You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1156 lines
37 KiB
1156 lines
37 KiB
// $Id$
|
|
|
|
#include "raytrace.h"
|
|
#include <filesystem_tools.h>
|
|
#include <cmdlib.h>
|
|
#include <stdio.h>
|
|
|
|
// NOTE: This has to be the last file included!
|
|
#include "tier0/memdbgon.h"
|
|
|
|
|
|
static bool SameSign(float a, float b)
|
|
{
|
|
int32 aa = *( (int * ) & a );
|
|
int32 bb = *( (int * ) & b );
|
|
return ( (aa ^ bb ) & 0x80000000 ) == 0;
|
|
}
|
|
|
|
int FourRays::CalculateDirectionSignMask(void) const
|
|
{
|
|
// this code treats the floats as integers since all it cares about is the sign bit and
|
|
// floating point compares suck.
|
|
|
|
int ret;
|
|
int ormask;
|
|
int andmask;
|
|
int32 const *treat_as_int = ( (int32 const * ) ( &direction ));
|
|
|
|
ormask = andmask =* ( treat_as_int++ );
|
|
ormask |=* treat_as_int;
|
|
andmask &=* ( treat_as_int++ );
|
|
ormask |=* ( treat_as_int );
|
|
andmask &=* ( treat_as_int++ );
|
|
ormask |=* ( treat_as_int );
|
|
andmask &=* ( treat_as_int++ );
|
|
if ( ormask >= 0 )
|
|
ret = 0;
|
|
else
|
|
{
|
|
if ( andmask < 0 )
|
|
ret = 1;
|
|
else return - 1;
|
|
}
|
|
ormask = andmask =* ( treat_as_int++ );
|
|
ormask |=* treat_as_int;
|
|
andmask &=* ( treat_as_int++ );
|
|
ormask |=* ( treat_as_int );
|
|
andmask &=* ( treat_as_int++ );
|
|
ormask |=* ( treat_as_int );
|
|
andmask &=* ( treat_as_int++ );
|
|
if ( ormask < 0 )
|
|
{
|
|
if ( andmask < 0 )
|
|
ret |= 2;
|
|
else return - 1;
|
|
}
|
|
ormask = andmask =* ( treat_as_int++ );
|
|
ormask |= *treat_as_int;
|
|
andmask &= *( treat_as_int++ );
|
|
ormask |= *( treat_as_int );
|
|
andmask &= *( treat_as_int++ );
|
|
ormask |= *( treat_as_int );
|
|
andmask &= *( treat_as_int++ );
|
|
if ( ormask < 0 )
|
|
{
|
|
if ( andmask < 0 )
|
|
ret |= 4;
|
|
else return - 1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
|
|
|
|
void RayTracingEnvironment::MakeRoomForTriangles( int ntris )
|
|
{
|
|
//OptimizedTriangleList.EnsureCapacity( ntris );
|
|
if (! (Flags & RTE_FLAGS_DONT_STORE_TRIANGLE_COLORS))
|
|
TriangleColors.EnsureCapacity( ntris );
|
|
}
|
|
|
|
|
|
void RayTracingEnvironment::AddTriangle(int32 id, const Vector &v1,
|
|
const Vector &v2, const Vector &v3,
|
|
const Vector &color)
|
|
{
|
|
AddTriangle( id, v1, v2, v3, color, 0, 0 );
|
|
}
|
|
|
|
void RayTracingEnvironment::AddTriangle(int32 id, const Vector &v1,
|
|
const Vector &v2, const Vector &v3,
|
|
const Vector &color, uint16 flags, int32 materialIndex)
|
|
{
|
|
CacheOptimizedTriangle tmptri;
|
|
tmptri.m_Data.m_GeometryData.m_nTriangleID = id;
|
|
tmptri.Vertex( 0 ) = v1;
|
|
tmptri.Vertex( 1 ) = v2;
|
|
tmptri.Vertex( 2 ) = v3;
|
|
tmptri.m_Data.m_GeometryData.m_nFlags = flags;
|
|
OptimizedTriangleList.AddToTail( tmptri );
|
|
if ( ! ( Flags & RTE_FLAGS_DONT_STORE_TRIANGLE_COLORS ) )
|
|
TriangleColors.AddToTail( color );
|
|
if ( ! ( Flags & RTE_FLAGS_DONT_STORE_TRIANGLE_MATERIALS ) )
|
|
TriangleMaterials.AddToTail( materialIndex );
|
|
// printf("add triange from (%f %f %f),(%f %f %f),(%f %f %f) id %d\n",
|
|
// XYZ(v1),XYZ(v2),XYZ(v3),id);
|
|
}
|
|
|
|
void RayTracingEnvironment::AddQuad(
|
|
int32 id, const Vector &v1, const Vector &v2, const Vector &v3,
|
|
const Vector &v4, // specify vertices in cw or ccw order
|
|
const Vector &color)
|
|
{
|
|
AddTriangle( id, v1, v2, v3, color );
|
|
AddTriangle( id + 1, v1, v3, v4, color );
|
|
}
|
|
|
|
|
|
void RayTracingEnvironment::AddAxisAlignedRectangularSolid(int id,Vector minc, Vector maxc,
|
|
const Vector &color)
|
|
{
|
|
|
|
// "far" face
|
|
AddQuad( id,
|
|
Vector( minc.x, maxc.y, maxc.z ),
|
|
Vector( maxc.x, maxc.y, maxc.z ), Vector( maxc.x, minc.y, maxc.z ),
|
|
Vector( minc.x, minc.y, maxc.z ), color );
|
|
// "near" face
|
|
AddQuad( id,
|
|
Vector( minc.x, maxc.y, minc.z ),
|
|
Vector( maxc.x, maxc.y, minc.z ), Vector( maxc.x, minc.y, minc.z ),
|
|
Vector( minc.x, minc.y, minc.z ), color );
|
|
|
|
// "left" face
|
|
AddQuad( id,
|
|
Vector( minc.x, maxc.y, maxc.z ),
|
|
Vector( minc.x, maxc.y, minc.z ),
|
|
Vector( minc.x, minc.y, minc.z ),
|
|
Vector( minc.x, minc.y, maxc.z ), color );
|
|
// "right" face
|
|
AddQuad( id,
|
|
Vector( maxc.x, maxc.y, maxc.z ),
|
|
Vector( maxc.x, maxc.y, minc.z ),
|
|
Vector( maxc.x, minc.y, minc.z ),
|
|
Vector( maxc.x, minc.y, maxc.z ), color );
|
|
|
|
// "top" face
|
|
AddQuad( id,
|
|
Vector( minc.x, maxc.y, maxc.z ),
|
|
Vector( maxc.x, maxc.y, maxc.z ),
|
|
Vector( maxc.x, maxc.y, minc.z ),
|
|
Vector( minc.x, maxc.y, minc.z ), color );
|
|
// "bot" face
|
|
AddQuad( id,
|
|
Vector( minc.x, minc.y, maxc.z ),
|
|
Vector( maxc.x, minc.y, maxc.z ),
|
|
Vector( maxc.x, minc.y, minc.z ),
|
|
Vector( minc.x, minc.y, minc.z ), color );
|
|
}
|
|
|
|
|
|
|
|
static Vector GetEdgeEquation( Vector p1, Vector p2, int c1, int c2, Vector InsidePoint )
|
|
{
|
|
float nx = p1[c2]- p2[c2];
|
|
float ny = p2[c1]- p1[c1];
|
|
float d =- ( nx * p1[c1]+ ny * p1[c2] );
|
|
// assert(fabs(nx*p1[c1]+ny*p1[c2]+d)<0.01);
|
|
// assert(fabs(nx*p2[c1]+ny*p2[c2]+d)<0.01);
|
|
|
|
// use the convention that negative is "outside"
|
|
