Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3527 lines
106 KiB

//------------------------------------------------------------------------------
// DX9AsmToGL2.cpp
//------------------------------------------------------------------------------
#include "dxabstract.h"
#include "tier0/dbg.h"
#include "tier1/strtools.h"
#include "tier1/utlbuffer.h"
#include "DX9AsmToGL2.h"
#ifdef POSIX
#include "glmgr/glmgrbasics.h"
#endif
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#ifdef POSIX
#define strcat_s( a, b, c) V_strcat( a, c, b )
#endif
#define DST_REGISTER 0
#define SRC_REGISTER 1
// Tracking and naming sampler dimensions
#define SAMPLER_TYPE_2D 0
#define SAMPLER_TYPE_CUBE 1
#define SAMPLER_TYPE_3D 2
#define SAMPLER_TYPE_UNUSED 3
// Flags to PrintUsageAndIndexToString.
#define SEMANTIC_OUTPUT 0x01
#define SEMANTIC_INPUT 0x02
#define UNDECLARED_OUTPUT 0xFFFFFFFF
#ifndef POSIX
#define Debugger() Assert(0)
#endif
//#define Assert(n) if( !(n) ){ DebuggerBreakIfDebugging(); }
static char *g_szVecZeros[] = { NULL, "0.0", "vec2( 0.0, 0.0 )", "vec3( 0.0, 0.0, 0.0 )", "vec4( 0.0, 0.0, 0.0, 0.0 )" };
static char *g_szVecOnes[] = { NULL, "1.0", "vec2( 1.0, 1.0 )", "vec3( 1.0, 1.0, 1.0 )", "vec4( 1.0, 1.0, 1.0, 1.0 )" };
static char *g_szDefaultSwizzle = "xyzw";
static char *g_szDefaultSwizzleStrings[] = { "x", "y", "z", "w" };
static char *g_szSamplerStrings[] = { "2D", "CUBE", "3D" };
static const char *g_pAtomicTempVarName = "atomic_temp_var";
static const char *g_pTangentAttributeName = "g_tangent";
int __cdecl SortInts( const int *a, const int *b )
{
if ( *a < *b )
return -1;
else if ( *a > *b )
return 1;
else
return 0;
}
void StripExtraTrailingZeros( char *pStr )
{
int len = (int)V_strlen( pStr );
while ( len >= 2 && pStr[len-1] == '0' && pStr[len-2] != '.' )
{
pStr[len-1] = 0;
--len;
}
}
void PrintToBuf( CUtlBuffer &buf, const char *pFormat, ... )
{
va_list marker;
va_start( marker, pFormat );
char szTemp[1024];
V_vsnprintf( szTemp, sizeof( szTemp ), pFormat, marker );
va_end( marker );
strcat_s( (char*)buf.Base(), buf.Size(), szTemp );
}
void PrintToBuf( char *pOut, int nOutSize, const char *pFormat, ... )
{
int nStrlen = V_strlen( pOut );
pOut += nStrlen;
nOutSize -= nStrlen;
va_list marker;
va_start( marker, pFormat );
V_vsnprintf( pOut, nOutSize, pFormat, marker );
va_end( marker );
}
// Return the number of letters following the dot.
// Returns 4 if there is no dot.
// (So "r0.xy" returns 2 and "r0" returns 4).
int GetNumWriteMaskEntries( const char *pParam )
{
const char *pDot = strchr( pParam, '.' );
if ( pDot )
return V_strlen( pDot + 1 );
else
return 4;
}
const char* GetSwizzleDot( const char *pParam )
{
const char *pDot = strrchr( pParam, '.' );
// The test against ')' here is for stuff like vec4( gl_Normal, 0.0 ) - we want to treat that as a whole param name.
if ( pDot && strrchr( pParam, ')' ) < pDot && strrchr( pParam, ']' ) < pDot )
return pDot;
else
return NULL;
}
int GetNumSwizzleComponents( const char *pParam )
{
// Special scalar output which won't accept a swizzle
if ( !V_stricmp( pParam, "gl_FogFragCoord" ) )
return 1;
// Special scalar output which won't accept a swizzle
if ( !V_stricmp( pParam, "gl_FragDepth" ) )
return 1;
// Special scalar output which won't accept a swizzle
if ( !V_stricmp( pParam, "a0" ) )
return 1;
const char *pDot = GetSwizzleDot( pParam );
if ( pDot )
return V_strlen( pDot + 1 );
else
return 0;
}
char GetSwizzleComponent( const char *pParam, int n )
{
Assert( n < 4 );
const char *pDot = GetSwizzleDot( pParam );
if ( pDot )
{
++pDot;
int nComponents = (int)V_strlen( pDot );
Assert( nComponents > 0 );
if ( n < nComponents )
return pDot[n];
else
return pDot[nComponents-1];
}
return g_szDefaultSwizzle[n];
}
// Replace the parameter name and leave the swizzle intact.
// So "somevar.xyz" becomes "othervar.xyz".
void ReplaceParamName( const char *pSrc, const char *pNewParamName, char *pOut, int nOutLen )
{
// Start with the new parameter name.
V_strncpy( pOut, pNewParamName, nOutLen );
// Now add the swizzle if necessary.
const char *pDot = GetSwizzleDot( pSrc );
if ( pDot )
{
V_strncat( pOut, pDot, nOutLen );
}
}
void GetParamNameWithoutSwizzle( const char *pParam, char *pOut, int nOutLen )
{
const char *pDot = GetSwizzleDot( pParam );
// The test against ')' here is for stuff like vec4( gl_Normal, 0.0 ) - we want to treat that as a whole param name.
if ( pDot )
{
int nToCopy = MIN( nOutLen-1, pDot - pParam );
memcpy( pOut, pParam, nToCopy );
pOut[nToCopy] = 0;
}
else
{
V_strncpy( pOut, pParam, nOutLen );
}
}
bool DoParamNamesMatch( const char *pParam1, const char *pParam2 )
{
char szTemp[2][256];
GetParamNameWithoutSwizzle( pParam1, szTemp[0], sizeof( szTemp[0] ) );
GetParamNameWithoutSwizzle( pParam2, szTemp[1], sizeof( szTemp[1] ) );
return ( V_stricmp( szTemp[0], szTemp[1] ) == 0 );
}
// Extract the n'th component of the swizzle mask.
// If n would exceed the length of the swizzle mask, then it looks up into "xyzw".
void WriteParamWithSingleMaskEntry( const char *pParam, int n, char *pOut, int nOutLen )
{
GetParamNameWithoutSwizzle( pParam, pOut, nOutLen );
PrintToBuf( pOut, nOutLen, "." );
PrintToBuf( pOut, nOutLen, "%c", GetSwizzleComponent( pParam, n ) );
}
float uint32ToFloat( uint32 dw )
{
return *((float*)&dw);
}
CUtlString EnsureNumSwizzleComponents( const char *pStr, int nComponents )
{
int nExisting = GetNumSwizzleComponents( pStr );
if ( nExisting == nComponents )
return pStr;
char szReg[256];
GetParamNameWithoutSwizzle( pStr, szReg, sizeof( szReg ) );
if ( nComponents == 0 )
return szReg;
PrintToBuf( szReg, sizeof( szReg ), "." );
if ( nExisting > nComponents )
{
// DX ASM will sometimes have statements like "NRM r0.xyz, r1.yzww", where it just doesn't use the last part of r1. So we won't either.
for ( int i=0; i < nComponents; i++ )
{
PrintToBuf( szReg, sizeof( szReg ), "%c", GetSwizzleComponent( pStr, i ) );
}
}
else
{
if ( nExisting == 0 )
{
// We've got something like r0 and need N more components, so add as much of "xyzw" is needed.
for ( int i=0; i < nComponents; i++ )
PrintToBuf( szReg, sizeof( szReg ), "%c", g_szDefaultSwizzle[i] );
}
else
{
// We've got something like r0.x and need N more components, so replicate the X so it looks like r0.xxx
V_strncpy( szReg, pStr, sizeof( szReg ) );
char cLast = pStr[ V_strlen( pStr ) - 1 ];
for ( int i=nExisting; i < nComponents; i++ )
{
PrintToBuf( szReg, sizeof( szReg ), "%c", cLast );
}
}
}
return szReg;
}
D3DToGL::D3DToGL()
{
}
uint32 D3DToGL::GetNextToken( void )
{
uint32 dwToken = *m_pdwNextToken;
m_pdwNextToken++;
return dwToken;
}
void D3DToGL::SkipTokens( uint32 numToSkip )
{
m_pdwNextToken += numToSkip;
}
uint32 D3DToGL::Opcode( uint32 dwToken )
{
return ( dwToken & D3DSI_OPCODE_MASK );
}
uint32 D3DToGL::OpcodeSpecificData (uint32 dwToken)
{
return ( ( dwToken & D3DSP_OPCODESPECIFICCONTROL_MASK ) >> D3DSP_OPCODESPECIFICCONTROL_SHIFT );
}
uint32 D3DToGL::TextureType ( uint32 dwToken )
{
return ( dwToken & D3DSP_TEXTURETYPE_MASK ); // Note this one doesn't shift due to weird D3DSAMPLER_TEXTURE_TYPE enum
}
// Print GLSL intrinsic corresponding to particular instruction
bool D3DToGL::OpenIntrinsic( uint32 inst, char* buff, int nBufLen, uint32 destDimension, uint32 nArgumentDimension )
{
// Some GLSL intrinsics need type conversion, which we do in this routine
// As a result, the caller must sometimes close both parentheses, not just one
bool bDoubleClose = false;
if ( nArgumentDimension == 0 )
{
nArgumentDimension = 4;
}
switch ( inst )
{
case D3DSIO_RSQ:
V_snprintf( buff, nBufLen, "inversesqrt( " );
break;
case D3DSIO_DP3:
case D3DSIO_DP4:
if ( destDimension == 1 )
{
V_snprintf( buff, nBufLen, "dot( " );
}
else
{
V_snprintf( buff, nBufLen, "vec%d( dot( ", destDimension );
bDoubleClose = true;
}
break;
case D3DSIO_MIN:
V_snprintf( buff, nBufLen, "min( " );
break;
case D3DSIO_MAX:
V_snprintf( buff, nBufLen, "max( " );
break;
case D3DSIO_SLT:
if ( nArgumentDimension == 1 )
{
V_snprintf( buff, nBufLen, "float( ", nArgumentDimension ); // lessThan doesn't have a scalar version
}
else
{
V_snprintf( buff, nBufLen, "vec%d( lessThan( ", nArgumentDimension );
bDoubleClose = true;
}
break;
case D3DSIO_SGE:
if ( nArgumentDimension == 1 )
{
V_snprintf( buff, nBufLen, "float( ", nArgumentDimension ); // greaterThanEqual doesn't have a scalar version
}
else
{
V_snprintf( buff, nBufLen, "vec%d( greaterThanEqual( ", nArgumentDimension );
bDoubleClose = true;
}
break;
case D3DSIO_EXP:
V_snprintf( buff, nBufLen, "exp( " ); // exp2 ?
break;
case D3DSIO_LOG:
V_snprintf( buff, nBufLen, "log( " ); // log2 ?
break;
case D3DSIO_LIT:
DebuggerBreakIfDebugging();
V_snprintf( buff, nBufLen, "lit( " ); // gonna have to write this one
break;
case D3DSIO_DST:
DebuggerBreakIfDebugging();
V_snprintf( buff, nBufLen, "dst( " ); // gonna have to write this one
break;
case D3DSIO_LRP:
Assert( !m_bVertexShader );
V_snprintf( buff, nBufLen, "mix( " );
break;
case D3DSIO_FRC:
V_snprintf( buff, nBufLen, "fract( " );
break;
case D3DSIO_M4x4:
DebuggerBreakIfDebugging();
V_snprintf( buff, nBufLen, "m4x4" );
break;
case D3DSIO_M4x3:
case D3DSIO_M3x4:
case D3DSIO_M3x3:
case D3DSIO_M3x2:
case D3DSIO_CALL:
case D3DSIO_CALLNZ:
case D3DSIO_LOOP:
case D3DSIO_RET:
case D3DSIO_ENDLOOP:
case D3DSIO_LABEL:
case D3DSIO_DCL:
DebuggerBreakIfDebugging();
break;
case D3DSIO_POW:
V_snprintf( buff, nBufLen, "pow( " );
break;
case D3DSIO_CRS:
V_snprintf( buff, nBufLen, "cross( " );
break;
case D3DSIO_SGN:
DebuggerBreakIfDebugging();
V_snprintf( buff, nBufLen, "sign( " );
break;
case D3DSIO_ABS:
V_snprintf( buff, nBufLen, "abs( " );
break;
case D3DSIO_NRM:
DebuggerBreakIfDebugging();
V_snprintf( buff, nBufLen, "normalize( " );
break;
case D3DSIO_SINCOS:
DebuggerBreakIfDebugging();
V_snprintf( buff, nBufLen, "sincos( " ); // gonna have to write this one
break;
case D3DSIO_REP:
case D3DSIO_ENDREP:
case D3DSIO_IF:
case D3DSIO_IFC:
case D3DSIO_ELSE:
case D3DSIO_ENDIF:
case D3DSIO_BREAK:
case D3DSIO_BREAKC: // TODO: these are the reason we even need GLSL...gotta make these work
DebuggerBreakIfDebugging();
break;
case D3DSIO_DEFB:
case D3DSIO_DEFI:
DebuggerBreakIfDebugging();
break;
case D3DSIO_TEXCOORD:
V_snprintf( buff, nBufLen, "texcoord" );
break;
case D3DSIO_TEXKILL:
V_snprintf( buff, nBufLen, "kill( " ); // wrap the discard instruction?
