You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3976 lines
117 KiB
3976 lines
117 KiB
//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose:
|
|
//
|
|
// $NoKeywords: $
|
|
//
|
|
//=============================================================================//
|
|
|
|
#include "vrad.h"
|
|
#include "lightmap.h"
|
|
#include "radial.h"
|
|
#include "mathlib/bumpvects.h"
|
|
#include "tier1/utlvector.h"
|
|
#include "vmpi.h"
|
|
#include "mathlib/anorms.h"
|
|
#include "map_utils.h"
|
|
#include "mathlib/halton.h"
|
|
#include "imagepacker.h"
|
|
#include "tier1/utlrbtree.h"
|
|
#include "tier1/utlbuffer.h"
|
|
#include "bitmap/tgawriter.h"
|
|
#include "mathlib/quantize.h"
|
|
#include "bitmap/imageformat.h"
|
|
#include "coordsize.h"
|
|
|
|
enum
|
|
{
|
|
AMBIENT_ONLY = 0x1,
|
|
NON_AMBIENT_ONLY = 0x2,
|
|
};
|
|
|
|
#define SMOOTHING_GROUP_HARD_EDGE 0xff000000
|
|
|
|
//==========================================================================//
|
|
// Ambient occlusion
|
|
//==========================================================================//
|
|
bool g_bNoSoften = false;
|
|
bool g_bNoAO = false;
|
|
|
|
float CalculateAmbientOcclusion( Vector *pPosition, Vector *pNormal )
|
|
{
|
|
// Just call through to the simd version of this function
|
|
FourVectors position4;
|
|
position4.DuplicateVector( *pPosition );
|
|
|
|
FourVectors normal4;
|
|
position4.DuplicateVector( *pNormal );
|
|
|
|
fltx4 ao = CalculateAmbientOcclusion4( position4, normal4, -1 );
|
|
|
|
return SubFloat( ao, 0 );
|
|
}
|
|
|
|
fltx4 CalculateAmbientOcclusion4( const FourVectors &position4, const FourVectors &normal4, int static_prop_index_to_ignore )
|
|
{
|
|
if ( g_bNoAO )
|
|
{
|
|
return Four_Ones;
|
|
}
|
|
|
|
DirectionalSampler_t sampler;
|
|
int nSamples = 32;
|
|
if ( do_fast )
|
|
{
|
|
nSamples /= 2;
|
|
}
|
|
|
|
fltx4 totalVisible = Four_Zeros;
|
|
fltx4 totalPossibleVisible = Four_Zeros;
|
|
for ( int i = 0; i < nSamples; i++ )
|
|
{
|
|
FourVectors rayStart = position4;
|
|
rayStart += normal4;
|
|
|
|
// Ray direction on the sphere
|
|
FourVectors rayDirection;
|
|
rayDirection.DuplicateVector( sampler.NextValue() );
|
|
|
|
// Mirror ray along normal so all rays are on the hemisphere defined by the normal
|
|
fltx4 rayDotN = rayDirection * normal4; // dot product
|
|
fltx4 absRayDotN = AbsSIMD( rayDotN );
|
|
rayDirection = rayDirection - Mul( normal4, rayDotN ) + Mul( normal4, absRayDotN );
|
|
|
|
// Set length of ray
|
|
FourVectors rayEnd = rayDirection;
|
|
rayEnd *= 36.0f;
|
|
rayEnd += rayStart;
|
|
|
|
// Raytrace for visibility function
|
|
fltx4 fractionVisible = Four_Ones;
|
|
TestLine_IgnoreSky( rayStart, rayEnd, &fractionVisible, static_prop_index_to_ignore );
|
|
totalVisible = AddSIMD( totalVisible, MulSIMD( fractionVisible, absRayDotN ) );
|
|
totalPossibleVisible = AddSIMD( totalPossibleVisible, absRayDotN );
|
|
}
|
|
|
|
fltx4 ao = DivSIMD( totalVisible, totalPossibleVisible );
|
|
ao = MulSIMD( ao, ao ); // Square ao term - This is an artistic choice by the CS:GO team
|
|
return ao;
|
|
}
|
|
|
|
//==========================================================================//
|
|
// Give surfaces a softer look instead of the harsher linear N.L look
|
|
//==========================================================================//
|
|
float SoftenCosineTerm( float flDot )
|
|
{
|
|
if ( g_bNoSoften )
|
|
return flDot;
|
|
|
|
flDot = MAX( flDot, 0.0f );
|
|
return ( flDot + ( flDot * flDot ) ) * 0.5f; // This is cheaper than an exponent in shader code
|
|
}
|
|
|
|
fltx4 SoftenCosineTerm( fltx4 dots )
|
|
{
|
|
if ( g_bNoSoften )
|
|
return dots;
|
|
|
|
dots = MaxSIMD( dots, Four_Zeros );
|
|
fltx4 dotsSquared = MulSIMD( dots, dots );
|
|
return MulSIMD( AddSIMD( dots, dotsSquared ), Four_PointFives );
|
|
}
|
|
|
|
//==========================================================================//
|
|
// CNormalList.
|
|
//==========================================================================//
|
|
|
|
// This class keeps a list of unique normals and provides a fast
|
|
class CNormalList
|
|
{
|
|
public:
|
|
CNormalList();
|
|
|
|
// Adds the normal if unique. Otherwise, returns the normal's index into m_Normals.
|
|
int FindOrAddNormal( Vector const &vNormal );
|
|
|
|
|
|
public:
|
|
|
|
CUtlVector<Vector> m_Normals;
|
|
|
|
|
|
private:
|
|
|
|
// This represents a grid from (-1,-1,-1) to (1,1,1).
|
|
enum {NUM_SUBDIVS = 8};
|
|
CUtlVector<int> m_NormalGrid[NUM_SUBDIVS][NUM_SUBDIVS][NUM_SUBDIVS];
|
|
};
|
|
|
|
|
|
int g_iCurFace;
|
|
edgeshare_t edgeshare[MAX_MAP_EDGES];
|
|
|
|
Vector face_centroids[MAX_MAP_EDGES];
|
|
|
|
int vertexref[MAX_MAP_VERTS];
|
|
int *vertexface[MAX_MAP_VERTS];
|
|
faceneighbor_t faceneighbor[MAX_MAP_FACES];
|
|
|
|
static directlight_t *gSkyLight = NULL;
|
|
static directlight_t *gAmbient = NULL;
|
|
|
|
//==========================================================================//
|
|
// CNormalList implementation.
|
|
//==========================================================================//
|
|
|
|
CNormalList::CNormalList() : m_Normals( 128 )
|
|
{
|
|
for( int i=0; i < sizeof(m_NormalGrid)/sizeof(m_NormalGrid[0][0][0]); i++ )
|
|
{
|
|
(&m_NormalGrid[0][0][0] + i)->SetGrowSize( 16 );
|
|
}
|
|
}
|
|
|
|
int CNormalList::FindOrAddNormal( Vector const &vNormal )
|
|
{
|
|
int gi[3];
|
|
|
|
// See which grid element it's in.
|
|
for( int iDim=0; iDim < 3; iDim++ )
|
|
{
|
|
gi[iDim] = (int)( ((vNormal[iDim] + 1.0f) * 0.5f) * NUM_SUBDIVS - 0.000001f );
|
|
gi[iDim] = min( gi[iDim], NUM_SUBDIVS );
|
|
gi[iDim] = max( gi[iDim], 0 );
|
|
}
|
|
|
|
// Look for a matching vector in there.
|
|
CUtlVector<int> *pGridElement = &m_NormalGrid[gi[0]][gi[1]][gi[2]];
|
|
for( int i=0; i < pGridElement->Count(); i++ )
|
|
{
|
|
int iNormal = pGridElement->Element(i);
|
|
|
|
Vector *pVec = &m_Normals[iNormal];
|
|
//if( pVec->DistToSqr(vNormal) < 0.00001f )
|
|
if( *pVec == vNormal )
|
|
return iNormal;
|
|
}
|
|
|
|
// Ok, add a new one.
|
|
pGridElement->AddToTail( m_Normals.Count() );
|
|
return m_Normals.AddToTail( vNormal );
|
|
}
|
|
|
|
// FIXME: HACK until the plane normals are made more happy
|
|
void GetBumpNormals( const float* sVect, const float* tVect, const Vector& flatNormal,
|
|
const Vector& phongNormal, Vector bumpNormals[NUM_BUMP_VECTS] )
|
|
{
|
|
Vector stmp( sVect[0], sVect[1], sVect[2] );
|
|
Vector ttmp( tVect[0], tVect[1], tVect[2] );
|
|
GetBumpNormals( stmp, ttmp, flatNormal, phongNormal, bumpNormals );
|
|
}
|
|
|
|
int EdgeVertex( dface_t *f, int edge )
|
|
{
|
|
int k;
|
|
|
|
if (edge < 0)
|
|
edge += f->numedges;
|
|
else if (edge >= f->numedges)
|
|
edge = edge % f->numedges;
|
|
|
|
k = dsurfedges[f->firstedge + edge];
|
|
if (k < 0)
|
|
{
|
|
// Msg("(%d %d) ", dedges[-k].v[1], dedges[-k].v[0] );
|
|
return dedges[-k].v[1];
|
|
}
|
|
else
|
|
{
|
|
// Msg("(%d %d) ", dedges[k].v[0], dedges[k].v[1] );
|
|
return dedges[k].v[0];
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
============
|
|
PairEdges
|
|
============
|
|
*/
|
|
void PairEdges (void)
|
|
{
|
|
int i, j, k, n, m;
|
|
dface_t *f;
|
|
int numneighbors;
|
|
int tmpneighbor[64];
|
|
faceneighbor_t *fn;
|
|
|
|
// count number of faces that reference each vertex
|
|
for (i=0, f = g_pFaces; i<numfaces ; i++, f++)
|
|
{
|
|
for (j=0 ; j<f->numedges ; j++)
|
|
{
|
|
// Store the count in vertexref
|
|
vertexref[EdgeVertex(f,j)]++;
|
|
}
|
|
}
|
|
|
|
// allocate room
|
|
for (i = 0; i < numvertexes; i++)
|
|
{
|
|
// use the count from above to allocate a big enough array
|
|
vertexface[i] = ( int* )calloc( vertexref[i], sizeof( vertexface[0] ) );
|
|
// clear the temporary data
|
|
vertexref[i] = 0;
|
|
}
|
|
|
|
// store a list of every face that uses a particular vertex
|
|
for (i=0, f = g_pFaces ; i<numfaces ; i++, f++)
|
|
{
|
|
for (j=0 ; j<f->numedges ; j++)
|
|
{
|
|
n = EdgeVertex(f,j);
|
|
|
|
for (k = 0; k < vertexref[n]; k++)
|
|
{
|
|
if (vertexface[n][k] == i)
|
|
break;
|
|
}
|
|
if (k >= vertexref[n])
|
|
{
|
|
// add the face to the list
|
|
vertexface[n][k] = i;
|
|
vertexref[n]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// calc normals and set displacement surface flag
|
|
for (i=0, f = g_pFaces; i<numfaces ; i++, f++)
|
|
{
|
|
fn = &faceneighbor[i];
|
|
|
|
// get face normal
|
|
VectorCopy( dplanes[f->planenum].normal, fn->facenormal );
|
|
|
|
// set displacement surface flag
|
|
fn->bHasDisp = false;
|
|
if( ValidDispFace( f ) )
|
|
{
|
|
fn->bHasDisp = true;
|
|
}
|
|
}
|
|
|
|
// find neighbors
|
|
for (i=0, f = g_pFaces ; i<numfaces ; i++, f++)
|
|
{
|
|
numneighbors = 0;
|
|
fn = &faceneighbor[i];
|
|
|
|
// allocate room for vertex normals
|
|
fn->normal = ( Vector* )calloc( f->numedges, sizeof( fn->normal[0] ) );
|
|
|
|
// look up all faces sharing vertices and add them to the list
|
|
for (j=0 ; j<f->numedges ; j++)
|
|
{
|
|
n = EdgeVertex(f,j);
|
|
|
|
for (k = 0; k < vertexref[n]; k++)
|
|
{
|
|
double cos_normals_angle;
|
|
Vector *pNeighbornormal;
|
|
|
|
// skip self
|
|
if (vertexface[n][k] == i)
|
|
continue;
|
|
|
|
// if this face doens't have a displacement -- don't consider displacement neighbors
|
|
if( ( !fn->bHasDisp ) && ( faceneighbor[vertexface[n][k]].bHasDisp ) )
|
|
continue;
|
|
|
|
pNeighbornormal = &faceneighbor[vertexface[n][k]].facenormal;
|
|
cos_normals_angle = DotProduct( *pNeighbornormal, fn->facenormal );
|
|
|
|
// add normal if >= threshold or its a displacement surface (this is only if the original
|
|
// face is a displacement)
|
|
if ( fn->bHasDisp )
|
|
{
|
|
// Always smooth with and against a displacement surface.
|
|
VectorAdd( fn->normal[j], *pNeighbornormal, fn->normal[j] );
|
|
}
|
|
else
|
|
{
|
|
// No smoothing - use of method (backwards compatibility).
|
|
if ( ( f->smoothingGroups == 0 ) && ( g_pFaces[vertexface[n][k]].smoothingGroups == 0 ) )
|
|
{
|
|
if ( cos_normals_angle >= smoothing_threshold )
|
|
{
|
|
VectorAdd( fn->normal[j], *pNeighbornormal, fn->normal[j] );
|
|
}
|
|
else
|
|
{
|
|
// not considered a neighbor
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
unsigned int smoothingGroup = ( f->smoothingGroups & g_pFaces[vertexface[n][k]].smoothingGroups );
|
|
|
|
// Hard edge.
|
|
if ( ( smoothingGroup & SMOOTHING_GROUP_HARD_EDGE ) != 0 )
|
|
continue;
|
|
|
|
if ( smoothingGroup != 0 )
|
|
{
|
|
VectorAdd( fn->normal[j], *pNeighbornormal, fn->normal[j] );
|
|
}
|
|
else
|
|
{
|
|
// not considered a neighbor
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// look to see if we've already added this one
|
|
for (m = 0; m < numneighbors; m++)
|
|
{
|
|
if (tmpneighbor[m] == vertexface[n][k])
|
|
break;
|
|
}
|
|
|
|
if (m >= numneighbors)
|
|
{
|
|
// add to neighbor list
|
|
tmpneighbor[m] = vertexface[n][k];
|
|
numneighbors++;
|
|
if ( numneighbors > ARRAYSIZE(tmpneighbor) )
|
|
{
|
|
Error("Stack overflow in neighbors\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (numneighbors)
|
|
{
|
|
// copy over neighbor list
|
|
fn->numneighbors = numneighbors;
|
|
fn->neighbor = ( int* )calloc( numneighbors, sizeof( fn->neighbor[0] ) );
|
|
for (m = 0; m < numneighbors; m++)
|
|
{
|
|
fn->neighbor[m] = tmpneighbor[m];
|
|
}
|
|
}
|
|
|
|
// fixup normals
|
|
for (j = 0; j < f->numedges; j++)
|
|
{
|
|
VectorAdd( fn->normal[j], fn->facenormal, fn->normal[j] );
|
|
VectorNormalize( fn->normal[j] );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void SaveVertexNormals( void )
|
|
{
|
|
faceneighbor_t *fn;
|
|
int i, j;
|
|
dface_t *f;
|
|
CNormalList normalList;
|
|
|
|
g_numvertnormalindices = 0;
|
|
|
|
for( i = 0 ;i<numfaces ; i++ )
|
|
{
|
|
fn = &faceneighbor[i];
|
|
f = &g_pFaces[i];
|
|
|
|
for( j = 0; j < f->numedges; j++ )
|
|
{
|
|
Vector vNormal;
|
|
if( fn->normal )
|
|
{
|
|
vNormal = fn->normal[j];
|
|
}
|
|
else
|
|
{
|
|
// original faces don't have normals
|
|
vNormal.Init( 0, 0, 0 );
|
|
}
|
|
|
|
if( g_numvertnormalindices == MAX_MAP_VERTNORMALINDICES )
|
|
{
|
|
Error( "g_numvertnormalindices == MAX_MAP_VERTNORMALINDICES" );
|
|
}
|
|
|
|
g_vertnormalindices[g_numvertnormalindices] = (unsigned short)normalList.FindOrAddNormal( vNormal );
|
|
g_numvertnormalindices++;
|
|
}
|
|
}
|
|
|
|
if( normalList.m_Normals.Count() > MAX_MAP_VERTNORMALS )
|
|
{
|
|
Error( "g_numvertnormals > MAX_MAP_VERTNORMALS" );
|
|
}
|
|
|
|
// Copy the list of unique vert normals into g_vertnormals.
|
|
g_numvertnormals = normalList.m_Normals.Count();
|
|
memcpy( g_vertnormals, normalList.m_Normals.Base(), sizeof(g_vertnormals[0]) * normalList.m_Normals.Count() );
|
|
}
|
|
|
|
/*
|
|
=================================================================
|
|
|
|
LIGHTMAP SAMPLE GENERATION
|
|
|
|
=================================================================
|
|
*/
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: Spits out an error message with information about a lightinfo_t.
|
|
// Input : s - Error message string.
|
|
// l - lightmap info struct.
|
|
//-----------------------------------------------------------------------------
|
|
void ErrorLightInfo(const char *s, lightinfo_t *l)
|
|
{
|
|
texinfo_t *tex = &texinfo[l->face->texinfo];
|
|
winding_t *w = WindingFromFace(&g_pFaces[l->facenum], l->modelorg);
|
|
|
|
//
|
|
// Show the face center and material name if possible.
|
|
//
|
|
if (w != NULL)
|
|
{
|
|
// Don't exit, we'll try to recover...
|
|
Vector vecCenter;
|
|
WindingCenter(w, vecCenter);
|
|
// FreeWinding(w);
|
|
|
|
Warning("%s at (%g, %g, %g)\n\tmaterial=%s\n", s, (double)vecCenter.x, (double)vecCenter.y, (double)vecCenter.z, TexDataStringTable_GetString( dtexdata[tex->texdata].nameStringTableID ) );
|
|
}
|
|
//
|
|
// If not, just show the material name.