float trial_dist = InsidePoint[c1]* nx + InsidePoint[c2]* ny + d;
|
|
if ( trial_dist < 0 )
|
|
{
|
|
nx = -nx;
|
|
ny = -ny;
|
|
d = -d;
|
|
trial_dist = -trial_dist;
|
|
}
|
|
nx /= trial_dist; // scale so that it will be =1.0 at the oppositve vertex
|
|
ny /= trial_dist;
|
|
d /= trial_dist;
|
|
|
|
return Vector( nx, ny, d );
|
|
}
|
|
|
|
void CacheOptimizedTriangle::ChangeIntoIntersectionFormat(void)
|
|
{
|
|
// lose the vertices and use edge equations instead
|
|
|
|
// grab the whole original triangle to we don't overwrite it
|
|
TriGeometryData_t srcTri = m_Data.m_GeometryData;
|
|
|
|
m_Data.m_IntersectData.m_nFlags = srcTri.m_nFlags;
|
|
m_Data.m_IntersectData.m_nTriangleID = srcTri.m_nTriangleID;
|
|
|
|
Vector p1 = srcTri.Vertex( 0 );
|
|
Vector p2 = srcTri.Vertex( 1 );
|
|
Vector p3 = srcTri.Vertex( 2 );
|
|
|
|
Vector e1 = p2 - p1;
|
|
Vector e2 = p3 - p1;
|
|
|
|
Vector N = e1.Cross( e2 );
|
|
N.NormalizeInPlace();
|
|
// now, determine which axis to drop
|
|
int drop_axis = 0;
|
|
for(int c=1 ; c<3 ; c++)
|
|
if ( fabs(N[c]) > fabs( N[drop_axis] ) )
|
|
drop_axis = c;
|
|
|
|
m_Data.m_IntersectData.m_flD = N.Dot( p1 );
|
|
m_Data.m_IntersectData.m_flNx = N.x;
|
|
m_Data.m_IntersectData.m_flNy = N.y;
|
|
m_Data.m_IntersectData.m_flNz = N.z;
|
|
|
|
// decide which axes to keep
|
|
int nCoordSelect0 = ( drop_axis + 1 ) % 3;
|
|
int nCoordSelect1 = ( drop_axis + 2 ) % 3;
|
|
|
|
m_Data.m_IntersectData.m_nCoordSelect0 = nCoordSelect0;
|
|
m_Data.m_IntersectData.m_nCoordSelect1 = nCoordSelect1;
|
|
|
|
|
|
Vector edge1 = GetEdgeEquation( p1, p2, nCoordSelect0, nCoordSelect1, p3 );
|
|
m_Data.m_IntersectData.m_ProjectedEdgeEquations[0] = edge1.x;
|
|
m_Data.m_IntersectData.m_ProjectedEdgeEquations[1] = edge1.y;
|
|
m_Data.m_IntersectData.m_ProjectedEdgeEquations[2] = edge1.z;
|
|
|
|
Vector edge2 = GetEdgeEquation( p2, p3, nCoordSelect0, nCoordSelect1, p1 );
|
|
m_Data.m_IntersectData.m_ProjectedEdgeEquations[3] = edge2.x;
|
|
m_Data.m_IntersectData.m_ProjectedEdgeEquations[4] = edge2.y;
|
|
m_Data.m_IntersectData.m_ProjectedEdgeEquations[5] = edge2.z;
|
|
}
|
|
|
|
|
|
int n_intersection_calculations=0;
|
|
|
|
int CacheOptimizedTriangle::ClassifyAgainstAxisSplit(int split_plane, float split_value)
|
|
{
|
|
// classify a triangle against an axis-aligned plane
|
|
float minc = Vertex( 0 )[split_plane];
|
|
float maxc = minc;
|
|
for( int v = 1; v < 3; v++ )
|
|
{
|
|
minc=MIN(minc,Vertex(v)[split_plane]);
|
|
maxc=MAX(maxc,Vertex(v)[split_plane]);
|
|
}
|
|
|
|
if ( minc >= split_value )
|
|
return PLANECHECK_POSITIVE;
|
|
if ( maxc <= split_value )
|
|
return PLANECHECK_NEGATIVE;
|
|
if ( minc == maxc )
|
|
return PLANECHECK_POSITIVE;
|
|
return PLANECHECK_STRADDLING;
|
|
}
|
|
|
|
static Vector ProjectOntoPlaneFromAxis( const Vector &v, const Vector &vNormal, float flDist, int nAxis )
|
|
{
|
|
float flAxisDist = DotProduct( v, vNormal ) - flDist;
|
|
flAxisDist /= vNormal[nAxis];
|
|
Vector vOut = v;
|
|
vOut[nAxis] -= flAxisDist;
|
|
|
|
return vOut;
|
|
}
|
|
|
|
void CacheOptimizedTriangle::ExtractVerticesFromIntersectionFormat( Vector &v0, Vector &v1, Vector &v2 ) const
|
|
{
|
|
const TriIntersectData_t &data = m_Data.m_IntersectData;
|
|
const float *pPlane0 = data.m_ProjectedEdgeEquations;
|
|
const float *pPlane1 = data.m_ProjectedEdgeEquations + 3;
|
|
|
|
Vector vNormal;
|
|
vNormal.Init( data.m_flNx, data.m_flNy, data.m_flNz );
|
|
int n0 = data.m_nCoordSelect0;
|
|
int n1 = data.m_nCoordSelect1;
|
|
int n2 = (n1+1)%3;
|
|
float flOffset = -1.0f;
|
|
float flOOscale = 1.0f / (pPlane0[0] * pPlane1[1] - pPlane1[0] * pPlane0[1]);
|
|
// vert0 is at the intersection of the two edges with edge1's plane offset by 1
|
|
v0[n0] = (pPlane0[1] * (pPlane1[2]+flOffset) - pPlane1[1] * pPlane0[2]) * flOOscale;
|
|
v0[n1] = (pPlane1[0] * pPlane0[2] - pPlane0[0] * (pPlane1[2]+flOffset)) * flOOscale;
|
|
v0[n2] = 0;
|
|
|
|
// vert1 is at the intersection of the two edges with neither offset
|
|
v1[n0] = (pPlane0[1] * pPlane1[2] - pPlane1[1] * pPlane0[2]) * flOOscale;
|
|
v1[n1] = (pPlane1[0] * pPlane0[2] - pPlane0[0] * pPlane1[2]) * flOOscale;
|
|
v1[n2] = 0;
|
|
|
|
// vert2 is at the intersection of the two edges with edge0's plane offset by 1
|
|
v2[n0] = (pPlane0[1] * pPlane1[2] - pPlane1[1] * (pPlane0[2]+flOffset)) * flOOscale;
|
|
v2[n1] = (pPlane1[0] * (pPlane0[2]+flOffset) - pPlane0[0] * pPlane1[2]) * flOOscale;
|
|
v2[n2] = 0;
|
|
v0 = ProjectOntoPlaneFromAxis( v0, vNormal, data.m_flD, n2 );
|
|
v1 = ProjectOntoPlaneFromAxis( v1, vNormal, data.m_flD, n2 );
|
|
v2 = ProjectOntoPlaneFromAxis( v2, vNormal, data.m_flD, n2 );
|
|
}
|
|
|
|
|
|
#define MAILBOX_HASH_SIZE 256
|
|
#define MAX_TREE_DEPTH 21
|
|
#define MAX_NODE_STACK_LEN (40*MAX_TREE_DEPTH)
|
|
|
|
struct NodeToVisit {
|
|
CacheOptimizedKDNode const *node;
|
|
fltx4 TMin;
|
|
fltx4 TMax;
|
|
};
|
|
|
|
|
|
static fltx4 FourEpsilons={1.0e-10,1.0e-10,1.0e-10,1.0e-10};
|
|
static fltx4 FourZeros={1.0e-10,1.0e-10,1.0e-10,1.0e-10};
|
|
static fltx4 FourNegativeEpsilons={-1.0e-10,-1.0e-10,-1.0e-10,-1.0e-10};
|
|
|
|
void RayTracingEnvironment::Trace4Rays( const FourRays &rays, fltx4 TMin, fltx4 TMax,