break;
case D3DSIO_TEX:
DebuggerBreakIfDebugging();
V_snprintf( buff, nBufLen, "TEX" ); // We shouldn't get here
break;
case D3DSIO_TEXBEM:
case D3DSIO_TEXBEML:
case D3DSIO_TEXREG2AR:
case D3DSIO_TEXREG2GB:
case D3DSIO_TEXM3x2PAD:
case D3DSIO_TEXM3x2TEX:
case D3DSIO_TEXM3x3PAD:
case D3DSIO_TEXM3x3TEX:
case D3DSIO_TEXM3x3SPEC:
case D3DSIO_TEXM3x3VSPEC:
DebuggerBreakIfDebugging();
break;
case D3DSIO_EXPP:
V_snprintf( buff, nBufLen, "exp( " );
break;
case D3DSIO_LOGP:
V_snprintf( buff, nBufLen, "log( " );
break;
case D3DSIO_CND:
DebuggerBreakIfDebugging();
break;
case D3DSIO_DEF:
DebuggerBreakIfDebugging();
V_snprintf( buff, nBufLen, "DEF" );
break;
case D3DSIO_TEXREG2RGB:
case D3DSIO_TEXDP3TEX:
case D3DSIO_TEXM3x2DEPTH:
case D3DSIO_TEXDP3:
case D3DSIO_TEXM3x3:
DebuggerBreakIfDebugging();
break;
case D3DSIO_TEXDEPTH:
V_snprintf( buff, nBufLen, "texdepth" );
break;
case D3DSIO_CMP:
DebuggerBreakIfDebugging();
Assert( !m_bVertexShader );
V_snprintf( buff, nBufLen, "CMP" );
break;
case D3DSIO_BEM:
DebuggerBreakIfDebugging();
break;
case D3DSIO_DP2ADD:
DebuggerBreakIfDebugging();
break;
case D3DSIO_DSX:
case D3DSIO_DSY:
DebuggerBreakIfDebugging();
break;
case D3DSIO_TEXLDD:
V_snprintf( buff, nBufLen, "texldd" );
break;
case D3DSIO_SETP:
DebuggerBreakIfDebugging();
break;
case D3DSIO_TEXLDL:
V_snprintf( buff, nBufLen, "texldl" );
break;
case D3DSIO_BREAKP:
case D3DSIO_PHASE:
DebuggerBreakIfDebugging();
break;
}
return bDoubleClose;
}
const char* D3DToGL::GetGLSLOperatorString( uint32 inst )
{
if ( inst == D3DSIO_ADD )
return "+";
else if ( inst == D3DSIO_SUB )
return "-";
else if ( inst == D3DSIO_MUL )
return "*";
Error( "GetGLSLOperatorString: unknown operator" );
return "zzzz";
}
// Print ASM opcode
void D3DToGL::PrintOpcode( uint32 inst, char* buff, int nBufLen )
{
switch ( inst )
{
case D3DSIO_NOP:
V_snprintf( buff, nBufLen, "NOP" );
DebuggerBreakIfDebugging();
break;
case D3DSIO_MOV:
V_snprintf( buff, nBufLen, "MOV" );
break;
case D3DSIO_ADD:
V_snprintf( buff, nBufLen, "ADD" );
break;
case D3DSIO_SUB:
V_snprintf( buff, nBufLen, "SUB" );
break;
case D3DSIO_MAD:
V_snprintf( buff, nBufLen, "MAD" );
break;
case D3DSIO_MUL:
V_snprintf( buff, nBufLen, "MUL" );
break;
case D3DSIO_RCP:
V_snprintf( buff, nBufLen, "RCP" );
break;
case D3DSIO_RSQ:
V_snprintf( buff, nBufLen, "RSQ" );
break;
case D3DSIO_DP3:
V_snprintf( buff, nBufLen, "DP3" );
break;
case D3DSIO_DP4:
V_snprintf( buff, nBufLen, "DP4" );
break;
case D3DSIO_MIN:
V_snprintf( buff, nBufLen, "MIN" );
break;
case D3DSIO_MAX:
V_snprintf( buff, nBufLen, "MAX" );
break;
case D3DSIO_SLT:
V_snprintf( buff, nBufLen, "SLT" );
break;
case D3DSIO_SGE:
V_snprintf( buff, nBufLen, "SGE" );
break;
case D3DSIO_EXP:
V_snprintf( buff, nBufLen, "EX2" );
break;
case D3DSIO_LOG:
V_snprintf( buff, nBufLen, "LG2" );
break;
case D3DSIO_LIT:
V_snprintf( buff, nBufLen, "LIT" );
break;
case D3DSIO_DST:
V_snprintf( buff, nBufLen, "DST" );
break;
case D3DSIO_LRP:
Assert( !m_bVertexShader );
V_snprintf( buff, nBufLen, "LRP" );
break;
case D3DSIO_FRC:
V_snprintf( buff, nBufLen, "FRC" );
break;
case D3DSIO_M4x4:
V_snprintf( buff, nBufLen, "m4x4" );
break;
case D3DSIO_M4x3:
case D3DSIO_M3x4:
case D3DSIO_M3x3:
case D3DSIO_M3x2:
case D3DSIO_CALL:
case D3DSIO_CALLNZ:
case D3DSIO_LOOP:
case D3DSIO_RET:
case D3DSIO_ENDLOOP:
case D3DSIO_LABEL:
DebuggerBreakIfDebugging();
break;
case D3DSIO_DCL:
V_snprintf( buff, nBufLen, "DCL" );
break;
case D3DSIO_POW:
V_snprintf( buff, nBufLen, "POW" );
break;
case D3DSIO_CRS:
V_snprintf( buff, nBufLen, "XPD" );
break;
case D3DSIO_SGN:
DebuggerBreakIfDebugging();
V_snprintf( buff, nBufLen, "SGN" );
break;
case D3DSIO_ABS:
V_snprintf( buff, nBufLen, "ABS" );
break;
case D3DSIO_NRM:
DebuggerBreakIfDebugging();
V_snprintf( buff, nBufLen, "NRM" );
break;
case D3DSIO_SINCOS:
Assert( !m_bVertexShader );
V_snprintf( buff, nBufLen, "SCS" );
break;
case D3DSIO_REP:
case D3DSIO_ENDREP:
case D3DSIO_IF:
case D3DSIO_IFC:
case D3DSIO_ELSE:
case D3DSIO_ENDIF:
case D3DSIO_BREAK:
case D3DSIO_BREAKC:
DebuggerBreakIfDebugging();
break;
case D3DSIO_MOVA:
Assert( m_bVertexShader );
V_snprintf( buff, nBufLen, "MOV" ); // We're always moving into a temp instead, so this is MOV instead of ARL
break;
case D3DSIO_DEFB:
case D3DSIO_DEFI:
DebuggerBreakIfDebugging();
break;
case D3DSIO_TEXCOORD:
V_snprintf( buff, nBufLen, "texcoord" );
break;
case D3DSIO_TEXKILL:
V_snprintf( buff, nBufLen, "KIL" );
break;
case D3DSIO_TEX:
V_snprintf( buff, nBufLen, "TEX" );
break;
case D3DSIO_TEXBEM:
case D3DSIO_TEXBEML:
case D3DSIO_TEXREG2AR:
case D3DSIO_TEXREG2GB:
case D3DSIO_TEXM3x2PAD:
case D3DSIO_TEXM3x2TEX:
case D3DSIO_TEXM3x3PAD:
case D3DSIO_TEXM3x3TEX:
case D3DSIO_TEXM3x3SPEC:
case D3DSIO_TEXM3x3VSPEC:
DebuggerBreakIfDebugging();
break;
case D3DSIO_EXPP:
V_snprintf( buff, nBufLen, "EXP" );
break;
case D3DSIO_LOGP:
V_snprintf( buff, nBufLen, "LOG" );
break;
case D3DSIO_CND:
DebuggerBreakIfDebugging();
break;
case D3DSIO_DEF:
V_snprintf( buff, nBufLen, "DEF" );
break;
case D3DSIO_TEXREG2RGB:
case D3DSIO_TEXDP3TEX:
case D3DSIO_TEXM3x2DEPTH:
case D3DSIO_TEXDP3:
case D3DSIO_TEXM3x3:
DebuggerBreakIfDebugging();
break;
case D3DSIO_TEXDEPTH:
V_snprintf( buff, nBufLen, "texdepth" );
break;
case D3DSIO_CMP:
Assert( !m_bVertexShader );
V_snprintf( buff, nBufLen, "CMP" );
break;
case D3DSIO_BEM:
DebuggerBreakIfDebugging();
break;
case D3DSIO_DP2ADD:
DebuggerBreakIfDebugging();
break;
case D3DSIO_DSX:
case D3DSIO_DSY:
DebuggerBreakIfDebugging();
break;
case D3DSIO_TEXLDD:
V_snprintf( buff, nBufLen, "texldd" );
break;
case D3DSIO_SETP:
DebuggerBreakIfDebugging();
break;
case D3DSIO_TEXLDL:
V_snprintf( buff, nBufLen, "texldl" );
break;
case D3DSIO_BREAKP:
case D3DSIO_PHASE:
DebuggerBreakIfDebugging();
break;
}
}
CUtlString D3DToGL::GetUsageAndIndexString( uint32 dwToken, int fSemanticFlags )
{
char szTemp[1024];
PrintUsageAndIndexToString( dwToken, szTemp, sizeof( szTemp ), fSemanticFlags );
return szTemp;
}
//------------------------------------------------------------------------------
// Helper function which prints ASCII representation of usage-usageindex pair to string
//
// Strictly used by vertex shaders
// not used any more now that we have attribmap metadata
//------------------------------------------------------------------------------
void D3DToGL::PrintUsageAndIndexToString( uint32 dwToken, char* strUsageUsageIndexName, int nBufLen, int fSemanticFlags )
{
uint32 dwUsage = ( dwToken & D3DSP_DCL_USAGE_MASK );
uint32 dwUsageIndex = ( dwToken & D3DSP_DCL_USAGEINDEX_MASK ) >> D3DSP_DCL_USAGEINDEX_SHIFT;
switch ( dwUsage )
{
case D3DDECLUSAGE_POSITION:
if ( m_bGLSL )
{
if ( m_bVertexShader )
{
if ( fSemanticFlags & SEMANTIC_OUTPUT )
V_snprintf( strUsageUsageIndexName, nBufLen, "vTempPos" ); // effectively gl_Position
else
V_snprintf( strUsageUsageIndexName, nBufLen, "gl_Vertex" );
}
else
{
// .xy = position in viewport coordinates
// .z = depth
V_snprintf( strUsageUsageIndexName, nBufLen, "gl_FragCoord" );
}
}
else
{
V_snprintf( strUsageUsageIndexName, nBufLen, "vertex.attrib[0]" ); //"vertex.position" ); // aka generic [0]
}
break;
case D3DDECLUSAGE_BLENDWEIGHT:
V_snprintf( strUsageUsageIndexName, nBufLen, "vertex.attrib[1]" ); // "vertex.attrib[12]" ); // or [1]
break;
case D3DDECLUSAGE_BLENDINDICES:
V_snprintf( strUsageUsageIndexName, nBufLen, "vertex.attrib[13]" ); // "vertex.attrib[13]" ); // or [ 7 ]
break;
case D3DDECLUSAGE_NORMAL:
V_snprintf( strUsageUsageIndexName, nBufLen, m_bGLSL ? "vec4( gl_Normal, 0.0 )" : "vertex.attrib[2]" );
break;
case D3DDECLUSAGE_PSIZE:
DebuggerBreakIfDebugging();
V_snprintf( strUsageUsageIndexName, nBufLen, "_psize" ); // no analog
break;
case D3DDECLUSAGE_TEXCOORD:
if ( m_bGLSL )
{
// GLSL vs output and ps inputs reference gl_TexCoord[n], not gl_MultiTexCoord.
if ( !m_bVertexShader || (fSemanticFlags & SEMANTIC_OUTPUT) )
V_snprintf( strUsageUsageIndexName, nBufLen, "gl_TexCoord[%d]", dwUsageIndex );
else
V_snprintf( strUsageUsageIndexName, nBufLen, "gl_MultiTexCoord%d", dwUsageIndex );
}
else
{
V_snprintf( strUsageUsageIndexName, nBufLen, "vertex.attrib[%d]", 8+dwUsageIndex ); // "vertex.texcoord[%d]", dwUsageIndex ); // aka [8] - [15] ?
}
break;
case D3DDECLUSAGE_TANGENT:
if ( m_bGLSL )
{
NoteTangentInputUsed();
V_strncpy( strUsageUsageIndexName, g_pTangentAttributeName, nBufLen );
}
else
{
V_snprintf( strUsageUsageIndexName, nBufLen, "vertex.attrib[15]" ); // aka texc[7]
}
break;
case D3DDECLUSAGE_BINORMAL:
V_snprintf( strUsageUsageIndexName, nBufLen, "vertex.attrib[14]" ); // aka texc[6]
break;
// case D3DDECLUSAGE_TESSFACTOR:
// DebuggerBreakIfDebugging();
// V_snprintf( strUsageUsageIndexName, nBufLen, "_position" ); // no analog
// break;
// case D3DDECLUSAGE_POSITIONT:
// DebuggerBreakIfDebugging();
// V_snprintf( strUsageUsageIndexName, nBufLen, "_positiont" ); // no analog
// break;
case D3DDECLUSAGE_COLOR:
if ( m_bGLSL )
{
// if ( fSemanticFlags & SEMANTIC_OUTPUT )
// V_snprintf( strUsageUsageIndexName, nBufLen, dwUsageIndex != 0 ? "gl_BackColor" : "gl_FrontColor" );
// else
V_snprintf( strUsageUsageIndexName, nBufLen, dwUsageIndex != 0 ? "gl_SecondaryColor" : "gl_Color" );
}
else
{
V_snprintf( strUsageUsageIndexName, nBufLen, "vertex.attrib[%d]", 3+dwUsageIndex ); //dwUsageIndex ); // != 0 ? "vertex.color.secondary" : "vertex.color" ); // aka [3] / [4] (second)
}
break;
case D3DDECLUSAGE_FOG:
Assert( !m_bGLSL );
V_snprintf( strUsageUsageIndexName, nBufLen, "vertex.attrib[5]" ); //"vertex.position" /* "_fog" */ ); //FIXME, evil // aka [5] / vertex.fogcoord
break;
case D3DDECLUSAGE_DEPTH:
DebuggerBreakIfDebugging();
V_snprintf( strUsageUsageIndexName, nBufLen, "_depth" ); // no analog
break;
case D3DDECLUSAGE_SAMPLE:
DebuggerBreakIfDebugging();
V_snprintf( strUsageUsageIndexName, nBufLen, "_sample" ); // no analog
break;
default:
Debugger();
break;
}
}
uint32 D3DToGL::GetRegType( uint32 dwRegToken )
{
return ( ( dwRegToken & D3DSP_REGTYPE_MASK2 ) >> D3DSP_REGTYPE_SHIFT2 ) | ( ( dwRegToken & D3DSP_REGTYPE_MASK ) >> D3DSP_REGTYPE_SHIFT );
}
void D3DToGL::PrintIndentation( char *pBuf, int nBufLen )
{
for( int i=0; i<m_NumIndentTabs; i++ )
{
strcat_s( pBuf, nBufLen, "\t" );
}
}
CUtlString D3DToGL::GetParameterString( uint32 dwToken, uint32 dwSourceOrDest, bool bForceScalarSource, int *pARLDestReg )
{
char szTemp[1024];
PrintParameterToString( dwToken, dwSourceOrDest, szTemp, sizeof( szTemp ), bForceScalarSource, pARLDestReg );
return szTemp;
}
// If the register happens to end with ".xyzw", then this strips off the mask.
void SimplifyFourParamRegister( char *pRegister )
{
int nLen = V_strlen( pRegister );
if ( nLen > 5 && V_strcmp( &pRegister[nLen-5], ".xyzw" ) == 0 )
pRegister[nLen-5] = 0;
}
// This returns 0 for x, 1 for y, 2 for z, and 3 for w.
int GetSwizzleComponentVectorIndex( char chMask )
{
if ( chMask == 'x' )
return 0;
else if ( chMask == 'y' )
return 1;
else if ( chMask == 'z' )
return 2;
else if ( chMask == 'w' )
return 3;
Error( "GetSwizzleComponentVectorIndex( '%c' ) - invalid parameter.\n", chMask );
return 0;
}
// GLSL needs the # of src masks to match the dest write mask.
//
// So this:
// r0.xy = r1 + r2;
// becomes:
// r0.xy = r1.xy + r2.xy;
//
//
// Also, and this is the trickier one: GLSL reads the source registers from their first component on
// whereas D3D reads them as referenced in the dest register mask!