|
|
//
|
|
else
|
|
{
|
|
Warning("%s at (degenerate face)\n\tmaterial=%s\n", TexDataStringTable_GetString( dtexdata[tex->texdata].nameStringTableID ));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void CalcFaceVectors(lightinfo_t *l)
|
|
{
|
|
texinfo_t *tex;
|
|
int i, j;
|
|
|
|
tex = &texinfo[l->face->texinfo];
|
|
|
|
// move into lightinfo_t
|
|
for (i=0 ; i<2 ; i++)
|
|
{
|
|
for (j=0 ; j<3 ; j++)
|
|
{
|
|
l->worldToLuxelSpace[i][j] = tex->lightmapVecsLuxelsPerWorldUnits[i][j];
|
|
}
|
|
}
|
|
|
|
//Solve[ { x * w00 + y * w01 + z * w02 - s == 0, x * w10 + y * w11 + z * w12 - t == 0, A * x + B * y + C * z + D == 0 }, { x, y, z } ]
|
|
//Rule(x,( C*s*w11 - B*s*w12 + B*t*w02 - C*t*w01 + D*w02*w11 - D*w01*w12) / (+ A*w01*w12 - A*w02*w11 + B*w02*w10 - B*w00*w12 + C*w00*w11 - C*w01*w10 )),
|
|
//Rule(y,( A*s*w12 - C*s*w10 + C*t*w00 - A*t*w02 + D*w00*w12 - D*w02*w10) / (+ A*w01*w12 - A*w02*w11 + B*w02*w10 - B*w00*w12 + C*w00*w11 - C*w01*w10 )),
|
|
//Rule(z,( B*s*w10 - A*s*w11 + A*t*w01 - B*t*w00 + D*w01*w10 - D*w00*w11) / (+ A*w01*w12 - A*w02*w11 + B*w02*w10 - B*w00*w12 + C*w00*w11 - C*w01*w10 ))))
|
|
|
|
Vector luxelSpaceCross;
|
|
|
|
luxelSpaceCross[0] =
|
|
tex->lightmapVecsLuxelsPerWorldUnits[1][1] * tex->lightmapVecsLuxelsPerWorldUnits[0][2] -
|
|
tex->lightmapVecsLuxelsPerWorldUnits[1][2] * tex->lightmapVecsLuxelsPerWorldUnits[0][1];
|
|
luxelSpaceCross[1] =
|
|
tex->lightmapVecsLuxelsPerWorldUnits[1][2] * tex->lightmapVecsLuxelsPerWorldUnits[0][0] -
|
|
tex->lightmapVecsLuxelsPerWorldUnits[1][0] * tex->lightmapVecsLuxelsPerWorldUnits[0][2];
|
|
luxelSpaceCross[2] =
|
|
tex->lightmapVecsLuxelsPerWorldUnits[1][0] * tex->lightmapVecsLuxelsPerWorldUnits[0][1] -
|
|
tex->lightmapVecsLuxelsPerWorldUnits[1][1] * tex->lightmapVecsLuxelsPerWorldUnits[0][0];
|
|
|
|
float det = -DotProduct( l->facenormal, luxelSpaceCross );
|
|
if ( fabs( det ) < 1.0e-20 )
|
|
{
|
|
Warning(" warning - face vectors parallel to face normal. bad lighting will be produced\n" );
|
|
l->luxelOrigin = vec3_origin;
|
|
}
|
|
else
|
|
{
|
|
// invert the matrix
|
|
l->luxelToWorldSpace[0][0] = (l->facenormal[2] * l->worldToLuxelSpace[1][1] - l->facenormal[1] * l->worldToLuxelSpace[1][2]) / det;
|
|
l->luxelToWorldSpace[1][0] = (l->facenormal[1] * l->worldToLuxelSpace[0][2] - l->facenormal[2] * l->worldToLuxelSpace[0][1]) / det;
|
|
l->luxelOrigin[0] = -(l->facedist * luxelSpaceCross[0]) / det;
|
|
l->luxelToWorldSpace[0][1] = (l->facenormal[0] * l->worldToLuxelSpace[1][2] - l->facenormal[2] * l->worldToLuxelSpace[1][0]) / det;
|
|
l->luxelToWorldSpace[1][1] = (l->facenormal[2] * l->worldToLuxelSpace[0][0] - l->facenormal[0] * l->worldToLuxelSpace[0][2]) / det;
|
|
l->luxelOrigin[1] = -(l->facedist * luxelSpaceCross[1]) / det;
|
|
l->luxelToWorldSpace[0][2] = (l->facenormal[1] * l->worldToLuxelSpace[1][0] - l->facenormal[0] * l->worldToLuxelSpace[1][1]) / det;
|
|
l->luxelToWorldSpace[1][2] = (l->facenormal[0] * l->worldToLuxelSpace[0][1] - l->facenormal[1] * l->worldToLuxelSpace[0][0]) / det;
|
|
l->luxelOrigin[2] = -(l->facedist * luxelSpaceCross[2]) / det;
|
|
|
|
// adjust for luxel offset
|
|
VectorMA( l->luxelOrigin, -tex->lightmapVecsLuxelsPerWorldUnits[0][3], l->luxelToWorldSpace[0], l->luxelOrigin );
|
|
VectorMA( l->luxelOrigin, -tex->lightmapVecsLuxelsPerWorldUnits[1][3], l->luxelToWorldSpace[1], l->luxelOrigin );
|
|
}
|
|
// compensate for org'd bmodels
|
|
VectorAdd (l->luxelOrigin, l->modelorg, l->luxelOrigin);
|
|
}
|
|
|
|
|
|
|
|
winding_t *LightmapCoordWindingForFace( lightinfo_t *l )
|
|
{
|
|
int i;
|
|
winding_t *w;
|
|
|
|
w = WindingFromFace( l->face, l->modelorg );
|
|
|
|
for (i = 0; i < w->numpoints; i++)
|
|
{
|
|
Vector2D coord;
|
|
WorldToLuxelSpace( l, w->p[i], coord );
|
|
w->p[i].x = coord.x;
|
|
w->p[i].y = coord.y;
|
|
w->p[i].z = 0;
|
|
}
|
|
|
|
return w;
|
|
}
|
|
|
|
|
|
void WriteCoordWinding (FILE *out, lightinfo_t *l, winding_t *w, Vector& color )
|
|
{
|
|
int i;
|
|
Vector pos;
|
|
|
|
fprintf (out, "%i\n", w->numpoints);
|
|
for (i=0 ; i<w->numpoints ; i++)
|
|
{
|
|
LuxelSpaceToWorld( l, w->p[i][0], w->p[i][1], pos );
|
|
fprintf (out, "%5.2f %5.2f %5.2f %5.3f %5.3f %5.3f\n",
|
|
pos[0],
|
|
pos[1],
|
|
pos[2],
|
|
color[ 0 ] / 256,
|
|
color[ 1 ] / 256,
|
|
color[ 2 ] / 256 );
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
void DumpFaces( lightinfo_t *pLightInfo, int ndxFace )
|
|
{
|
|
static FileHandle_t out;
|
|
|
|
// get face data
|
|
faceneighbor_t *fn = &faceneighbor[ndxFace];
|
|
Vector ¢roid = face_centroids[ndxFace];
|
|
|
|
// disable threading (not a multi-threadable function!)
|
|
ThreadLock();
|
|
|
|
if( !out )
|
|
{
|
|
// open the file
|
|
out = g_pFileSystem->Open( "face.txt", "w" );
|
|
if( !out )
|
|
return;
|
|
}
|
|
|
|
//
|
|
// write out face
|
|
//
|
|
for( int ndxEdge = 0; ndxEdge < pLightInfo->face->numedges; ndxEdge++ )
|
|
{
|
|
// int edge = dsurfedges[pLightInfo->face->firstedge+ndxEdge];
|
|
|
|
Vector p1, p2;
|
|
VectorAdd( dvertexes[EdgeVertex( pLightInfo->face, ndxEdge )].point, pLightInfo->modelorg, p1 );
|
|
VectorAdd( dvertexes[EdgeVertex( pLightInfo->face, ndxEdge+1 )].point, pLightInfo->modelorg, p2 );
|
|
|
|
Vector &n1 = fn->normal[ndxEdge];
|
|
Vector &n2 = fn->normal[(ndxEdge+1)%pLightInfo->face->numedges];
|
|
|
|
CmdLib_FPrintf( out, "3\n");
|
|
|
|
CmdLib_FPrintf(out, "%f %f %f %f %f %f\n", p1[0], p1[1], p1[2], n1[0] * 0.5 + 0.5, n1[1] * 0.5 + 0.5, n1[2] * 0.5 + 0.5 );
|
|
|
|
CmdLib_FPrintf(out, "%f %f %f %f %f %f\n", p2[0], p2[1], p2[2], n2[0] * 0.5 + 0.5, n2[1] * 0.5 + 0.5, n2[2] * 0.5 + 0.5 );
|
|
|
|
CmdLib_FPrintf(out, "%f %f %f %f %f %f\n", centroid[0] + pLightInfo->modelorg[0],
|
|
centroid[1] + pLightInfo->modelorg[1],
|
|
centroid[2] + pLightInfo->modelorg[2],
|
|
fn->facenormal[0] * 0.5 + 0.5,
|
|
fn->facenormal[1] * 0.5 + 0.5,
|
|
fn->facenormal[2] * 0.5 + 0.5 );
|
|
|
|
}
|
|
|
|
// enable threading
|
|
ThreadUnlock();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
bool BuildFacesamplesAndLuxels_DoFast( lightinfo_t *pLightInfo, facelight_t *pFaceLight )
|
|
{
|
|
// lightmap size
|
|
int width = pLightInfo->face->m_LightmapTextureSizeInLuxels[0]+1;
|
|
int height = pLightInfo->face->m_LightmapTextureSizeInLuxels[1]+1;
|
|
|
|
// ratio of world area / lightmap area
|
|
texinfo_t *pTex = &texinfo[pLightInfo->face->texinfo];
|
|
pFaceLight->worldAreaPerLuxel = 1.0 / ( sqrt( DotProduct( pTex->lightmapVecsLuxelsPerWorldUnits[0],
|
|
pTex->lightmapVecsLuxelsPerWorldUnits[0] ) ) *
|
|
sqrt( DotProduct( pTex->lightmapVecsLuxelsPerWorldUnits[1],
|
|
pTex->lightmapVecsLuxelsPerWorldUnits[1] ) ) );
|
|
|
|
//
|
|
// quickly create samples and luxels (copy over samples)
|
|
//
|
|
pFaceLight->numsamples = width * height;
|
|
pFaceLight->sample = ( sample_t* )calloc( pFaceLight->numsamples, sizeof( *pFaceLight->sample ) );
|
|
if( !pFaceLight->sample )
|
|
return false;
|
|
|
|
pFaceLight->numluxels = width * height;
|
|
pFaceLight->luxel = ( Vector* )calloc( pFaceLight->numluxels, sizeof( *pFaceLight->luxel ) );
|
|
if( !pFaceLight->luxel )
|
|
return false;
|
|
|
|
sample_t *pSamples = pFaceLight->sample;
|
|
Vector *pLuxels = pFaceLight->luxel;
|
|
|
|
for( int t = 0; t < height; t++ )
|
|
{
|
|
for( int s = 0; s < width; s++ )
|
|
{
|
|
pSamples->s = s;
|
|
pSamples->t = t;
|
|
pSamples->coord[0] = s;
|
|
pSamples->coord[1] = t;
|
|
// unused but initialized anyway
|
|
pSamples->mins[0] = s - 0.5;
|
|
pSamples->mins[1] = t - 0.5;
|
|
pSamples->maxs[0] = s + 0.5;
|
|
pSamples->maxs[1] = t + 0.5;
|
|
pSamples->area = pFaceLight->worldAreaPerLuxel;
|
|
LuxelSpaceToWorld( pLightInfo, pSamples->coord[0], pSamples->coord[1], pSamples->pos );
|
|
VectorCopy( pSamples->pos, *pLuxels );
|
|
|
|
pSamples++;
|
|
pLuxels++;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
bool BuildSamplesAndLuxels_DoFast( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace )
|
|
{
|
|
// build samples for a "face"
|
|
if( pLightInfo->face->dispinfo == -1 )
|
|
{
|
|
return BuildFacesamplesAndLuxels_DoFast( pLightInfo, pFaceLight );
|
|
}
|
|
// build samples for a "displacement"
|
|
else
|
|
{
|
|
return StaticDispMgr()->BuildDispSamplesAndLuxels_DoFast( pLightInfo, pFaceLight, ndxFace );
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
bool BuildFacesamples( lightinfo_t *pLightInfo, facelight_t *pFaceLight )
|
|
{
|
|
// lightmap size
|
|
int width = pLightInfo->face->m_LightmapTextureSizeInLuxels[0]+1;
|
|
int height = pLightInfo->face->m_LightmapTextureSizeInLuxels[1]+1;
|
|
|
|
// ratio of world area / lightmap area
|
|
texinfo_t *pTex = &texinfo[pLightInfo->face->texinfo];
|
|
pFaceLight->worldAreaPerLuxel = 1.0 / ( sqrt( DotProduct( pTex->lightmapVecsLuxelsPerWorldUnits[0],
|
|
pTex->lightmapVecsLuxelsPerWorldUnits[0] ) ) *
|
|
sqrt( DotProduct( pTex->lightmapVecsLuxelsPerWorldUnits[1],
|
|
pTex->lightmapVecsLuxelsPerWorldUnits[1] ) ) );
|
|
|
|
// allocate a large number of samples for creation -- get copied later!
|
|
CUtlVector<sample_t> sampleData;
|
|
sampleData.SetCount( SINGLE_BRUSH_MAP * 2 );
|
|
sample_t *samples = sampleData.Base();
|
|
sample_t *pSamples = samples;
|
|
|
|
// lightmap space winding
|
|
winding_t *pLightmapWinding = LightmapCoordWindingForFace( pLightInfo );
|
|
|
|
//
|
|
// build vector pointing along the lightmap cutting planes
|
|
//
|
|
Vector sNorm( 1.0f, 0.0f, 0.0f );
|
|
Vector tNorm( 0.0f, 1.0f, 0.0f );
|
|
|
|
// sample center offset
|
|
float sampleOffset = ( do_centersamples ) ? 0.5 : 1.0;
|
|
|
|
//
|
|
// clip the lightmap "spaced" winding by the lightmap cutting planes
|
|
//
|
|
winding_t *pWindingT1, *pWindingT2;
|
|
winding_t *pWindingS1, *pWindingS2;
|
|
float dist;
|
|
|
|
for( int t = 0; t < height && pLightmapWinding; t++ )
|
|
{
|
|
dist = t + sampleOffset;
|
|
|
|
// lop off a sample in the t dimension
|
|
// hack - need a separate epsilon for lightmap space since ON_EPSILON is for texture space
|
|
ClipWindingEpsilon( pLightmapWinding, tNorm, dist, ON_EPSILON / 16.0f, &pWindingT1, &pWindingT2 );
|
|
|
|
for( int s = 0; s < width && pWindingT2; s++ )
|
|
{
|
|
dist = s + sampleOffset;
|
|
|
|
// lop off a sample in the s dimension, and put it in ws2
|
|
// hack - need a separate epsilon for lightmap space since ON_EPSILON is for texture space
|
|
ClipWindingEpsilon( pWindingT2, sNorm, dist, ON_EPSILON / 16.0f, &pWindingS1, &pWindingS2 );
|
|
|
|
//
|
|
// s2 winding is a single sample worth of winding
|
|
//
|
|
if( pWindingS2 )
|
|
{
|
|
// save the s, t positions
|
|
pSamples->s = s;
|
|
pSamples->t = t;
|
|
|
|
// get the lightmap space area of ws2 and convert to world area
|
|
// and find the center (then convert it to 2D)
|
|
Vector center;
|
|
pSamples->area = WindingAreaAndBalancePoint( pWindingS2, center ) * pFaceLight->worldAreaPerLuxel;
|
|
pSamples->coord[0] = center.x;
|
|
pSamples->coord[1] = center.y;
|
|
|
|
// find winding bounds (then convert it to 2D)
|
|
Vector minbounds, maxbounds;
|
|
WindingBounds( pWindingS2, minbounds, maxbounds );
|
|
pSamples->mins[0] = minbounds.x;
|
|
pSamples->mins[1] = minbounds.y;
|
|
pSamples->maxs[0] = maxbounds.x;
|
|
pSamples->maxs[1] = maxbounds.y;
|
|
|
|
// convert from lightmap space to world space
|
|
LuxelSpaceToWorld( pLightInfo, pSamples->coord[0], pSamples->coord[1], pSamples->pos );
|
|
|
|
if (g_bDumpPatches || (do_extra && pSamples->area < pFaceLight->worldAreaPerLuxel - EQUAL_EPSILON))
|
|
{
|
|
//
|
|
// convert the winding from lightmaps space to world for debug rendering and sub-sampling
|
|
//
|
|
Vector worldPos;
|
|
for( int ndxPt = 0; ndxPt < pWindingS2->numpoints; ndxPt++ )
|
|
{
|
|
LuxelSpaceToWorld( pLightInfo, pWindingS2->p[ndxPt].x, pWindingS2->p[ndxPt].y, worldPos );
|
|
VectorCopy( worldPos, pWindingS2->p[ndxPt] );
|
|
}
|
|
pSamples->w = pWindingS2;
|
|
}
|
|
else
|
|
{
|
|
// winding isn't needed, free it.
|
|
pSamples->w = NULL;
|
|
FreeWinding( pWindingS2 );
|
|
}
|
|
|
|
pSamples++;
|
|
}
|
|
|
|
//
|
|
// if winding T2 still exists free it and set it equal S1 (the rest of the row minus the sample just created)
|
|
//
|
|
if( pWindingT2 )
|
|
{
|
|
FreeWinding( pWindingT2 );
|
|
}
|
|
|
|
// clip the rest of "s"
|
|
pWindingT2 = pWindingS1;
|
|
}
|
|
|
|
//
|
|
// if the original lightmap winding exists free it and set it equal to T1 (the rest of the winding not cut into samples)
|
|
//
|
|
if( pLightmapWinding )
|
|
{
|
|
FreeWinding( pLightmapWinding );
|
|
}
|
|
|
|
if( pWindingT2 )
|
|
{
|
|
FreeWinding( pWindingT2 );
|
|
}
|
|
|
|
pLightmapWinding = pWindingT1;
|
|
}
|
|
|
|
//
|
|
// copy over samples
|
|
//
|
|
pFaceLight->numsamples = pSamples - samples;
|
|
pFaceLight->sample = ( sample_t* )calloc( pFaceLight->numsamples, sizeof( *pFaceLight->sample ) );
|
|
if( !pFaceLight->sample )
|
|
return false;
|
|
|
|
memcpy( pFaceLight->sample, samples, pFaceLight->numsamples * sizeof( *pFaceLight->sample ) );
|
|
|
|
// supply a default sample normal (face normal - assumed flat)
|
|
for( int ndxSample = 0; ndxSample < pFaceLight->numsamples; ndxSample++ )
|
|
{
|
|
Assert ( VectorLength ( pLightInfo->facenormal ) > 1.0e-20);
|
|
pFaceLight->sample[ndxSample].normal = pLightInfo->facenormal;
|
|
}
|
|
|
|
// statistics - warning?!
|
|
if( pFaceLight->numsamples == 0 )
|
|
{
|
|
Msg( "no samples %d\n", pLightInfo->face - g_pFaces );
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: Free any windings used by this facelight. It's currently assumed they're not needed again
|
|
//-----------------------------------------------------------------------------
|
|
void FreeSampleWindings( facelight_t *fl )
|
|
{
|
|
int i;
|
|
for (i = 0; i < fl->numsamples; i++)
|
|
{
|
|
if (fl->sample[i].w)
|
|
{
|
|
FreeWinding( fl->sample[i].w );
|
|
fl->sample[i].w = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: build the sample data for each lightmapped primitive type
|
|
//-----------------------------------------------------------------------------
|
|
bool BuildSamples( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace )
|
|
{
|
|
// build samples for a "face"
|
|
if( pLightInfo->face->dispinfo == -1 )
|
|
{
|
|
return BuildFacesamples( pLightInfo, pFaceLight );
|
|
}
|
|
// build samples for a "displacement"
|
|
else
|
|
{
|
|
return StaticDispMgr()->BuildDispSamples( pLightInfo, pFaceLight, ndxFace );
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
bool BuildFaceLuxels( lightinfo_t *pLightInfo, facelight_t *pFaceLight )
|
|
{
|
|
// lightmap size
|
|
int width = pLightInfo->face->m_LightmapTextureSizeInLuxels[0]+1;
|
|
int height = pLightInfo->face->m_LightmapTextureSizeInLuxels[1]+1;
|
|
|
|
// calcuate actual luxel points
|
|
pFaceLight->numluxels = width * height;
|
|
pFaceLight->luxel = ( Vector* )calloc( pFaceLight->numluxels, sizeof( *pFaceLight->luxel ) );
|
|
if( !pFaceLight->luxel )
|
|
return false;
|
|
|
|
for( int t = 0; t < height; t++ )
|
|
{
|
|
for( int s = 0; s < width; s++ )
|
|
{
|
|
LuxelSpaceToWorld( pLightInfo, s, t, pFaceLight->luxel[s+t*width] );
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: build the luxels (find the luxel centers) for each lightmapped
|
|
// primitive type
|
|
//-----------------------------------------------------------------------------
|
|
bool BuildLuxels( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace )
|
|
{
|
|
// build luxels for a "face"
|
|
if( pLightInfo->face->dispinfo == -1 )
|
|
{
|
|
return BuildFaceLuxels( pLightInfo, pFaceLight );
|
|
}
|
|
// build luxels for a "displacement"
|
|
else
|
|
{
|
|
return StaticDispMgr()->BuildDispLuxels( pLightInfo, pFaceLight, ndxFace );
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: for each face, find the center of each luxel; for each texture
|
|
// aligned grid point, back project onto the plane and get the world
|
|
// xyz value of the sample point
|
|
// NOTE: ndxFace = facenum
|
|
//-----------------------------------------------------------------------------
|
|
void CalcPoints( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace )
|
|
{
|
|
// debugging!
|
|
if( g_bDumpPatches )
|
|
{
|
|
DumpFaces( pLightInfo, ndxFace );
|
|
}
|
|
|
|
// quick and dirty!