|
|
RayTracingResult *rslt_out,
|
|
int32 skip_id, ITransparentTriangleCallback *pCallback,
|
|
RTECullMode_t cullMode )
|
|
{
|
|
int msk = rays.CalculateDirectionSignMask();
|
|
if ( msk !=- 1 )
|
|
Trace4Rays( rays, TMin, TMax, msk, rslt_out, skip_id, pCallback, cullMode );
|
|
else
|
|
{
|
|
// sucky case - can't trace 4 rays at once. in the worst case, need to trace all 4
|
|
// separately, but usually we will still get 2x, Since our tracer only does 4 at a
|
|
// time, we will have to cover up the undesired rays with the desired ray
|
|
|
|
//!! speed!! there is room for some sse-ization here
|
|
FourRays tmprays;
|
|
tmprays.origin = rays.origin;
|
|
|
|
uint8 need_trace[4] = { 1, 1, 1, 1 };
|
|
for( int try_trace = 0; try_trace < 4; try_trace++ )
|
|
{
|
|
if ( need_trace[try_trace] )
|
|
{
|
|
need_trace[try_trace] = 2; // going to trace it
|
|
// replicate the ray being traced into all 4 rays
|
|
tmprays.direction.x = ReplicateX4( rays.direction.X( try_trace ));
|
|
tmprays.direction.y = ReplicateX4( rays.direction.Y( try_trace ));
|
|
tmprays.direction.z = ReplicateX4( rays.direction.Z( try_trace ));
|
|
// now, see if any of the other remaining rays can be handled at the same time.
|
|
for( int try2 = try_trace + 1; try2 < 4; try2++ )
|
|
if ( need_trace[try2] )
|
|
{
|
|
if (
|
|
SameSign( rays.direction.X( try2 ),
|
|
rays.direction.X( try_trace )) &&
|
|
SameSign( rays.direction.Y( try2 ),
|
|
rays.direction.Y( try_trace )) &&
|
|
SameSign( rays.direction.Z( try2 ),
|
|
rays.direction.Z( try_trace )) )
|
|
{
|
|
need_trace[try2] = 2;
|
|
tmprays.direction.X( try2 ) = rays.direction.X( try2 );
|
|
tmprays.direction.Y( try2 ) = rays.direction.Y( try2 );
|
|
tmprays.direction.Z( try2 ) = rays.direction.Z( try2 );
|
|
}
|
|
}
|
|
// ok, now trace between 1 and 3 rays, and output the results
|
|
RayTracingResult tmpresults;
|
|
msk = tmprays.CalculateDirectionSignMask();
|
|
assert( msk !=- 1 );
|
|
Trace4Rays( tmprays, TMin, TMax, msk, &tmpresults, skip_id, pCallback, cullMode );
|
|
// now, move results to proper place
|
|
for( int i = 0; i < 4; i++ )
|
|
if ( need_trace[i] == 2 )
|
|
{
|
|
need_trace[i] = 0;
|
|
rslt_out->HitIds[i] = tmpresults.HitIds[i];
|
|
SubFloat( rslt_out->HitDistance, i ) = SubFloat( tmpresults.HitDistance, i );
|
|
rslt_out->surface_normal.X( i ) = tmpresults.surface_normal.X( i );
|
|
rslt_out->surface_normal.Y( i ) = tmpresults.surface_normal.Y( i );
|
|
rslt_out->surface_normal.Z( i ) = tmpresults.surface_normal.Z( i );
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template< RTECullMode_t cullMode >
|
|
bi32x4 DidHit( fltx4 DDotN, bi32x4 epsilon_hit )
|
|
{
|
|
if ( cullMode == RTE_CULL_FRONT )
|
|
{
|
|
bi32x4 did_hit_back = CmpGtSIMD( DDotN, Four_Zeros );
|
|
return AndSIMD( epsilon_hit, did_hit_back );
|
|
}
|
|
else if ( cullMode == RTE_CULL_BACK )
|
|
{
|
|
bi32x4 did_hit_front = CmpLtSIMD( DDotN, Four_Zeros );
|
|
return AndSIMD( epsilon_hit, did_hit_front );
|
|
}
|
|
else
|
|
{
|
|
return epsilon_hit;
|
|
}
|
|
}
|
|
|
|
// wrapper for the low level trace4 rays routine
|
|
void RayTracingEnvironment::Trace4Rays( const FourRays &rays, fltx4 TMin, fltx4 TMax,int DirectionSignMask,
|
|
RayTracingResult *rslt_out,
|
|
int32 skip_id, ITransparentTriangleCallback *pCallback, RTECullMode_t cullMode )
|
|
{
|
|
switch ( cullMode )
|
|
{
|
|
case RTE_CULL_FRONT:
|
|
Trace4Rays<RTE_CULL_FRONT>( rays, TMin, TMax, DirectionSignMask, rslt_out, skip_id, pCallback );
|
|
break;
|
|
case RTE_CULL_BACK:
|
|
Trace4Rays<RTE_CULL_BACK>( rays, TMin, TMax, DirectionSignMask, rslt_out, skip_id, pCallback );
|
|
break;
|
|
default:
|
|
Trace4Rays<RTE_CULL_NONE>( rays, TMin, TMax, DirectionSignMask, rslt_out, skip_id, pCallback );
|
|
break;
|
|
}
|
|
}
|
|
|
|
template <RTECullMode_t cullMode>
|
|
void RayTracingEnvironment::Trace4Rays(const FourRays &rays, fltx4 TMin, fltx4 TMax,
|
|
int DirectionSignMask, RayTracingResult *rslt_out,
|
|
int32 skip_id, ITransparentTriangleCallback *pCallback )
|
|
{
|
|
rays.Check();
|
|
|
|
memset( rslt_out->HitIds, 0xff, sizeof( rslt_out->HitIds ) );
|
|
|
|
rslt_out->HitDistance = ReplicateX4( 1.0e23 );
|
|
|
|
rslt_out->surface_normal.DuplicateVector( Vector( 0., 0., 0. ) );
|
|
FourVectors OneOverRayDir = rays.direction;
|
|
OneOverRayDir.MakeReciprocalSaturate();
|
|
|
|
// now, clip rays against bounding box
|
|
for( int c = 0; c < 3; c++ )
|
|
{
|
|
fltx4 isect_min_t =
|
|
MulSIMD( SubSIMD( ReplicateX4( m_MinBound[c] ), rays.origin[c] ), OneOverRayDir[c] );
|
|
fltx4 isect_max_t =
|
|
MulSIMD( SubSIMD( ReplicateX4( m_MaxBound[c] ), rays.origin[c] ), OneOverRayDir[c] );
|
|
TMin = MaxSIMD( TMin, MinSIMD( isect_min_t, isect_max_t ));
|
|
TMax = MinSIMD( TMax, MaxSIMD( isect_min_t, isect_max_t ));
|
|
}
|
|
bi32x4 active = CmpLeSIMD( TMin, TMax ); // mask of which rays are active
|
|
if ( ! IsAnyTrue( active ) )
|
|
return; // missed bounding box
|
|
|
|
int32 mailboxids[MAILBOX_HASH_SIZE]; // used to avoid redundant triangle tests
|
|
memset( mailboxids, 0xff, sizeof( mailboxids )); // !!speed!! keep around?