//
// So this code in D3D:
// r0.yz = c0.x + c1.wxyz
// Really means:
// r0.y = c0.x + c1.x
// r0.z = c0.x + c1.y
// So we translate it to this in GLSL:
// r0.yz = c0.xx + c1.wx
// r0.yz = c0.xx + c1.xy
//
CUtlString D3DToGL::FixGLSLSwizzle( const char *pDestRegisterName, const char *pSrcRegisterName )
{
if ( !m_bGLSL )
return pSrcRegisterName;
int nSwizzlesInDest = GetNumSwizzleComponents( pDestRegisterName );
if ( nSwizzlesInDest == 0 )
nSwizzlesInDest = 4;
char szFixedSrcRegister[128];
GetParamNameWithoutSwizzle( pSrcRegisterName, szFixedSrcRegister, sizeof( szFixedSrcRegister ) );
V_strncat( szFixedSrcRegister, ".", sizeof( szFixedSrcRegister ) );
for ( int i=0; i < nSwizzlesInDest; i++ )
{
char chDestWriteMask = GetSwizzleComponent( pDestRegisterName, i );
int nVectorIndex = GetSwizzleComponentVectorIndex( chDestWriteMask );
char ch[2];
ch[0] = GetSwizzleComponent( pSrcRegisterName, nVectorIndex );
ch[1] = 0;
V_strncat( szFixedSrcRegister, ch, sizeof( szFixedSrcRegister ) );
}
SimplifyFourParamRegister( szFixedSrcRegister );
return szFixedSrcRegister;
}
// Weird encoding...bits are split apart in the dwToken
inline uint32 GetRegTypeFromToken( uint32 dwToken )
{
return ( ( dwToken & D3DSP_REGTYPE_MASK2 ) >> D3DSP_REGTYPE_SHIFT2 ) | ( ( dwToken & D3DSP_REGTYPE_MASK ) >> D3DSP_REGTYPE_SHIFT );
}
void D3DToGL::FlagIndirectRegister( uint32 dwToken, int *pARLDestReg )
{
if ( !pARLDestReg )
return;
switch ( dwToken & D3DVS_SWIZZLE_MASK & D3DVS_X_W )
{
case D3DVS_X_X:
*pARLDestReg = ARL_DEST_X;
break;
case D3DVS_X_Y:
*pARLDestReg = ARL_DEST_Y;
break;
case D3DVS_X_Z:
*pARLDestReg = ARL_DEST_Z;
break;
case D3DVS_X_W:
*pARLDestReg = ARL_DEST_W;
break;
}
}
//------------------------------------------------------------------------------
// PrintParameterToString()
//
// Helper function which prints ASCII representation of passed Parameter dwToken
// to string. Token defines parameter details. The dwSourceOrDest parameter says
// whether or not this is a source or destination register
//------------------------------------------------------------------------------
void D3DToGL::PrintParameterToString ( uint32 dwToken, uint32 dwSourceOrDest, char *pRegisterName, int nBufLen, bool bForceScalarSource, int *pARLDestReg )
{
char buff[32];
bool bAllowWriteMask = true;
bool bAllowSwizzle = true;
uint32 dwRegNum = dwToken & D3DSP_REGNUM_MASK;
uint32 dwRegType, dwSwizzle;
uint32 dwSrcModifier = D3DSPSM_NONE;
// Clear string to zero length
V_snprintf( pRegisterName, nBufLen, "" );
dwRegType = GetRegTypeFromToken( dwToken );
// If this is a dest register
if ( dwSourceOrDest == DST_REGISTER )
{
// Instruction modifiers
if ( dwToken & D3DSPDM_PARTIALPRECISION )
{
// strcat_s( pRegisterName, nBufLen, "_pp" );
}
if ( dwToken & D3DSPDM_SATURATE && !m_bGLSL )
{
strcat_s( pRegisterName, nBufLen, "_SAT" );
}
if ( dwToken & D3DSPDM_MSAMPCENTROID)
{
// strcat_s( pRegisterName, nBufLen, "_centroid" );
}
if ( !m_bGLSL )
{
strcat_s( pRegisterName, nBufLen, " " );
}
}
// If this is a source register
if ( dwSourceOrDest == SRC_REGISTER )
{
dwSrcModifier = dwToken & D3DSP_SRCMOD_MASK;
// If there are any source modifiers, check to see if they're at
// least partially "prefix" and prepend appropriately
if ( dwSrcModifier != D3DSPSM_NONE )
{
switch ( dwSrcModifier )
{
// These four start with just minus... (some may result in "postfix" notation as well later on)
case D3DSPSM_NEG: // negate
strcat_s( pRegisterName, nBufLen, "-" );
break;
case D3DSPSM_BIASNEG: // bias and negate
case D3DSPSM_SIGNNEG: // sign and negate
case D3DSPSM_X2NEG: // *2 and negate
DebuggerBreakIfDebugging();
strcat_s( pRegisterName, nBufLen, "-" );
break;
case D3DSPSM_COMP: // complement
DebuggerBreakIfDebugging();
strcat_s( pRegisterName, nBufLen, "1-" );
break;
case D3DSPSM_ABS: // abs()
if ( m_bGLSL )
{
strcat_s( pRegisterName, nBufLen, "abs(" );
}
else if ( !m_bGeneratingDebugText )
{
DebuggerBreakIfDebugging();
}
break;
case D3DSPSM_ABSNEG: // -abs()
if ( m_bGLSL )
{
strcat_s( pRegisterName, nBufLen, "-abs(" );
}
else if ( !m_bGeneratingDebugText )
{
DebuggerBreakIfDebugging();
}
break;
case D3DSPSM_NOT: // for predicate register: "!p0"
DebuggerBreakIfDebugging();
strcat_s( pRegisterName, nBufLen, "!" );
break;
}
}
}
// Register name (from type and number)
switch ( dwRegType )
{
case D3DSPR_TEMP:
V_snprintf( buff, sizeof( buff ), "r%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
m_dwTempUsageMask |= 0x00000001 << dwRegNum; // Keep track of the use of this temp
break;
case D3DSPR_INPUT:
if ( !m_bVertexShader && ( dwSourceOrDest == SRC_REGISTER ) && m_bGLSL )
{
V_snprintf( buff, sizeof( buff ), dwRegNum == 0 ? "gl_Color" : "gl_SecondaryColor" );
strcat_s( pRegisterName, nBufLen, buff );
}
else if ( m_bVertexShader || ( dwSourceOrDest == SRC_REGISTER ) || m_bGLSL )
{
V_snprintf( buff, sizeof( buff ), "v%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
}
else // asm pixel shader declaration syntax:
{
V_snprintf( buff, sizeof( buff ), dwRegNum == 0 ? "v0 = fragment.color" : "v1 = fragment.color.secondary" );
strcat_s( pRegisterName, nBufLen, buff );
bAllowWriteMask = false;
}
break;
case D3DSPR_CONST:
if ( m_bConstantRegisterDefined[dwRegNum] )
{
char szConstantRegName[3];
if ( m_bVertexShader )
{
V_snprintf( szConstantRegName, 3, "vd" );
}
else
{
V_snprintf( szConstantRegName, 3, "pd" );
}
// Put defined constants into their own namespace "d"
V_snprintf( buff, sizeof( buff ), "%s%d", szConstantRegName, dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
}
else if ( dwToken & D3DSHADER_ADDRESSMODE_MASK ) // Indirect addressing (e.g. skinning in a vertex shader)
{
char szConstantRegName[3];
if ( m_bVertexShader )
{
V_snprintf( szConstantRegName, 3, "vc" );
}
else // No indirect addressing in PS, this shouldn't happen
{
DebuggerBreakIfDebugging();
V_snprintf( szConstantRegName, 3, "pc" );
}
// Index into single pc/vc[] register array with relative addressing
FlagIndirectRegister( GetNextToken(), pARLDestReg );
V_snprintf( buff, sizeof( buff ), m_bGLSL ? "%s[a0 + %d]" : "%s[a0.x + %d]", szConstantRegName, dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
bAllowSwizzle = false;
m_nHighestRegister = DXABSTRACT_VS_PARAM_SLOTS - 1;
}
else // Direct addressing of constant array
{
char szConstantRegName[3];
V_snprintf( szConstantRegName, 3, m_bVertexShader ? "vc" : "pc" );
// Index into single pc/vc[] register array with absolute addressing, same for GLSL and ASM
V_snprintf( buff, sizeof( buff ), "%s[%d]", szConstantRegName, dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
//// NOGO if (dwRegNum != 255) // have seen cases where dwRegNum is 0xFF... need to figure out where those opcodes are coming from
{
m_nHighestRegister = MAX( m_nHighestRegister, dwRegNum );
}
Assert( m_nHighestRegister < DXABSTRACT_VS_PARAM_SLOTS );
}
break;
case D3DSPR_ADDR: // aliases to D3DSPR_TEXTURE
if ( m_bVertexShader )
{
if ( m_bGLSL )
{
Assert( dwRegNum == 0 );
V_snprintf( buff, sizeof( buff ), "va_r", dwRegNum );
}
else
{
V_snprintf( buff, sizeof( buff ), "VA_REG" ); // Move into our temp, rather than a0
}
}
else // D3DSPR_TEXTURE in the pixel shader
{
// If dest reg, this is an iterator/varying declaration
if ( dwSourceOrDest == DST_REGISTER )
{
if ( m_bGLSL )
{
// Is this iterator centroid?
if ( m_nCentroidMask & ( 0x00000001 << dwRegNum ) )
{
V_snprintf( buff, sizeof( buff ), "centroid varying vec4 oT%d", dwRegNum ); // centroid varying
}
else
{
V_snprintf( buff, sizeof( buff ), "varying vec4 oT%d", dwRegNum );
}
}
else
{
V_snprintf( buff, sizeof( buff ), "t%d = fragment.texcoord[%d]", dwRegNum, dwRegNum );
}
bAllowWriteMask = false;
}
else // source register
{
if ( m_bGLSL )
{
V_snprintf( buff, sizeof( buff ), "oT%d", dwRegNum );
}
else
{
V_snprintf( buff, sizeof( buff ), "t%d", dwRegNum );
}
}
}
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_RASTOUT: // vertex shader oPos
Assert( m_bVertexShader );
switch( dwRegNum )
{
case D3DSRO_POSITION:
strcat_s( pRegisterName, nBufLen, m_bGLSL ? "vTempPos" : "oPos" ); // In GLSL, this ends up in gl_Position later on
m_bDeclareVSOPos = true;
break;
case D3DSRO_FOG:
strcat_s( pRegisterName, nBufLen, m_bGLSL ? "gl_FogFragCoord" : "oFog" );
m_bDeclareVSOFog = true;
break;
default:
printf( "\nD3DSPR_RASTOUT: dwRegNum is %08x and token is %08x", dwRegNum, dwToken );
DebuggerBreakIfDebugging();
break;
}
break;
case D3DSPR_ATTROUT:
Assert( m_bVertexShader );
if ( m_bGLSL )
{
if ( dwRegNum == 0 )
{
V_snprintf( buff, sizeof( buff ), "gl_FrontColor", dwRegNum );
}
else if ( dwRegNum == 1 )
{
V_snprintf( buff, sizeof( buff ), "gl_FrontSecondaryColor", dwRegNum );
}
else
{
Error( "Invalid D3DSPR_ATTROUT index" );
}
}
else
{
V_snprintf( buff, sizeof( buff ), "oD%d", dwRegNum );
}
strcat_s( pRegisterName, nBufLen, buff );
m_bOutputColorRegister[dwRegNum] = true;
break;
case D3DSPR_TEXCRDOUT: // aliases to D3DSPR_OUTPUT
if ( m_bVertexShader )
{
if ( m_bGLSL )
{
V_snprintf( buff, sizeof( buff ), "oT%d", dwRegNum );
}
else
{
V_snprintf( buff, sizeof( buff ), "oT%d", dwRegNum );
}
m_dwTexCoordOutMask |= ( 0x00000001 << dwRegNum );
}
else
{
V_snprintf( buff, sizeof( buff ), "oC%d", dwRegNum );
}
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_CONSTINT:
Assert( m_bGLSL && m_bAllowStaticControlFlow );
V_snprintf( buff, sizeof( buff ), "i%d", dwRegNum ); // Loops use these
strcat_s( pRegisterName, nBufLen, buff );
m_dwConstIntUsageMask |= 0x00000001 << dwRegNum; // Keep track of the use of this integer constant
break;
case D3DSPR_COLOROUT:
if ( m_bGLSL )
{
V_snprintf( buff, sizeof( buff ), "gl_FragData[%d]", dwRegNum );
}
else
{
V_snprintf( buff, sizeof( buff ), "oC%d", dwRegNum );
}
strcat_s( pRegisterName, nBufLen, buff );
m_bOutputColorRegister[dwRegNum] = true;
break;
case D3DSPR_DEPTHOUT:
V_snprintf( buff, sizeof( buff ), m_bGLSL ? "gl_FragDepth" : "oDepth" );
strcat_s( pRegisterName, nBufLen, buff );
m_bOutputDepthRegister = true;
break;
case D3DSPR_SAMPLER:
V_snprintf( buff, sizeof( buff ), m_bGLSL ? "sampler%d" : "texture[%d]", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_CONST2:
DebuggerBreakIfDebugging();
V_snprintf( buff, sizeof( buff ), "c%d", dwRegNum+2048);
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_CONST3:
DebuggerBreakIfDebugging();
V_snprintf( buff, sizeof( buff ), "c%d", dwRegNum+4096);
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_CONST4:
DebuggerBreakIfDebugging();
V_snprintf( buff, sizeof( buff ), "c%d", dwRegNum+6144);
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_CONSTBOOL:
Assert( m_bGLSL && m_bAllowStaticControlFlow );
V_snprintf( buff, sizeof( buff ), "b%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
m_dwConstBoolUsageMask |= 0x00000001 << dwRegNum; // Keep track of the use of this bool constant
break;
case D3DSPR_LOOP:
DebuggerBreakIfDebugging();
V_snprintf( buff, sizeof( buff ), "aL%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_TEMPFLOAT16:
DebuggerBreakIfDebugging();
V_snprintf( buff, sizeof( buff ), "temp_float16_xxx%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_MISCTYPE:
if ( !m_bGLSL && !m_bGeneratingDebugText )
{
DebuggerBreakIfDebugging();
}
V_snprintf( buff, sizeof( buff ), "misc%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_LABEL:
DebuggerBreakIfDebugging();
V_snprintf( buff, sizeof( buff ), "label%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
break;
case D3DSPR_PREDICATE:
DebuggerBreakIfDebugging();
V_snprintf( buff, sizeof( buff ), "p%d", dwRegNum );
strcat_s( pRegisterName, nBufLen, buff );
break;
}
// If this is a dest register
if ( dwSourceOrDest == DST_REGISTER )
{
//
// Write masks
//
// If some (not all, not none) of the write masks are set, we should include them
//
if ( bAllowWriteMask && ( !((dwToken & D3DSP_WRITEMASK_ALL) == D3DSP_WRITEMASK_ALL) || ((dwToken & D3DSP_WRITEMASK_ALL) == 0x00000000) ) )
{
// Put the dot on there
strcat_s( pRegisterName, nBufLen, "." );
// Optionally put on the x, y, z or w
int nMasksWritten = 0;
if ( dwToken & D3DSP_WRITEMASK_0 )
{
strcat_s( pRegisterName, nBufLen, "x" );
++nMasksWritten;
}
if ( dwToken & D3DSP_WRITEMASK_1 )
{
strcat_s( pRegisterName, nBufLen, "y" );
++nMasksWritten;
}
if ( dwToken & D3DSP_WRITEMASK_2 )
{
strcat_s( pRegisterName, nBufLen, "z" );
++nMasksWritten;
}
if ( dwToken & D3DSP_WRITEMASK_3 )
{
strcat_s( pRegisterName, nBufLen, "w" );
++nMasksWritten;
}
}
}
else // must be a source register
{
if ( bAllowSwizzle ) // relative addressing hard-codes the swizzle on a0.x
{
uint32 dwXSwizzle, dwYSwizzle, dwZSwizzle, dwWSwizzle;
// Mask out the swizzle modifier
dwSwizzle = dwToken & D3DVS_SWIZZLE_MASK;
// If there are any swizzles at all, tack on the appropriate notation
if ( dwSwizzle != D3DVS_NOSWIZZLE )
{
// Separate out the two-bit codes for each component swizzle
dwXSwizzle = dwSwizzle & D3DVS_X_W;
dwYSwizzle = dwSwizzle & D3DVS_Y_W;
dwZSwizzle = dwSwizzle & D3DVS_Z_W;
dwWSwizzle = dwSwizzle & D3DVS_W_W;
// Put on the dot
strcat_s( pRegisterName, nBufLen, "." );
// See where X comes from
switch ( dwXSwizzle )
{
case D3DVS_X_X:
strcat_s( pRegisterName, nBufLen, "x" );
break;
case D3DVS_X_Y:
strcat_s( pRegisterName, nBufLen, "y" );
break;
case D3DVS_X_Z:
strcat_s( pRegisterName, nBufLen, "z" );
break;
case D3DVS_X_W:
strcat_s( pRegisterName, nBufLen, "w" );
break;
}
if ( !bForceScalarSource )
{
// If the source of the remaining components are aren't
// identical to the source of x, continue with swizzle
if ( ((dwXSwizzle >> D3DVS_SWIZZLE_SHIFT) != (dwYSwizzle >> (D3DVS_SWIZZLE_SHIFT + 2))) || // X and Y sources match?