|
|
if( do_fast )
|
|
{
|
|
if( !BuildSamplesAndLuxels_DoFast( pLightInfo, pFaceLight, ndxFace ) )
|
|
{
|
|
Msg( "Face %d: (Fast)Error Building Samples and Luxels\n", ndxFace );
|
|
}
|
|
return;
|
|
}
|
|
|
|
// build the samples
|
|
if( !BuildSamples( pLightInfo, pFaceLight, ndxFace ) )
|
|
{
|
|
Msg( "Face %d: Error Building Samples\n", ndxFace );
|
|
}
|
|
|
|
// build the luxels
|
|
if( !BuildLuxels( pLightInfo, pFaceLight, ndxFace ) )
|
|
{
|
|
Msg( "Face %d: Error Building Luxels\n", ndxFace );
|
|
}
|
|
}
|
|
|
|
|
|
//==============================================================
|
|
|
|
directlight_t *activelights;
|
|
directlight_t *freelights;
|
|
|
|
facelight_t facelight[MAX_MAP_FACES];
|
|
int numdlights;
|
|
|
|
/*
|
|
==================
|
|
FindTargetEntity
|
|
==================
|
|
*/
|
|
entity_t *FindTargetEntity (char *target)
|
|
{
|
|
int i;
|
|
char *n;
|
|
|
|
for (i=0 ; i<num_entities ; i++)
|
|
{
|
|
n = ValueForKey (&entities[i], "targetname");
|
|
if (!strcmp (n, target))
|
|
return &entities[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
=============
|
|
AllocDLight
|
|
=============
|
|
*/
|
|
|
|
int GetVisCache( int lastoffset, int cluster, byte *pvs );
|
|
void SetDLightVis( directlight_t *dl, int cluster );
|
|
void MergeDLightVis( directlight_t *dl, int cluster );
|
|
|
|
directlight_t *AllocDLight( Vector& origin, bool bAddToList )
|
|
{
|
|
directlight_t *dl;
|
|
|
|
dl = ( directlight_t* )calloc(1, sizeof(directlight_t));
|
|
dl->index = numdlights++;
|
|
|
|
VectorCopy( origin, dl->light.origin );
|
|
|
|
dl->light.cluster = ClusterFromPoint(dl->light.origin);
|
|
SetDLightVis( dl, dl->light.cluster );
|
|
|
|
dl->facenum = -1;
|
|
|
|
if ( bAddToList )
|
|
{
|
|
dl->next = activelights;
|
|
activelights = dl;
|
|
}
|
|
|
|
return dl;
|
|
}
|
|
|
|
void AddDLightToActiveList( directlight_t *dl )
|
|
{
|
|
dl->next = activelights;
|
|
activelights = dl;
|
|
}
|
|
|
|
void FreeDLights()
|
|
{
|
|
gSkyLight = NULL;
|
|
gAmbient = NULL;
|
|
|
|
directlight_t *pNext;
|
|
for( directlight_t *pCur=activelights; pCur; pCur=pNext )
|
|
{
|
|
pNext = pCur->next;
|
|
free( pCur );
|
|
}
|
|
activelights = 0;
|
|
}
|
|
|
|
|
|
void SetDLightVis( directlight_t *dl, int cluster )
|
|
{
|
|
if (dl->pvs == NULL)
|
|
{
|
|
dl->pvs = (byte *)calloc( 1, (dvis->numclusters / 8) + 1 );
|
|
}
|
|
|
|
GetVisCache( -1, cluster, dl->pvs );
|
|
}
|
|
|
|
void MergeDLightVis( directlight_t *dl, int cluster )
|
|
{
|
|
if (dl->pvs == NULL)
|
|
{
|
|
SetDLightVis( dl, cluster );
|
|
}
|
|
else
|
|
{
|
|
byte pvs[MAX_MAP_CLUSTERS/8];
|
|
GetVisCache( -1, cluster, pvs );
|
|
|
|
// merge both vis graphs
|
|
for (int i = 0; i < (dvis->numclusters / 8) + 1; i++)
|
|
{
|
|
dl->pvs[i] |= pvs[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=============
|
|
LightForKey
|
|
=============
|
|
*/
|
|
int LightForKey (entity_t *ent, char *key, Vector& intensity )
|
|
{
|
|
char *pLight;
|
|
|
|
pLight = ValueForKey( ent, key );
|
|
|
|
return LightForString( pLight, intensity );
|
|
}
|
|
|
|
int LightForString( char *pLight, Vector& intensity )
|
|
{
|
|
double r, g, b, scaler;
|
|
int argCnt;
|
|
|
|
VectorFill( intensity, 0 );
|
|
|
|
// scanf into doubles, then assign, so it is vec_t size independent
|
|
r = g = b = scaler = 0;
|
|
double r_hdr,g_hdr,b_hdr,scaler_hdr;
|
|
argCnt = sscanf ( pLight, "%lf %lf %lf %lf %lf %lf %lf %lf",
|
|
&r, &g, &b, &scaler, &r_hdr,&g_hdr,&b_hdr,&scaler_hdr );
|
|
|
|
if (argCnt==8) // 2 4-tuples
|
|
{
|
|
if (g_bHDR)
|
|
{
|
|
r=r_hdr;
|
|
g=g_hdr;
|
|
b=b_hdr;
|
|
scaler=scaler_hdr;
|
|
}
|
|
argCnt=4;
|
|
}
|
|
|
|
// make sure light is legal
|
|
if( r < 0.0f || g < 0.0f || b < 0.0f || scaler < 0.0f )
|
|
{
|
|
intensity.Init( 0.0f, 0.0f, 0.0f );
|
|
return false;
|
|
}
|
|
|
|
intensity[0] = pow( r / 255.0, 2.2 ) * 255; // convert to linear
|
|
|
|
switch( argCnt)
|
|
{
|
|
case 1:
|
|
// The R,G,B values are all equal.
|
|
intensity[1] = intensity[2] = intensity[0];
|
|
break;
|
|
|
|
case 3:
|
|
case 4:
|
|
// Save the other two G,B values.
|
|
intensity[1] = pow( g / 255.0, 2.2 ) * 255;
|
|
intensity[2] = pow( b / 255.0, 2.2 ) * 255;
|
|
|
|
// Did we also get an "intensity" scaler value too?
|
|
if ( argCnt == 4 )
|
|
{
|
|
// Scale the normalized 0-255 R,G,B values by the intensity scaler
|
|
VectorScale( intensity, scaler / 255.0, intensity );
|
|
}
|
|
break;
|
|
|
|
default:
|
|
printf("unknown light specifier type - %s\n",pLight);
|
|
return false;
|
|
}
|
|
// scale up source lights by scaling factor
|
|
VectorScale( intensity, lightscale, intensity );
|
|
return true;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Various parsing methods
|
|
//-----------------------------------------------------------------------------
|
|
|
|
static void ParseLightGeneric( entity_t *e, directlight_t *dl )
|
|
{
|
|
entity_t *e2;
|
|
char *target;
|
|
Vector dest;
|
|
|
|
dl->light.style = (int)FloatForKey (e, "style");
|
|
dl->m_bSkyLightIsDirectionalLight = false;
|
|
|
|
if( (int)FloatForKeyWithDefault(e, "_castentityshadow", 1.0f ) != 0 )
|
|
{
|
|
dl->light.flags |= DWL_FLAGS_CASTENTITYSHADOWS;
|
|
}
|
|
else
|
|
{
|
|
dl->light.flags &= ~DWL_FLAGS_CASTENTITYSHADOWS;
|
|
}
|
|
|
|
Vector shadowOffset( 0.0f, 0.0f, 0.0f );
|
|
GetVectorForKey (e, "_shadoworiginoffset", shadowOffset );
|
|
dl->light.shadow_cast_offset = shadowOffset;
|
|
|
|
// get intensity
|
|
if( g_bHDR && LightForKey( e, "_lightHDR", dl->light.intensity ) )
|
|
{
|
|
}
|
|
else
|
|
{
|
|
LightForKey( e, "_light", dl->light.intensity );
|
|
}
|
|
|
|
// check angle, targets
|
|
target = ValueForKey (e, "target");
|
|
if (target[0])
|
|
{ // point towards target
|
|
e2 = FindTargetEntity (target);
|
|
if (!e2)
|
|
Warning("WARNING: light at (%i %i %i) has missing target\n",
|
|
(int)dl->light.origin[0], (int)dl->light.origin[1], (int)dl->light.origin[2]);
|
|
else
|
|
{
|
|
GetVectorForKey (e2, "origin", dest);
|
|
VectorSubtract (dest, dl->light.origin, dl->light.normal);
|
|
VectorNormalize (dl->light.normal);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// point down angle
|
|
Vector angles;
|
|
GetVectorForKey( e, "angles", angles );
|
|
float pitch = FloatForKey (e, "pitch");
|
|
float angle = FloatForKey (e, "angle");
|
|
SetupLightNormalFromProps( QAngle( angles.x, angles.y, angles.z ), angle, pitch, dl->light.normal );
|
|
}
|
|
if ( g_bHDR )
|
|
VectorScale( dl->light.intensity,
|
|
FloatForKeyWithDefault( e, "_lightscaleHDR", 1.0 ),
|
|
dl->light.intensity );
|
|
}
|
|
|
|
static void SetLightFalloffParams( entity_t * e, directlight_t * dl )
|
|
{
|
|
dl->m_flStartFadeDistance = 0;
|
|
dl->m_flEndFadeDistance = - 1;
|
|
dl->m_flCapDist = 1.0e22;
|
|
if ( g_bFiniteFalloffModel )
|
|
{
|
|
float d0 = FloatForKey( e, "_zero_percent_distance" );
|
|
dl->light.constant_attn = 1.0;
|
|
dl->light.linear_attn = 0; //-2.0 * ( 1.0 / d0 );
|
|
dl->light.quadratic_attn = -1.0 / ( d0 * d0 );
|
|
// for(float d=0;d<200;d+=20)
|
|
// printf("at %f, %f\n",d,1.0+d*d*dl->light.quadratic_attn );
|
|
}
|
|
else
|
|
{
|
|
float d50=FloatForKey( e, "_fifty_percent_distance" );
|
|
if ( d50 )
|
|
{
|
|
float d0 = FloatForKey( e, "_zero_percent_distance" );
|
|
if ( d0 < d50 )
|
|
{
|
|
Warning( "light has _fifty_percent_distance of %f but _zero_percent_distance of %f\n", d50, d0);
|
|
d0 = 2.0 * d50;
|
|
}
|
|
float a = 0, b = 1, c = 0;
|
|
if ( ! SolveInverseQuadraticMonotonic( 0, 1.0, d50, 2.0, d0, 256.0, a, b, c ))
|
|
{
|
|
Warning( "can't solve quadratic for light %f %f\n", d50, d0 );
|
|
}
|
|
// it it possible that the parameters couldn't be used because of enforing monoticity. If so, rescale so at
|
|
// least the 50 percent value is right
|
|
// printf("50 percent=%f 0 percent=%f\n",d50,d0);
|
|
// printf("a=%f b=%f c=%f\n",a,b,c);
|
|
float v50 = c + d50 * ( b + d50 * a );
|
|
float scale = 2.0 / v50;
|
|
a *= scale;
|
|
b *= scale;
|
|
c *= scale;
|
|
// printf("scaled=%f a=%f b=%f c=%f\n",scale,a,b,c);
|
|
// for(float d=0;d<200;d+=20)
|
|
// printf("at %f, %f\n",d,1.0/(c+d*(b+d*a)));
|
|
dl->light.quadratic_attn = a;
|
|
dl->light.linear_attn = b;
|
|
dl->light.constant_attn = c;
|
|
|
|
|
|
|
|
if ( IntForKey(e, "_hardfalloff" ) )
|
|
{
|
|
dl->m_flEndFadeDistance = d0;
|
|
dl->m_flStartFadeDistance = 0.75 * d0 + 0.25 * d50; // start fading 3/4 way between 50 and 0. could allow adjust
|
|
}
|
|
else
|
|
{
|
|
// now, we will find the point at which the 1/x term reaches its maximum value, and
|
|
// prevent the light from going past there. If a user specifes an extreme falloff, the
|
|
// quadratic will start making the light brighter at some distance. We handle this by
|
|
// fading it from the minimum brightess point down to zero at 10x the minimum distance
|
|
if ( fabs( a ) > 0. )
|
|
{
|
|
float flMax = b / ( - 2.0 * a ); // where f' = 0
|
|
if ( flMax > 0.0 )
|
|
{
|
|
dl->m_flCapDist = flMax;
|
|
dl->m_flStartFadeDistance = flMax;
|
|
dl->m_flEndFadeDistance = 10.0 * flMax;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dl->light.constant_attn = FloatForKey (e, "_constant_attn" );
|
|
dl->light.linear_attn = FloatForKey (e, "_linear_attn" );
|
|
dl->light.quadratic_attn = FloatForKey (e, "_quadratic_attn" );
|
|
|
|
dl->light.radius = FloatForKey (e, "_distance");
|
|
|
|
// clamp values to >= 0
|
|
if ( dl->light.constant_attn < EQUAL_EPSILON )
|
|
dl->light.constant_attn = 0;
|
|
|
|
if ( dl->light.linear_attn < EQUAL_EPSILON )
|
|
dl->light.linear_attn = 0;
|
|
|
|
if ( dl->light.quadratic_attn < EQUAL_EPSILON )
|
|
dl->light.quadratic_attn = 0;
|
|
|
|
if ( dl->light.constant_attn < EQUAL_EPSILON && dl->light.linear_attn < EQUAL_EPSILON && dl->light.quadratic_attn < EQUAL_EPSILON )
|
|
dl->light.constant_attn = 1;
|
|
|
|
// scale intensity for unit 100 distance
|
|
float ratio = ( dl->light.constant_attn + 100 * dl->light.linear_attn + 100 * 100 * dl->light.quadratic_attn );
|
|
if ( ratio > 0 )
|
|
{
|
|
VectorScale( dl->light.intensity, ratio, dl->light.intensity );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ParseLightSpot( entity_t* e, directlight_t* dl )
|
|
{
|
|
Vector dest;
|
|
GetVectorForKey (e, "origin", dest );
|
|
dl = AllocDLight( dest, true );
|
|
|
|
ParseLightGeneric( e, dl );
|
|
|
|
dl->light.type = emit_spotlight;
|
|
|
|
dl->light.stopdot = FloatForKey (e, "_inner_cone");
|
|
if (!dl->light.stopdot)
|
|
dl->light.stopdot = 10;
|
|
|
|
dl->light.stopdot2 = FloatForKey (e, "_cone");
|
|
if (!dl->light.stopdot2)
|
|
dl->light.stopdot2 = dl->light.stopdot;
|
|
if (dl->light.stopdot2 < dl->light.stopdot)
|
|
dl->light.stopdot2 = dl->light.stopdot;
|
|
|
|
// This is a point light if stop dots are 180...
|
|
if ((dl->light.stopdot == 180) && (dl->light.stopdot2 == 180))
|
|
{
|
|
dl->light.stopdot = dl->light.stopdot2 = 0;
|
|
dl->light.type = emit_point;
|
|
dl->light.exponent = 0;
|
|
}
|
|
else
|
|
{
|
|
// Clamp to 90, that's all DX8 can handle!
|
|
if (dl->light.stopdot > 90)
|
|
{
|
|
Warning("WARNING: light_spot at (%i %i %i) has inner angle larger than 90 degrees! Clamping to 90...\n",
|
|
(int)dl->light.origin[0], (int)dl->light.origin[1], (int)dl->light.origin[2]);
|
|
dl->light.stopdot = 90;
|
|
}
|
|
|
|
if (dl->light.stopdot2 > 90)
|
|
{
|
|
Warning("WARNING: light_spot at (%i %i %i) has outer angle larger than 90 degrees! Clamping to 90...\n",
|
|
(int)dl->light.origin[0], (int)dl->light.origin[1], (int)dl->light.origin[2]);
|
|
dl->light.stopdot2 = 90;
|
|
}
|
|
|
|
dl->light.stopdot2 = (float)cos(dl->light.stopdot2/180*M_PI);
|
|
dl->light.stopdot = (float)cos(dl->light.stopdot/180*M_PI);
|
|
dl->light.exponent = FloatForKey (e, "_exponent");
|
|
}
|
|
|
|
SetLightFalloffParams(e,dl);
|
|
}
|
|
|
|
// NOTE: This is just a heuristic. It traces a finite number of rays to find sky
|
|
// NOTE: Full vis is necessary to make this 100% correct.
|
|
bool CanLeafTraceToSky( int iLeaf )
|
|
{
|
|
// UNDONE: Really want a point inside the leaf here. Center is a guess, may not be in the leaf
|
|
// UNDONE: Clip this to each plane bounding the leaf to guarantee
|
|
Vector center = vec3_origin;
|
|
for ( int i = 0; i < 3; i++ )
|
|
{
|
|
center[i] = ( (float)(dleafs[iLeaf].mins[i] + dleafs[iLeaf].maxs[i]) ) * 0.5f;
|
|
}
|
|
|
|
FourVectors center4, delta;
|
|
fltx4 fractionVisible;
|
|
for ( int j = 0; j < NUMVERTEXNORMALS; j+=4 )
|
|
{
|
|
// search back to see if we can hit a sky brush
|
|
delta.LoadAndSwizzle( g_anorms[j], g_anorms[min( j+1, NUMVERTEXNORMALS-1 )],
|
|
g_anorms[min( j+2, NUMVERTEXNORMALS-1 )], g_anorms[min( j+3, NUMVERTEXNORMALS-1 )] );
|
|
delta *= -MAX_TRACE_LENGTH;
|
|
delta += center4;
|
|
|
|
// return true if any hits sky
|
|
TestLine_DoesHitSky ( center4, delta, &fractionVisible );
|
|
if ( TestSignSIMD ( CmpGtSIMD ( fractionVisible, Four_Zeros ) ) )
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void BuildVisForLightEnvironment( int nNumLights, directlight_t** pLights )
|
|
{
|
|
// FIXME: The work in this function is executed redundantly for multiple emit_skylight lights.
|
|
|
|
// Create the vis.
|
|
for ( int iLeaf = 0; iLeaf < numleafs; ++iLeaf )
|
|
{
|
|
dleafs[iLeaf].flags &= ~( LEAF_FLAGS_SKY | LEAF_FLAGS_SKY2D );
|
|
unsigned int iFirstFace = dleafs[iLeaf].firstleafface;
|
|
for ( int iLeafFace = 0; iLeafFace < dleafs[iLeaf].numleaffaces; ++iLeafFace )
|
|
{
|
|
unsigned int iFace = dleaffaces[iFirstFace+iLeafFace];
|
|
|
|
texinfo_t &tex = texinfo[g_pFaces[iFace].texinfo];
|
|
if ( tex.flags & SURF_SKY )
|
|
{
|
|
if ( tex.flags & SURF_SKY2D )
|
|
{
|
|
dleafs[iLeaf].flags |= LEAF_FLAGS_SKY2D;
|
|
}
|
|
else
|
|
{
|
|
dleafs[iLeaf].flags |= LEAF_FLAGS_SKY;
|
|
}
|
|
|
|
for ( int iLight = 0; iLight < nNumLights; ++iLight )
|
|
{
|
|
MergeDLightVis( pLights[iLight], dleafs[iLeaf].cluster );
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Second pass to set flags on leaves that don't contain sky, but touch leaves that
|
|
// contain sky.
|
|
byte pvs[MAX_MAP_CLUSTERS / 8];
|
|
|
|
int nLeafBytes = (numleafs >> 3) + 1;
|
|
unsigned char *pLeafBits = (unsigned char *)stackalloc( nLeafBytes * sizeof(unsigned char) );
|
|
unsigned char *pLeaf2DBits = (unsigned char *)stackalloc( nLeafBytes * sizeof(unsigned char) );
|
|
memset( pLeafBits, 0, nLeafBytes );
|
|
memset( pLeaf2DBits, 0, nLeafBytes );
|
|
|
|
for ( int iLeaf = 0; iLeaf < numleafs; ++iLeaf )
|
|
{
|
|
// If this leaf has light (3d skybox) in it, then don't bother
|
|
if ( dleafs[iLeaf].flags & LEAF_FLAGS_SKY )
|
|
continue;
|
|
|
|
// Don't bother with this leaf if it's solid
|
|
if ( dleafs[iLeaf].contents & CONTENTS_SOLID )
|
|
continue;
|
|
|
|
// See what other leaves are visible from this leaf
|
|
GetVisCache( -1, dleafs[iLeaf].cluster, pvs );
|
|
|
|
// Now check out all other leaves
|
|
int nByte = iLeaf >> 3;
|
|
int nBit = 1 << ( iLeaf & 0x7 );
|
|
for ( int iLeaf2 = 0; iLeaf2 < numleafs; ++iLeaf2 )
|
|
{
|
|
if ( iLeaf2 == iLeaf )
|
|
continue;
|
|
|
|
if ( !(dleafs[iLeaf2].flags & ( LEAF_FLAGS_SKY | LEAF_FLAGS_SKY2D ) ) )
|
|
continue;
|
|
|
|
// Can this leaf see into the leaf with the sky in it?
|
|
if ( !PVSCheck( pvs, dleafs[iLeaf2].cluster ) )
|
|
continue;
|
|
|
|
if ( dleafs[iLeaf2].flags & LEAF_FLAGS_SKY2D )
|
|
{
|
|
pLeaf2DBits[ nByte ] |= nBit;
|
|
}
|
|
if ( dleafs[iLeaf2].flags & LEAF_FLAGS_SKY )
|
|
{
|
|
pLeafBits[ nByte ] |= nBit;
|
|
|
|
// As soon as we know this leaf needs to draw the 3d skybox, we're done
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Must set the bits in a separate pass so as to not flood-fill LEAF_FLAGS_SKY everywhere
|
|
// pLeafbits is a bit array of all leaves that need to be marked as seeing sky
|
|
for ( int iLeaf = 0; iLeaf < numleafs; ++iLeaf )
|
|
{
|
|
// If this leaf has light (3d skybox) in it, then don't bother
|
|
if ( dleafs[iLeaf].flags & LEAF_FLAGS_SKY )
|
|
continue;
|
|
|
|
// Don't bother with this leaf if it's solid
|
|
if ( dleafs[iLeaf].contents & CONTENTS_SOLID )
|
|
continue;
|
|
|
|
// Check to see if this is a 2D skybox leaf
|
|
if ( pLeaf2DBits[ iLeaf >> 3 ] & (1 << ( iLeaf & 0x7 )) )
|
|
{
|
|
dleafs[iLeaf].flags |= LEAF_FLAGS_SKY2D;
|
|
}
|
|
|
|
// If this is a 3D skybox leaf, then we don't care if it was previously a 2D skybox leaf
|
|
if ( pLeafBits[ iLeaf >> 3 ] & (1 << ( iLeaf & 0x7 )) )
|
|
{
|
|
dleafs[iLeaf].flags |= LEAF_FLAGS_SKY;
|
|
dleafs[iLeaf].flags &= ~LEAF_FLAGS_SKY2D;
|
|
}
|
|
else
|
|
{
|
|
// if radial vis was used on this leaf some of the portals leading
|
|
// to sky may have been culled. Try tracing to find sky.