|
|
|
|
int front_idx[3], back_idx[3]; // based on ray direction, whether to
|
|
// visit left or right node first
|
|
|
|
if ( DirectionSignMask & 1 )
|
|
{
|
|
back_idx[0] = 0;
|
|
front_idx[0] = 1;
|
|
}
|
|
else
|
|
{
|
|
back_idx[0] = 1;
|
|
front_idx[0] = 0;
|
|
}
|
|
if ( DirectionSignMask & 2 )
|
|
{
|
|
back_idx[1] = 0;
|
|
front_idx[1] = 1;
|
|
}
|
|
else
|
|
{
|
|
back_idx[1] = 1;
|
|
front_idx[1] = 0;
|
|
}
|
|
if ( DirectionSignMask & 4 )
|
|
{
|
|
back_idx[2] = 0;
|
|
front_idx[2] = 1;
|
|
}
|
|
else
|
|
{
|
|
back_idx[2] = 1;
|
|
front_idx[2] = 0;
|
|
}
|
|
|
|
NodeToVisit NodeQueue[MAX_NODE_STACK_LEN];
|
|
CacheOptimizedKDNode const *CurNode =& ( OptimizedKDTree[0] );
|
|
NodeToVisit *stack_ptr = &NodeQueue[MAX_NODE_STACK_LEN];
|
|
while( 1 )
|
|
{
|
|
while ( CurNode->NodeType() != KDNODE_STATE_LEAF ) // traverse until next leaf
|
|
{
|
|
int split_plane_number = CurNode->NodeType();
|
|
CacheOptimizedKDNode const *FrontChild = &( OptimizedKDTree[CurNode->LeftChild()] );
|
|
|
|
fltx4 dist_to_sep_plane = // dist=(split-org)/dir
|
|
MulSIMD(
|
|
SubSIMD( ReplicateX4( CurNode->SplittingPlaneValue ),
|
|
rays.origin[split_plane_number] ), OneOverRayDir[split_plane_number] );
|
|
|
|
bi32x4 active = CmpLeSIMD( TMin, TMax ); // mask of which rays are active
|
|
|
|
// now, decide how to traverse children. can either do front,back, or do front and push
|
|
// back.
|
|
bi32x4 hits_front = AndSIMD( active, CmpGeSIMD( dist_to_sep_plane, TMin ));
|
|
if ( ! IsAnyTrue( hits_front ))
|
|
{
|
|
// missed the front. only traverse back
|
|
//printf("only visit back %d\n",CurNode->LeftChild()+back_idx[split_plane_number]);
|
|
CurNode = FrontChild + back_idx[split_plane_number];
|
|
TMin = MaxSIMD( TMin, dist_to_sep_plane );
|
|
|
|
}
|
|
else
|
|
{
|
|
bi32x4 hits_back = AndSIMD( active, CmpLeSIMD( dist_to_sep_plane, TMax ));
|
|
if ( ! IsAnyTrue( hits_back ) )
|
|
{
|
|
// missed the back - only need to traverse front node
|
|
//printf("only visit front %d\n",CurNode->LeftChild()+front_idx[split_plane_number]);
|
|
CurNode = FrontChild + front_idx[split_plane_number];
|
|
TMax = MinSIMD( TMax, dist_to_sep_plane );
|
|
}
|
|
else
|
|
{
|
|
// at least some rays hit both nodes.
|
|
// must push far, traverse near
|
|
//printf("visit %d,%d\n",CurNode->LeftChild()+front_idx[split_plane_number],
|
|
// CurNode->LeftChild()+back_idx[split_plane_number]);
|
|
assert( stack_ptr > NodeQueue );
|
|
-- stack_ptr;
|
|
stack_ptr->node = FrontChild + back_idx[split_plane_number];
|
|
stack_ptr->TMin = MaxSIMD( TMin, dist_to_sep_plane );
|
|
stack_ptr->TMax = TMax;
|
|
CurNode = FrontChild + front_idx[split_plane_number];
|
|
TMax = MinSIMD( TMax, dist_to_sep_plane );
|
|
}
|
|
}
|
|
}
|
|
// hit a leaf! must do intersection check
|
|
int ntris = CurNode->NumberOfTrianglesInLeaf();
|
|
if ( ntris )
|
|
{
|
|
int32 const * tlist =& ( TriangleIndexList[CurNode->TriangleIndexStart()] );
|
|
do
|
|
{
|
|
int tnum =* ( tlist++ );
|
|
//printf("try tri %d\n",tnum);
|
|
// check mailbox
|
|
int mbox_slot = tnum & ( MAILBOX_HASH_SIZE - 1 );
|
|
TriIntersectData_t const * tri = &( OptimizedTriangleList[tnum].m_Data.m_IntersectData );
|
|
if ( ( mailboxids[mbox_slot] != tnum ) && ( tri->m_nTriangleID != skip_id ) )
|
|
{
|
|
n_intersection_calculations++;
|
|
mailboxids[mbox_slot] = tnum;
|
|
// compute plane intersection
|
|
|
|
|
|
FourVectors N;
|
|
N.x = ReplicateX4( tri->m_flNx );
|
|
N.y = ReplicateX4( tri->m_flNy );
|
|
N.z = ReplicateX4( tri->m_flNz );
|
|
|
|
fltx4 DDotN = rays.direction * N;
|
|
|
|
|
|
bi32x4 did_hit = OrSIMD( CmpGtSIMD( DDotN, FourEpsilons ),
|
|
CmpLtSIMD( DDotN, FourNegativeEpsilons ) );
|
|
|
|
did_hit = DidHit<cullMode>( DDotN, did_hit );
|
|
|
|
fltx4 numerator = SubSIMD( ReplicateX4( tri->m_flD ), rays.origin * N );
|
|
|
|
fltx4 isect_t = DivSIMD( numerator, DDotN );
|
|
// now, we have the distance to the plane. lets update our mask
|
|
did_hit = AndSIMD( did_hit, CmpGtSIMD( isect_t, FourZeros ) );
|
|
//did_hit=AndSIMD(did_hit,CmpLtSIMD(isect_t,TMax));
|
|
did_hit = AndSIMD( did_hit, CmpLtSIMD( isect_t, rslt_out->HitDistance ) );
|
|
|
|
if ( ! IsAnyTrue( did_hit ) )
|
|
continue;
|
|
|
|
// now, check 3 edges
|
|
fltx4 hitc1 = AddSIMD( rays.origin[tri->m_nCoordSelect0],
|
|
MulSIMD( isect_t, rays.direction[ tri->m_nCoordSelect0] ) );
|
|
fltx4 hitc2 = AddSIMD( rays.origin[tri->m_nCoordSelect1],
|
|
MulSIMD( isect_t, rays.direction[tri->m_nCoordSelect1] ) );
|
|
|
|
// do barycentric coordinate check
|
|
fltx4 B0 = MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[0] ), hitc1 );
|
|
|
|
B0 = AddSIMD(
|
|
B0,
|
|
MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[1] ), hitc2 ) );
|
|
B0 = AddSIMD(
|
|
B0, ReplicateX4( tri->m_ProjectedEdgeEquations[2] ) );
|
|
|
|
did_hit = AndSIMD( did_hit, CmpGeSIMD( B0, FourZeros ) );