((dwXSwizzle >> D3DVS_SWIZZLE_SHIFT) != (dwZSwizzle >> (D3DVS_SWIZZLE_SHIFT + 4))) || // X and Z sources match?
((dwXSwizzle >> D3DVS_SWIZZLE_SHIFT) != (dwWSwizzle >> (D3DVS_SWIZZLE_SHIFT + 6)))) // X and W sources match?
{
// OpenGL seems to want us to have either 1 or 4 components in a swizzle, so just plow on through the rest
switch ( dwYSwizzle )
{
case D3DVS_Y_X:
strcat_s( pRegisterName, nBufLen, "x" );
break;
case D3DVS_Y_Y:
strcat_s( pRegisterName, nBufLen, "y" );
break;
case D3DVS_Y_Z:
strcat_s( pRegisterName, nBufLen, "z" );
break;
case D3DVS_Y_W:
strcat_s( pRegisterName, nBufLen, "w" );
break;
}
switch ( dwZSwizzle )
{
case D3DVS_Z_X:
strcat_s( pRegisterName, nBufLen, "x" );
break;
case D3DVS_Z_Y:
strcat_s( pRegisterName, nBufLen, "y" );
break;
case D3DVS_Z_Z:
strcat_s( pRegisterName, nBufLen, "z" );
break;
case D3DVS_Z_W:
strcat_s( pRegisterName, nBufLen, "w" );
break;
}
switch ( dwWSwizzle )
{
case D3DVS_W_X:
strcat_s( pRegisterName, nBufLen, "x" );
break;
case D3DVS_W_Y:
strcat_s( pRegisterName, nBufLen, "y" );
break;
case D3DVS_W_Z:
strcat_s( pRegisterName, nBufLen, "z" );
break;
case D3DVS_W_W:
strcat_s( pRegisterName, nBufLen, "w" );
break;
}
}
} // end !bForceScalarSource
}
else // dwSwizzle == D3DVS_NOSWIZZLE
{
// If this is a MOVA / ARL, GL on the Mac requires us to tack the .x onto the source register
if ( bForceScalarSource )
{
strcat_s( pRegisterName, nBufLen, ".x" );
}
}
} // bAllowSwizzle
// If there are any source modifiers, check to see if they're at
// least partially "postfix" and tack them on as appropriate
if ( dwSrcModifier != D3DSPSM_NONE )
{
switch ( dwSrcModifier )
{
case D3DSPSM_BIAS: // bias
case D3DSPSM_BIASNEG: // bias and negate
DebuggerBreakIfDebugging();
strcat_s( pRegisterName, nBufLen, "_bx2" );
break;
case D3DSPSM_SIGN: // sign
case D3DSPSM_SIGNNEG: // sign and negate
DebuggerBreakIfDebugging();
strcat_s( pRegisterName, nBufLen, "_sgn" );
break;
case D3DSPSM_X2: // *2
case D3DSPSM_X2NEG: // *2 and negate
DebuggerBreakIfDebugging();
strcat_s( pRegisterName, nBufLen, "_x2" );
break;
case D3DSPSM_ABS: // abs()
case D3DSPSM_ABSNEG: // -abs()
if ( m_bGLSL )
{
strcat_s( pRegisterName, nBufLen, ")" );
}
break;
case D3DSPSM_DZ: // divide through by z component
DebuggerBreakIfDebugging();
strcat_s( pRegisterName, nBufLen, "_dz" );
break;
case D3DSPSM_DW: // divide through by w component
DebuggerBreakIfDebugging();
strcat_s( pRegisterName, nBufLen, "_dw" );
break;
}
} // end postfix modifiers (really only ps.1.x)
}
}
void D3DToGL::RecordInputAndOutputPositions()
{
// Remember where we are in the token stream.
m_pRecordedInputTokenStart = m_pdwNextToken;
// Remember where our outputs are.
m_nRecordedParamCodeStrlen = V_strlen( (char*)m_pBufParamCode->Base() );
m_nRecordedALUCodeStrlen = V_strlen( (char*)m_pBufALUCode->Base() );
m_nRecordedAttribCodeStrlen = V_strlen( (char*)m_pBufAttribCode->Base() );
}
void D3DToGL::AddTokenHexCodeToBuffer( char *pBuffer, int nSize, int nLastStrlen )
{
int nCurStrlen = V_strlen( pBuffer );
if ( nCurStrlen == nLastStrlen )
return;
// Build a string with all the hex codes of the tokens since last time.
char szHex[512];
szHex[0] = '\n';
V_snprintf( &szHex[1], sizeof( szHex )-1, HEXCODE_HEADER );
int nTokens = MIN( 10, m_pdwNextToken - m_pRecordedInputTokenStart );
for ( int i=0; i < nTokens; i++ )
{
char szTemp[32];
V_snprintf( szTemp, sizeof( szTemp ), "0x%x ", m_pRecordedInputTokenStart[i] );
V_strncat( szHex, szTemp, sizeof( szHex ) );
}
V_strncat( szHex, "\n", sizeof( szHex ) );
// Insert the hex codes into the string.
int nBytesToInsert = V_strlen( szHex );
if ( nCurStrlen + nBytesToInsert + 1 >= nSize )
Error( "Buffer overflow writing token hex codes" );
if ( m_bPutHexCodesAfterLines )
{
// Put it at the end of the last line.
if ( pBuffer[nCurStrlen-1] == '\n' )
pBuffer[nCurStrlen-1] = 0;
V_strncat( pBuffer, &szHex[1], nSize );
}
else
{
memmove( pBuffer + nLastStrlen + nBytesToInsert, pBuffer + nLastStrlen, nCurStrlen - nLastStrlen + 1 );
memcpy( pBuffer + nLastStrlen, szHex, nBytesToInsert );
}
}
void D3DToGL::AddTokenHexCode()
{
if ( m_pdwNextToken > m_pRecordedInputTokenStart )
{
AddTokenHexCodeToBuffer( (char*)m_pBufParamCode->Base(), m_pBufParamCode->Size(), m_nRecordedParamCodeStrlen );
AddTokenHexCodeToBuffer( (char*)m_pBufALUCode->Base(), m_pBufALUCode->Size(), m_nRecordedALUCodeStrlen );
AddTokenHexCodeToBuffer( (char*)m_pBufAttribCode->Base(), m_pBufAttribCode->Size(), m_nRecordedAttribCodeStrlen );
}
}
uint32 D3DToGL::MaintainAttributeMap( uint32 dwToken, uint32 dwRegToken )
{
// Check that this reg index has not been used before - if it has, let Houston know
uint dwRegIndex = dwRegToken & D3DSP_REGNUM_MASK;
if ( m_dwAttribMap[ dwRegIndex ] == 0xFFFFFFFF )
{
// log it
// semantic/usage in the higher nibble
// usage index in the low nibble
uint usage = dwToken & D3DSP_DCL_USAGE_MASK;
uint usageindex = ( dwToken & D3DSP_DCL_USAGEINDEX_MASK ) >> D3DSP_DCL_USAGEINDEX_SHIFT;
m_dwAttribMap[ dwRegIndex ] = ( usage << 4 ) | usageindex;
// avoid writing 0xBB since runtime code uses that for an 'unused' marker
if ( m_dwAttribMap[ dwRegIndex ] == 0xBB )
{
Debugger();
}
}
else
{
//not OK
Debugger();
}
return dwRegIndex;
}
void D3DToGL::Handle_DCL()
{
uint32 dwToken = GetNextToken(); // What kind of dcl is this...
uint32 dwRegToken = GetNextToken(); // Look ahead to register token
if ( m_bVertexShader )
{
// If this is an output, remember the index (what the ASM code calls o0, o1, o2..) and the semantic.
// When GetParameterString( DST_REGISTER ) hits this one, we'll return "oN".
// At the end of the main() function, we'll insert a bunch of statements like "gl_Color = o2" based on what we remembered here.
if ( m_bGLSL )
{
if ( m_dwMajorVersion >= 3 && GetRegTypeFromToken( dwRegToken ) == D3DSPR_OUTPUT )
{
uint32 dwRegNum = dwRegToken & D3DSP_REGNUM_MASK;
if ( dwRegNum >= MAX_DECLARED_OUTPUTS )
Error( "Output register number (%d) too high (only %d supported).", dwRegNum, MAX_DECLARED_OUTPUTS );
if ( m_DeclaredOutputs[dwRegNum] != UNDECLARED_OUTPUT )
Error( "Output dcl_ hit for register #%d more than once!", dwRegNum );
Assert( dwToken != UNDECLARED_OUTPUT );
m_DeclaredOutputs[dwRegNum] = dwToken;
if ( m_bAddHexCodeComments )
{
CUtlString sParam2 = GetUsageAndIndexString( dwToken, SEMANTIC_OUTPUT );
PrintToBuf( *m_pBufHeaderCode, "// [GL remembering that o%d maps to %s]\n", dwRegNum, sParam2.String() );
}
PrintToBuf( *m_pBufHeaderCode, "varying vec4 o%d = vec4( 0.0, 0.0, 0.0, 0.0 );\n", dwRegNum );
}
else
{
CUtlString sParam1 = GetParameterString( dwRegToken, DST_REGISTER, false, NULL );
CUtlString sParam2 = GetUsageAndIndexString( dwToken, SEMANTIC_INPUT );
sParam2 = FixGLSLSwizzle( sParam1, sParam2 );
PrintToBuf( *m_pBufHeaderCode, "attribute vec4 %s; // ", sParam1.String() );
MaintainAttributeMap( dwToken, dwRegToken );
char temp[128];
// regnum goes straight into the vertex.attrib[n] index
sprintf( temp, "%08x %08x\n", dwToken, dwRegToken );
StrcatToHeaderCode( temp );
}
}
else // ARB_vertex_program ASM
{
StrcatToAttribCode( "ATTRIB" );
char buff[64];
PrintParameterToString( dwRegToken, DST_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToAttribCode( buff );
StrcatToAttribCode( " = " );
uint regIndex = MaintainAttributeMap( dwToken, dwRegToken );
char temp[128];
// regnum goes straight into the vertex.attrib[n] index
sprintf( temp, "vertex.attrib[%d]; # %08x %08x\n", regIndex, dwToken, dwRegToken );
StrcatToAttribCode( temp );
// ASM
// CUtlString sParam1 = GetParameterString( dwRegToken, DST_REGISTER );
// CUtlString sParam2 = GetUsageAndIndexString( dwToken, SEMANTIC_INPUT );
// PrintToBuf( m_pAttribCode, m_nAttribCodeBufSize, "ATTRIB%s = %s;\n", sParam1.String(), sParam2.String() );
}
}
else // Pixel shader
{
// If the register is a sampler, the dcl has a dimension decorator that we have to save for subsequent TEX instructions
uint32 nRegType = GetRegType( dwRegToken );
if ( nRegType == D3DSPR_SAMPLER )
{
int nRegNum = dwRegToken & D3DSP_REGNUM_MASK;
switch ( TextureType( dwToken ) )
{
default:
case D3DSTT_UNKNOWN:
case D3DSTT_2D:
m_dwSamplerTypes[nRegNum] = SAMPLER_TYPE_2D;
break;
case D3DSTT_CUBE:
m_dwSamplerTypes[nRegNum] = SAMPLER_TYPE_CUBE;
break;
case D3DSTT_VOLUME:
m_dwSamplerTypes[nRegNum] = SAMPLER_TYPE_3D;
break;
}
// Track sampler declarations
m_dwSamplerUsageMask |= 1 << nRegNum;
}
else // Not a sampler, we're going to generate vaying declaration code
{
if ( m_bGLSL )
{
// In pixel shaders we only declare texture coordinate varyings since they may be using centroid
if ( (!m_bVertexShader) && ( GetRegType( dwRegToken ) == D3DSPR_TEXTURE ) )
{
char buff[256];
PrintParameterToString( dwRegToken, DST_REGISTER, buff, sizeof( buff ), false, NULL );
PrintToBuf( *m_pBufHeaderCode, "%s;\n",buff );
}
}
else // asm
{
char buff[256];
PrintParameterToString( dwRegToken, DST_REGISTER, buff, sizeof( buff ), false, NULL );
PrintToBuf( *m_pBufAttribCode, "ATTRIB%s;\n", buff );
}
}
}
}
void D3DToGL::Handle_DEF()
{
//
// JasonM TODO: catch D3D's sincos-specific D3DSINCOSCONST1 and D3DSINCOSCONST2 constants and filter them out here
//
// Which register is being defined
uint32 dwToken = GetNextToken();
// Note that this constant was explicitly defined
m_bConstantRegisterDefined[dwToken & D3DSP_REGNUM_MASK] = true;
CUtlString sParamName = GetParameterString( dwToken, DST_REGISTER, false, NULL );
const char float_fmt[] = "%.12f";
const char float_fmt_commaspace[] = "%.12f, "; // %g causes GLSL compile problems around consts like "1e+2.0" - try %f
if ( m_bGLSL )
{
PrintToBuf( *m_pBufParamCode, "vec4 %s = vec4( ", sParamName.String() );
// Run through the 4 floats
for ( int i=0; i < 4; i++ )
{
float fConst = uint32ToFloat( GetNextToken() );
// It must have a decimal point.
char szTemp[256];
V_snprintf( szTemp, sizeof( szTemp ), float_fmt, fConst );
StripExtraTrailingZeros( szTemp ); // Turn 1.00000 into 1.0
if ( !strchr( szTemp, '.' ) )
{
V_strncat( szTemp, ".0", sizeof( szTemp ) );
}
PrintToBuf( *m_pBufParamCode, i != 3 ? "%s, " : "%s", szTemp ); // end with comma-space
}
PrintToBuf( *m_pBufParamCode, " );\n" );
}
else
{
PrintToBuf( *m_pBufParamCode, "PARAM%s = { ", sParamName.String() );
// Run through the 4 floats
for ( int i=0; i < 4; i++ )
{
float fConst = uint32ToFloat( GetNextToken() );
PrintToBuf( *m_pBufParamCode, i != 3 ? float_fmt_commaspace : float_fmt, fConst ); // end with comma-space
}
PrintToBuf( *m_pBufParamCode, " };\n" );
}
}
void D3DToGL::Handle_MAD( uint32 nInstruction )
{
uint32 nDestToken = GetNextToken();
CUtlString sParam1 = GetParameterString( nDestToken, DST_REGISTER, false, NULL );
int nARLComp0 = ARL_DEST_NONE;
CUtlString sParam2 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp0 );
int nARLComp1 = ARL_DEST_NONE;
CUtlString sParam3 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp1 );
int nARLComp2 = ARL_DEST_NONE;
CUtlString sParam4 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp2 );
// This optionally inserts a move from our dummy address register to the .x component of the real one
InsertMoveFromAddressRegister( m_pBufALUCode, nARLComp0, nARLComp1, nARLComp2 );
if ( m_bGLSL )
{
sParam2 = FixGLSLSwizzle( sParam1, sParam2 );
sParam3 = FixGLSLSwizzle( sParam1, sParam3 );
sParam4 = FixGLSLSwizzle( sParam1, sParam4 );
PrintToBuf( *m_pBufALUCode, "%s = %s * %s + %s;\n", sParam1.String(), sParam2.String(), sParam3.String(), sParam4.String() );
// If the _SAT instruction modifier is used, then do a saturate here.
if ( nDestToken & D3DSPDM_SATURATE )
{
int nComponents = GetNumSwizzleComponents( sParam1.String() );
if ( nComponents == 0 )
nComponents = 4;
PrintToBuf( *m_pBufALUCode, "%s = clamp( %s, %s, %s );\n", sParam1.String(), sParam1.String(), g_szVecZeros[nComponents], g_szVecOnes[nComponents] );
}
}
else
{
char buff[256];
PrintOpcode( nInstruction, buff, sizeof( buff ) );
PrintToBuf( *m_pBufALUCode, "%s%s, %s, %s, %s;\n", buff, sParam1.String(), sParam2.String(), sParam3.String(), sParam4.String() );
if ( nDestToken & D3DSPDM_SATURATE )
{
// Need to saturate asm!