|
|
if ( dleafs[iLeaf].flags & LEAF_FLAGS_RADIAL )
|
|
{
|
|
if ( CanLeafTraceToSky(iLeaf) )
|
|
{
|
|
// FIXME: Should make a version that checks if we hit 2D skyboxes.. oh well.
|
|
dleafs[iLeaf].flags |= LEAF_FLAGS_SKY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static char *ValueForKeyWithDefault (entity_t *ent, char *key, char *default_value = NULL)
|
|
{
|
|
epair_t *ep;
|
|
|
|
for (ep=ent->epairs ; ep ; ep=ep->next)
|
|
if (!strcmp (ep->key, key) )
|
|
return ep->value;
|
|
return default_value;
|
|
}
|
|
|
|
static void ParseLightEnvironment( entity_t* e, directlight_t* dl )
|
|
{
|
|
Vector dest;
|
|
GetVectorForKey (e, "origin", dest );
|
|
dl = AllocDLight( dest, false );
|
|
|
|
ParseLightGeneric( e, dl );
|
|
|
|
if ( !gSkyLight )
|
|
{
|
|
char *angle_str=ValueForKeyWithDefault( e, "SunSpreadAngle" );
|
|
if (angle_str)
|
|
{
|
|
g_SunAngularExtent=atof(angle_str);
|
|
g_SunAngularExtent=sin((M_PI/180.0)*g_SunAngularExtent);
|
|
dl->m_flSkyLightSunAngularExtent = g_SunAngularExtent;
|
|
printf("sun extent from map=%f\n",g_SunAngularExtent);
|
|
}
|
|
|
|
// Sky light.
|
|
gSkyLight = dl;
|
|
dl->light.type = emit_skylight;
|
|
|
|
// Sky ambient light.
|
|
gAmbient = AllocDLight( dl->light.origin, false );
|
|
gAmbient->light.type = emit_skyambient;
|
|
if( g_bHDR && LightForKey( e, "_ambientHDR", gAmbient->light.intensity ) )
|
|
{
|
|
// we have a valid HDR ambient light value
|
|
}
|
|
else if ( !LightForKey( e, "_ambient", gAmbient->light.intensity ) )
|
|
{
|
|
VectorScale( dl->light.intensity, 0.5, gAmbient->light.intensity );
|
|
}
|
|
if ( g_bHDR )
|
|
{
|
|
VectorScale( gAmbient->light.intensity,
|
|
FloatForKeyWithDefault( e, "_AmbientScaleHDR", 1.0 ),
|
|
gAmbient->light.intensity );
|
|
}
|
|
|
|
// skylight and ambient light never cast entity shadows
|
|
gSkyLight->light.flags &= ~DWL_FLAGS_CASTENTITYSHADOWS;
|
|
gAmbient->light.flags &= ~DWL_FLAGS_CASTENTITYSHADOWS;
|
|
|
|
directlight_t* lights[] = { gSkyLight, gAmbient };
|
|
BuildVisForLightEnvironment( 2, lights );
|
|
|
|
// Add sky and sky ambient lights to the list.
|
|
AddDLightToActiveList( gSkyLight );
|
|
AddDLightToActiveList( gAmbient );
|
|
}
|
|
}
|
|
|
|
static void ParseLightDirectional( entity_t* e, directlight_t* dl )
|
|
{
|
|
Vector dest;
|
|
GetVectorForKey (e, "origin", dest );
|
|
dl = AllocDLight( dest, true );
|
|
|
|
ParseLightGeneric( e, dl );
|
|
|
|
char *angle_str=ValueForKeyWithDefault( e, "SunSpreadAngle" );
|
|
if (angle_str)
|
|
{
|
|
dl->m_flSkyLightSunAngularExtent = atof(angle_str);
|
|
dl->m_flSkyLightSunAngularExtent = sin((M_PI/180.0)*dl->m_flSkyLightSunAngularExtent);
|
|
}
|
|
|
|
dl->light.type = emit_skylight;
|
|
// For the engine, emit_skylight is the type we want.
|
|
// Set an additional flag identifying this as "not the global skylight" for vrad. This will cause it to use the angular extent associated with this light
|
|
// instead of the global one.
|
|
dl->m_bSkyLightIsDirectionalLight = true;
|
|
|
|
// directional lights never cast entity shadows
|
|
dl->light.flags &= ~DWL_FLAGS_CASTENTITYSHADOWS;
|
|
|
|
BuildVisForLightEnvironment( 1, &dl );
|
|
}
|
|
|
|
static void ParseLightPoint( entity_t* e, directlight_t* dl )
|
|
{
|
|
Vector dest;
|
|
GetVectorForKey (e, "origin", dest );
|
|
dl = AllocDLight( dest, true );
|
|
|
|
ParseLightGeneric( e, dl );
|
|
|
|
dl->light.type = emit_point;
|
|
|
|
SetLightFalloffParams(e,dl);
|
|
}
|
|
|
|
/*
|
|
=============
|
|
CreateDirectLights
|
|
=============
|
|
*/
|
|
#define DIRECT_SCALE (100.0*100.0)
|
|
void CreateDirectLights (void)
|
|
{
|
|
unsigned i;
|
|
CPatch *p = NULL;
|
|
directlight_t *dl = NULL;
|
|
entity_t *e = NULL;
|
|
char *name;
|
|
Vector dest;
|
|
|
|
numdlights = 0;
|
|
|
|
FreeDLights();
|
|
|
|
//
|
|
// surfaces
|
|
//
|
|
unsigned int uiPatchCount = g_Patches.Count();
|
|
for (i=0; i< uiPatchCount; i++)
|
|
{
|
|
p = &g_Patches.Element( i );
|
|
|
|
// skip parent patches
|
|
if (p->child1 != g_Patches.InvalidIndex() )
|
|
continue;
|
|
|
|
if (p->basearea < 1e-6)
|
|
continue;
|
|
|
|
if( VectorAvg( p->baselight ) >= dlight_threshold )
|
|
{
|
|
dl = AllocDLight( p->origin, true );
|
|
|
|
dl->light.type = emit_surface;
|
|
dl->light.flags &= ~DWL_FLAGS_CASTENTITYSHADOWS;
|
|
|
|
VectorCopy (p->normal, dl->light.normal);
|
|
Assert( VectorLength( p->normal ) > 1.0e-20 );
|
|
// scale intensity by number of texture instances
|
|
VectorScale( p->baselight, lightscale * p->area * p->scale[0] * p->scale[1] / p->basearea, dl->light.intensity );
|
|
|
|
// scale to a range that results in actual light
|
|
VectorScale( dl->light.intensity, DIRECT_SCALE, dl->light.intensity );
|
|
}
|
|
}
|
|
|
|
//
|
|
// entities
|
|
//
|
|
for (i=0 ; i<(unsigned)num_entities ; i++)
|
|
{
|
|
e = &entities[i];
|
|
name = ValueForKey (e, "classname");
|
|
if (strncmp (name, "light", 5))
|
|
continue;
|
|
|
|
// Light_dynamic is actually a real entity; not to be included here...
|
|
if (!strcmp (name, "light_dynamic"))
|
|
continue;
|
|
|
|
if (!strcmp (name, "light_spot"))
|
|
{
|
|
ParseLightSpot( e, dl );
|
|
}
|
|
else if (!strcmp(name, "light_environment"))
|
|
{
|
|
ParseLightEnvironment( e, dl );
|
|
}
|
|
else if (!strcmp(name, "light_directional"))
|
|
{
|
|
ParseLightDirectional( e, dl );
|
|
}
|
|
else if (!strcmp(name, "light"))
|
|
{
|
|
ParseLightPoint( e, dl );
|
|
}
|
|
else
|
|
{
|
|
qprintf( "unsupported light entity: \"%s\"\n", name );
|
|
}
|
|
}
|
|
|
|
qprintf ("%i direct lights\n", numdlights);
|
|
// exit(1);
|
|
}
|
|
|
|
/*
|
|
=============
|
|
ExportDirectLightsToWorldLights
|
|
=============
|
|
*/
|
|
|
|
void ExportDirectLightsToWorldLights()
|
|
{
|
|
directlight_t *dl;
|
|
|
|
// In case the level has already been VRADed.
|
|
*pNumworldlights = 0;
|
|
|
|
for (dl = activelights; dl != NULL; dl = dl->next )
|
|
{
|
|
dworldlight_t *wl = &dworldlights[(*pNumworldlights)++];
|
|
|
|
if (*pNumworldlights > MAX_MAP_WORLDLIGHTS)
|
|
{
|
|
Error("too many lights %d / %d\n", *pNumworldlights, MAX_MAP_WORLDLIGHTS );
|
|
}
|
|
|
|
wl->cluster = dl->light.cluster;
|
|
wl->type = dl->light.type;
|
|
wl->style = dl->light.style;
|
|
VectorCopy( dl->light.origin, wl->origin );
|
|
// FIXME: why does vrad want 0 to 255 and not 0 to 1??
|
|
VectorScale( dl->light.intensity, (1.0 / 255.0), wl->intensity );
|
|
VectorCopy( dl->light.normal, wl->normal );
|
|
VectorCopy( dl->light.shadow_cast_offset, wl->shadow_cast_offset );
|
|
wl->stopdot = dl->light.stopdot;
|
|
wl->stopdot2 = dl->light.stopdot2;
|
|
wl->exponent = dl->light.exponent;
|
|
wl->radius = dl->light.radius;
|
|
wl->constant_attn = dl->light.constant_attn;
|
|
wl->linear_attn = dl->light.linear_attn;
|
|
wl->quadratic_attn = dl->light.quadratic_attn;
|
|
wl->flags = dl->light.flags;
|
|
}
|
|
}
|
|
|
|
/*
|
|
=============
|
|
GatherSampleLight
|
|
=============
|
|
*/
|
|
#define NORMALFORMFACTOR 40.156979 // accumuated dot products for hemisphere
|
|
|
|
#define CONSTANT_DOT (.7/2)
|
|
|
|
#define NSAMPLES_SUN_AREA_LIGHT 300 // number of samples to take for an
|
|
// non-point sun light
|
|
|
|
// Helper function - gathers light from sun (emit_skylight)
|
|
void GatherSampleSkyLightSSE( SSE_sampleLightOutput_t &out, directlight_t *dl, int facenum,
|
|
FourVectors const& pos, FourVectors *pNormals, int normalCount, int iThread,
|
|
int nLFlags, int static_prop_index_to_ignore,
|
|
float flEpsilon )
|
|
{
|
|
bool bIgnoreNormals = ( nLFlags & GATHERLFLAGS_IGNORE_NORMALS ) != 0;
|
|
bool force_fast = ( nLFlags & GATHERLFLAGS_FORCE_FAST ) != 0;
|
|
fltx4 dot;
|
|
|
|
float fSunAngularExtent = g_SunAngularExtent;
|
|
if ( dl->m_bSkyLightIsDirectionalLight )
|
|
{
|
|
fSunAngularExtent = dl->m_flSkyLightSunAngularExtent;
|
|
}
|
|
|
|
if ( bIgnoreNormals )
|
|
dot = ReplicateX4( CONSTANT_DOT );
|
|
else
|
|
dot = NegSIMD( pNormals[0] * dl->light.normal );
|
|
|
|
dot = MaxSIMD( dot, Four_Zeros );
|
|
|
|
dot = SoftenCosineTerm( dot );
|
|
|
|
int zeroMask = TestSignSIMD ( CmpEqSIMD( dot, Four_Zeros ) );
|
|
if (zeroMask == 0xF)
|
|
return;
|
|
|
|
int nsamples = 1;
|
|
if ( fSunAngularExtent > 0.0f )
|
|
{
|
|
nsamples = NSAMPLES_SUN_AREA_LIGHT;
|
|
if ( do_fast || force_fast )
|
|
nsamples /= 4;
|
|
}
|
|
|
|
fltx4 totalFractionVisible = Four_Zeros;
|
|
fltx4 fractionVisible = Four_Zeros;
|
|
|
|
DirectionalSampler_t sampler;
|
|
|
|
for ( int d = 0; d < nsamples; d++ )
|
|
{
|
|
// determine visibility of skylight
|
|
// serach back to see if we can hit a sky brush
|
|
Vector delta;
|
|
VectorScale( dl->light.normal, -MAX_TRACE_LENGTH, delta );
|
|
if ( d )
|
|
{
|
|
// jitter light source location
|
|
Vector ofs = sampler.NextValue();
|
|
ofs *= MAX_TRACE_LENGTH * fSunAngularExtent;
|
|
delta += ofs;
|
|
}
|
|
FourVectors delta4;
|
|
delta4.DuplicateVector ( delta );
|
|
delta4 += pos;
|
|
|
|
TestLine_DoesHitSky ( pos, delta4, &fractionVisible, true, static_prop_index_to_ignore );
|
|
|
|
totalFractionVisible = AddSIMD ( totalFractionVisible, fractionVisible );
|
|
}
|
|
|
|
fltx4 seeAmount = MulSIMD ( totalFractionVisible, ReplicateX4 ( 1.0f / nsamples ) );
|
|
|
|
out.m_flDot[0] = MulSIMD ( dot, seeAmount );
|
|
out.m_flFalloff = Four_Ones;
|
|
out.m_flSunAmount[0] = MulSIMD( out.m_flDot[0], out.m_flFalloff );
|
|
|
|
for ( int i = 1; i < normalCount; i++ )
|
|
{
|
|
if ( bIgnoreNormals )
|
|
{
|
|
out.m_flDot[i] = ReplicateX4( CONSTANT_DOT );
|
|
out.m_flSunAmount[i] = Four_Zeros;
|
|
}
|
|
else
|
|
{
|
|
out.m_flDot[i] = NegSIMD( pNormals[i] * dl->light.normal );
|
|
out.m_flDot[i] = MaxSIMD( out.m_flDot[i], Four_Zeros );
|
|
out.m_flDot[i] = SoftenCosineTerm( out.m_flDot[i] );
|
|
out.m_flDot[i] = MulSIMD( out.m_flDot[i], seeAmount );
|
|
out.m_flSunAmount[i] = MulSIMD( out.m_flDot[i], out.m_flFalloff );
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper function - gathers light from ambient sky light
|
|
void GatherSampleAmbientSkySSE( SSE_sampleLightOutput_t &out, directlight_t *dl, int facenum,
|
|
FourVectors const& pos, FourVectors *pNormals, int normalCount, int iThread,
|
|
int nLFlags, int static_prop_index_to_ignore,
|
|
float flEpsilon )
|
|
{
|
|
|
|
bool bIgnoreNormals = ( nLFlags & GATHERLFLAGS_IGNORE_NORMALS ) != 0;
|
|
bool force_fast = ( nLFlags & GATHERLFLAGS_FORCE_FAST ) != 0;
|
|
|
|
fltx4 sumdot = Four_Zeros;
|
|
fltx4 ambient_intensity[NUM_BUMP_VECTS+1];
|
|
fltx4 possibleHitCount[NUM_BUMP_VECTS+1];
|
|
fltx4 dots[NUM_BUMP_VECTS+1];
|
|
|
|
for ( int i = 0; i < normalCount; i++ )
|
|
{
|
|
ambient_intensity[i] = Four_Zeros;
|
|
possibleHitCount[i] = Four_Zeros;
|
|
}
|
|
|
|
DirectionalSampler_t sampler;
|
|
int nsky_samples = NUMVERTEXNORMALS;
|
|
if (do_fast || force_fast )
|
|
nsky_samples /= 4;
|
|
else
|
|
nsky_samples *= g_flSkySampleScale;
|
|
|
|
for (int j = 0; j < nsky_samples; j++)
|
|
{
|
|
FourVectors anorm;
|
|
anorm.DuplicateVector( sampler.NextValue() );
|
|
|
|
if ( bIgnoreNormals )
|
|
dots[0] = ReplicateX4( CONSTANT_DOT );
|
|
else
|
|
dots[0] = NegSIMD( pNormals[0] * anorm );
|
|
|
|
dots[0] = SoftenCosineTerm( dots[0] );
|
|
|
|
fltx4 validity = CmpGtSIMD( dots[0], ReplicateX4( EQUAL_EPSILON ) );
|
|
|
|
// No possibility of anybody getting lit
|
|
if ( !TestSignSIMD( validity ) )
|
|
continue;
|
|
|
|
dots[0] = AndSIMD( validity, dots[0] );
|
|
sumdot = AddSIMD( dots[0], sumdot );
|
|
possibleHitCount[0] = AddSIMD( AndSIMD( validity, Four_Ones ), possibleHitCount[0] );
|
|
|
|
for ( int i = 1; i < normalCount; i++ )
|
|
{
|
|
if ( bIgnoreNormals )
|
|
dots[i] = ReplicateX4( CONSTANT_DOT );
|
|
else
|
|
dots[i] = NegSIMD( pNormals[i] * anorm );
|
|
|
|
dots[i] = SoftenCosineTerm( dots[i] );
|
|
|
|
fltx4 validity2 = CmpGtSIMD( dots[i], ReplicateX4 ( EQUAL_EPSILON ) );
|
|
dots[i] = AndSIMD( validity2, dots[i] );
|
|
possibleHitCount[i] = AddSIMD( AndSIMD( AndSIMD( validity, validity2 ), Four_Ones ), possibleHitCount[i] );
|
|
}
|
|
|
|
// search back to see if we can hit a sky brush
|
|
FourVectors delta = anorm;
|
|
delta *= -MAX_TRACE_LENGTH;
|
|
delta += pos;
|
|
FourVectors surfacePos = pos;
|
|
FourVectors offset = anorm;
|
|
offset *= -flEpsilon;
|
|
surfacePos -= offset;
|
|
|
|
fltx4 fractionVisible = Four_Ones;
|
|
TestLine_DoesHitSky( surfacePos, delta, &fractionVisible, true, static_prop_index_to_ignore );
|
|
for ( int i = 0; i < normalCount; i++ )
|
|
{
|
|
fltx4 addedAmount = MulSIMD( fractionVisible, dots[i] );
|
|
ambient_intensity[i] = AddSIMD( ambient_intensity[i], addedAmount );
|
|
}
|
|
|
|
}
|
|
|
|
out.m_flFalloff = Four_Ones;
|
|
for ( int i = 0; i < normalCount; i++ )
|
|
{
|
|
// now scale out the missing parts of the hemisphere of this bump basis vector
|
|
fltx4 factor = ReciprocalSIMD( possibleHitCount[0] );
|
|
factor = MulSIMD( factor, possibleHitCount[i] );
|
|
out.m_flDot[i] = MulSIMD( factor, sumdot );
|
|
out.m_flDot[i] = ReciprocalSIMD( out.m_flDot[i] );
|
|
out.m_flDot[i] = MulSIMD( ambient_intensity[i], out.m_flDot[i] );
|
|
out.m_flSunAmount[i] = Four_Zeros;
|
|
}
|
|
}
|
|
|
|
// Helper function - gathers light from area lights, spot lights, and point lights
|
|
void GatherSampleStandardLightSSE( SSE_sampleLightOutput_t &out, directlight_t *dl, int facenum,
|
|
FourVectors const& pos, FourVectors *pNormals, int normalCount, int iThread,
|
|
int nLFlags, int static_prop_index_to_ignore,
|
|
float flEpsilon )
|
|
{
|
|
bool bIgnoreNormals = ( nLFlags & GATHERLFLAGS_IGNORE_NORMALS ) != 0;
|
|
|
|
FourVectors src;
|
|
src.DuplicateVector( vec3_origin );
|
|
|
|
if (dl->facenum == -1)
|
|
{
|
|
src.DuplicateVector( dl->light.origin );
|
|
}
|
|
|
|
// Find light vector
|
|
FourVectors delta;
|
|
delta = src;
|
|
delta -= pos;
|
|
fltx4 dist2 = delta.length2();
|
|
fltx4 rpcDist = ReciprocalSqrtSIMD( dist2 );
|
|
delta *= rpcDist;
|
|
fltx4 dist = SqrtEstSIMD( dist2 );//delta.VectorNormalize();
|
|
|
|
// Compute dot
|
|
fltx4 dot = ReplicateX4( (float) CONSTANT_DOT );
|
|
if ( !bIgnoreNormals )
|
|
dot = delta * pNormals[0];
|
|
dot = MaxSIMD( Four_Zeros, dot );
|
|
|
|
dot = SoftenCosineTerm( dot );
|
|
|
|
// Affix dot to zero if past fade distz
|
|
bool bHasHardFalloff = ( dl->m_flEndFadeDistance > dl->m_flStartFadeDistance );
|
|
if ( bHasHardFalloff )
|
|
{
|
|
fltx4 notPastFadeDist = CmpLeSIMD ( dist, ReplicateX4 ( dl->m_flEndFadeDistance ) );
|
|
dot = AndSIMD( dot, notPastFadeDist ); // dot = 0 if past fade distance
|
|
if ( !TestSignSIMD ( notPastFadeDist ) )
|
|
return;
|
|
}
|
|
|
|
dist = MaxSIMD( dist, Four_Ones );
|
|