|
|
|
|
fltx4 B1 = MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[3] ), hitc1 );
|
|
B1 = AddSIMD(
|
|
B1,
|
|
MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[4]), hitc2 ) );
|
|
|
|
B1 = AddSIMD(
|
|
B1, ReplicateX4( tri->m_ProjectedEdgeEquations[5] ) );
|
|
|
|
did_hit = AndSIMD( did_hit, CmpGeSIMD( B1, FourZeros ) );
|
|
|
|
fltx4 B2 = AddSIMD( B1, B0 );
|
|
did_hit = AndSIMD( did_hit, CmpLeSIMD( B2, Four_Ones ) );
|
|
|
|
if ( ! IsAnyTrue( did_hit ) )
|
|
continue;
|
|
|
|
// if the triangle is transparent
|
|
if ( tri->m_nFlags & FCACHETRI_TRANSPARENT )
|
|
{
|
|
if ( pCallback )
|
|
{
|
|
// assuming a triangle indexed as v0, v1, v2
|
|
// the projected edge equations are set up such that the vert opposite the first
|
|
// equation is v2, and the vert opposite the second equation is v0
|
|
// Therefore we pass them back in 1, 2, 0 order
|
|
// Also B2 is currently B1 + B0 and needs to be 1 - (B1+B0) in order to be a real
|
|
// barycentric coordinate. Compute that now and pass it to the callback
|
|
fltx4 b2 = SubSIMD( Four_Ones, B2 );
|
|
if ( pCallback->VisitTriangle_ShouldContinue( *tri, rays, &did_hit, &B1, &b2, &B0, tnum ) )
|
|
{
|
|
did_hit = (bi32x4)Four_Zeros;
|
|
}
|
|
}
|
|
}
|
|
// now, set the hit_id and closest_hit fields for any enabled rays
|
|
i32x4 replicated_n = ReplicateIX4(tnum);
|
|
StoreAlignedSIMD( (float * ) rslt_out->HitIds,
|
|
OrSIMD( AndSIMD( (bi32x4)replicated_n, did_hit ),
|
|
AndNotSIMD( did_hit, LoadAlignedSIMD(
|
|
( float * ) rslt_out->HitIds )) ));
|
|
rslt_out->HitDistance = OrSIMD( AndSIMD( isect_t, did_hit ),
|
|
AndNotSIMD( did_hit, rslt_out->HitDistance ));
|
|
|
|
rslt_out->surface_normal.x = OrSIMD(
|
|
AndSIMD( N.x, did_hit ),
|
|
AndNotSIMD( did_hit, rslt_out->surface_normal.x ));
|
|
rslt_out->surface_normal.y = OrSIMD(
|
|
AndSIMD( N.y, did_hit ),
|
|
AndNotSIMD( did_hit, rslt_out->surface_normal.y ));
|
|
rslt_out->surface_normal.z = OrSIMD(
|
|
AndSIMD( N.z, did_hit ),
|
|
AndNotSIMD( did_hit, rslt_out->surface_normal.z ));
|
|
|
|
}
|
|
} while (--ntris);
|
|
// now, check if all rays have terminated
|
|
bi32x4 raydone = CmpLeSIMD( TMax, rslt_out->HitDistance );
|
|
if (! IsAnyTrue(raydone))
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
if ( stack_ptr == &NodeQueue[MAX_NODE_STACK_LEN] )
|
|
{
|
|
return;
|
|
}
|
|
// pop stack!
|
|
CurNode = stack_ptr->node;
|
|
TMin = stack_ptr->TMin;
|
|
TMax = stack_ptr->TMax;
|
|
stack_ptr++;
|
|
}
|
|
}
|
|
|
|
|
|
int RayTracingEnvironment::MakeLeafNode(int first_tri, int last_tri)
|
|
{
|
|
CacheOptimizedKDNode ret;
|
|
ret.Children = KDNODE_STATE_LEAF + ( TriangleIndexList.Count() << 2 );
|
|
ret.SetNumberOfTrianglesInLeafNode( 1 + ( last_tri - first_tri ));
|
|
for( int tnum = first_tri; tnum <= last_tri; tnum++ )
|
|
TriangleIndexList.AddToTail( tnum );
|
|
OptimizedKDTree.AddToTail( ret );
|
|
return OptimizedKDTree.Count() - 1;
|
|
}
|
|
|
|
|
|
void RayTracingEnvironment::CalculateTriangleListBounds(int32 const *tris,int ntris,
|
|
Vector &minout, Vector &maxout)
|
|
{
|
|
minout = Vector( 1.0e23, 1.0e23, 1.0e23 );
|
|
maxout = Vector( - 1.0e23, - 1.0e23, - 1.0e23 );
|
|
for( int i = 0; i < ntris; i++ )
|
|
{
|
|
CacheOptimizedTriangle const &tri = OptimizedTriangleList[tris[i]];
|
|
for( int v = 0; v < 3; v++ )
|
|
for( int c = 0; c < 3; c++ )
|
|
{
|
|
minout[c]=MIN(minout[c],tri.Vertex(v)[c]);
|
|
maxout[c]=MAX(maxout[c],tri.Vertex(v)[c]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Both the "quick" and regular kd tree building algorithms here use the "surface area heuristic":
|
|
// the relative probability of hitting the "left" subvolume (Vl) from a split is equal to that
|
|
// subvolume's surface area divided by its parent's surface area (Vp) : P(Vl | V) = SA(Vl)/SA(Vp).
|
|
// The same holds for the right subvolume, Vp. Nl is the number of triangles in the left volume,
|
|
// and Nr in the right volume. if Ct is the cost of traversing one tree node, and Ci is the cost of
|
|
// intersection with the primitive, than the cost of splitting is estimated as:
|
|
//
|
|
// Ct+Ci*((SA(Vl)/SA(V))*Nl+(SA(Vr)/SA(V)*Nr)).
|
|
// and the cost of not splitting is
|
|
// Ci*N
|
|
//
|
|
// This both provides a metric to minimize when computing how and where to split, and also a
|
|
// termination criterion.
|
|
//
|
|
// the "quick" method just splits down the middle, while the slow method splits at the best
|
|
// discontinuity of the cost formula. The quick method splits along the longest axis ; the
|
|
// regular algorithm tries all 3 to find which one results in the minimum cost
|
|
//
|
|
// both methods use the additional optimization of "growing" empty nodes - if the split results in
|
|
// one side being devoid of triangles, the empty side is "grown" as much as possible.