DebuggerBreakIfDebugging();
}
}
}
void D3DToGL::Handle_DP2ADD()
{
char pDestReg[16], pSrc0Reg[16], pSrc1Reg[16], pSrc2Reg[16];
uint32 nDestToken = GetNextToken();
PrintParameterToString( nDestToken, DST_REGISTER, pDestReg, sizeof( pDestReg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc0Reg, sizeof( pSrc0Reg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc1Reg, sizeof( pSrc1Reg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc2Reg, sizeof( pSrc2Reg ), false, NULL );
if ( m_bGLSL )
{
// We should only be assigning to a single component of the dest.
Assert( GetNumSwizzleComponents( pDestReg ) == 1 );
Assert( GetNumSwizzleComponents( pSrc2Reg ) == 1 );
// This is a 2D dot product, so we only want two entries from the middle components.
CUtlString sArg0 = EnsureNumSwizzleComponents( pSrc0Reg, 2 );
CUtlString sArg1 = EnsureNumSwizzleComponents( pSrc1Reg, 2 );
PrintToBuf( *m_pBufALUCode, "%s = dot( %s, %s ) + %s;\n", pDestReg, sArg0.String(), sArg1.String(), pSrc2Reg );
// If the _SAT instruction modifier is used, then do a saturate here.
if ( nDestToken & D3DSPDM_SATURATE )
{
int nComponents = GetNumSwizzleComponents( pDestReg );
if ( nComponents == 0 )
nComponents = 4;
PrintToBuf( *m_pBufALUCode, "%s = clamp( %s, %s, %s );\n", pDestReg, pDestReg, g_szVecZeros[nComponents], g_szVecOnes[nComponents] );
}
}
else
{
m_bNeedsD2AddTemp = true;
PrintToBuf( *m_pBufALUCode, "MOV DP2A0, %s;\n", pSrc0Reg ); // MOV DP2A0, src0;
PrintToBuf( *m_pBufALUCode, "MOV DP2A0.z, 1;\n" ); // MOV DP2A0.z, 1;
PrintToBuf( *m_pBufALUCode, "MOV DP2A1, %s;\n", pSrc1Reg ); // MOV DP2A1, src1;
PrintToBuf( *m_pBufALUCode, "MOV DP2A1.z, %s;\n", pSrc2Reg ); // MOV DP2A1.z, src2;
PrintToBuf( *m_pBufALUCode, "DP3%s, DP2A0, DP2A1;\n", pDestReg ); // DP3 dest, DP2A0, DP2A1;
if ( nDestToken & D3DSPDM_SATURATE )
{
// Need to saturate asm!
DebuggerBreakIfDebugging();
}
}
}
void D3DToGL::Handle_SINCOS()
{
char pDestReg[16], pSrc0Reg[16];
PrintParameterToString( GetNextToken(), DST_REGISTER, pDestReg, sizeof( pDestReg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc0Reg, sizeof( pSrc0Reg ), true, NULL );
m_bNeedsSinCosDeclarations = true;
if ( m_bGLSL )
{
CUtlString sDest( pDestReg );
CUtlString sArg0 = EnsureNumSwizzleComponents( pSrc0Reg, 1 );// Ensure input is scalar
CUtlString sResult( "vSinCosTmp.xy" ); // Always going to populate this
sResult = FixGLSLSwizzle( sDest, sResult ); // Make sure we match the desired output reg
PrintToBuf( *m_pBufALUCode, "vSinCosTmp.z = %s * %s;\n", sArg0.String(), sArg0.String() );
PrintToBuf( *m_pBufALUCode, "vSinCosTmp.xy = vSinCosTmp.zz * scA.xy + scA.wz;\n" );
PrintToBuf( *m_pBufALUCode, "vSinCosTmp.xy = vSinCosTmp.xy * vSinCosTmp.zz + scB.xy;\n" );
PrintToBuf( *m_pBufALUCode, "vSinCosTmp.xy = vSinCosTmp.xy * vSinCosTmp.zz + scB.wz;\n" );
PrintToBuf( *m_pBufALUCode, "vSinCosTmp.x = vSinCosTmp.x * %s;\n", sArg0.String() );
PrintToBuf( *m_pBufALUCode, "vSinCosTmp.xy = vSinCosTmp.xy * vSinCosTmp.xx;\n" );
PrintToBuf( *m_pBufALUCode, "vSinCosTmp.xy = vSinCosTmp.xy + vSinCosTmp.xy;\n" );
PrintToBuf( *m_pBufALUCode, "vSinCosTmp.x = -vSinCosTmp.x + scB.z;\n" );
PrintToBuf( *m_pBufALUCode, "%s = %s;\n", sDest.String(), sResult.String() );
}
else
{
// This is the code sequence recommended to IHVs by Microsoft in the DirectX 9 DDK:
//
// http://msdn.microsoft.com/en-us/library/ms800337.aspx
//
// MUL SC_TEMP.z, src, src;
// MAD SC_TEMP.xy, SC_TEMP.z, scA, scA.wzyx;
// MAD SC_TEMP.xy, SC_TEMP, SC_TEMP.z, scB;
// MAD SC_TEMP.xy, SC_TEMP, SC_TEMP.z, scB.wzyx;
// MUL SC_TEMP.x, SC_TEMP.x, src;
// MUL SC_TEMP.xy, SC_TEMP, SC_TEMP.x;
// ADD SC_TEMP.xy, SC_TEMP, SC_TEMP;
// ADD SC_TEMP.x, -SC_TEMP.x, scB.z;
StrcatToALUCode( "MUL SC_TEMP.z, " ); // MUL SC_TEMP.z, src, src;
StrcatToALUCode( pSrc0Reg );
StrcatToALUCode( ", " );
StrcatToALUCode( pSrc0Reg );
StrcatToALUCode( ";\n" );
StrcatToALUCode( "MAD SC_TEMP.xy, SC_TEMP.z, scA, scA.wzyx;\n" );
StrcatToALUCode( "MAD SC_TEMP.xy, SC_TEMP, SC_TEMP.z, scB;\n" );
StrcatToALUCode( "MAD SC_TEMP.xy, SC_TEMP, SC_TEMP.z, scB.wzyx;\n" );
StrcatToALUCode( "MUL SC_TEMP.x, SC_TEMP.x, " );
StrcatToALUCode( pSrc0Reg );
StrcatToALUCode( ";\n" );
StrcatToALUCode( "MUL SC_TEMP.xy, SC_TEMP, SC_TEMP.x;\n" );
StrcatToALUCode( "ADD SC_TEMP.xy, SC_TEMP, SC_TEMP;\n" );
StrcatToALUCode( "ADD SC_TEMP.x, -SC_TEMP.x, scB.z;\n" );
StrcatToALUCode( "MOV" );
StrcatToALUCode( pDestReg );
StrcatToALUCode( ", SC_TEMP;\n" );
}
// Eat two more tokens since D3D defines Taylor series constants that we won't need
SkipTokens( 2 );
}
void D3DToGL::Handle_LRP( uint32 nInstruction )
{
if ( m_bGLSL )
{
uint32 nDestToken = GetNextToken();
CUtlString sDest = GetParameterString( nDestToken, DST_REGISTER, false, NULL );
int nARLComp0 = ARL_DEST_NONE;
CUtlString sParam0 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp0 );
int nARLComp1 = ARL_DEST_NONE;
CUtlString sParam1 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp1 );
int nARLComp2 = ARL_DEST_NONE;
CUtlString sParam2 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp2 );
// This optionally inserts a move from our dummy address register to the .x component of the real one
InsertMoveFromAddressRegister( m_pBufALUCode, nARLComp0, nARLComp1, nARLComp2 );
sParam0 = FixGLSLSwizzle( sDest, sParam0 );
sParam1 = FixGLSLSwizzle( sDest, sParam1 );
sParam2 = FixGLSLSwizzle( sDest, sParam2 );
// dest = src0 * (src1 - src2) + src2;
PrintToBuf( *m_pBufALUCode, "%s = %s * ( %s - %s ) + %s;\n", sDest.String(), sParam0.String(), sParam1.String(), sParam2.String(), sParam2.String() );
// If the _SAT instruction modifier is used, then do a saturate here.
if ( nDestToken & D3DSPDM_SATURATE )
{
int nComponents = GetNumSwizzleComponents( sDest.String() );
if ( nComponents == 0 )
nComponents = 4;
PrintToBuf( *m_pBufALUCode, "%s = clamp( %s, %s, %s );\n", sDest.String(), sDest.String(), g_szVecZeros[nComponents], g_szVecOnes[nComponents] );
}
}
else
{
if ( !m_bVertexShader )
{
char buff[256];
PrintOpcode( nInstruction, buff, sizeof( buff ) );
StrcatToALUCode( buff );
PrintParameterToString( GetNextToken(), DST_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
StrcatToALUCode( ", " );
PrintParameterToString( GetNextToken(), SRC_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
StrcatToALUCode( ", " );
PrintParameterToString( GetNextToken(), SRC_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
StrcatToALUCode( ", " );
PrintParameterToString( GetNextToken(), SRC_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
StrcatToALUCode( ";\n" );
}
else // VS doesn't actually have a LRP instruction. Emulate with a SUB and a MAD
{
char pDestReg[16], pSrc0Reg[16], pSrc1Reg[16], pSrc2Reg[16];
m_bNeedsLerpTemp = true;
// dest = src0 * (src1 - src2) + src2;
PrintParameterToString( GetNextToken(), DST_REGISTER, pDestReg, sizeof( pDestReg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc0Reg, sizeof( pSrc0Reg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc1Reg, sizeof( pSrc1Reg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc2Reg, sizeof( pSrc2Reg ), false, NULL );
StrcatToALUCode( "SUB LRP_TEMP, " ); // SUB LRP_TEMP, src1, src2;
StrcatToALUCode( pSrc1Reg );
StrcatToALUCode( ", " );
StrcatToALUCode( pSrc2Reg );
StrcatToALUCode( ";\n" );
StrcatToALUCode( "MAD" ); // MAD dst, src0, LRP_TEMP, src2;
StrcatToALUCode( pDestReg );
StrcatToALUCode( ", " );
StrcatToALUCode( pSrc0Reg );
StrcatToALUCode( ", LRP_TEMP, " );
StrcatToALUCode( pSrc2Reg );
StrcatToALUCode( ";\n" );
}
}
}
void D3DToGL::Handle_TEX( uint32 dwToken, bool bIsTexLDL )
{
char pDestReg[64], pSrc0Reg[64], pSrc1Reg[64];
PrintParameterToString( GetNextToken(), DST_REGISTER, pDestReg, sizeof( pDestReg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc0Reg, sizeof( pSrc0Reg ), false, NULL );
DWORD dwSrc1Token = GetNextToken();
PrintParameterToString( dwSrc1Token, SRC_REGISTER, pSrc1Reg, sizeof( pSrc1Reg ), false, NULL );
if ( m_bGLSL )
{
Assert( (dwSrc1Token & D3DSP_REGNUM_MASK) < ARRAYSIZE( m_dwSamplerTypes ) );
uint32 nSamplerType = m_dwSamplerTypes[dwSrc1Token & D3DSP_REGNUM_MASK];
if ( nSamplerType == SAMPLER_TYPE_2D )
{
CUtlString sCoordVar = EnsureNumSwizzleComponents( pSrc0Reg, 2 );
if ( bIsTexLDL )
{
// Strip out the W component of the pSrc0Reg and pass that as the LOD to texture2DLod.
char szLOD[128], szExtra[8];
GetParamNameWithoutSwizzle( pSrc0Reg, szLOD, sizeof( szLOD ) );
V_snprintf( szExtra, sizeof( szExtra ), ".%c", GetSwizzleComponent( pSrc0Reg, 3 ) );
V_strncat( szLOD, szExtra, sizeof( szLOD ) );
PrintToBuf( *m_pBufALUCode, "%s = texture2DLod( %s, %s, %s );\n", pDestReg, pSrc1Reg, sCoordVar.String(), szLOD );
}
else if ( ( (int) ( dwSrc1Token & D3DSP_REGNUM_MASK ) ) == m_nShadowDepthSampler ) // Syntax for shadow depth sampler
{
// .z is meant to contain the object depth, while .xy contains the 2D tex coords
CUtlString sCoordVar3D = EnsureNumSwizzleComponents( pSrc0Reg, 3 );
PrintToBuf( *m_pBufALUCode, "%s = shadow2D( %s, %s );\n", pDestReg, pSrc1Reg, sCoordVar3D.String() );
Assert( m_dwSamplerTypes[dwSrc1Token & D3DSP_REGNUM_MASK] == SAMPLER_TYPE_2D );
}
else if( ( OpcodeSpecificData( dwToken ) << D3DSP_OPCODESPECIFICCONTROL_SHIFT ) == D3DSI_TEXLD_PROJECT )
{
// This projective case is after the shadow case intentionally, due to the way that "projective"
// loads are overloaded in our D3D shaders for shadow lookups.
//
// We use the vec4 variant of texture2DProj() intentionally here, since it lines up well with Direct3D.