fltx4 falloffEvalDist = MinSIMD( dist, ReplicateX4( dl->m_flCapDist ) );
|
|
|
|
fltx4 constant, linear, quadratic;
|
|
fltx4 dot2, inCone, inFringe, mult;
|
|
FourVectors offset;
|
|
|
|
switch (dl->light.type)
|
|
{
|
|
case emit_point:
|
|
constant = ReplicateX4( dl->light.constant_attn );
|
|
linear = ReplicateX4( dl->light.linear_attn );
|
|
quadratic = ReplicateX4( dl->light.quadratic_attn );
|
|
|
|
out.m_flFalloff = MulSIMD( falloffEvalDist, falloffEvalDist );
|
|
out.m_flFalloff = MulSIMD( out.m_flFalloff, quadratic );
|
|
out.m_flFalloff = AddSIMD( out.m_flFalloff, MulSIMD( linear, falloffEvalDist ) );
|
|
out.m_flFalloff = AddSIMD( out.m_flFalloff, constant );
|
|
if ( g_bFiniteFalloffModel )
|
|
{
|
|
out.m_flFalloff = MaxSIMD( Four_Zeros, out.m_flFalloff );
|
|
}
|
|
else
|
|
{
|
|
out.m_flFalloff = ReciprocalSIMD( out.m_flFalloff );
|
|
}
|
|
break;
|
|
|
|
case emit_surface:
|
|
dot2 = delta * dl->light.normal;
|
|
dot2 = NegSIMD( dot2 );
|
|
|
|
// Light behind surface yields zero dot
|
|
dot2 = MaxSIMD( Four_Zeros, dot2 );
|
|
if ( TestSignSIMD( CmpEqSIMD( Four_Zeros, dot ) ) == 0xF )
|
|
return;
|
|
|
|
out.m_flFalloff = ReciprocalSIMD ( dist2 );
|
|
out.m_flFalloff = MulSIMD( out.m_flFalloff, dot2 );
|
|
|
|
// move the endpoint away from the surface by epsilon to prevent hitting the surface with the trace
|
|
offset.DuplicateVector ( dl->light.normal );
|
|
offset *= DIST_EPSILON;
|
|
src += offset;
|
|
break;
|
|
|
|
case emit_spotlight:
|
|
dot2 = delta * dl->light.normal;
|
|
dot2 = NegSIMD( dot2 );
|
|
|
|
// Affix dot2 to zero if outside light cone
|
|
inCone = CmpGtSIMD( dot2, ReplicateX4( dl->light.stopdot2 ) );
|
|
if ( !TestSignSIMD ( inCone ) )
|
|
return;
|
|
dot = AndSIMD( inCone, dot );
|
|
|
|
constant = ReplicateX4( dl->light.constant_attn );
|
|
linear = ReplicateX4( dl->light.linear_attn );
|
|
quadratic = ReplicateX4( dl->light.quadratic_attn );
|
|
|
|
out.m_flFalloff = MulSIMD( falloffEvalDist, falloffEvalDist );
|
|
out.m_flFalloff = MulSIMD( out.m_flFalloff, quadratic );
|
|
out.m_flFalloff = AddSIMD( out.m_flFalloff, MulSIMD( linear, falloffEvalDist ) );
|
|
out.m_flFalloff = AddSIMD( out.m_flFalloff, constant );
|
|
if ( g_bFiniteFalloffModel )
|
|
{
|
|
out.m_flFalloff = MaxSIMD( Four_Zeros, out.m_flFalloff );
|
|
}
|
|
else
|
|
{
|
|
out.m_flFalloff = ReciprocalSIMD( out.m_flFalloff );
|
|
}
|
|
out.m_flFalloff = MulSIMD( out.m_flFalloff, dot2 );
|
|
|
|
// outside the inner cone
|
|
inFringe = CmpLeSIMD( dot2, ReplicateX4( dl->light.stopdot ) );
|
|
mult = ReplicateX4( dl->light.stopdot - dl->light.stopdot2 );
|
|
mult = ReciprocalSIMD( mult );
|
|
mult = MulSIMD( mult, SubSIMD( dot2, ReplicateX4( dl->light.stopdot2 ) ) );
|
|
mult = MinSIMD( mult, Four_Ones );
|
|
mult = MaxSIMD( mult, Four_Zeros );
|
|
|
|
// pow is fixed point, so this isn't the most accurate, but it doesn't need to be
|
|
if ( (dl->light.exponent != 0.0f ) && ( dl->light.exponent != 1.0f ) )
|
|
mult = PowSIMD( mult, dl->light.exponent );
|
|
|
|
// if not in between inner and outer cones, mult by 1
|
|
mult = AndSIMD( inFringe, mult );
|
|
mult = AddSIMD( mult, AndNotSIMD( inFringe, Four_Ones ) );
|
|
out.m_flFalloff = MulSIMD( mult, out.m_flFalloff );
|
|
break;
|
|
|
|
}
|
|
|
|
// we may be in the fade region - modulate lighting by the fade curve
|
|
//float t = ( dist - dl->m_flStartFadeDistance ) /
|
|
// ( dl->m_flEndFadeDistance - dl->m_flStartFadeDistance );
|
|
if ( bHasHardFalloff )
|
|
{
|
|
fltx4 t = ReplicateX4( dl->m_flEndFadeDistance - dl->m_flStartFadeDistance );
|
|
t = ReciprocalSIMD( t );
|
|
t = MulSIMD( t, SubSIMD( dist, ReplicateX4( dl->m_flStartFadeDistance ) ) );
|
|
|
|
// clamp t to [0...1]
|
|
t = MinSIMD( t, Four_Ones );
|
|
t = MaxSIMD( t, Four_Zeros );
|
|
t = SubSIMD( Four_Ones, t );
|
|
|
|
// Using QuinticInterpolatingPolynomial, SSE-ified
|
|
// t * t * t *( t * ( t* 6.0 - 15.0 ) + 10.0 )
|
|
mult = SubSIMD( MulSIMD( ReplicateX4( 6.0f ), t ), ReplicateX4( 15.0f ) );
|
|
mult = AddSIMD( MulSIMD( mult, t ), ReplicateX4( 10.0f ) );
|
|
mult = MulSIMD( MulSIMD( t, t), mult );
|
|
mult = MulSIMD( t, mult );
|
|
out.m_flFalloff = MulSIMD( mult, out.m_flFalloff );
|
|
}
|
|
|
|
if ( !( nLFlags & GATHERLFLAGS_NO_OCCLUSION ) )
|
|
{
|
|
// Raytrace for visibility function
|
|
fltx4 fractionVisible = Four_Ones;
|
|
TestLine( pos, src, &fractionVisible, static_prop_index_to_ignore);
|
|
dot = MulSIMD( fractionVisible, dot );
|
|
}
|
|
|
|
out.m_flDot[0] = dot;
|
|
for ( int i = 1; i < normalCount; i++ )
|
|
{
|
|
if ( bIgnoreNormals )
|
|
{
|
|
out.m_flDot[i] = ReplicateX4( (float)CONSTANT_DOT );
|
|
out.m_flSunAmount[i] = Four_Zeros;
|
|
}
|
|
else
|
|
{
|
|
out.m_flDot[i] = pNormals[i] * delta;
|
|
out.m_flDot[i] = MaxSIMD( Four_Zeros, out.m_flDot[i] );
|
|
out.m_flSunAmount[i] = Four_Zeros;
|
|
}
|
|
}
|
|
}
|
|
|
|
// returns dot product with normal and delta
|
|
// dl - light
|
|
// pos - position of sample
|
|
// normal - surface normal of sample
|
|
// out.m_flDot[] - returned dot products with light vector and each normal
|
|
// out.m_flFalloff - amount of light falloff
|
|
void GatherSampleLightSSE( SSE_sampleLightOutput_t &out, directlight_t *dl, int facenum,
|
|
FourVectors const& pos, FourVectors *pNormals, int normalCount, int iThread,
|
|
int nLFlags,
|
|
int static_prop_index_to_ignore,
|
|
float flEpsilon )
|
|
{
|
|
for ( int b = 0; b < normalCount; b++ )
|
|
{
|
|
out.m_flDot[b] = Four_Zeros;
|
|
out.m_flSunAmount[b] = Four_Zeros;
|
|
}
|
|
out.m_flFalloff = Four_Zeros;
|
|
Assert( normalCount <= (NUM_BUMP_VECTS+1) );
|
|
|
|
// skylights work fundamentally differently than normal lights
|
|
switch( dl->light.type )
|
|
{
|
|
case emit_skylight:
|
|
GatherSampleSkyLightSSE( out, dl, facenum, pos, pNormals, normalCount,
|
|
iThread, nLFlags, static_prop_index_to_ignore, flEpsilon );
|
|
break;
|
|
case emit_skyambient:
|
|
GatherSampleAmbientSkySSE( out, dl, facenum, pos, pNormals, normalCount,
|
|
iThread, nLFlags, static_prop_index_to_ignore, flEpsilon );
|
|
break;
|
|
case emit_point:
|
|
case emit_surface:
|
|
case emit_spotlight:
|
|
GatherSampleStandardLightSSE( out, dl, facenum, pos, pNormals, normalCount,
|
|
iThread, nLFlags, static_prop_index_to_ignore, flEpsilon );
|
|
break;
|
|
default:
|
|
Error ("Bad dl->light.type");
|
|
return;
|
|
}
|
|
|
|
// Ambient occlusion for the 4 sample positions & normals
|
|
fltx4 ao = Four_Ones;
|
|
bool bIgnoreNormals = (nLFlags & GATHERLFLAGS_IGNORE_NORMALS) != 0;
|
|
if ( !bIgnoreNormals ) // Don't calculate ambient occlusion for objects that ignore normals for gathering light
|
|
{
|
|
if ( nLFlags & GATHERLFLAGS_STATICPROP )
|
|
{
|
|
// for static props we want the sun amount for the basis normals to be mutliplied by the ao of the main vertex normal only.
|
|
// lightmaps using this path do not send basis normals here, we do so for static props to take advantage of the SIMD optimisation this path provides.
|
|
ao = CalculateAmbientOcclusion4( pos, *pNormals, static_prop_index_to_ignore );
|
|
fltx4 ao0 = SplatXSIMD( ao );
|
|
ao = ao0;
|
|
}
|
|
else
|
|
{
|
|
ao = CalculateAmbientOcclusion4( pos, *pNormals, static_prop_index_to_ignore );
|
|
}
|
|
}
|
|
|
|
// NOTE: Notice here that if the light is on the back side of the face
|
|
// (tested by checking the dot product of the face normal and the light position)
|
|
// we don't want it to contribute to *any* of the bumped lightmaps. It glows
|
|
// in disturbing ways if we don't do this.
|
|
out.m_flDot[0] = MaxSIMD ( out.m_flDot[0], Four_Zeros );
|
|
fltx4 notZero = CmpGtSIMD( out.m_flDot[0], Four_Zeros );
|
|
out.m_flDot[0] = MulSIMD( out.m_flDot[0], ao );
|
|
out.m_flSunAmount[0] = MulSIMD( out.m_flSunAmount[0], ao );
|
|
for ( int n = 1; n < normalCount; n++ )
|
|
{
|
|
out.m_flDot[n] = MaxSIMD( out.m_flDot[n], Four_Zeros );
|
|
out.m_flDot[n] = AndSIMD( out.m_flDot[n], notZero );
|
|
out.m_flDot[n] = MulSIMD( out.m_flDot[n], ao );
|
|
out.m_flSunAmount[n] = MulSIMD( out.m_flSunAmount[n], ao );
|
|
}
|
|
}
|
|
|
|
/*
|
|
=============
|
|
AddSampleToPatch
|
|
|
|
Take the sample's collected light and
|
|
add it back into the apropriate patch
|
|
for the radiosity pass.
|
|
=============
|
|
*/
|
|
void AddSampleToPatch (sample_t *s, LightingValue_t& light, int facenum)
|
|
{
|
|
CPatch *patch;
|
|
Vector mins, maxs;
|
|
int i;
|
|
|
|
if (numbounce == 0)
|
|
return;
|
|
if( VectorAvg( light.m_vecLighting ) < 1)
|
|
return;
|
|
|
|
//
|
|
// fixed the sample position and normal -- need to find the equiv pos, etc to set up
|
|
// patches
|
|
//
|
|
if( g_FacePatches.Element( facenum ) == g_FacePatches.InvalidIndex() )
|
|
return;
|
|
|
|
float radius = sqrt( s->area ) / 2.0;
|
|
|
|
CPatch *pNextPatch = NULL;
|
|
for( patch = &g_Patches.Element( g_FacePatches.Element( facenum ) ); patch; patch = pNextPatch )
|
|
{
|
|
// next patch
|
|
pNextPatch = NULL;
|
|
if( patch->ndxNext != g_Patches.InvalidIndex() )
|
|
{
|
|
pNextPatch = &g_Patches.Element( patch->ndxNext );
|
|
}
|
|
|
|
if (patch->sky)
|
|
continue;
|
|
|
|
// skip patches with children
|
|
if ( patch->child1 != g_Patches.InvalidIndex() )
|
|
continue;
|
|
|
|
// see if the point is in this patch (roughly)
|
|
WindingBounds (patch->winding, mins, maxs);
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
if (mins[i] > s->pos[i] + radius)
|
|
goto nextpatch;
|
|
if (maxs[i] < s->pos[i] - radius)
|
|
goto nextpatch;
|
|
}
|
|
|
|
// add the sample to the patch
|
|
patch->samplearea += s->area;
|
|
VectorMA( patch->samplelight, s->area, light.m_vecLighting, patch->samplelight );
|
|
|
|
nextpatch:;
|
|
}
|
|
// don't worry if some samples don't find a patch
|
|
}
|
|
|
|
|
|
void GetPhongNormal( int facenum, Vector const& spot, Vector& phongnormal )
|
|
{
|
|
int j;
|
|
dface_t *f = &g_pFaces[facenum];
|
|
// dplane_t *p = &dplanes[f->planenum];
|
|
Vector facenormal, vspot;
|
|
|
|
VectorCopy( dplanes[f->planenum].normal, facenormal );
|
|
VectorCopy( facenormal, phongnormal );
|
|
|
|
if ( smoothing_threshold != 1 )
|
|
{
|
|
faceneighbor_t *fn = &faceneighbor[facenum];
|
|
|
|
// Calculate modified point normal for surface
|
|
// Use the edge normals iff they are defined. Bend the surface towards the edge normal(s)
|
|
// Crude first attempt: find nearest edge normal and do a simple interpolation with facenormal.
|
|
// Second attempt: find edge points+center that bound the point and do a three-point triangulation(baricentric)
|
|
// Better third attempt: generate the point normals for all vertices and do baricentric triangulation.
|
|
|
|
for (j=0 ; j<f->numedges ; j++)
|
|
{
|
|
Vector v1, v2;
|
|
//int e = dsurfedges[f->firstedge + j];
|
|
//int e1 = dsurfedges[f->firstedge + ((j+f->numedges-1)%f->numedges)];
|
|
//int e2 = dsurfedges[f->firstedge + ((j+1)%f->numedges)];
|
|
|
|
//edgeshare_t *es = &edgeshare[abs(e)];
|
|
//edgeshare_t *es1 = &edgeshare[abs(e1)];
|
|
//edgeshare_t *es2 = &edgeshare[abs(e2)];
|
|
// dface_t *f2;
|
|
float a1, a2, aa, bb, ab;
|
|
int vert1, vert2;
|
|
|
|
Vector& n1 = fn->normal[j];
|
|
Vector& n2 = fn->normal[(j+1)%f->numedges];
|
|
|
|
/*
|
|
if (VectorCompare( n1, fn->facenormal )
|
|
&& VectorCompare( n2, fn->facenormal) )
|
|
continue;
|
|
*/
|
|
|
|
vert1 = EdgeVertex( f, j );
|
|
vert2 = EdgeVertex( f, j+1 );
|
|
|
|
Vector& p1 = dvertexes[vert1].point;
|
|
Vector& p2 = dvertexes[vert2].point;
|
|
|
|
// Build vectors from the middle of the face to the edge vertexes and the sample pos.
|
|
VectorSubtract( p1, face_centroids[facenum], v1 );
|
|
VectorSubtract( p2, face_centroids[facenum], v2 );
|
|
VectorSubtract( spot, face_centroids[facenum], vspot );
|
|
aa = DotProduct( v1, v1 );
|
|
bb = DotProduct( v2, v2 );
|
|
ab = DotProduct( v1, v2 );
|
|
a1 = (bb * DotProduct( v1, vspot ) - ab * DotProduct( vspot, v2 )) / (aa * bb - ab * ab);
|
|
a2 = (DotProduct( vspot, v2 ) - a1 * ab) / bb;
|
|
|
|
// Test center to sample vector for inclusion between center to vertex vectors (Use dot product of vectors)
|
|
if ( a1 >= 0.0 && a2 >= 0.0)
|
|
{
|
|
// calculate distance from edge to pos
|
|
Vector temp;
|
|
float scale;
|
|
|
|
// Interpolate between the center and edge normals based on sample position
|
|
scale = 1.0 - a1 - a2;
|
|
VectorScale( fn->facenormal, scale, phongnormal );
|
|
VectorScale( n1, a1, temp );
|
|
VectorAdd( phongnormal, temp, phongnormal );
|
|
VectorScale( n2, a2, temp );
|
|
VectorAdd( phongnormal, temp, phongnormal );
|
|
Assert( VectorLength( phongnormal ) > 1.0e-20 );
|
|
VectorNormalize( phongnormal );
|
|
|
|
/*
|
|
if (a1 > 1 || a2 > 1 || a1 + a2 > 1)
|
|
{
|
|
Msg("\n%.2f %.2f\n", a1, a2 );
|
|
Msg("%.2f %.2f %.2f\n", v1[0], v1[1], v1[2] );
|
|
Msg("%.2f %.2f %.2f\n", v2[0], v2[1], v2[2] );
|
|
Msg("%.2f %.2f %.2f\n", vspot[0], vspot[1], vspot[2] );
|
|
exit(1);
|
|
|
|
a1 = 0;
|
|
}
|
|
*/
|
|
/*
|
|
phongnormal[0] = (((j + 1) & 4) != 0) * 255;
|
|
phongnormal[1] = (((j + 1) & 2) != 0) * 255;
|
|
phongnormal[2] = (((j + 1) & 1) != 0) * 255;
|
|
*/
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GetPhongNormal( int facenum, FourVectors const& spot, FourVectors& phongnormal )
|
|
{
|
|
int j;
|
|
dface_t *f = &g_pFaces[facenum];
|
|
// dplane_t *p = &dplanes[f->planenum];
|
|
Vector facenormal;
|
|
FourVectors vspot;
|
|
|
|
VectorCopy( dplanes[f->planenum].normal, facenormal );
|
|
phongnormal.DuplicateVector( facenormal );
|
|
|
|
FourVectors faceCentroid;
|
|
faceCentroid.DuplicateVector( face_centroids[facenum] );
|
|
|
|
if ( smoothing_threshold != 1 )
|
|
{
|
|
faceneighbor_t *fn = &faceneighbor[facenum];
|
|
|
|
// Calculate modified point normal for surface
|
|
// Use the edge normals iff they are defined. Bend the surface towards the edge normal(s)
|
|
// Crude first attempt: find nearest edge normal and do a simple interpolation with facenormal.
|
|
// Second attempt: find edge points+center that bound the point and do a three-point triangulation(baricentric)
|
|
// Better third attempt: generate the point normals for all vertices and do baricentric triangulation.
|
|
|
|
for ( j = 0; j < f->numedges; ++j )
|
|
{
|
|
Vector v1, v2;
|
|
fltx4 a1, a2;
|
|
float aa, bb, ab;
|
|
int vert1, vert2;
|
|
|
|
Vector& n1 = fn->normal[j];
|
|
Vector& n2 = fn->normal[(j+1)%f->numedges];
|
|
|
|
vert1 = EdgeVertex( f, j );
|
|
vert2 = EdgeVertex( f, j+1 );
|
|
|
|
Vector& p1 = dvertexes[vert1].point;
|
|
Vector& p2 = dvertexes[vert2].point;
|
|
|
|
// Build vectors from the middle of the face to the edge vertexes and the sample pos.