|
|
//
|
|
|
|
#define COST_OF_TRAVERSAL 75 // approximate #operations
|
|
#define COST_OF_INTERSECTION 167 // approximate #operations
|
|
|
|
|
|
float RayTracingEnvironment::CalculateCostsOfSplit(
|
|
int split_plane,int32 const *tri_list,int ntris,
|
|
Vector MinBound,Vector MaxBound, float &split_value,
|
|
int &nleft, int &nright, int &nboth)
|
|
{
|
|
// determine the costs of splitting on a given axis, and label triangles with respect to
|
|
// that axis by storing the value in coordselect0. It will also return the number of
|
|
// tris in the left, right, and nboth groups, in order to facilitate memory
|
|
nleft = nboth = nright = 0;
|
|
|
|
// now, label each triangle. Since we have not converted the triangles into
|
|
// intersection fromat yet, we can use the CoordSelect0 field of each as a temp.
|
|
nleft = 0;
|
|
nright = 0;
|
|
nboth = 0;
|
|
float min_coord = 1.0e23, max_coord =- 1.0e23;
|
|
|
|
for( int t = 0; t < ntris; t++ )
|
|
{
|
|
CacheOptimizedTriangle &tri = OptimizedTriangleList[tri_list[t]];
|
|
// determine max and min coordinate values for later optimization
|
|
for( int v = 0; v < 3; v++ )
|
|
{
|
|
min_coord = MIN( min_coord, tri.Vertex(v)[split_plane] );
|
|
max_coord = MAX( max_coord, tri.Vertex(v)[split_plane] );
|
|
}
|
|
switch( tri.ClassifyAgainstAxisSplit( split_plane, split_value ))
|
|
{
|
|
case PLANECHECK_NEGATIVE:
|
|
nleft++;
|
|
tri.m_Data.m_GeometryData.m_nTmpData0 = PLANECHECK_NEGATIVE;
|
|
break;
|
|
|
|
case PLANECHECK_POSITIVE:
|
|
nright++;
|
|
tri.m_Data.m_GeometryData.m_nTmpData0 = PLANECHECK_POSITIVE;
|
|
break;
|
|
|
|
case PLANECHECK_STRADDLING:
|
|
nboth++;
|
|
tri.m_Data.m_GeometryData.m_nTmpData0 = PLANECHECK_STRADDLING;
|
|
break;
|
|
}
|
|
}
|
|
// now, if the split resulted in one half being empty, "grow" the empty half
|
|
if ( nleft && ( nboth == 0 ) && ( nright == 0 ))
|
|
split_value = max_coord;
|
|
if ( nright && ( nboth == 0 ) && ( nleft == 0 ))
|
|
split_value = min_coord;
|
|
|
|
// now, perform surface area/cost check to determine whether this split was worth it
|
|
Vector LeftMins = MinBound;
|
|
Vector LeftMaxes = MaxBound;
|
|
Vector RightMins = MinBound;
|
|
Vector RightMaxes = MaxBound;
|
|
LeftMaxes[split_plane] = split_value;
|
|
RightMins[split_plane] = split_value;
|
|
float SA_L = BoxSurfaceArea( LeftMins, LeftMaxes );
|
|
float SA_R = BoxSurfaceArea( RightMins, RightMaxes );
|
|
float ISA = 1.0 / BoxSurfaceArea( MinBound, MaxBound );
|
|
float cost_of_split = COST_OF_TRAVERSAL + COST_OF_INTERSECTION * ( nboth +
|
|
( SA_L * ISA * ( nleft )) + ( SA_R * ISA * ( nright )) );
|
|
return cost_of_split;
|
|
}
|
|
|
|
|
|
#define NEVER_SPLIT 0
|
|
|
|
void RayTracingEnvironment::RefineNode( int node_number, int32 const * tri_list, int ntris,
|
|
Vector MinBound, Vector MaxBound, int depth )
|
|
{
|
|
if ( ntris < 3 ) // never split empty lists
|
|
{
|
|
// no point in continuing
|
|
OptimizedKDTree[node_number].Children = KDNODE_STATE_LEAF + ( TriangleIndexList.Count() << 2 );
|
|
OptimizedKDTree[node_number].SetNumberOfTrianglesInLeafNode( ntris );
|
|
|
|
#ifdef DEBUG_RAYTRACE
|
|
OptimizedKDTree[node_number].vecMins = MinBound;
|
|
OptimizedKDTree[node_number].vecMaxs = MaxBound;
|
|
#endif
|
|
|
|
for( int t = 0; t < ntris; t++ )
|
|
TriangleIndexList.AddToTail( tri_list[t] );
|
|
return;
|
|
}
|
|
|
|
float best_cost = 1.0e23;
|
|
int best_nleft = 0, best_nright = 0, best_nboth = 0;
|
|
float best_splitvalue = 0;
|
|
int split_plane = 0;
|
|
|
|
int tri_skip = 1 + ( ntris / 10 ); // don't try all trinagles as split
|
|
// points when there are a lot of them
|
|
for( int axis = 0; axis < 3; axis++ )
|
|
{
|
|
for( int ts =- 1; ts < ntris; ts += tri_skip )
|
|
{
|
|
for( int tv = 0; tv < 3; tv++ )
|
|
{
|
|
int trial_nleft, trial_nright, trial_nboth;
|
|
float trial_splitvalue;
|
|
if ( ts ==- 1 )
|
|
trial_splitvalue = 0.5 * ( MinBound[axis]+ MaxBound[axis] );
|
|
else
|
|
{
|
|
// else, split at the triangle vertex if possible
|
|
CacheOptimizedTriangle &tri = OptimizedTriangleList[tri_list[ts]];
|
|
trial_splitvalue = tri.Vertex( tv )[axis];
|
|
if ( (trial_splitvalue > MaxBound[axis] ) || ( trial_splitvalue < MinBound[axis] ))
|
|
continue; // don't try this vertex - not inside
|
|
|
|
}
|
|
// printf("ts=%d tv=%d tp=%f\n",ts,tv,trial_splitvalue);
|
|
float trial_cost =
|
|
CalculateCostsOfSplit( axis, tri_list, ntris, MinBound, MaxBound, trial_splitvalue,
|
|
trial_nleft, trial_nright, trial_nboth );
|
|
// printf("try %d cost=%f nl=%d nr=%d nb=%d sp=%f\n",axis,trial_cost,trial_nleft,trial_nright, trial_nboth,
|
|
// trial_splitvalue);
|
|
if ( trial_cost < best_cost )
|
|
{
|
|
split_plane = axis;
|
|
best_cost = trial_cost;
|
|
best_nleft = trial_nleft;
|
|
best_nright = trial_nright;
|
|
best_nboth = trial_nboth;
|
|
best_splitvalue = trial_splitvalue;
|
|
// save away the axis classification of each triangle
|
|
for( int t = 0 ; t < ntris; t++ )
|
|
{
|
|
CacheOptimizedTriangle &tri = OptimizedTriangleList[tri_list[t]];
|
|
tri.m_Data.m_GeometryData.m_nTmpData1 = tri.m_Data.m_GeometryData.m_nTmpData0;
|
|
}
|
|
}
|
|
if ( ts ==- 1 )
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
float cost_of_no_split = COST_OF_INTERSECTION * ntris;
|
|
if ( ( cost_of_no_split <= best_cost ) || NEVER_SPLIT || ( depth > MAX_TREE_DEPTH ))
|
|
{
|
|
// no benefit to splitting. just make this a leaf node
|
|
OptimizedKDTree[node_number].Children = KDNODE_STATE_LEAF + ( TriangleIndexList.Count() << 2 );
|
|
OptimizedKDTree[node_number].SetNumberOfTrianglesInLeafNode( ntris );
|
|
#ifdef DEBUG_RAYTRACE
|
|
OptimizedKDTree[node_number].vecMins = MinBound;
|
|
OptimizedKDTree[node_number].vecMaxs = MaxBound;
|
|
#endif
|
|
for( int t = 0; t < ntris; t++ )
|
|
TriangleIndexList.AddToTail( tri_list[t] );
|
|
}
|
|
else
|
|
{
|
|
// printf("best split was %d at %f (mid=%f,n=%d, sk=%d)\n",split_plane,best_splitvalue,
|
|
// 0.5*(MinBound[split_plane]+MaxBound[split_plane]),ntris,tri_skip);
|
|
// its worth splitting!