CUtlString s4DProjCoords = EnsureNumSwizzleComponents( pSrc0Reg, 4 ); // Ensure vec4 variant
PrintToBuf( *m_pBufALUCode, "%s = texture2DProj( %s, %s );\n", pDestReg, pSrc1Reg, s4DProjCoords.String() );
}
else
{
PrintToBuf( *m_pBufALUCode, "%s = texture2D( %s, %s );\n", pDestReg, pSrc1Reg, sCoordVar.String() );
}
}
else if ( nSamplerType == SAMPLER_TYPE_3D )
{
CUtlString sCoordVar = EnsureNumSwizzleComponents( pSrc0Reg, 3 );
PrintToBuf( *m_pBufALUCode, "%s = texture3D( %s, %s );\n", pDestReg, pSrc1Reg, sCoordVar.String() );
}
else if ( nSamplerType == SAMPLER_TYPE_CUBE )
{
CUtlString sCoordVar = EnsureNumSwizzleComponents( pSrc0Reg, 3 );
PrintToBuf( *m_pBufALUCode, "%s = textureCube( %s, %s );\n", pDestReg, pSrc1Reg, sCoordVar.String() );
}
else
{
Error( "TEX instruction: unsupported sampler type used" );
}
}
else
{
Assert( !( bIsTexLDL && !m_bGeneratingDebugText ) );
if( ( OpcodeSpecificData( dwToken ) << D3DSP_OPCODESPECIFICCONTROL_SHIFT ) == D3DSI_TEXLD_PROJECT )
{
StrcatToALUCode( "TXP" );
}
else if( ( OpcodeSpecificData( dwToken ) << D3DSP_OPCODESPECIFICCONTROL_SHIFT) == D3DSI_TEXLD_BIAS )
{
StrcatToALUCode( "TXB" );
}
else
{
StrcatToALUCode( "TEX" );
}
// Destination
StrcatToALUCode( pDestReg );
StrcatToALUCode( ", " );
// Source0
StrcatToALUCode( pSrc0Reg );
StrcatToALUCode( ", " );
// Source1
StrcatToALUCode( pSrc1Reg );
StrcatToALUCode( ", " );
// Syntax for shadow depth sampler
if ( ( (int) ( dwSrc1Token & D3DSP_REGNUM_MASK ) ) == m_nShadowDepthSampler )
{
m_bDeclareShadowOption = true;
StrcatToALUCode( "SHADOW" ); // Should result in SHADOW2D target
Assert( m_dwSamplerTypes[dwSrc1Token & D3DSP_REGNUM_MASK] == SAMPLER_TYPE_2D );
}
// Sampler dimension (2D, CUBE, 3D) determined by earlier declaration
StrcatToALUCode( g_szSamplerStrings[m_dwSamplerTypes[dwSrc1Token & D3DSP_REGNUM_MASK]] );
StrcatToALUCode( ";\n" );
}
}
void D3DToGL::StrcatToHeaderCode( const char *pBuf )
{
strcat_s( (char*)m_pBufHeaderCode->Base(), m_pBufHeaderCode->Size(), pBuf );
}
void D3DToGL::StrcatToALUCode( const char *pBuf )
{
strcat_s( (char*)m_pBufALUCode->Base(), m_pBufALUCode->Size(), pBuf );
}
void D3DToGL::StrcatToParamCode( const char *pBuf )
{
strcat_s( (char*)m_pBufParamCode->Base(), m_pBufParamCode->Size(), pBuf );
}
void D3DToGL::StrcatToAttribCode( const char *pBuf )
{
strcat_s( (char*)m_pBufAttribCode->Base(), m_pBufAttribCode->Size(), pBuf );
}
void D3DToGL::Handle_TexLDD( uint32 nInstruction )
{
Assert( !m_bGLSL ); // Not supported yet, but can be if we need it.
char buff[256];
PrintOpcode( nInstruction, buff, sizeof( buff ) );
StrcatToALUCode( buff );
PrintParameterToString( GetNextToken(), DST_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
StrcatToALUCode( ", " );
PrintParameterToString( GetNextToken(), SRC_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
StrcatToALUCode( ", " );
PrintParameterToString( GetNextToken(), SRC_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
StrcatToALUCode( ", " );
PrintParameterToString( GetNextToken(), SRC_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
StrcatToALUCode( ", " );
PrintParameterToString( GetNextToken(), SRC_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
StrcatToALUCode( ";\n" );
}
void D3DToGL::Handle_TexCoord()
{
DebuggerBreakIfDebugging();
// If ps_1_4, this is texcrd
if ( (m_dwMajorVersion == 1) && (m_dwMinorVersion == 4) && (!m_bVertexShader) )
{
StrcatToALUCode( "texcrd" );
}
else // else it's texcoord
{
DebuggerBreakIfDebugging();
StrcatToALUCode( "texcoord" );
}
char buff[256];
PrintParameterToString( GetNextToken(), DST_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
// If ps_1_4, texcrd also has a source parameter
if ((m_dwMajorVersion == 1) && (m_dwMinorVersion == 4) && (!m_bVertexShader))
{
StrcatToALUCode( ", " );
PrintParameterToString( GetNextToken(), SRC_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
}
StrcatToALUCode( ";\n" );
}
void D3DToGL::HandleBinaryOp_GLSL( uint32 nInstruction )
{
uint32 nDestToken = GetNextToken();
CUtlString sParam1 = GetParameterString( nDestToken, DST_REGISTER, false, NULL );
int nARLComp0 = ARL_DEST_NONE;
CUtlString sParam2 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp0 );
int nARLComp1 = ARL_DEST_NONE;
CUtlString sParam3 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp1 );
// This optionally inserts a move from our dummy address register to the .x component of the real one
InsertMoveFromAddressRegister( m_pBufALUCode, nARLComp0, nARLComp1 );
// DST is a weird one. I haven't seen it used anywhere yet but can add support if necessary. This is what it does:
// dest.x = 1;
// dest.y = src0.y * src1.y;
// dest.z = src0.z;
// dest.w = src1.w;
Assert( nInstruction != D3DSIO_DST );
// Since DP3 and DP4 have a scalar as the dest and vectors as the src, don't screw with the swizzle specifications.
if ( nInstruction == D3DSIO_DP3 )
{
sParam2 = EnsureNumSwizzleComponents( sParam2, 3 );
sParam3 = EnsureNumSwizzleComponents( sParam3, 3 );
}
else if ( nInstruction == D3DSIO_DP4 )
{
sParam2 = EnsureNumSwizzleComponents( sParam2, 4 );
sParam3 = EnsureNumSwizzleComponents( sParam3, 4 );
}
else
{
sParam2 = FixGLSLSwizzle( sParam1, sParam2 );
sParam3 = FixGLSLSwizzle( sParam1, sParam3 );
}
char buff[256];
if ( nInstruction == D3DSIO_ADD || nInstruction == D3DSIO_SUB || nInstruction == D3DSIO_MUL )
{
// These all look like x = y op z
PrintToBuf( *m_pBufALUCode, "%s = %s %s %s;\n", sParam1.String(), sParam2.String(), GetGLSLOperatorString( nInstruction ), sParam3.String() );
}
else
{
if ( ( nInstruction == D3DSIO_SGE ) || ( nInstruction == D3DSIO_SLT ) )
{
sParam2 = FixGLSLSwizzle( sParam1, sParam2 );
sParam3 = FixGLSLSwizzle( sParam1, sParam3 );
}
int nDestComponents = GetNumSwizzleComponents( sParam1.String() );
int nSrcComponents = GetNumSwizzleComponents( sParam2.String() );
// All remaining instructions can use GLSL intrinsics like dot() and cross().
bool bDoubleClose = OpenIntrinsic( nInstruction, buff, sizeof( buff ), nDestComponents, nSrcComponents );
if ( ( nSrcComponents == 1 ) && ( nInstruction == D3DSIO_SGE ) )
{
PrintToBuf( *m_pBufALUCode, "%s = %s%s >= %s );\n", sParam1.String(), buff, sParam2.String(), sParam3.String() );
}
else if ( ( nSrcComponents == 1 ) && ( nInstruction == D3DSIO_SLT ) )
{
PrintToBuf( *m_pBufALUCode, "%s = %s%s < %s );\n", sParam1.String(), buff, sParam2.String(), sParam3.String() );
}
else
{
PrintToBuf( *m_pBufALUCode, "%s = %s%s, %s %s;\n", sParam1.String(), buff, sParam2.String(), sParam3.String(), bDoubleClose ? ") )" : ")" );
}
}
// If the _SAT instruction modifier is used, then do a saturate here.
if ( nDestToken & D3DSPDM_SATURATE )
{
int nComponents = GetNumSwizzleComponents( sParam1.String() );
if ( nComponents == 0 )
nComponents = 4;
PrintToBuf( *m_pBufALUCode, "%s = clamp( %s, %s, %s );\n", sParam1.String(), sParam1.String(), g_szVecZeros[nComponents], g_szVecOnes[nComponents] );
}
}
void D3DToGL::HandleBinaryOp_ASM( uint32 nInstruction )
{
CUtlString sParam1 = GetParameterString( GetNextToken(), DST_REGISTER, false, NULL );
int nARLComp0 = ARL_DEST_NONE;
CUtlString sParam2 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp0 );
int nARLComp1 = ARL_DEST_NONE;
CUtlString sParam3 = GetParameterString( GetNextToken(), SRC_REGISTER, false, &nARLComp1 );
// This optionally inserts a move from our dummy address register to the .x component of the real one
InsertMoveFromAddressRegister( m_pBufALUCode, nARLComp0, nARLComp1 );
char buff[256];
PrintOpcode( nInstruction, buff, sizeof( buff ) );
PrintToBuf( *m_pBufALUCode, "%s%s, %s, %s;\n", buff, sParam1.String(), sParam2.String(), sParam3.String() );
}
void D3DToGL::WriteGLSLCmp( const char *pDestReg, const char *pSrc0Reg, const char *pSrc1Reg, const char *pSrc2Reg )
{
int nWriteMaskEntries = GetNumWriteMaskEntries( pDestReg );
for ( int i=0; i < nWriteMaskEntries; i++ )
{
char params[4][256];
WriteParamWithSingleMaskEntry( pDestReg, i, params[0], sizeof( params[0] ) );
WriteParamWithSingleMaskEntry( pSrc0Reg, i, params[1], sizeof( params[1] ) );
WriteParamWithSingleMaskEntry( pSrc1Reg, i, params[2], sizeof( params[2] ) );
WriteParamWithSingleMaskEntry( pSrc2Reg, i, params[3], sizeof( params[3] ) );
PrintToBuf( *m_pBufALUCode, "%s = ( %s >= 0.0 ) ? %s : %s;\n", params[0], params[1], params[2], params[3] );
}
}
void D3DToGL::Handle_CMP()
{
// In Direct3D, result = (src0 >= 0.0) ? src1 : src2
// In OpenGL, result = (src0 < 0.0) ? src1 : src2
//
// As a result, arguments are effectively in a different order than Direct3D! !#$&*!%#$&
char pDestReg[64], pSrc0Reg[64], pSrc1Reg[64], pSrc2Reg[64];
uint32 nDestToken = GetNextToken();
PrintParameterToString( nDestToken, DST_REGISTER, pDestReg, sizeof( pDestReg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc0Reg, sizeof( pSrc0Reg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc1Reg, sizeof( pSrc1Reg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc2Reg, sizeof( pSrc2Reg ), false, NULL );
if ( m_bGLSL )
{
// These are a tricky case.. we have to expand it out into multiple statements.
char szDestBase[256];
GetParamNameWithoutSwizzle( pDestReg, szDestBase, sizeof( szDestBase ) );
V_strncpy( pSrc0Reg, FixGLSLSwizzle( pDestReg, pSrc0Reg ), sizeof( pSrc0Reg ) );
V_strncpy( pSrc1Reg, FixGLSLSwizzle( pDestReg, pSrc1Reg ), sizeof( pSrc1Reg ) );
V_strncpy( pSrc2Reg, FixGLSLSwizzle( pDestReg, pSrc2Reg ), sizeof( pSrc2Reg ) );
if ( DoParamNamesMatch( pDestReg, pSrc0Reg ) && GetNumSwizzleComponents( pDestReg ) > 1 )
{
// So the dest register is the same as the comperand. We're in danger of screwing up our results.
//
// For example, this code:
// CMP r0.xy, r0.xx, r1, r2
// would generate this:
// r0.x = (r0.x >= 0) ? r1.x : r2.x;
// r0.y = (r0.x >= 0) ? r1.x : r2.x;
//
// But the first lines changes r0.x and thus screws the atomicity of the CMP instruction for the second line.
// So we assign r0 to a temporary first and then write to the temporary.
PrintToBuf( *m_pBufALUCode, "%s = %s;\n", g_pAtomicTempVarName, szDestBase );
char szTempVar[256];
ReplaceParamName( pDestReg, g_pAtomicTempVarName, szTempVar, sizeof( szTempVar ) );
WriteGLSLCmp( szTempVar, pSrc0Reg, pSrc1Reg, pSrc2Reg );
PrintToBuf( *m_pBufALUCode, "%s = %s;\n", szDestBase, g_pAtomicTempVarName );
m_bUsedAtomicTempVar = true;
}
else
{
// Just write out the simple expanded version of the CMP. No need to use atomic_temp_var.
WriteGLSLCmp( pDestReg, pSrc0Reg, pSrc1Reg, pSrc2Reg );
}
// If the _SAT instruction modifier is used, then do a saturate here.
if ( nDestToken & D3DSPDM_SATURATE )
{
int nComponents = GetNumSwizzleComponents( pDestReg );
if ( nComponents == 0 )
nComponents = 4;
PrintToBuf( *m_pBufALUCode, "%s = clamp( %s, %s, %s );\n", pDestReg, pDestReg, g_szVecZeros[nComponents], g_szVecOnes[nComponents] );
}
}
else
{
StrcatToALUCode( "CMP" );
StrcatToALUCode( pDestReg );
StrcatToALUCode( ", " );
StrcatToALUCode( pSrc0Reg );
StrcatToALUCode( ", " );
StrcatToALUCode( pSrc2Reg ); // Src 2 |
StrcatToALUCode( ", " ); // |--- Swap these guys from Direct3D's convention
StrcatToALUCode( pSrc1Reg ); // Src 1 |
StrcatToALUCode( ";\n" );
}
}
void D3DToGL::Handle_NRM()
{
char pDestReg[64];
char pSrc0Reg[64];
PrintParameterToString( GetNextToken(), DST_REGISTER, pDestReg, sizeof( pDestReg ), false, NULL );
PrintParameterToString( GetNextToken(), SRC_REGISTER, pSrc0Reg, sizeof( pSrc0Reg ), false, NULL );
if ( m_bGLSL )
{
CUtlString sSrc = EnsureNumSwizzleComponents( pSrc0Reg, 3 );
PrintToBuf( *m_pBufALUCode, "%s = normalize( %s );\n", pDestReg, sSrc.String() );
}
else
{
m_bNeedsNRMTemp = true;
StrcatToALUCode( "DP3 NRM_TEMP.w, " );
StrcatToALUCode( pSrc0Reg );
StrcatToALUCode( ", " );
StrcatToALUCode( pSrc0Reg );
StrcatToALUCode( ";\nRSQ NRM_TEMP.w, NRM_TEMP.w;\nMUL" );
StrcatToALUCode( pDestReg );
StrcatToALUCode( ", NRM_TEMP.w, " );
StrcatToALUCode( pSrc0Reg );
StrcatToALUCode( ";\n" );
}
}
void D3DToGL::Handle_UnaryOp( uint32 nInstruction )
{
uint32 nDestToken = GetNextToken();
CUtlString sParam1 = GetParameterString( nDestToken, DST_REGISTER, false, NULL );
CUtlString sParam2 = GetParameterString( GetNextToken(), SRC_REGISTER, ( nInstruction == D3DSIO_MOVA) && !m_bGLSL, NULL );
sParam2 = FixGLSLSwizzle( sParam1, sParam2 );
if ( m_bGLSL )
{
if ( nInstruction == D3DSIO_MOV )
{
PrintToBuf( *m_pBufALUCode, "%s = %s;\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_RSQ )
{
PrintToBuf( *m_pBufALUCode, "%s = inversesqrt( %s );\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_RCP )
{
PrintToBuf( *m_pBufALUCode, "%s = 1.0 / %s;\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_EXP )
{
PrintToBuf( *m_pBufALUCode, "%s = exp2( %s );\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_FRC )
{
PrintToBuf( *m_pBufALUCode, "%s = fract( %s );\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_LOG ) // d3d 'log' is log base 2
{
PrintToBuf( *m_pBufALUCode, "%s = log2( %s );\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_ABS ) // rbarris did this one, Jason please check
{
PrintToBuf( *m_pBufALUCode, "%s = abs( %s );\n", sParam1.String(), sParam2.String() );
}
else if ( nInstruction == D3DSIO_MOVA )
{
m_bDeclareAddressReg = true;
PrintToBuf( *m_pBufALUCode, "%s = %s;\n", sParam1.String(), sParam2.String() );
m_nHighestRegister = DXABSTRACT_VS_PARAM_SLOTS - 1;
}
else
{
Error( "Unsupported instruction" );
}
// If the _SAT instruction modifier is used, then do a saturate here.