|
|
VectorSubtract( p1, face_centroids[facenum], v1 );
|
|
VectorSubtract( p2, face_centroids[facenum], v2 );
|
|
//VectorSubtract( spot, face_centroids[facenum], vspot );
|
|
vspot = spot;
|
|
vspot -= faceCentroid;
|
|
aa = DotProduct( v1, v1 );
|
|
bb = DotProduct( v2, v2 );
|
|
ab = DotProduct( v1, v2 );
|
|
//a1 = (bb * DotProduct( v1, vspot ) - ab * DotProduct( vspot, v2 )) / (aa * bb - ab * ab);
|
|
a1 = ReciprocalSIMD( ReplicateX4( aa * bb - ab * ab ) );
|
|
a1 = MulSIMD( a1, SubSIMD( MulSIMD( ReplicateX4( bb ), vspot * v1 ), MulSIMD( ReplicateX4( ab ), vspot * v2 ) ) );
|
|
//a2 = (DotProduct( vspot, v2 ) - a1 * ab) / bb;
|
|
a2 = ReciprocalSIMD( ReplicateX4( bb ) );
|
|
a2 = MulSIMD( a2, SubSIMD( vspot * v2, MulSIMD( a1, ReplicateX4( ab ) ) ) );
|
|
|
|
fltx4 resultMask = AndSIMD( CmpGeSIMD( a1, Four_Zeros ), CmpGeSIMD( a2, Four_Zeros ) );
|
|
|
|
if ( !TestSignSIMD( resultMask ) )
|
|
continue;
|
|
|
|
// Store the old phong normal to avoid overwriting already computed phong normals
|
|
FourVectors oldPhongNormal = phongnormal;
|
|
|
|
// calculate distance from edge to pos
|
|
FourVectors temp;
|
|
fltx4 scale;
|
|
|
|
// Interpolate between the center and edge normals based on sample position
|
|
scale = SubSIMD( SubSIMD( Four_Ones, a1 ), a2 );
|
|
phongnormal.DuplicateVector( fn->facenormal );
|
|
phongnormal *= scale;
|
|
temp.DuplicateVector( n1 );
|
|
temp *= a1;
|
|
phongnormal += temp;
|
|
temp.DuplicateVector( n2 );
|
|
temp *= a2;
|
|
phongnormal += temp;
|
|
|
|
// restore the old phong normals
|
|
phongnormal.x = AddSIMD( AndSIMD( resultMask, phongnormal.x ), AndNotSIMD( resultMask, oldPhongNormal.x ) );
|
|
phongnormal.y = AddSIMD( AndSIMD( resultMask, phongnormal.y ), AndNotSIMD( resultMask, oldPhongNormal.y ) );
|
|
phongnormal.z = AddSIMD( AndSIMD( resultMask, phongnormal.z ), AndNotSIMD( resultMask, oldPhongNormal.z ) );
|
|
}
|
|
|
|
phongnormal.VectorNormalize();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
int GetVisCache( int lastoffset, int cluster, byte *pvs )
|
|
{
|
|
// get the PVS for the pos to limit the number of checks
|
|
if ( !visdatasize )
|
|
{
|
|
memset (pvs, 255, (dvis->numclusters+7)/8 );
|
|
lastoffset = -1;
|
|
}
|
|
else
|
|
{
|
|
if (cluster < 0)
|
|
{
|
|
// Error, point embedded in wall
|
|
// sampled[0][1] = 255;
|
|
memset (pvs, 255, (dvis->numclusters+7)/8 );
|
|
lastoffset = -1;
|
|
}
|
|
else
|
|
{
|
|
int thisoffset = dvis->bitofs[ cluster ][DVIS_PVS];
|
|
if ( thisoffset != lastoffset )
|
|
{
|
|
if ( thisoffset == -1 )
|
|
{
|
|
Error ("visofs == -1");
|
|
}
|
|
|
|
DecompressVis (&dvisdata[thisoffset], pvs);
|
|
}
|
|
lastoffset = thisoffset;
|
|
}
|
|
}
|
|
return lastoffset;
|
|
}
|
|
|
|
|
|
void BuildPatchLights( int facenum );
|
|
|
|
void DumpSamples( int ndxFace, facelight_t *pFaceLight )
|
|
{
|
|
ThreadLock();
|
|
|
|
dface_t *pFace = &g_pFaces[ndxFace];
|
|
if( pFace )
|
|
{
|
|
bool bBumpped = ( ( texinfo[pFace->texinfo].flags & SURF_BUMPLIGHT ) != 0 );
|
|
|
|
for( int iStyle = 0; iStyle < 4; ++iStyle )
|
|
{
|
|
if( pFace->styles[iStyle] != 255 )
|
|
{
|
|
for ( int iBump = 0; iBump < 4; ++iBump )
|
|
{
|
|
if ( iBump == 0 || ( iBump > 0 && bBumpped ) )
|
|
{
|
|
for( int iSample = 0; iSample < pFaceLight->numsamples; ++iSample )
|
|
{
|
|
sample_t *pSample = &pFaceLight->sample[iSample];
|
|
WriteWinding( pFileSamples[iStyle][iBump], pSample->w, pFaceLight->light[iStyle][iBump][iSample].m_vecLighting );
|
|
if( bDumpNormals )
|
|
{
|
|
WriteNormal( pFileSamples[iStyle][iBump], pSample->pos, pSample->normal, 15.0f, pSample->normal * 255.0f );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ThreadUnlock();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Allocates light sample data
|
|
//-----------------------------------------------------------------------------
|
|
static inline void AllocateLightstyleSamples( facelight_t* fl, int styleIndex, int numnormals )
|
|
{
|
|
for (int n = 0; n < numnormals; ++n)
|
|
{
|
|
fl->light[styleIndex][n] = ( LightingValue_t* )calloc( fl->numsamples, sizeof(LightingValue_t ) );
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Used to find an existing lightstyle on a face
|
|
//-----------------------------------------------------------------------------
|
|
static inline int FindLightstyle( dface_t* f, int lightstyle )
|
|
{
|
|
for (int k = 0; k < MAXLIGHTMAPS; k++)
|
|
{
|
|
if (f->styles[k] == lightstyle)
|
|
return k;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int FindOrAllocateLightstyleSamples( dface_t* f, facelight_t *fl, int lightstyle, int numnormals )
|
|
{
|
|
// Search the lightstyles associated with the face for a match
|
|
int k;
|
|
for (k = 0; k < MAXLIGHTMAPS; k++)
|
|
{
|
|
if (f->styles[k] == lightstyle)
|
|
break;
|
|
|
|
// Found an empty entry, we can use it for a new lightstyle
|
|
if (f->styles[k] == 255)
|
|
{
|
|
AllocateLightstyleSamples( fl, k, numnormals );
|
|
f->styles[k] = lightstyle;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check for overflow
|
|
if (k >= MAXLIGHTMAPS)
|
|
return -1;
|
|
|
|
return k;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute the illumination point + normal for the sample
|
|
//-----------------------------------------------------------------------------
|
|
static void ComputeIlluminationPointAndNormalsSSE( lightinfo_t const& l, FourVectors const &pos, FourVectors const &norm, SSE_SampleInfo_t* pInfo, int numSamples )
|
|
{
|
|
Vector v[4];
|
|
|
|
pInfo->m_Points = pos;
|
|
bool computeNormals = ( pInfo->m_NormalCount > 1 && ( pInfo->m_IsDispFace || !l.isflat ) );
|
|
|
|
// FIXME: move sample point off the surface a bit, this is done so that
|
|
// light sampling will not be affected by a bug where raycasts will
|
|
// intersect with the face being lit. We really should just have that
|
|
// logic in GatherSampleLight
|
|
FourVectors faceNormal;
|
|
faceNormal.DuplicateVector( l.facenormal );
|
|
pInfo->m_Points += faceNormal;
|
|
|
|
if ( pInfo->m_IsDispFace )
|
|
{
|
|
pInfo->m_PointNormals[0] = norm;
|
|
}
|
|
else if ( !l.isflat )
|
|
{
|
|
// If the face isn't flat, use a phong-based normal instead
|
|
FourVectors modelorg;
|
|
modelorg.DuplicateVector( l.modelorg );
|
|
FourVectors vecSample = pos;
|
|
vecSample -= modelorg;
|
|
GetPhongNormal( pInfo->m_FaceNum, vecSample, pInfo->m_PointNormals[0] );
|
|
}
|
|
|
|
if ( computeNormals )
|
|
{
|
|
Vector bv[4][NUM_BUMP_VECTS];
|
|
for ( int i = 0; i < 4; ++i )
|
|
{
|
|
// TODO: using Vec may slow things down a bit
|
|
GetBumpNormals( pInfo->m_pTexInfo->textureVecsTexelsPerWorldUnits[0],
|
|
pInfo->m_pTexInfo->textureVecsTexelsPerWorldUnits[1],
|
|
l.facenormal, pInfo->m_PointNormals[0].Vec( i ), bv[i] );
|
|
}
|
|
for ( int b = 0; b < NUM_BUMP_VECTS; ++b )
|
|
{
|
|
pInfo->m_PointNormals[b+1].LoadAndSwizzle ( bv[0][b], bv[1][b], bv[2][b], bv[3][b] );
|
|
}
|
|
}
|
|
|
|
// TODO: this may slow things down a bit ( using Vec )
|
|
for ( int i = 0; i < 4; ++i )
|
|
pInfo->m_Clusters[i] = ClusterFromPoint( pos.Vec( i ) );
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute the illumination point + normal for the sample on a displacement
|
|
// (see ComputeIlluminationPointAndNormalsSSE above)
|
|
//-----------------------------------------------------------------------------
|
|
static void ComputeIlluminationPointAndNormalsForDisp( lightinfo_t const& l, FourVectors &pos, FourVectors &norm, SSE_SampleInfo_t* pInfo )
|
|
{
|
|
pInfo->m_PointNormals[ 0 ] = norm;
|
|
|
|
if ( pInfo->m_NormalCount > 1 )
|
|
{
|
|
Vector bv[ 4 ][ NUM_BUMP_VECTS ];
|
|
for ( int j = 0; j < 4; j++ )
|
|
{
|
|
// TODO: using Vec may slow things down a bit
|
|
GetBumpNormals( pInfo->m_pTexInfo->textureVecsTexelsPerWorldUnits[ 0 ],
|
|
pInfo->m_pTexInfo->textureVecsTexelsPerWorldUnits[ 1 ],
|
|
l.facenormal, norm.Vec( j ), bv[ j ] );
|
|
}
|
|
for ( int b = 0; b < NUM_BUMP_VECTS; b++ )
|
|
{
|
|
pInfo->m_PointNormals[ b + 1 ].LoadAndSwizzle( bv[ 0 ][ b ], bv[ 1 ][ b ], bv[ 2 ][ b ], bv[ 3 ][ b ] );
|
|
}
|
|
}
|
|
|
|
pInfo->m_Points = pos;
|
|
|
|
// FIXME: move sample point off the surface a bit, this is done so that
|
|
// light sampling will not be affected by a bug where raycasts will
|
|
// intersect with the face being lit. We really should just have that
|
|
// logic in GatherSampleLight
|
|
FourVectors faceNormal = norm;
|
|
pInfo->m_Points += faceNormal;
|
|
|
|
// TODO: this may slow things down a bit ( using Vec )
|
|
for ( int j = 0; j < 4; j++ )
|
|
pInfo->m_Clusters[ j ] = ClusterFromPoint( pos.Vec( j ) );
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Iterates over all lights and computes lighting at up to 4 sample points
|
|
//-----------------------------------------------------------------------------
|
|
static void GatherSampleLightAt4Points( SSE_SampleInfo_t& info, int sampleIdx, int numSamples )
|
|
{
|
|
SSE_sampleLightOutput_t out;
|
|
|
|
// Iterate over all direct lights and add them to the particular sample
|
|
for (directlight_t *dl = activelights; dl != NULL; dl = dl->next)
|
|
{
|
|
// is this lights cluster visible?
|
|
fltx4 dotMask = Four_Zeros;
|
|
bool skipLight = true;
|
|
for( int s = 0; s < numSamples; s++ )
|
|
{
|
|
if( PVSCheck( dl->pvs, info.m_Clusters[s] ) )
|
|
{
|
|
dotMask = SetComponentSIMD( dotMask, s, 1.0f );
|
|
skipLight = false;
|
|
}
|
|
}
|
|
if ( skipLight )
|
|
continue;
|
|
|
|
GatherSampleLightSSE( out, dl, info.m_FaceNum, info.m_Points, info.m_PointNormals, info.m_NormalCount, info.m_iThread );
|
|
|
|
// Apply the PVS check filter and compute falloff x dot
|
|
fltx4 fxdot[NUM_BUMP_VECTS + 1];
|
|
skipLight = true;
|
|
for ( int b = 0; b < info.m_NormalCount; b++ )
|
|
{
|
|
fxdot[b] = MulSIMD( out.m_flDot[b], dotMask );
|
|
fxdot[b] = MulSIMD( fxdot[b], out.m_flFalloff );
|
|
if ( !IsAllZeros( fxdot[b] ) )
|
|
{
|
|
skipLight = false;
|
|
}
|
|
}
|
|
if ( skipLight )
|
|
continue;
|
|
|
|
// Figure out the lightstyle for this particular sample
|
|
int lightStyleIndex = FindOrAllocateLightstyleSamples( info.m_pFace, info.m_pFaceLight,
|
|
dl->light.style, info.m_NormalCount );
|
|
if (lightStyleIndex < 0)
|
|
{
|
|
if (info.m_WarnFace != info.m_FaceNum)
|
|
{
|
|
Warning ("\nWARNING: Too many light styles on a face at (%f, %f, %f)\n",
|
|
info.m_Points.x.m128_f32[0], info.m_Points.y.m128_f32[0], info.m_Points.z.m128_f32[0] );
|
|
info.m_WarnFace = info.m_FaceNum;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// pLightmaps is an array of the lightmaps for each normal direction,
|
|
// here's where the result of the sample gathering goes
|
|
LightingValue_t** pLightmaps = info.m_pFaceLight->light[lightStyleIndex];
|
|
|
|
// Incremental lighting only cares about lightstyle zero
|
|
if( g_pIncremental && (dl->light.style == 0) )
|
|
{
|
|
for ( int i = 0; i < numSamples; i++ )
|
|
{
|
|
g_pIncremental->AddLightToFace( dl->m_IncrementalID, info.m_FaceNum, sampleIdx + i,
|
|
info.m_LightmapSize, SubFloat( fxdot[0], i ), info.m_iThread );
|
|
}
|
|
}
|
|
|
|
for( int n = 0; n < info.m_NormalCount; ++n )
|
|
{
|
|
for ( int i = 0; i < numSamples; i++ )
|
|
{
|
|
pLightmaps[n][sampleIdx + i].AddLight( SubFloat( fxdot[n], i ), dl->light.intensity, SubFloat( out.m_flSunAmount[n], i ) );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Iterates over all lights and computes lighting at a sample point
|
|
//-----------------------------------------------------------------------------
|
|
static void ResampleLightAt4Points( SSE_SampleInfo_t& info, int lightStyleIndex, int flags, LightingValue_t pLightmap[4][NUM_BUMP_VECTS+1] )
|
|
{
|
|
SSE_sampleLightOutput_t out;
|
|
|
|
// Clear result
|
|
for ( int i = 0; i < 4; ++i )
|
|
{
|
|
for ( int n = 0; n < info.m_NormalCount; ++n )
|
|
{
|
|
pLightmap[i][n].Zero();
|
|
}
|
|
}
|
|
|
|
// Iterate over all direct lights and add them to the particular sample
|
|
for (directlight_t *dl = activelights; dl != NULL; dl = dl->next)
|
|
{
|
|
if ((flags & AMBIENT_ONLY) && (dl->light.type != emit_skyambient))
|
|
continue;
|
|
|
|
if ((flags & NON_AMBIENT_ONLY) && (dl->light.type == emit_skyambient))
|
|
continue;
|
|
|
|
// Only add contributions that match the lightstyle
|
|
Assert( lightStyleIndex <= MAXLIGHTMAPS );
|
|
Assert( info.m_pFace->styles[lightStyleIndex] != 255 );
|
|
if (dl->light.style != info.m_pFace->styles[lightStyleIndex])
|
|
continue;
|
|
|
|
// is this lights cluster visible?
|
|
fltx4 dotMask = Four_Zeros;
|
|
bool skipLight = true;
|
|
for( int s = 0; s < 4; s++ )
|
|
{
|
|
if( PVSCheck( dl->pvs, info.m_Clusters[s] ) )
|
|
{
|
|
dotMask = SetComponentSIMD( dotMask, s, 1.0f );
|
|
skipLight = false;
|
|
}
|
|
}
|
|
if ( skipLight )
|
|
continue;
|
|
|
|
// NOTE: Notice here that if the light is on the back side of the face
|
|
// (tested by checking the dot product of the face normal and the light position)
|
|
// we don't want it to contribute to *any* of the bumped lightmaps. It glows
|
|
// in disturbing ways if we don't do this.
|
|
GatherSampleLightSSE( out, dl, info.m_FaceNum, info.m_Points, info.m_PointNormals, info.m_NormalCount, info.m_iThread );
|
|
|
|
// Apply the PVS check filter and compute falloff x dot
|
|
fltx4 fxdot[NUM_BUMP_VECTS + 1];
|
|
for ( int b = 0; b < info.m_NormalCount; b++ )
|
|
{
|
|
fxdot[b] = MulSIMD( out.m_flFalloff, out.m_flDot[b] );
|
|
fxdot[b] = MulSIMD( fxdot[b], dotMask );
|
|
}
|
|
|
|
// Compute the contributions to each of the bumped lightmaps
|
|
// The first sample is for non-bumped lighting.
|
|
// The other sample are for bumpmapping.
|
|
for( int i = 0; i < 4; ++i )
|
|
{
|
|
for( int n = 0; n < info.m_NormalCount; ++n )
|
|
{
|
|
pLightmap[i][n].AddLight( SubFloat( fxdot[n], i ), dl->light.intensity, SubFloat( out.m_flSunAmount[n], i ) );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool PointsInWinding( FourVectors const & point, winding_t *w, int &invalidBits )
|
|
{
|
|
FourVectors edge, toPt, cross, testCross, p0, p1;
|
|
fltx4 invalidMask = Four_Zeros;
|
|
|
|
//
|
|
// get the first normal to test
|
|
//
|
|
p0.DuplicateVector( w->p[0] );
|
|
p1.DuplicateVector( w->p[1] );
|
|
toPt = point;
|
|
toPt -= p0;
|
|
edge = p1;
|
|
edge -= p0;
|
|
testCross = edge ^ toPt;
|
|
// safer against /0 - testCross.VectorNormalizeFast();
|
|
fltx4 mag_sq = testCross * testCross;
|
|
testCross *= ReciprocalSqrtEstSaturateSIMD( mag_sq );
|
|
|
|
for ( int ndxPt = 1; ndxPt < w->numpoints; ndxPt++ )
|
|
{
|
|
p0.DuplicateVector( w->p[ndxPt] );
|
|
p1.DuplicateVector( w->p[(ndxPt+1)%w->numpoints] );
|
|
toPt = point;
|
|
toPt -= p0;
|
|
edge = p1;
|
|
edge -= p0;
|
|
cross = edge ^ toPt;
|
|
// safer against /0 - cross.VectorNormalizeFast();
|
|
mag_sq = cross * cross;
|
|
cross *= ReciprocalSqrtEstSaturateSIMD( mag_sq );
|
|
|
|
fltx4 dot = cross * testCross;
|
|
invalidMask = OrSIMD( invalidMask, CmpLtSIMD( dot, Four_Zeros ) );
|
|
|
|
invalidBits = TestSignSIMD ( invalidMask );
|
|
if ( invalidBits == 0xF )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Perform supersampling at a particular point
|
|
//-----------------------------------------------------------------------------
|
|
static int SupersampleLightAtPoint( lightinfo_t& l, SSE_SampleInfo_t& info,
|
|
int sampleIndex, int lightStyleIndex, LightingValue_t *pLight, int flags )
|
|
{
|
|
sample_t& sample = info.m_pFaceLight->sample[sampleIndex];
|
|
|
|
// Get the position of the original sample in lightmapspace
|
|
Vector2D temp;
|
|
WorldToLuxelSpace( &l, sample.pos, temp );
|
|
Vector sampleLightOrigin( temp[0], temp[1], 0.0f );
|
|
|
|
// Some parameters related to supersampling
|
|
float sampleWidth = ( flags & NON_AMBIENT_ONLY ) ? 4 : 2;
|
|
|
|
float cscale = 1.0f / sampleWidth;
|
|
float csshift = -( ( sampleWidth - 1 ) * cscale ) / 2.0;
|
|
|
|
// Clear out the light values
|
|
for (int i = 0; i < info.m_NormalCount; ++i )
|
|
pLight[i].Zero();
|
|
|
|
int subsampleCount = 0;
|
|
|
|
FourVectors superSampleNormal;
|
|
superSampleNormal.DuplicateVector( sample.normal );
|
|
|
|
FourVectors superSampleLightCoord;
|
|
FourVectors superSamplePosition;
|
|
superSamplePosition.DuplicateVector( sample.pos );
|
|
|
|
Vector wsError;
|
|
FourVectors superSampleWorldSpaceError;
|
|
|
|
float stepU = 0.0f;
|
|
float stepV = 0.0f;
|
|
if ( info.m_IsDispFace )
|
|
{
|
|
// compensate for error when transforming back to worldspace (only enabled for displacements)
|
|
Vector toWorld;
|
|
LuxelSpaceToWorld( &l, temp.x, temp.y, toWorld );
|
|
VectorSubtract( sample.pos, toWorld, wsError );
|
|
superSampleWorldSpaceError.DuplicateVector( wsError );
|
|
|
|
// lightmap size
|
|
int width = l.face->m_LightmapTextureSizeInLuxels[ 0 ] + 1;
|
|
int height = l.face->m_LightmapTextureSizeInLuxels[ 1 ] + 1;
|
|
|
|
// calculate the steps in uv space
|
|
stepU = 1.0f / (float)width;
|
|
stepV = 1.0f / (float)height;
|
|
}
|
|
|
|
if ( flags & NON_AMBIENT_ONLY )
|
|
{
|
|
float aRow[4];
|
|
for ( int coord = 0; coord < 4; ++coord )
|
|
aRow[ coord ] = csshift + coord * cscale;
|
|
fltx4 sseRow = LoadUnalignedSIMD( aRow );
|
|
|
|
for (int s = 0; s < 4; ++s)
|
|
{
|
|
// make sure the coordinate is inside of the sample's winding and when normalizing
|
|
// below use the number of samples used, not just numsamples and some of them
|
|
// will be skipped if they are not inside of the winding
|
|
superSampleLightCoord.DuplicateVector( sampleLightOrigin );
|
|
superSampleLightCoord.x = AddSIMD( superSampleLightCoord.x, ReplicateX4( aRow[s] ) );
|
|
superSampleLightCoord.y = AddSIMD( superSampleLightCoord.y, sseRow );
|
|
|
|
// Figure out where the supersample exists in the world, and make sure
|
|
// it lies within the sample winding
|
|
LuxelSpaceToWorld( &l, superSampleLightCoord[0], superSampleLightCoord[1], superSamplePosition );
|
|
|
|
if ( info.m_IsDispFace )
|
|
{
|
|
// Fix up error from world to luxel and back again
|
|
superSamplePosition += superSampleWorldSpaceError;
|
|
|
|
// Find pos and norm for disp from uv supersample offsets
|
|
Vector vDispP[4], vDispN[4];
|
|
for ( int i = 0; i < 4; i++ )
|
|
{
|
|
vDispP[ i ] = superSamplePosition.Vec( i );
|
|
Vector2D uv;
|
|
|
|
uv.x = sample.coord[0] + ( aRow[ s ] * stepU );
|
|
uv.y = sample.coord[1] + ( aRow[ i ] * stepV );
|
|
|
|
StaticDispMgr()->GetDispSurfPointAndNormalFromUV( info.m_FaceNum, vDispP[ i ], vDispN[ i ], uv, false );
|
|
}
|
|
superSamplePosition = FourVectors( vDispP[ 0 ], vDispP[ 1 ], vDispP[ 2 ], vDispP[ 3 ] );
|
|
superSampleNormal = FourVectors( vDispN[ 0 ], vDispN[ 1 ], vDispN[ 2 ], vDispN[ 3 ] );
|
|
|
|
ComputeIlluminationPointAndNormalsForDisp( l, superSamplePosition, superSampleNormal, &info );
|
|
}
|
|
|
|
// A winding should exist only if the sample wasn't a uniform luxel, or if g_bDumpPatches is true.