|
|
// we will achieve the splitting without sorting by using a selection algorithm.
|
|
int32 * new_triangle_list;
|
|
new_triangle_list = new int32[ntris];
|
|
|
|
// now, perform surface area/cost check to determine whether this split was worth it
|
|
Vector LeftMins = MinBound;
|
|
Vector LeftMaxes = MaxBound;
|
|
Vector RightMins = MinBound;
|
|
Vector RightMaxes = MaxBound;
|
|
LeftMaxes[split_plane] = best_splitvalue;
|
|
RightMins[split_plane] = best_splitvalue;
|
|
|
|
int n_left_output = 0;
|
|
int n_both_output = 0;
|
|
int n_right_output = 0;
|
|
for( int t = 0; t < ntris; t++ )
|
|
{
|
|
CacheOptimizedTriangle &tri = OptimizedTriangleList[tri_list[t]];
|
|
switch( tri.m_Data.m_GeometryData.m_nTmpData1 )
|
|
{
|
|
case PLANECHECK_NEGATIVE:
|
|
// printf("%d goes left\n",t);
|
|
new_triangle_list[n_left_output++] = tri_list[t];
|
|
break;
|
|
case PLANECHECK_POSITIVE:
|
|
n_right_output++;
|
|
// printf("%d goes right\n",t);
|
|
new_triangle_list[ntris - n_right_output] = tri_list[t];
|
|
break;
|
|
case PLANECHECK_STRADDLING:
|
|
// printf("%d goes both\n",t);
|
|
new_triangle_list[best_nleft + n_both_output] = tri_list[t];
|
|
n_both_output++;
|
|
break;
|
|
|
|
|
|
}
|
|
}
|
|
int left_child = OptimizedKDTree.Count();
|
|
int right_child = left_child + 1;
|
|
// printf("node %d split on axis %d at %f, nl=%d nr=%d nb=%d lc=%d rc=%d\n",node_number,
|
|
// split_plane,best_splitvalue,best_nleft,best_nright,best_nboth,
|
|
// left_child,right_child);
|
|
OptimizedKDTree[node_number].Children = split_plane + ( left_child << 2 );
|
|
OptimizedKDTree[node_number].SplittingPlaneValue = best_splitvalue;
|
|
#ifdef DEBUG_RAYTRACE
|
|
OptimizedKDTree[node_number].vecMins = MinBound;
|
|
OptimizedKDTree[node_number].vecMaxs = MaxBound;
|
|
#endif
|
|
CacheOptimizedKDNode newnode;
|
|
OptimizedKDTree.AddToTail( newnode );
|
|
OptimizedKDTree.AddToTail( newnode );
|
|
// now, recurse!
|
|
if ( ( ntris < 20 ) && ( (best_nleft == 0 ) || ( best_nright == 0 )) )
|
|
depth += 100;
|
|
RefineNode( left_child, new_triangle_list, best_nleft + best_nboth, LeftMins, LeftMaxes, depth + 1 );
|
|
RefineNode( right_child, new_triangle_list + best_nleft, best_nright + best_nboth,
|
|
RightMins, RightMaxes, depth + 1 );
|
|
delete[] new_triangle_list;
|
|
}
|
|
}
|
|
|
|
|
|
void RayTracingEnvironment::SetupAccelerationStructure( void )
|
|
{
|
|
CacheOptimizedKDNode root;
|
|
OptimizedKDTree.AddToTail( root );
|
|
int32 * root_triangle_list = new int32[OptimizedTriangleList.Count()];
|
|
for( int t = 0; t < OptimizedTriangleList.Count(); t++ )
|
|
root_triangle_list[t] = t;
|
|
CalculateTriangleListBounds( root_triangle_list, OptimizedTriangleList.Count(), m_MinBound,
|
|
m_MaxBound );
|
|
RefineNode( 0, root_triangle_list, OptimizedTriangleList.Count(), m_MinBound, m_MaxBound, 0 );
|
|
delete[] root_triangle_list;
|
|
|
|
// now, convert all triangles to "intersection format"
|
|
for( int i = 0; i < OptimizedTriangleList.Count(); i++ )
|
|
OptimizedTriangleList[i].ChangeIntoIntersectionFormat();
|
|
}
|
|
|
|
|
|
|
|
void RayTracingEnvironment::AddInfinitePointLight( Vector position, Vector intensity )
|
|
{
|
|
LightDesc_t mylight( position, intensity );
|
|
LightList.AddToTail( mylight );
|
|
|
|
}
|
|
|
|
|
|
#define RTENV_SERIALIZATION_VERSION 1
|
|
|
|
struct RayTracingSerializationHeader
|
|
{
|
|
uint32 m_nVersionNumber;
|
|
uint32 m_nSerializationFlags;
|
|
uint32 m_nNumKDNodes;
|
|
uint32 m_nNumTriangles;
|
|
uint32 m_nNumTriangleIndices;
|
|
uint32 m_nNumColors;
|
|
Vector m_vMinBound;
|
|
Vector m_vMaxBound;
|
|
|
|
RayTracingSerializationHeader( void )
|
|
{
|
|
m_nVersionNumber = RTENV_SERIALIZATION_VERSION;
|
|
}
|
|
|
|
void Put( CUtlBuffer &outbuf )
|
|
{
|
|
outbuf.PutInt( m_nVersionNumber );
|
|
outbuf.PutInt( m_nSerializationFlags );
|
|
outbuf.PutInt( m_nNumKDNodes );
|
|
outbuf.PutInt( m_nNumTriangles );
|
|
outbuf.PutInt( m_nNumTriangleIndices );
|
|
outbuf.PutInt( m_nNumColors );
|
|
outbuf.PutFloat( m_vMinBound.x );
|
|
outbuf.PutFloat( m_vMinBound.y );
|
|
outbuf.PutFloat( m_vMinBound.z );
|
|
outbuf.PutFloat( m_vMaxBound.x );
|
|
outbuf.PutFloat( m_vMaxBound.y );
|
|
outbuf.PutFloat( m_vMaxBound.z );
|
|
}
|
|
|
|
void Get( CUtlBuffer &inbuf )
|
|
{
|
|
m_nVersionNumber = inbuf.GetInt();
|
|
m_nSerializationFlags = inbuf.GetInt();
|
|
m_nNumKDNodes = inbuf.GetInt();
|
|
m_nNumTriangles = inbuf.GetInt();
|
|
m_nNumTriangleIndices = inbuf.GetInt();
|
|
m_nNumColors = inbuf.GetInt();
|
|
m_vMinBound.x = inbuf.GetFloat();
|
|
m_vMinBound.y = inbuf.GetFloat();
|
|
m_vMinBound.z = inbuf.GetFloat();