if ( nDestToken & D3DSPDM_SATURATE )
{
int nComponents = GetNumSwizzleComponents( sParam1.String() );
if ( nComponents == 0 )
{
nComponents = 4;
}
PrintToBuf( *m_pBufALUCode, "%s = clamp( %s, %s, %s );\n", sParam1.String(), sParam1.String(), g_szVecZeros[nComponents], g_szVecOnes[nComponents] );
}
}
else
{
if ( nInstruction == D3DSIO_MOVA )
{
m_bDeclareAddressReg = true;
m_nHighestRegister = DXABSTRACT_VS_PARAM_SLOTS - 1;
Assert( m_nHighestRegister < DXABSTRACT_VS_PARAM_SLOTS );
}
char buff[256];
PrintOpcode( nInstruction, buff, sizeof( buff ) );
PrintToBuf( *m_pBufALUCode, "%s%s, %s;\n", buff, sParam1.String(), sParam2.String() );
}
}
void D3DToGL::WriteGLSLSamplerDefinitions()
{
int nSamplersWritten = 0;
for ( int i=0; i < ARRAYSIZE( m_dwSamplerTypes ); i++ )
{
if ( m_dwSamplerTypes[i] == SAMPLER_TYPE_2D )
{
if ( i == m_nShadowDepthSampler )
{
PrintToBuf( *m_pBufHeaderCode, "uniform sampler2DShadow sampler%d;\n", i );
}
else
{
PrintToBuf( *m_pBufHeaderCode, "uniform sampler2D sampler%d;\n", i );
}
++nSamplersWritten;
}
else if ( m_dwSamplerTypes[i] == SAMPLER_TYPE_3D )
{
PrintToBuf( *m_pBufHeaderCode, "uniform sampler3D sampler%d;\n", i );
++nSamplersWritten;
}
else if ( m_dwSamplerTypes[i] == SAMPLER_TYPE_CUBE )
{
PrintToBuf( *m_pBufHeaderCode, "uniform samplerCube sampler%d;\n", i );
++nSamplersWritten;
}
else if ( m_dwSamplerTypes[i] != SAMPLER_TYPE_UNUSED )
{
Error( "Unknown sampler type." );
}
}
if ( nSamplersWritten > 0 )
PrintToBuf( *m_pBufHeaderCode, "\n\n" );
}
void D3DToGL::WriteGLSLOutputVariableAssignments()
{
if ( m_bVertexShader )
{
// Map output "oN" registers back to GLSL output variables.
if ( m_bAddHexCodeComments )
{
PrintToBuf( *m_pBufAttribCode, "\n// Now we're storing the oN variables from the output dcl_ statements back into their GLSL equivalents.\n" );
}
for ( int i=0; i < ARRAYSIZE( m_DeclaredOutputs ); i++ )
{
if ( m_DeclaredOutputs[i] == UNDECLARED_OUTPUT )
continue;
CUtlString sOutputName = GetUsageAndIndexString( m_DeclaredOutputs[i], SEMANTIC_OUTPUT );
PrintToBuf( *m_pBufAttribCode, "%s = oT%d;\n", sOutputName.String(), i );
}
}
}
void D3DToGL::Handle_DeclarativeNonDclOp( uint32 nInstruction )
{
char buff[128];
uint32 dwToken = GetNextToken();
PrintParameterToString( dwToken, DST_REGISTER, buff, sizeof( buff ), false, NULL );
if ( m_bGLSL && nInstruction == D3DSIO_TEXKILL )
{
// TEXKILL is supposed to discard the pixel if any of the src register's X, Y, or Z components are less than zero.
// We have to translate it to something like:
// if ( r0.x < 0.0 || r0.y < 0.0 )
// discard;
char c[3];
c[0] = GetSwizzleComponent( buff, 0 );
c[1] = GetSwizzleComponent( buff, 1 );
c[2] = GetSwizzleComponent( buff, 2 );
// Get the unique components.
char cUnique[3];
cUnique[0] = c[0];
int nUnique = 1;
if ( c[1] != c[0] )
cUnique[nUnique++] = c[1];
if ( c[2] != c[1] && c[2] != c[0] )
cUnique[nUnique++] = c[2];
// Get the src register base name.
char szBase[256];
GetParamNameWithoutSwizzle( buff, szBase, sizeof( szBase ) );
PrintToBuf( *m_pBufALUCode, "if ( %s.%c < 0.0 ", szBase, cUnique[0] );
for ( int i=1; i < nUnique; i++ )
{
PrintToBuf( *m_pBufALUCode, "|| %s.%c < 0.0 ", szBase, cUnique[i] );
}
PrintToBuf( *m_pBufALUCode, ")\n{\n\tdiscard;\n}\n" );
}
else
{
char szOpcode[128];
PrintOpcode( nInstruction, szOpcode, sizeof( szOpcode ) );
StrcatToALUCode( szOpcode );
StrcatToALUCode( buff );
StrcatToALUCode( ";\n" );
}
}
void D3DToGL::NoteTangentInputUsed()
{
if ( !m_bTangentInputUsed )
{
m_bTangentInputUsed = true;
// PrintToBuf( *m_pBufParamCode, "attribute vec4 %s;\n", g_pTangentAttributeName );
}
}
// These are the only ARL instructions that should appear in the instruction stream
void D3DToGL::InsertMoveInstruction( CUtlBuffer *pCode, int nARLComponent )
{
switch ( nARLComponent )
{
case ARL_DEST_X:
strcat_s( ( char * )pCode->Base(), pCode->Size(), m_bGLSL ? "a0 = int( va_r.x );\n" : "ARL a0.x, VA_REG.x;\n" );
break;
case ARL_DEST_Y:
strcat_s( ( char * )pCode->Base(), pCode->Size(), m_bGLSL ? "a0 = int( va_r.y );\n" : "ARL a0.x, VA_REG.y;\n" );
break;
case ARL_DEST_Z:
strcat_s( ( char * )pCode->Base(), pCode->Size(), m_bGLSL ? "a0 = int( va_r.z );\n" : "ARL a0.x, VA_REG.z;\n" );
break;
case ARL_DEST_W:
strcat_s( ( char * )pCode->Base(), pCode->Size(), m_bGLSL ? "a0 = int( va_r.w );\n" : "ARL a0.x, VA_REG.w;\n" );
break;
}
}
// This optionally inserts a move from our dummy address register to the .x component of the real one
void D3DToGL::InsertMoveFromAddressRegister( CUtlBuffer *pCode, int nARLComp0, int nARLComp1, int nARLComp2 /* = ARL_DEST_NONE */ )
{
int nNumSwizzles = 0;
if ( nARLComp0 != ARL_DEST_NONE )
nNumSwizzles++;
if ( nARLComp1 != ARL_DEST_NONE )
nNumSwizzles++;
if ( nARLComp2 != ARL_DEST_NONE )
nNumSwizzles++;
// We shouldn't have any more than one indirect address usage in a single instruction
Assert( nNumSwizzles <= 1 );
if ( nARLComp0 != ARL_DEST_NONE )
{
InsertMoveInstruction( pCode, nARLComp0 );
}
else if ( nARLComp1 != ARL_DEST_NONE )
{
InsertMoveInstruction( pCode, nARLComp1 );
}
else if ( nARLComp2 != ARL_DEST_NONE )
{
InsertMoveInstruction( pCode, nARLComp2 );
}
}
//------------------------------------------------------------------------------
// TranslateShader()
//
// This is the main function that the outside world sees. A pointer to the
// uint32 stream returned from the D3DX compile routine is parsed and used
// to write human-readable asm code into the character array pointed to by
// pDisassembledCode. An error code is returned.
//------------------------------------------------------------------------------
static int g_translationCounter = 0;
int D3DToGL::TranslateShader( uint32* code, CUtlBuffer *pBufDisassembledCode, bool *bVertexShader, uint32 options, int32 nShadowDepthSampler, uint32 nCentroidMask, char *debugLabel )
{
CUtlString sLine, sParamName;
uint32 i, dwToken, nInstruction, nNumTokensToSkip;
char buff[256];
// obey options
m_bUseEnvParams = (options & D3DToGL_OptionUseEnvParams) != 0;
m_bDoFixupZ = (options & D3DToGL_OptionDoFixupZ) != 0;
m_bDoFixupY = (options & D3DToGL_OptionDoFixupY) != 0;
m_bDoUserClipPlanes = (options & D3DToGL_OptionDoUserClipPlanes) != 0;
m_bGLSL = (options & D3DToGL_OptionGLSL) != 0;
m_bAllowStaticControlFlow = m_bGLSL && (options & D3DToGL_OptionAllowStaticControlFlow) != 0;
m_bAddHexCodeComments = (options & D3DToGL_AddHexComments) != 0;
m_bPutHexCodesAfterLines = (options & D3DToGL_PutHexCommentsAfterLines) != 0;
m_bGeneratingDebugText = (options & D3DToGL_GeneratingDebugText) != 0;
m_bUseBindableUniforms = (options & D3DToGL_OptionUseBindableUniforms) != 0;
m_bGenerateSRGBWriteSuffix = (options & D3DToGL_OptionSRGBWriteSuffix) != 0;
m_nLoopDepth = 0;
// debugging
m_bSpew = (options & D3DToGL_OptionSpew) != 0;
// m_bSpew |= (g_translationCounter == 1012 ); // interested in this specific translation run
// These are not accessed below in a way that will cause them to glow, so
// we could overflow these and/or the buffer pointed to by pDisassembledCode
m_pBufAttribCode = new CUtlBuffer( 100, 10000, CUtlBuffer::TEXT_BUFFER );
m_pBufParamCode = new CUtlBuffer( 100, 10000, CUtlBuffer::TEXT_BUFFER );
m_pBufALUCode = new CUtlBuffer( 100, 60000, CUtlBuffer::TEXT_BUFFER );
// Pointers to text buffers for assembling sections of the program
m_pBufHeaderCode = pBufDisassembledCode;
char *pAttribMapStart = NULL;
((char*)m_pBufHeaderCode->Base())[0] = 0;
((char*)m_pBufAttribCode->Base())[0] = 0;
((char*)m_pBufParamCode->Base())[0] = 0;
((char*)m_pBufALUCode->Base())[0] = 0;
for ( i=0; i<MAX_SHADER_CONSTANTS; i++ )
{
m_bConstantRegisterDefined[i] = false;
}
// Track shadow sampler usage for proper declaration
m_nShadowDepthSampler = nShadowDepthSampler;
m_bDeclareShadowOption = false;
// Various flags set while parsing code to drive various declaration instructions
m_bNeedsD2AddTemp = false;
m_bNeedsLerpTemp = false;
m_bNeedsNRMTemp = false;
m_bNeedsSinCosDeclarations = false;
m_bDeclareAddressReg = false;
m_bDeclareVSOPos = false;
m_bDeclareVSOFog = false;
m_dwTexCoordOutMask = 0x00000000;
m_bOutputColorRegister[0] = false;
m_bOutputColorRegister[1] = false;
m_bOutputColorRegister[2] = false;
m_bOutputColorRegister[3] = false;
m_bOutputDepthRegister = false;
m_bTangentInputUsed = false;
m_dwTempUsageMask = 0x00000000;
m_dwSamplerUsageMask = 0x00000000;
m_dwConstIntUsageMask = 0x00000000;
m_dwConstBoolUsageMask = 0x00000000;
m_nCentroidMask = nCentroidMask;
m_nHighestRegister = 0;
m_bUsedAtomicTempVar = false;
for ( int i=0; i < ARRAYSIZE( m_dwSamplerTypes ); i++ )
{
m_dwSamplerTypes[i] = SAMPLER_TYPE_UNUSED;
}
for ( int i=0; i < ARRAYSIZE( m_DeclaredOutputs ); i++ )
{
m_DeclaredOutputs[i] = UNDECLARED_OUTPUT;
}
memset( m_dwAttribMap, 0xFF, sizeof(m_dwAttribMap) );
m_pdwBaseToken = m_pdwNextToken = code; // Initialize dwToken pointers
dwToken = GetNextToken();
m_dwMajorVersion = D3DSHADER_VERSION_MAJOR( dwToken );
m_dwMinorVersion = D3DSHADER_VERSION_MINOR( dwToken );
// We only do vs_2_0 and ps_2_x
if ( m_dwMajorVersion != 2 )
{
Debugger();
}
// If pixel shader
char *glslBindableUniformExtText = (char*)((m_bGLSL && m_bUseBindableUniforms) ? "#extension GL_EXT_bindable_uniform : enable\n" : "");
if ( ( dwToken & 0xFFFF0000 ) == 0xFFFF0000 )
{
// must explicitly enable extensions if emitting GLSL
V_snprintf( (char *)m_pBufHeaderCode->Base(), m_pBufHeaderCode->Size(), m_bGLSL ? "#version 120\n%s" : "!!ARBfp1.0\n", glslBindableUniformExtText );
m_bVertexShader = false;
}
else // vertex shader
{
m_bGenerateSRGBWriteSuffix = false;
if ( m_bGLSL )
{
V_snprintf( (char *)m_pBufHeaderCode->Base(), m_pBufHeaderCode->Size(), "#version 120\n%s//ATTRIBMAP-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx\n", glslBindableUniformExtText );
}
else // asm
{
if ( m_bDoUserClipPlanes )
{
// include "OPTION NV_vertex_program2;"
V_snprintf( (char *)m_pBufHeaderCode->Base(), m_pBufHeaderCode->Size(), "!!ARBvp1.0\n#//ATTRIBMAP-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx\nOPTION NV_vertex_program2;\n" );
}
else
{
// do not include "OPTION NV_vertex_program2;"
V_snprintf( (char *)m_pBufHeaderCode->Base(), m_pBufHeaderCode->Size(), "!!ARBvp1.0\n#//ATTRIBMAP-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx\n" );
}
}
// find that first '-xx' which is where the attrib map will be written later.