|
|
int invalidBits = 0;
|
|
if ( sample.w && !PointsInWinding( superSamplePosition, sample.w, invalidBits ) )
|
|
continue;
|
|
|
|
// Compute the super-sample illumination point and normal
|
|
// We're assuming the flat normal is the same for all supersamples
|
|
if ( !info.m_IsDispFace )
|
|
ComputeIlluminationPointAndNormalsSSE( l, superSamplePosition, superSampleNormal, &info, 4 );
|
|
|
|
// Resample the non-ambient light at this point...
|
|
LightingValue_t result[4][NUM_BUMP_VECTS+1];
|
|
ResampleLightAt4Points( info, lightStyleIndex, NON_AMBIENT_ONLY, result );
|
|
|
|
// Got more subsamples
|
|
for ( int i = 0; i < 4; i++ )
|
|
{
|
|
if ( !( ( invalidBits >> i ) & 0x1 ) )
|
|
{
|
|
for ( int n = 0; n < info.m_NormalCount; ++n )
|
|
{
|
|
pLight[ n ].AddLight( result[ i ][ n ] );
|
|
}
|
|
++subsampleCount;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
FourVectors superSampleOffsets;
|
|
superSampleOffsets.LoadAndSwizzle( Vector( csshift, csshift, 0 ), Vector( csshift, csshift + cscale, 0),
|
|
Vector( csshift + cscale, csshift, 0 ), Vector( csshift + cscale, csshift + cscale, 0 ) );
|
|
superSampleLightCoord.DuplicateVector( sampleLightOrigin );
|
|
superSampleLightCoord += superSampleOffsets;
|
|
|
|
LuxelSpaceToWorld( &l, superSampleLightCoord[0], superSampleLightCoord[1], superSamplePosition );
|
|
|
|
if ( info.m_IsDispFace )
|
|
{
|
|
// Fix up error from world to luxel and back again
|
|
superSamplePosition += superSampleWorldSpaceError;
|
|
|
|
// Find pos and norm for disp from uv supersample offsets
|
|
Vector vDispP[ 4 ], vDispN[ 4 ];
|
|
for ( int i = 0; i < 4; i++ )
|
|
{
|
|
vDispP[ i ] = superSamplePosition.Vec( i );
|
|
Vector uvOffsets = superSampleOffsets.Vec( i );
|
|
Vector2D uv;
|
|
|
|
uv.x = sample.coord[ 0 ] + ( uvOffsets.x * stepU );
|
|
uv.y = sample.coord[ 1 ] + ( uvOffsets.y * stepV );
|
|
|
|
StaticDispMgr()->GetDispSurfPointAndNormalFromUV( info.m_FaceNum, vDispP[ i ], vDispN[ i ], uv, false );
|
|
}
|
|
superSamplePosition = FourVectors( vDispP[ 0 ], vDispP[ 1 ], vDispP[ 2 ], vDispP[ 3 ] );
|
|
superSampleNormal = FourVectors( vDispN[ 0 ], vDispN[ 1 ], vDispN[ 2 ], vDispN[ 3 ] );
|
|
|
|
ComputeIlluminationPointAndNormalsForDisp( l, superSamplePosition, superSampleNormal, &info );
|
|
}
|
|
|
|
int invalidBits = 0;
|
|
if ( sample.w && !PointsInWinding( superSamplePosition, sample.w, invalidBits ) )
|
|
return 0;
|
|
|
|
if ( !info.m_IsDispFace )
|
|
ComputeIlluminationPointAndNormalsSSE( l, superSamplePosition, superSampleNormal, &info, 4 );
|
|
|
|
LightingValue_t result[4][NUM_BUMP_VECTS+1];
|
|
ResampleLightAt4Points( info, lightStyleIndex, AMBIENT_ONLY, result );
|
|
|
|
// Got more subsamples
|
|
for ( int i = 0; i < 4; i++ )
|
|
{
|
|
if ( !( ( invalidBits >> i ) & 0x1 ) )
|
|
{
|
|
for ( int n = 0; n < info.m_NormalCount; ++n )
|
|
{
|
|
pLight[ n ].AddLight( result[ i ][ n ] );
|
|
}
|
|
++subsampleCount;
|
|
}
|
|
}
|
|
}
|
|
|
|
return subsampleCount;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute gradients of a lightmap
|
|
//-----------------------------------------------------------------------------
|
|
static void ComputeLightmapGradients( SSE_SampleInfo_t& info, bool const* pHasProcessedSample,
|
|
float* pIntensity, float* gradient )
|
|
{
|
|
int w = info.m_LightmapWidth;
|
|
int h = info.m_LightmapHeight;
|
|
facelight_t* fl = info.m_pFaceLight;
|
|
|
|
for (int i=0 ; i<fl->numsamples ; i++)
|
|
{
|
|
// Don't supersample the same sample twice
|
|
if (pHasProcessedSample[i])
|
|
continue;
|
|
|
|
gradient[i] = 0.0f;
|
|
sample_t& sample = fl->sample[i];
|
|
|
|
// Choose the maximum gradient of all bumped lightmap intensities
|
|
for ( int n = 0; n < info.m_NormalCount; ++n )
|
|
{
|
|
int j = n * info.m_LightmapSize + sample.s + sample.t * w;
|
|
|
|
if (sample.t > 0)
|
|
{
|
|
if (sample.s > 0) gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j-1-w] ) );
|
|
gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j-w] ) );
|
|
if (sample.s < w-1) gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j+1-w] ) );
|
|
}
|
|
if (sample.t < h-1)
|
|
{
|
|
if (sample.s > 0) gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j-1+w] ) );
|
|
gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j+w] ) );
|
|
if (sample.s < w-1) gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j+1+w] ) );
|
|
}
|
|
if (sample.s > 0) gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j-1] ) );
|
|
if (sample.s < w-1) gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j+1] ) );
|
|
}
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// ComputeLuxelIntensity...
|
|
//-----------------------------------------------------------------------------
|
|
static inline void ComputeLuxelIntensity( SSE_SampleInfo_t& info, int sampleIdx,
|
|
LightingValue_t **ppLightSamples, float* pSampleIntensity )
|
|
{
|
|
// Compute a separate intensity for each
|
|
sample_t& sample = info.m_pFaceLight->sample[sampleIdx];
|
|
int destIdx = sample.s + sample.t * info.m_LightmapWidth;
|
|
for (int n = 0; n < info.m_NormalCount; ++n)
|
|
{
|
|
float intensity = ppLightSamples[n][sampleIdx].Intensity();
|
|
|
|
// convert to a linear perception space
|
|
pSampleIntensity[n * info.m_LightmapSize + destIdx] = pow( intensity / 256.0, 1.0 / 2.2 );
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute the maximum intensity based on all bumped lighting
|
|
//-----------------------------------------------------------------------------
|
|
static void ComputeSampleIntensities( SSE_SampleInfo_t& info, LightingValue_t **ppLightSamples, float* pSampleIntensity )
|
|
{
|
|
for (int i=0; i<info.m_pFaceLight->numsamples; i++)
|
|
{
|
|
ComputeLuxelIntensity( info, i, ppLightSamples, pSampleIntensity );
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Perform supersampling on a particular lightstyle
|
|
//-----------------------------------------------------------------------------
|
|
static void BuildSupersampleFaceLights( lightinfo_t& l, SSE_SampleInfo_t& info, int lightstyleIndex )
|
|
{
|
|
LightingValue_t pAmbientLight[NUM_BUMP_VECTS+1];
|
|
LightingValue_t pDirectLight[NUM_BUMP_VECTS+1];
|
|
|
|
// This is used to make sure we don't supersample a light sample more than once
|
|
int processedSampleSize = info.m_LightmapSize * sizeof(bool);
|
|
bool* pHasProcessedSample = (bool*)stackalloc( processedSampleSize );
|
|
memset( pHasProcessedSample, 0, processedSampleSize );
|
|
|
|
// This is used to compute a simple gradient computation of the light samples
|
|
// We're going to store the maximum intensity of all bumped samples at each sample location
|
|
float* pGradient = (float*)stackalloc( info.m_pFaceLight->numsamples * sizeof(float) );
|
|
float* pSampleIntensity = (float*)stackalloc( info.m_NormalCount * info.m_LightmapSize * sizeof(float) );
|
|
|
|
// Compute the maximum intensity of all lighting associated with this lightstyle
|
|
// for all bumped lighting
|
|
LightingValue_t **ppLightSamples = info.m_pFaceLight->light[lightstyleIndex];
|
|
ComputeSampleIntensities( info, ppLightSamples, pSampleIntensity );
|
|
|
|
Vector *pVisualizePass = NULL;
|
|
if (debug_extra)
|
|
{
|
|
int visualizationSize = info.m_pFaceLight->numsamples * sizeof(Vector);
|
|
pVisualizePass = (Vector*)stackalloc( visualizationSize );
|
|
memset( pVisualizePass, 0, visualizationSize );
|
|
}
|
|
|
|
// What's going on here is that we're looking for large lighting discontinuities
|
|
// (large light intensity gradients) as a clue that we should probably be supersampling
|
|
// in that area. Because the supersampling operation will cause lighting changes,
|
|
// we've found that it's good to re-check the gradients again and see if any other
|
|
// areas should be supersampled as a result of the previous pass. Keep going
|
|
// until all the gradients are reasonable or until we hit a max number of passes
|
|
bool do_anotherpass = true;
|
|
int pass = 1;
|
|
while (do_anotherpass && pass <= extrapasses)
|
|
{
|
|
// Look for lighting discontinuities to see what we should be supersampling
|
|
ComputeLightmapGradients( info, pHasProcessedSample, pSampleIntensity, pGradient );
|
|
|
|
do_anotherpass = false;
|
|
|
|
// Now check all of the samples and supersample those which we have
|
|
// marked as having high gradients
|
|
for (int i=0 ; i<info.m_pFaceLight->numsamples; ++i)
|
|
{
|
|
// Don't supersample the same sample twice
|
|
if (pHasProcessedSample[i])
|
|
continue;
|
|
|
|
// Don't supersample if the lighting is pretty uniform near the sample
|
|
if (pGradient[i] < 0.0625)
|
|
continue;
|
|
|
|
// Joy! We're supersampling now, and we therefore must do another pass
|
|
// Also, we need never bother with this sample again
|
|
pHasProcessedSample[i] = true;
|
|
do_anotherpass = true;
|
|
|
|
if (debug_extra)
|
|
{
|
|
// Mark the little visualization bitmap with a color indicating
|
|
// which pass it was updated on.
|
|
pVisualizePass[i][0] = (pass & 1) * 255;
|
|
pVisualizePass[i][1] = (pass & 2) * 128;
|
|
pVisualizePass[i][2] = (pass & 4) * 64;
|
|
}
|
|
|
|
// Supersample the ambient light for each bump direction vector
|
|
int ambientSupersampleCount = SupersampleLightAtPoint( l, info, i, lightstyleIndex, pAmbientLight, AMBIENT_ONLY );
|
|
|
|
// Supersample the non-ambient light for each bump direction vector
|
|
int directSupersampleCount = SupersampleLightAtPoint( l, info, i, lightstyleIndex, pDirectLight, NON_AMBIENT_ONLY );
|
|
|
|
// Because of sampling problems, small area triangles may have no samples.
|
|
// In this case, just use what we already have
|
|
if ( ambientSupersampleCount > 0 && directSupersampleCount > 0 )
|
|
{
|
|
// Add the ambient + directional terms together, stick it back into the lightmap
|
|
for ( int n = 0; n < info.m_NormalCount; ++n )
|
|
{
|
|
ppLightSamples[ n ][ i ].Zero();
|
|
ppLightSamples[ n ][ i ].AddWeighted( pDirectLight[ n ], 1.0f / directSupersampleCount );
|
|
ppLightSamples[ n ][ i ].AddWeighted( pAmbientLight[ n ], 1.0f / ambientSupersampleCount );
|
|
}
|
|
|
|
// Recompute the luxel intensity based on the supersampling
|
|
ComputeLuxelIntensity( info, i, ppLightSamples, pSampleIntensity );
|
|
}
|
|
}
|
|
|
|
// We've finished another pass
|
|
pass++;
|
|
}
|
|
|
|
if (debug_extra)
|
|
{
|
|
// Copy colors representing which supersample pass the sample was messed with
|
|
// into the actual lighting values so we can visualize it
|
|
for (int i=0 ; i<info.m_pFaceLight->numsamples ; ++i)
|
|
{
|
|
for (int j = 0; j <info.m_NormalCount; ++j)
|
|
{
|
|
VectorCopy( pVisualizePass[i], ppLightSamples[j][i].m_vecLighting );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void InitLightinfo( lightinfo_t *pl, int facenum )
|
|
{
|
|
dface_t *f;
|
|
|
|
f = &g_pFaces[facenum];
|
|
|
|
memset (pl, 0, sizeof(*pl));
|
|
pl->facenum = facenum;
|
|
|
|
pl->face = f;
|
|
|
|
//
|
|
// rotate plane
|
|
//
|
|
VectorCopy (dplanes[f->planenum].normal, pl->facenormal);
|
|
pl->facedist = dplanes[f->planenum].dist;
|
|
|
|
// get the origin offset for rotating bmodels
|
|
VectorCopy (face_offset[facenum], pl->modelorg);
|
|
|
|
CalcFaceVectors( pl );
|
|
|
|
// figure out if the surface is flat
|
|
pl->isflat = true;
|
|
if (smoothing_threshold != 1)
|
|
{
|
|
faceneighbor_t *fn = &faceneighbor[facenum];
|
|
|
|
for (int j=0 ; j<f->numedges ; j++)
|
|
{
|
|
float dot = DotProduct( pl->facenormal, fn->normal[j] );
|
|
if (dot < 1.0 - EQUAL_EPSILON)
|
|
{
|
|
pl->isflat = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void InitSampleInfo( lightinfo_t const& l, int iThread, SSE_SampleInfo_t& info )
|
|
{
|
|
info.m_LightmapWidth = l.face->m_LightmapTextureSizeInLuxels[0]+1;
|
|
info.m_LightmapHeight = l.face->m_LightmapTextureSizeInLuxels[1]+1;
|
|
info.m_LightmapSize = info.m_LightmapWidth * info.m_LightmapHeight;
|
|
|
|
// How many lightmaps are we going to need?
|
|
info.m_pTexInfo = &texinfo[l.face->texinfo];
|
|
info.m_NormalCount = (info.m_pTexInfo->flags & SURF_BUMPLIGHT) ? NUM_BUMP_VECTS + 1 : 1;
|
|
info.m_FaceNum = l.facenum;
|
|
info.m_pFace = l.face;
|
|
info.m_pFaceLight = &facelight[info.m_FaceNum];
|
|
info.m_IsDispFace = ValidDispFace( info.m_pFace );
|
|
info.m_iThread = iThread;
|
|
info.m_WarnFace = -1;
|
|
|
|
info.m_NumSamples = info.m_pFaceLight->numsamples;
|
|
info.m_NumSampleGroups = ( info.m_NumSamples & 0x3) ? ( info.m_NumSamples / 4 ) + 1 : ( info.m_NumSamples / 4 );
|
|
|
|
// initialize normals if the surface is flat
|
|
if (l.isflat)
|
|
{
|
|
info.m_PointNormals[0].DuplicateVector( l.facenormal );
|
|
|
|
// use facenormal along with the smooth normal to build the three bump map vectors
|
|
if( info.m_NormalCount > 1 )
|
|
{
|
|
Vector bumpVects[NUM_BUMP_VECTS];
|
|
GetBumpNormals( info.m_pTexInfo->textureVecsTexelsPerWorldUnits[0],
|
|
info.m_pTexInfo->textureVecsTexelsPerWorldUnits[1], l.facenormal,
|
|
l.facenormal, bumpVects );//&info.m_PointNormal[1] );
|
|
|
|
for ( int b = 0; b < NUM_BUMP_VECTS; ++b )
|
|
{
|
|
info.m_PointNormals[b + 1].DuplicateVector( bumpVects[b] );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BuildFacelights (int iThread, int facenum)
|
|
{
|
|
int i, j;
|
|
|
|
lightinfo_t l;
|
|
dface_t *f;
|
|
facelight_t *fl;
|
|
SSE_SampleInfo_t sampleInfo;
|
|
directlight_t *dl;
|
|
Vector spot;
|
|
Vector v[4], n[4];
|
|
|
|
if( g_bInterrupt )
|
|
return;
|
|
|
|
// FIXME: Is there a better way to do this? Like, in RunThreadsOn, for instance?
|
|
// Don't pay this cost unless we have to; this is super perf-critical code.
|
|
if (g_pIncremental)
|
|
{
|
|
// Both threads will be accessing this so it needs to be protected or else thread A
|
|
// will load it in and thread B will increment it but its increment will be
|
|
// overwritten by thread A when thread A writes it back.
|
|
ThreadLock();
|
|
++g_iCurFace;
|
|
ThreadUnlock();
|
|
}
|
|
|
|
// some surfaces don't need lightmaps
|
|
f = &g_pFaces[facenum];
|
|
f->lightofs = -1;
|
|
for (j=0 ; j<MAXLIGHTMAPS ; j++)
|
|
f->styles[j] = 255;
|
|
|
|
// Trivial-reject the whole face?
|
|
if( !( g_FacesVisibleToLights[facenum>>3] & (1 << (facenum & 7)) ) )
|
|
return;
|
|
|
|
if ( texinfo[f->texinfo].flags & TEX_SPECIAL)
|
|
return; // non-lit texture
|
|
|
|
// check for patches for this face. If none it must be degenerate. Ignore.
|
|
if( g_FacePatches.Element( facenum ) == g_FacePatches.InvalidIndex() )
|
|
return;
|
|
|
|
fl = &facelight[facenum];
|
|
|
|
InitLightinfo( &l, facenum );
|
|
CalcPoints( &l, fl, facenum );
|
|
InitSampleInfo( l, iThread, sampleInfo );
|
|
|
|
// Allocate sample positions/normals to SSE
|
|
int numGroups = ( fl->numsamples & 0x3) ? ( fl->numsamples / 4 ) + 1 : ( fl->numsamples / 4 );
|
|
|
|
// always allocate style 0 lightmap
|
|
f->styles[0] = 0;
|
|
AllocateLightstyleSamples( fl, 0, sampleInfo.m_NormalCount );
|
|
|
|
// sample the lights at each sample location
|
|
for ( int grp = 0; grp < numGroups; ++grp )
|
|
{
|
|
int nSample = 4 * grp;
|
|
|
|
sample_t *sample = sampleInfo.m_pFaceLight->sample + nSample;
|
|
int numSamples = min ( 4, sampleInfo.m_pFaceLight->numsamples - nSample );
|
|
|
|
FourVectors positions;
|
|
FourVectors normals;
|
|
|
|
for ( i = 0; i < 4; i++ )
|
|
{
|
|
v[i] = ( i < numSamples ) ? sample[i].pos : sample[numSamples - 1].pos;
|
|
n[i] = ( i < numSamples ) ? sample[i].normal : sample[numSamples - 1].normal;
|
|
}
|
|
positions.LoadAndSwizzle( v[0], v[1], v[2], v[3] );
|
|
normals.LoadAndSwizzle( n[0], n[1], n[2], n[3] );
|
|
|
|
ComputeIlluminationPointAndNormalsSSE( l, positions, normals, &sampleInfo, numSamples );
|
|
|
|
// Fixup sample normals in case of smooth faces
|
|
if ( !l.isflat )
|
|
{
|
|
for ( i = 0; i < numSamples; i++ )
|
|
sample[i].normal = sampleInfo.m_PointNormals[0].Vec( i );
|
|
}
|
|
|
|
// Iterate over all the lights and add their contribution to this group of spots
|
|
GatherSampleLightAt4Points( sampleInfo, nSample, numSamples );
|
|
}
|
|
|
|
// Tell the incremental light manager that we're done with this face.
