purge();
m_aTris.Purge();
m_aEdgePlanes.Purge();
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::Create( CCoreDispInfo *pDisp )
{
// Create the AABB Tree.
return AABBTree_Create( pDisp );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CDispCollTree::PointInBounds( const Vector &vecBoxCenter, const Vector &vecBoxMin,
const Vector &vecBoxMax, bool bPoint )
{
// Point test inside bounds.
if( bPoint )
{
return IsPointInBox( vecBoxCenter, m_mins, m_maxs );
}
// Box test inside bounds
Vector vecExtents;
VectorSubtract( vecBoxMax, vecBoxMin, vecExtents );
vecExtents *= 0.5f;
Vector vecExpandBounds[2];
vecExpandBounds[0] = m_mins - vecExtents;
vecExpandBounds[1] = m_maxs + vecExtents;
return IsPointInBox( vecBoxCenter, vecExpandBounds[0], vecExpandBounds[1] );
}
void CDispCollTree::GetVirtualMeshList( virtualmeshlist_t *pList )
{
int i;
int triangleCount = GetTriSize();
pList->indexCount = triangleCount * 3;
pList->triangleCount = triangleCount;
pList->vertexCount = m_aVerts.Count();
pList->pVerts = m_aVerts.Base();
pList->pHull = NULL;
pList->surfacePropsIndex = GetSurfaceProps(0);
int index = 0;
for ( i = 0 ; i < triangleCount; i++ )
{
pList->indices[index+0] = m_aTris[i].GetVert(0);
pList->indices[index+1] = m_aTris[i].GetVert(1);
pList->indices[index+2] = m_aTris[i].GetVert(2);
index += 3;
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
#ifdef ENGINE_DLL
static int g_nTrees;
#endif
CDispCollTree *DispCollTrees_Alloc( int count )
{
CDispCollTree *pTrees = NULL;
#ifdef ENGINE_DLL
pTrees = (CDispCollTree *)Hunk_AllocName( count * sizeof(CDispCollTree), "DispCollTrees_Alloc", false );
g_nTrees = count;
for ( int i = 0; i < g_nTrees; i++ )
{
Construct( pTrees + i );
}
#else
pTrees = new CDispCollTree[count];
#endif
if( !pTrees )
return NULL;
for ( int i = 0; i < count; i++ )
{
pTrees[i].m_iCounter = i;
}
return pTrees;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void DispCollTrees_Free( CDispCollTree *pTrees )
{
#ifdef ENGINE_DLL
for ( int i = 0; i < g_nTrees; i++ )
{
Destruct( pTrees + i );
}
g_nTrees = 0;
#else
if( pTrees )
{
delete [] pTrees;
pTrees = NULL;
}
#endif
}