|
|
m_vMaxBound.x = inbuf.GetFloat();
|
|
m_vMaxBound.y = inbuf.GetFloat();
|
|
m_vMaxBound.z = inbuf.GetFloat();
|
|
}
|
|
};
|
|
|
|
size_t RayTracingEnvironment::GetSerializationNumBytes( uint32 nSerializationFlags ) const
|
|
{
|
|
size_t nRet = sizeof( RayTracingSerializationHeader );
|
|
nRet += sizeof( CacheOptimizedKDNode ) * OptimizedKDTree.Count();
|
|
nRet += sizeof( CacheOptimizedTriangle ) * OptimizedTriangleList.Count();
|
|
nRet += sizeof( int32 ) * TriangleIndexList.Count();
|
|
|
|
if ( nSerializationFlags & RT_ENV_SERIALIZE_COLORS )
|
|
nRet += sizeof( Vector ) * TriangleColors.Count();
|
|
return nRet;
|
|
}
|
|
|
|
|
|
void RayTracingEnvironment::Serialize( CUtlBuffer &outbuf, uint32 nSerializationFlags ) const
|
|
{
|
|
outbuf.ActivateByteSwappingIfBigEndian();
|
|
RayTracingSerializationHeader hdr;
|
|
hdr.m_nSerializationFlags = nSerializationFlags;
|
|
hdr.m_nNumKDNodes = OptimizedKDTree.Count();
|
|
hdr.m_nNumTriangles = OptimizedTriangleList.Count();
|
|
hdr.m_nNumTriangleIndices = TriangleIndexList.Count();
|
|
hdr.m_nNumColors = ( nSerializationFlags & RT_ENV_SERIALIZE_COLORS ) ? TriangleColors.Count() : 0;
|
|
hdr.m_vMinBound = m_MinBound;
|
|
hdr.m_vMaxBound = m_MaxBound;
|
|
hdr.Put( outbuf );
|
|
for( int i = 0 ; i < OptimizedKDTree.Count(); i++ )
|
|
{
|
|
CacheOptimizedKDNode const * pNode = &OptimizedKDTree[i];
|
|
outbuf.PutInt( pNode->Children );
|
|
if ( pNode->NodeType() == KDNODE_STATE_LEAF )
|
|
outbuf.PutInt( * ( reinterpret_cast < int32 const *> ( &pNode->SplittingPlaneValue ) ) );
|
|
else
|
|
outbuf.PutFloat( pNode->SplittingPlaneValue );
|
|
}
|
|
for( int i = 0; i < OptimizedTriangleList.Count() ; i++ )
|
|
{
|
|
TriIntersectData_t const * pTri = &( OptimizedTriangleList[i].m_Data.m_IntersectData );
|
|
outbuf.PutFloat( pTri->m_flNx );
|
|
outbuf.PutFloat( pTri->m_flNy );
|
|
outbuf.PutFloat( pTri->m_flNz );
|
|
outbuf.PutFloat( pTri->m_flD );
|
|
outbuf.PutFloat( pTri->m_nTriangleID );
|
|
for( int j = 0; j < ARRAYSIZE( pTri->m_ProjectedEdgeEquations ); j++ )
|
|
outbuf.PutFloat( pTri->m_ProjectedEdgeEquations[j] );
|
|
outbuf.PutUnsignedChar( pTri->m_nCoordSelect0 );
|
|
outbuf.PutUnsignedChar( pTri->m_nCoordSelect1 );
|
|
outbuf.PutUnsignedChar( pTri->m_nFlags );
|
|
outbuf.PutUnsignedChar( 0 ); // for unused.
|
|
}
|
|
for( int i = 0; i < TriangleIndexList.Count(); i++ )
|
|
outbuf.PutInt( TriangleIndexList[i] );
|
|
if ( nSerializationFlags & RT_ENV_SERIALIZE_COLORS )
|
|
for( int i = 0 ; i < TriangleColors.Count() ; i++ )
|
|
{
|
|
Vector const &v = TriangleColors[i];
|
|
outbuf.PutFloat( v.x );
|
|
outbuf.PutFloat( v.y );
|
|
outbuf.PutFloat( v.z );
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void RayTracingEnvironment::UnSerialize( CUtlBuffer &inbuf )
|
|
{
|
|
inbuf.ActivateByteSwappingIfBigEndian();
|
|
RayTracingSerializationHeader hdr;
|
|
hdr.Get( inbuf );
|
|
m_MinBound = hdr.m_vMinBound;
|
|
m_MaxBound = hdr.m_vMaxBound;
|
|
OptimizedKDTree.SetCount( hdr.m_nNumKDNodes );
|
|
for( int i = 0; i < hdr.m_nNumKDNodes; i++ )
|
|
{
|
|
CacheOptimizedKDNode *pNode = &OptimizedKDTree[i];
|
|
pNode->Children = inbuf.GetInt();
|
|
if ( pNode->NodeType() == KDNODE_STATE_LEAF )
|
|
{
|
|
*( ( int32 * ) &pNode->SplittingPlaneValue ) = inbuf.GetInt();
|
|
}
|
|
else
|
|
{
|
|
pNode->SplittingPlaneValue = inbuf.GetFloat();
|
|
}
|
|
}
|
|
// now, read the triangles
|
|
OptimizedTriangleList.SetCount( hdr.m_nNumTriangles );
|
|
for( int i = 0; i < OptimizedTriangleList.Count() ; i++ )
|
|
{
|
|
TriIntersectData_t * pTri = &( OptimizedTriangleList[i].m_Data.m_IntersectData );
|
|
pTri->m_flNx = inbuf.GetFloat();
|
|
pTri->m_flNy = inbuf.GetFloat();
|
|
pTri->m_flNz = inbuf.GetFloat();
|
|
pTri->m_flD = inbuf.GetFloat();
|
|
pTri->m_nTriangleID = inbuf.GetFloat();
|
|
for( int j = 0; j < ARRAYSIZE( pTri->m_ProjectedEdgeEquations ); j++ )
|
|
{
|
|
pTri->m_ProjectedEdgeEquations[j] = inbuf.GetFloat();
|
|
}
|
|
pTri->m_nCoordSelect0 = inbuf.GetUnsignedChar();
|
|
pTri->m_nCoordSelect1 = inbuf.GetUnsignedChar();
|
|
pTri->m_nFlags = inbuf.GetUnsignedChar();
|
|
inbuf.GetUnsignedChar(); // for unused.
|
|
}
|
|
TriangleIndexList.SetCount( hdr.m_nNumTriangleIndices );
|
|
for( int i = 0; i < TriangleIndexList.Count(); i++ )
|
|
{
|
|
TriangleIndexList[i] = inbuf.GetInt();
|
|
}
|
|
TriangleColors.SetCount( hdr.m_nNumColors );
|
|
for( int i = 0 ; i < TriangleColors.Count() ; i++ )
|
|
{
|
|
Vector &v = TriangleColors[i];
|
|
v.x = inbuf.GetFloat();
|
|
v.y = inbuf.GetFloat();
|
|
v.z = inbuf.GetFloat();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|