|
|
if( g_pIncremental )
|
|
{
|
|
for (dl = activelights; dl != NULL; dl = dl->next)
|
|
{
|
|
// Only deal with lightstyle 0 for incremental lighting
|
|
if (dl->light.style == 0)
|
|
g_pIncremental->FinishFace( dl->m_IncrementalID, facenum, iThread );
|
|
}
|
|
|
|
// Don't have to deal with patch lights (only direct lighting is used)
|
|
// or supersampling
|
|
return;
|
|
}
|
|
|
|
// Enabling supersampling for displacements (previous revision always disabled do_extra for disp)
|
|
// improves continuity significantly between disp and brush surfaces, especially when using high frequency alpha shadow materials
|
|
if ( do_extra )
|
|
{
|
|
// For each lightstyle, perform a supersampling pass
|
|
for ( i = 0; i < MAXLIGHTMAPS; ++i )
|
|
{
|
|
// Stop when we run out of lightstyles
|
|
if (f->styles[i] == 255)
|
|
break;
|
|
|
|
BuildSupersampleFaceLights( l, sampleInfo, i );
|
|
}
|
|
}
|
|
|
|
if (!g_bUseMPI)
|
|
{
|
|
//
|
|
// This is done on the master node when MPI is used
|
|
//
|
|
BuildPatchLights( facenum );
|
|
}
|
|
|
|
if( g_bDumpPatches )
|
|
{
|
|
DumpSamples( facenum, fl );
|
|
}
|
|
else
|
|
{
|
|
FreeSampleWindings( fl );
|
|
}
|
|
|
|
}
|
|
|
|
void BuildPatchLights( int facenum )
|
|
{
|
|
int i, k;
|
|
|
|
CPatch *patch;
|
|
|
|
dface_t *f = &g_pFaces[facenum];
|
|
facelight_t *fl = &facelight[facenum];
|
|
|
|
for( k = 0; k < MAXLIGHTMAPS; k++ )
|
|
{
|
|
if (f->styles[k] == 0)
|
|
break;
|
|
}
|
|
|
|
if (k >= MAXLIGHTMAPS)
|
|
return;
|
|
|
|
for (i = 0; i < fl->numsamples; i++)
|
|
{
|
|
AddSampleToPatch( &fl->sample[i], fl->light[k][0][i], facenum);
|
|
}
|
|
|
|
// check for a valid face
|
|
if( g_FacePatches.Element( facenum ) == g_FacePatches.InvalidIndex() )
|
|
return;
|
|
|
|
// push up sampled light to parents (children always exist first in the list)
|
|
CPatch *pNextPatch;
|
|
for( patch = &g_Patches.Element( g_FacePatches.Element( facenum ) ); patch; patch = pNextPatch )
|
|
{
|
|
// next patch
|
|
pNextPatch = NULL;
|
|
if( patch->ndxNext != g_Patches.InvalidIndex() )
|
|
{
|
|
pNextPatch = &g_Patches.Element( patch->ndxNext );
|
|
}
|
|
|
|
// skip patches without parents
|
|
if( patch->parent == g_Patches.InvalidIndex() )
|
|
// if (patch->parent == -1)
|
|
continue;
|
|
|
|
CPatch *parent = &g_Patches.Element( patch->parent );
|
|
|
|
parent->samplearea += patch->samplearea;
|
|
VectorAdd( parent->samplelight, patch->samplelight, parent->samplelight );
|
|
}
|
|
|
|
// average up the direct light on each patch for radiosity
|
|
if (numbounce > 0)
|
|
{
|
|
for( patch = &g_Patches.Element( g_FacePatches.Element( facenum ) ); patch; patch = pNextPatch )
|
|
{
|
|
// next patch
|
|
pNextPatch = NULL;
|
|
if( patch->ndxNext != g_Patches.InvalidIndex() )
|
|
{
|
|
pNextPatch = &g_Patches.Element( patch->ndxNext );
|
|
}
|
|
|
|
if (patch->samplearea)
|
|
{
|
|
float scale;
|
|
Vector v;
|
|
scale = 1.0 / patch->samplearea;
|
|
|
|
VectorScale( patch->samplelight, scale, v );
|
|
VectorAdd( patch->totallight.light[0], v, patch->totallight.light[0] );
|
|
VectorAdd( patch->directlight, v, patch->directlight );
|
|
}
|
|
}
|
|
}
|
|
|
|
// pull totallight from children (children always exist first in the list)
|
|
for( patch = &g_Patches.Element( g_FacePatches.Element( facenum ) ); patch; patch = pNextPatch )
|
|
{
|
|
// next patch
|
|
pNextPatch = NULL;
|
|
if( patch->ndxNext != g_Patches.InvalidIndex() )
|
|
{
|
|
pNextPatch = &g_Patches.Element( patch->ndxNext );
|
|
}
|
|
|
|
if ( patch->child1 != g_Patches.InvalidIndex() )
|
|
{
|
|
float s1, s2;
|
|
CPatch *child1;
|
|
CPatch *child2;
|
|
|
|
child1 = &g_Patches.Element( patch->child1 );
|
|
child2 = &g_Patches.Element( patch->child2 );
|
|
|
|
s1 = child1->area / (child1->area + child2->area);
|
|
s2 = child2->area / (child1->area + child2->area);
|
|
|
|
VectorScale( child1->totallight.light[0], s1, patch->totallight.light[0] );
|
|
VectorMA( patch->totallight.light[0], s2, child2->totallight.light[0], patch->totallight.light[0] );
|
|
|
|
VectorCopy( patch->totallight.light[0], patch->directlight );
|
|
}
|
|
}
|
|
|
|
bool needsBumpmap = false;
|
|
if( texinfo[f->texinfo].flags & SURF_BUMPLIGHT )
|
|
{
|
|
needsBumpmap = true;
|
|
}
|
|
|
|
// add an ambient term if desired
|
|
if (ambient[0] || ambient[1] || ambient[2])
|
|
{
|
|
for( int j=0; j < MAXLIGHTMAPS && f->styles[j] != 255; j++ )
|
|
{
|
|
if ( f->styles[j] == 0 )
|
|
{
|
|
for (i = 0; i < fl->numsamples; i++)
|
|
{
|
|
fl->light[j][0][i].m_vecLighting += ambient;
|
|
if( needsBumpmap )
|
|
{
|
|
fl->light[j][1][i].m_vecLighting += ambient;
|
|
fl->light[j][2][i].m_vecLighting += ambient;
|
|
fl->light[j][3][i].m_vecLighting += ambient;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// light from dlight_threshold and above is sent out, but the
|
|
// texture itself should still be full bright
|
|
|
|
#if 0
|
|
// if( VectorAvg( g_FacePatches[facenum]->baselight ) >= dlight_threshold) // Now all lighted surfaces glow
|
|
{
|
|
for( j=0; j < MAXLIGHTMAPS && f->styles[j] != 255; j++ )
|
|
{
|
|
if ( f->styles[j] == 0 )
|
|
{
|
|
// BUG: shouldn't this be done for all patches on the face?
|
|
for (i=0 ; i<fl->numsamples ; i++)
|
|
{
|
|
// garymctchange
|
|
VectorAdd( fl->light[j][0][i], g_FacePatches[facenum]->baselight, fl->light[j][0][i] );
|
|
if( needsBumpmap )
|
|
{
|
|
for( bumpSample = 1; bumpSample < NUM_BUMP_VECTS + 1; bumpSample++ )
|
|
{
|
|
VectorAdd( fl->light[j][bumpSample][i], g_FacePatches[facenum]->baselight, fl->light[j][bumpSample][i] );
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void BuildStaticPropPatchlights( int iThread, int nPatch )
|
|
{
|
|
if ( g_Patches[ nPatch ].faceNumber >= 0 )
|
|
{
|
|
// Not a static prop patch
|
|
return;
|
|
}
|
|
CPatch &patch = g_Patches[ nPatch ];
|
|
|
|
// Random sample locations
|
|
Vector vecOrigin = patch.winding->p[ 0 ];
|
|
Vector vecU = patch.winding->p[ 2 ] - patch.winding->p[ 0 ];
|
|
Vector vecV = patch.winding->p[ 1 ] - patch.winding->p[ 0 ];
|
|
int nSampleCount = Max( 1, int( patch.area / 16.0f ) );
|
|
float flSampleArea = patch.area / float( nSampleCount );
|
|
float flSampleFrac = 1.0f / float( nSampleCount );
|
|
sample_t *pSamples = new sample_t[ nSampleCount ];
|
|
memset( pSamples, 0, sizeof( sample_t )*nSampleCount );
|
|
for ( int i = 0; i < nSampleCount; i++ )
|
|
{
|
|
// Shitty. Should be jittered instead or some other better distribution over the triangle.
|
|
float flU = RandomFloat();
|
|
float flV = RandomFloat();
|
|
if ( flU + flV > 1.0f )
|
|
{
|
|
flU = 1.0f - flU;
|
|
flV = 1.0f - flV;
|
|
Swap( flU, flV );
|
|
}
|
|
pSamples[ i ].pos = vecOrigin + flU * vecU + flV * vecV;
|
|
pSamples[ i ].normal = patch.normal;
|
|
pSamples[ i ].area = flSampleArea;
|
|
}
|
|
|
|
Vector directColor( 0.0f, 0.0f, 0.0f );
|
|
float flSunAmount = 0.0f;
|
|
|
|
// sample the lights at each sample location
|
|
for ( int i = 0; i < nSampleCount; i++ )
|
|
{
|
|
sample_t *sample = pSamples + i;
|
|
|
|
directColor.Init( 0.0f, 0.0f, 0.0f );
|
|
flSunAmount = 0.0f;
|
|
ComputeDirectLightingAtPoint( sample->pos, &sample->normal, &directColor, &flSunAmount, 1, false, iThread, -1, 0 );
|
|
directColor *= g_flStaticPropBounceBoost;
|
|
patch.totallight.light[ 0 ] += directColor * flSampleFrac;
|
|
patch.directlight += directColor * flSampleFrac;
|
|
}
|
|
|
|
delete[] pSamples;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
PrecompLightmapOffsets
|
|
=============
|
|
*/
|
|
|
|
void PrecompLightmapOffsets()
|
|
{
|
|
int facenum;
|
|
dface_t *f;
|
|
int lightstyles;
|
|
int lightdatasize = 0;
|
|
|
|
// NOTE: We store avg face light data in this lump *before* the lightmap data itself
|
|
// in *reverse order* of the way the lightstyles appear in the styles array.
|
|
for( facenum = 0; facenum < numfaces; facenum++ )
|
|
{
|
|
f = &g_pFaces[facenum];
|
|
|
|
if ( texinfo[f->texinfo].flags & TEX_SPECIAL)
|
|
continue; // non-lit texture
|
|
|
|
if ( dlight_map != 0 )
|
|
f->styles[1] = 0;
|
|
|
|
for (lightstyles=0; lightstyles < MAXLIGHTMAPS; lightstyles++ )
|
|
{
|
|
if ( f->styles[lightstyles] == 255 )
|
|
break;
|
|
}
|
|
|
|
if ( !lightstyles )
|
|
continue;
|
|
|
|
// Reserve room for the avg light color data
|
|
lightdatasize += lightstyles * 4;
|
|
|
|
f->lightofs = lightdatasize;
|
|
|
|
bool needsBumpmap = false;
|
|
if( texinfo[f->texinfo].flags & SURF_BUMPLIGHT )
|
|
{
|
|
needsBumpmap = true;
|
|
}
|
|
|
|
int nLuxels = (f->m_LightmapTextureSizeInLuxels[0]+1) * (f->m_LightmapTextureSizeInLuxels[1]+1);
|
|
if( needsBumpmap )
|
|
{
|
|
lightdatasize += nLuxels * 4 * lightstyles * ( NUM_BUMP_VECTS + 1 );
|
|
}
|
|
else
|
|
{
|
|
lightdatasize += nLuxels * 4 * lightstyles;
|
|
}
|
|
|
|
// Add room for additional light data here that will be packed into lightmap alpha
|
|
lightdatasize += nLuxels * 4 * lightstyles;
|
|
}
|
|
|
|
// The incremental lighting code needs us to preserve the contents of dlightdata
|
|
// since it only recomposites lighting for faces that have lights that touch them.
|
|
if( g_pIncremental && pdlightdata->Count() )
|
|
return;
|
|
|
|
pdlightdata->SetSize( lightdatasize );
|
|
}
|
|
|
|
// Clamp the three values for bumped lighting such that we trade off directionality for brightness.
|
|
static void ColorClampBumped( Vector& color1, Vector& color2, Vector& color3 )
|
|
{
|
|
Vector maxs;
|
|
Vector *colors[3] = { &color1, &color2, &color3 };
|
|
maxs[0] = VectorMaximum( color1 );
|
|
maxs[1] = VectorMaximum( color2 );
|
|
maxs[2] = VectorMaximum( color3 );
|
|
|
|
// HACK! Clean this up, and add some else statements
|
|
#define CONDITION(a,b,c) do { if( maxs[a] >= maxs[b] && maxs[b] >= maxs[c] ) { order[0] = a; order[1] = b; order[2] = c; } } while( 0 )
|
|
|
|
int order[3];
|
|
CONDITION(0,1,2);
|
|
CONDITION(0,2,1);
|
|
CONDITION(1,0,2);
|
|
CONDITION(1,2,0);
|
|
CONDITION(2,0,1);
|
|
CONDITION(2,1,0);
|
|
|
|
int i;
|
|
for( i = 0; i < 3; i++ )
|
|
{
|
|
float max = VectorMaximum( *colors[order[i]] );
|
|
if( max <= 1.0f )
|
|
{
|
|
continue;
|
|
}
|
|
// This channel is too bright. . take half of the amount that we are over and
|
|
// add it to the other two channel.
|
|
float factorToRedist = ( max - 1.0f ) / max;
|
|
Vector colorToRedist = factorToRedist * *colors[order[i]];
|
|
*colors[order[i]] -= colorToRedist;
|
|
colorToRedist *= 0.5f;
|
|
*colors[order[(i+1)%3]] += colorToRedist;
|
|
*colors[order[(i+2)%3]] += colorToRedist;
|
|
}
|
|
|
|
ColorClamp( color1 );
|
|
ColorClamp( color2 );
|
|
ColorClamp( color3 );
|
|
|
|
if( color1[0] < 0.f ) color1[0] = 0.f;
|
|
if( color1[1] < 0.f ) color1[1] = 0.f;
|
|
if( color1[2] < 0.f ) color1[2] = 0.f;
|
|
if( color2[0] < 0.f ) color2[0] = 0.f;
|
|
if( color2[1] < 0.f ) color2[1] = 0.f;
|
|
if( color2[2] < 0.f ) color2[2] = 0.f;
|
|
if( color3[0] < 0.f ) color3[0] = 0.f;
|
|
if( color3[1] < 0.f ) color3[1] = 0.f;
|
|
if( color3[2] < 0.f ) color3[2] = 0.f;
|
|
}
|
|
|
|
static void LinearToBumpedLightmap(
|
|
const float *linearColor,
|
|
const float *linearBumpColor1,
|
|
const float *linearBumpColor2,
|
|
const float *linearBumpColor3,
|
|
unsigned char *ret,
|
|
unsigned char *retBump1,
|
|
unsigned char *retBump2,
|
|
unsigned char *retBump3 )
|
|
{
|
|
const Vector &linearBump1 = *( ( const Vector * )linearBumpColor1 );
|
|
const Vector &linearBump2 = *( ( const Vector * )linearBumpColor2 );
|
|
const Vector &linearBump3 = *( ( const Vector * )linearBumpColor3 );
|
|
|
|
Vector gammaGoal;
|
|
// gammaGoal is premultiplied by 1/overbright, which we want
|
|
gammaGoal[0] = LinearToVertexLight( linearColor[0] );
|
|
gammaGoal[1] = LinearToVertexLight( linearColor[1] );
|
|
gammaGoal[2] = LinearToVertexLight( linearColor[2] );
|
|
Vector bumpAverage = linearBump1;
|
|
bumpAverage += linearBump2;
|
|
bumpAverage += linearBump3;
|
|
bumpAverage *= ( 1.0f / 3.0f );
|
|
|
|
Vector correctionScale;
|
|
if( *( int * )&bumpAverage[0] != 0 && *( int * )&bumpAverage[1] != 0 && *( int * )&bumpAverage[2] != 0 )
|
|
{
|
|
// fast path when we know that we don't have to worry about divide by zero.
|
|
VectorDivide( gammaGoal, bumpAverage, correctionScale );
|
|
// correctionScale = gammaGoal / bumpSum;
|
|
}
|
|
else
|
|
{
|
|
correctionScale.Init( 0.0f, 0.0f, 0.0f );
|
|
if( bumpAverage[0] != 0.0f )
|
|
{
|
|
correctionScale[0] = gammaGoal[0] / bumpAverage[0];
|
|
}
|
|
if( bumpAverage[1] != 0.0f )
|
|
{
|
|
correctionScale[1] = gammaGoal[1] / bumpAverage[1];
|
|
}
|
|
if( bumpAverage[2] != 0.0f )
|
|
{
|
|
correctionScale[2] = gammaGoal[2] / bumpAverage[2];
|
|
}
|
|
}
|
|
Vector correctedBumpColor1;
|
|
Vector correctedBumpColor2;
|
|
Vector correctedBumpColor3;
|
|
VectorMultiply( linearBump1, correctionScale, correctedBumpColor1 );
|
|
VectorMultiply( linearBump2, correctionScale, correctedBumpColor2 );
|
|
VectorMultiply( linearBump3, correctionScale, correctedBumpColor3 );
|
|
|
|
Vector check = ( correctedBumpColor1 + correctedBumpColor2 + correctedBumpColor3 ) / 3.0f;
|
|
|
|
ColorClampBumped( correctedBumpColor1, correctedBumpColor2, correctedBumpColor3 );
|
|
|
|
ret[0] = RoundFloatToByte( gammaGoal[0] * 255.0f );
|
|
ret[1] = RoundFloatToByte( gammaGoal[1] * 255.0f );
|
|
ret[2] = RoundFloatToByte( gammaGoal[2] * 255.0f );
|
|
retBump1[0] = RoundFloatToByte( correctedBumpColor1[0] * 255.0f );
|
|
retBump1[1] = RoundFloatToByte( correctedBumpColor1[1] * 255.0f );
|
|
retBump1[2] = RoundFloatToByte( correctedBumpColor1[2] * 255.0f );
|
|
retBump2[0] = RoundFloatToByte( correctedBumpColor2[0] * 255.0f );
|
|
retBump2[1] = RoundFloatToByte( correctedBumpColor2[1] * 255.0f );
|
|
retBump2[2] = RoundFloatToByte( correctedBumpColor2[2] * 255.0f );
|
|
retBump3[0] = RoundFloatToByte( correctedBumpColor3[0] * 255.0f );
|
|
retBump3[1] = RoundFloatToByte( correctedBumpColor3[1] * 255.0f );
|
|
retBump3[2] = RoundFloatToByte( correctedBumpColor3[2] * 255.0f );
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Convert a RGBExp32 to a RGBA8888
|
|
// This matches the engine's conversion, so the lighting result is consistent.
|
|
//-----------------------------------------------------------------------------
|
|
void ConvertRGBExp32ToRGBA8888( const ColorRGBExp32 *pSrc, unsigned char *pDst )
|
|
{
|
|
Vector linearColor;
|
|
Vector vertexColor;
|
|
|
|
// convert from ColorRGBExp32 to linear space
|
|
linearColor[0] = TexLightToLinear( ((ColorRGBExp32 *)pSrc)->r, ((ColorRGBExp32 *)pSrc)->exponent );
|
|
linearColor[1] = TexLightToLinear( ((ColorRGBExp32 *)pSrc)->g, ((ColorRGBExp32 *)pSrc)->exponent );
|
|
linearColor[2] = TexLightToLinear( ((ColorRGBExp32 *)pSrc)->b, ((ColorRGBExp32 *)pSrc)->exponent );
|
|
|
|
// convert from linear space to lightmap space
|
|
// cannot use mathlib routine directly because it doesn't match
|
|
// the colorspace version found in the engine, which *is* the same sequence here
|
|
vertexColor[0] = LinearToVertexLight( linearColor[0] );
|
|
vertexColor[1] = LinearToVertexLight( linearColor[1] );
|
|
vertexColor[2] = LinearToVertexLight( linearColor[2] );
|
|
|
|
// this is really a color normalization with a floor
|
|
ColorClamp( vertexColor );
|
|
|
|
// final [0..255] scale
|
|
pDst[0] = RoundFloatToByte( vertexColor[0] * 255.0f );
|
|
pDst[1] = RoundFloatToByte( vertexColor[1] * 255.0f );
|
|
pDst[2] = RoundFloatToByte( vertexColor[2] * 255.0f );
|
|
pDst[3] = 255;
|
|
}
|
|
|