pAttribMapStart = strstr( (char *)m_pBufHeaderCode->Base(), "-xx" ) + 1;
m_bVertexShader = true;
}
*bVertexShader = m_bVertexShader;
if ( m_bAddHexCodeComments )
{
RecordInputAndOutputPositions();
}
if ( m_bSpew )
{
printf("\n************* translating shader " );
}
int opcounter = 0;
// Loop until we hit the end dwToken...note that D3DPS_END() == D3DVS_END() so this works for either
while ( dwToken != D3DPS_END() )
{
if ( m_bAddHexCodeComments )
{
AddTokenHexCode();
RecordInputAndOutputPositions();
}
#ifdef POSIX
int tokenIndex = m_pdwNextToken - code;
#endif
int aluCodeLength0 = V_strlen( (char *) m_pBufALUCode->Base() );
dwToken = GetNextToken(); // Get next dwToken in the stream
nInstruction = Opcode( dwToken ); // Mask out the instruction opcode
if ( m_bSpew )
{
#ifdef POSIX
printf("\n** token# %04x inst# %04d opcode %s (%08x)", tokenIndex, opcounter, GLMDecode(eD3D_SIO, nInstruction), dwToken );
#endif
opcounter++;
}
switch ( nInstruction )
{
// -- No arguments at all -----------------------------------------------
case D3DSIO_NOP:
case D3DSIO_PHASE:
case D3DSIO_RET:
case D3DSIO_ENDLOOP:
case D3DSIO_BREAK:
DebuggerBreakIfDebugging();
PrintOpcode( nInstruction, buff, sizeof( buff ) );
StrcatToALUCode( buff );
StrcatToALUCode( ";\n" );
break;
// -- "Declarative" non dcl ops ----------------------------------------
case D3DSIO_TEXDEPTH:
case D3DSIO_TEXKILL:
Handle_DeclarativeNonDclOp( nInstruction );
break;
// -- Unary ops -------------------------------------------------
case D3DSIO_BEM:
case D3DSIO_TEXBEM:
case D3DSIO_TEXBEML:
case D3DSIO_TEXDP3:
case D3DSIO_TEXDP3TEX:
case D3DSIO_TEXM3x2DEPTH:
case D3DSIO_TEXM3x2TEX:
case D3DSIO_TEXM3x3:
case D3DSIO_TEXM3x3PAD:
case D3DSIO_TEXM3x3TEX:
case D3DSIO_TEXM3x3VSPEC:
case D3DSIO_TEXREG2AR:
case D3DSIO_TEXREG2GB:
case D3DSIO_TEXREG2RGB:
case D3DSIO_LABEL:
case D3DSIO_CALL:
case D3DSIO_LOOP:
case D3DSIO_BREAKP:
case D3DSIO_DSX:
case D3DSIO_DSY:
DebuggerBreakIfDebugging();
break;
case D3DSIO_IF:
Assert( m_bGLSL && m_bAllowStaticControlFlow );
if ( m_bGLSL && m_bAllowStaticControlFlow )
{
dwToken = GetNextToken();
PrintParameterToString( dwToken, SRC_REGISTER, buff, sizeof( buff ), false, NULL );
// In practice, this is the only form of for loop that will appear in DX asm
PrintToBuf( *m_pBufALUCode, "if ( %s ) {\n", buff );
}
break;
case D3DSIO_ELSE:
Assert( m_bGLSL && m_bAllowStaticControlFlow );
if ( m_bGLSL && m_bAllowStaticControlFlow )
{
StrcatToALUCode( "}\nelse\n{\n" );
}
break;
case D3DSIO_ENDIF:
Assert( m_bGLSL && m_bAllowStaticControlFlow );
if ( m_bGLSL && m_bAllowStaticControlFlow )
{
StrcatToALUCode( "}\n" );
}
break;
case D3DSIO_REP: // Start a for loop - GLSL only
Assert( m_bGLSL && m_bAllowStaticControlFlow );
if ( m_bGLSL && m_bAllowStaticControlFlow )
{
dwToken = GetNextToken();
PrintParameterToString( dwToken, SRC_REGISTER, buff, sizeof( buff ), false, NULL );
// In practice, this is the only form of for loop that will appear in DX asm
PrintToBuf( *m_pBufALUCode, "for( int i=0; i < %s; i++ ) {\n", buff );
m_nLoopDepth++;
// For now, we don't deal with loop nesting
// Easy enough to fix later with an array of loop names i, j, k etc
Assert( m_nLoopDepth <= 1 );
}
break;
case D3DSIO_ENDREP:
Assert( m_bGLSL && m_bAllowStaticControlFlow );
if ( m_bGLSL && m_bAllowStaticControlFlow )
{
m_nLoopDepth--;
StrcatToALUCode( "}\n" );
}
break;
case D3DSIO_NRM:
Handle_NRM();
break;
case D3DSIO_MOVA:
if ( m_bGLSL )
{
Handle_UnaryOp( nInstruction );
}
else // asm
{
m_bDeclareAddressReg = true;
m_nHighestRegister = DXABSTRACT_VS_PARAM_SLOTS - 1;
PrintOpcode( nInstruction, buff, sizeof( buff ) );
StrcatToALUCode( buff );
dwToken = GetNextToken();
PrintParameterToString( dwToken, DST_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
StrcatToALUCode( ", " );
dwToken = GetNextToken();
PrintParameterToString( dwToken, SRC_REGISTER, buff, sizeof( buff ), false, NULL );
StrcatToALUCode( buff );
StrcatToALUCode( ";\n" );
}
break;
// Unary operations
case D3DSIO_MOV:
case D3DSIO_RCP:
case D3DSIO_RSQ:
case D3DSIO_EXP:
case D3DSIO_EXPP:
case D3DSIO_LOG:
case D3DSIO_LOGP:
case D3DSIO_FRC:
case D3DSIO_LIT:
case D3DSIO_ABS:
Handle_UnaryOp( nInstruction );
break;
// -- Binary ops -------------------------------------------------
case D3DSIO_TEXM3x3SPEC:
case D3DSIO_M4x4:
case D3DSIO_M4x3:
case D3DSIO_M3x4:
case D3DSIO_M3x3:
case D3DSIO_M3x2:
case D3DSIO_CALLNZ:
case D3DSIO_IFC:
case D3DSIO_BREAKC:
case D3DSIO_SETP:
DebuggerBreakIfDebugging();
break;
// Binary Operations
case D3DSIO_ADD:
case D3DSIO_SUB:
case D3DSIO_MUL:
case D3DSIO_DP3:
case D3DSIO_DP4:
case D3DSIO_MIN:
case D3DSIO_MAX:
case D3DSIO_DST:
case D3DSIO_SLT:
case D3DSIO_SGE:
case D3DSIO_CRS:
case D3DSIO_POW:
if ( m_bGLSL )
{
HandleBinaryOp_GLSL( nInstruction );
}
else
{
HandleBinaryOp_ASM( nInstruction );
}
break;
// -- Ternary ops -------------------------------------------------
case D3DSIO_DP2ADD:
Handle_DP2ADD();
break;
case D3DSIO_LRP:
Handle_LRP( nInstruction );
break;
case D3DSIO_SGN:
Assert( m_bVertexShader );
DebuggerBreakIfDebugging(); // TODO emulate with SLT etc
break;
case D3DSIO_CND:
DebuggerBreakIfDebugging();
break;
case D3DSIO_CMP:
Handle_CMP();
break;
case D3DSIO_SINCOS:
Handle_SINCOS();
break;
case D3DSIO_MAD:
Handle_MAD( nInstruction );
break;
// -- Quaternary op ------------------------------------------------
case D3DSIO_TEXLDD:
Handle_TexLDD( nInstruction );
break;
// -- Special cases: texcoord vs texcrd and tex vs texld -----------
case D3DSIO_TEXCOORD:
Handle_TexCoord();
break;
case D3DSIO_TEX:
Handle_TEX( dwToken, false );
break;
case D3DSIO_TEXLDL:
Handle_TEX( nInstruction, true );
break;
case D3DSIO_DCL:
Handle_DCL();
break;
case D3DSIO_DEFB:
case D3DSIO_DEFI:
// Shouldn't be using bool or integer constants
DebuggerBreakIfDebugging();
break;
case D3DSIO_DEF:
Handle_DEF();
break;
case D3DSIO_COMMENT:
// Using OpcodeSpecificData() can fail here since the comments can be longer than 0xff dwords
nNumTokensToSkip = ( dwToken & 0x0fff0000 ) >> 16;
SkipTokens( nNumTokensToSkip );
break;
case D3DSIO_END:
break;
}
if ( m_bSpew )
{
int aluCodeLength1 = V_strlen( (char *) m_pBufALUCode->Base() );
if ( aluCodeLength1 != aluCodeLength0 )
{
// code was emitted
printf( "\n > %s", ((char *)m_pBufALUCode->Base()) + aluCodeLength0 );
aluCodeLength0 = aluCodeLength1;
}
}
}
// Note that this constant packing expects .wzyx swizzles in case we ever use the SINCOS code in a ps_2_x shader
//
// The Microsoft documentation on this is all kinds of broken and, strangely, these numbers don't even
// match the D3DSINCOSCONST1 and D3DSINCOSCONST2 constants used by the D3D assembly sincos instruction...
if ( m_bNeedsSinCosDeclarations )
{
if ( m_bGLSL )
{
StrcatToParamCode( "vec4 scA = vec4( -1.55009923e-6, -2.17013894e-5, 0.00260416674, 0.00026041668 );\n" );
StrcatToParamCode( "vec4 scB = vec4( -0.020833334, -0.125, 1.0, 0.5 );\n" );
}
else
{
StrcatToParamCode( "PARAM scA = { -1.55009923e-6, -2.17013894e-5, 0.00260416674, 0.00026041668 };\n" );
StrcatToParamCode( "PARAM scB = { -0.020833334, -0.125, 1.0, 0.5 };\n" );
}
}
// Stick in the sampler mask in hex
PrintToBuf( *m_pBufHeaderCode, "%sSAMPLERMASK-%x\n", m_bGLSL ? "//" : "#", m_dwSamplerUsageMask );
// Uniforms
if ( m_bGLSL )
{
PrintToBuf( *m_pBufHeaderCode, "//HIGHWATER-%d\n", m_nHighestRegister );
PrintToBuf( *m_pBufHeaderCode, "\n%suniform vec4 %s[%d];\n", m_bUseBindableUniforms ? "bindable " : "", m_bVertexShader ? "vc" : "pc", m_nHighestRegister + 1 );
// On GLSL vertex shaders, we may have integer and boolean constants
if ( m_bAllowStaticControlFlow && m_bVertexShader )
{
for( int i=0; i<32; i++ )
{
if ( m_dwConstIntUsageMask & ( 0x00000001 << i ) )
{
PrintToBuf( *m_pBufHeaderCode, "uniform int i%d;\n", i );
}
}
for( int i=0; i<32; i++ )
{
if ( m_dwConstBoolUsageMask & ( 0x00000001 << i ) )
{
PrintToBuf( *m_pBufHeaderCode, "uniform bool b%d;\n", i );
}
}
}
// Control bit for sRGB Write suffix
if ( m_bGenerateSRGBWriteSuffix )
{
// R500 Hookup
// Set this guy to 1 when the sRGBWrite state is true, otherwise 0
StrcatToHeaderCode( "uniform float flSRGBWrite;\n" );
}
PrintToBuf( *m_pBufHeaderCode, "\n" );
// Write samplers
WriteGLSLSamplerDefinitions();
}
else
{
PrintToBuf( *m_pBufParamCode, "#HIGHWATER-%d\n", m_nHighestRegister );
PrintToBuf( *m_pBufParamCode, "PARAM %s[%d] = { program.%s[0..%d] };\n", m_bVertexShader ? "vc" : "pc", m_nHighestRegister + 1, m_bUseEnvParams ? "env" : "local", m_nHighestRegister );
}
if ( m_bDeclareAddressReg )
{
m_nHighestRegister = DXABSTRACT_VS_PARAM_SLOTS - 1;
if ( m_bGLSL )
{
StrcatToParamCode( "vec4 va_r;\nint a0;\n" );
}
else
{
StrcatToParamCode( "ADDRESS a0;\n" );
StrcatToParamCode( "TEMP VA_REG;\n" );
}
}
char *pTempVarStr = "TEMP";
if ( m_bGLSL )
{
pTempVarStr = "vec4";
}
// Declare temps in Param code buffer
for( int i=0; i<32; i++ )
{
if ( m_dwTempUsageMask & ( 0x00000001 << i ) )
{
PrintToBuf( *m_pBufParamCode, "%s r%d;\n", pTempVarStr, i );
}
}
if ( m_bGLSL && m_bVertexShader )
{
StrcatToParamCode( "vec4 vTempPos;\n" );
}
if ( m_bNeedsSinCosDeclarations )
{
if ( m_bGLSL )
{
StrcatToParamCode( "vec3 vSinCosTmp;\n" ); // declare temp used by GLSL sin and cos intrinsics
}
else
{
PrintToBuf( *m_pBufParamCode, "%s SC_TEMP;\n", pTempVarStr );
}
}
// Optional temps needed to emulate d2add instruction in DX pixel shaders
if ( m_bNeedsD2AddTemp )
{
PrintToBuf( *m_pBufParamCode, "%s DP2A0;\n%s DP2A1;\n", pTempVarStr, pTempVarStr );
}
// Optional temp needed to emulate lerp instruction in DX vertex shaders
if ( m_bNeedsLerpTemp )
{
PrintToBuf( *m_pBufParamCode, "%s LRP_TEMP;\n", pTempVarStr );
}
// Optional temp needed to emulate NRM instruction in DX shaders
if ( m_bNeedsNRMTemp )
{
PrintToBuf( *m_pBufParamCode, "%s NRM_TEMP;\n", pTempVarStr );
}
// Pixel shader color outputs (MRT support?...just declare MRT outputs as useless TEMPS)
if ( !m_bGLSL && !m_bVertexShader )
{
if ( m_bOutputColorRegister[1] )
{
StrcatToParamCode( "TEMP oC1;\n" );
}
if ( m_bOutputColorRegister[2] )
{
StrcatToParamCode( "TEMP oC2;\n" );
}
if ( m_bOutputColorRegister[3] )
{
StrcatToParamCode( "TEMP oC3;\n" );
}
if ( m_bOutputColorRegister[0] )
{
StrcatToParamCode( "OUTPUT oC0 = result.color;\n" );
}
}
if ( m_bDeclareVSOPos && m_bVertexShader )
{
if ( m_bGLSL )
{
if (m_bDoUserClipPlanes)
{
StrcatToALUCode( "gl_ClipVertex = vTempPos;\n" ); // if user clip is enabled, jam clip space position into gl_ClipVertex
}
}
if ( m_bDoFixupZ || m_bDoFixupY )
{
if ( !m_bGLSL )
{
// don't write to real reg - declare a temp and then declare a new output reg oPosGL
StrcatToParamCode( "TEMP oPos;\n" );
StrcatToParamCode( "OUTPUT oPosGL = result.position;\n" );
}
// TODO: insert clip distance computation something like this:
//
// StrcatToALUCode( "DP4 oCLP[0].x, oPos, vc[215]; \n" );
//
if ( m_bDoFixupZ )
{
if ( m_bGLSL )
{
StrcatToALUCode( "vTempPos.z = vTempPos.z * vc[0].z - vTempPos.w; // z' = (2*z)-w\n" );
}
else
{
// append instructions to perform Z fixup
// new Z = (old Z * 2.0) - W
// negate Z, double it, then add the 'w'.
// near: Z=0 -> Z' = +1.0. this seems wrong....
// far: Z=1 -> Z' = -1.0 uh, this ain't right...
// StrcatToALUCode( "MAD r0.z, -oPos.z, vc[0].z, oPos.w; # z' = (2*-z)+w\n" );
// double Z, subtract 'w'.
// near: Z=0 -> Z' = -1.0.
// far: Z=1 -> Z' = +1.0
//StrcatToALUCode( "MAD r0.z, oPos.z, vc[0].z, -oPos.w; # z' = (2*z)-w\n" );
StrcatToALUCode( "MAD oPos.z, oPos.z, vc[0].z, -oPos.w; # z' = (2*z)-w\n" );
}
}
if ( m_bDoFixupY )
{
// append instructions to flip Y over
// new Y = -(old Y)
if ( m_bGLSL )
{
StrcatToALUCode( "vTempPos.y = -vTempPos.y; // y' = -y \n" );
}
else
{
StrcatToALUCode( "MOV oPos.y, -oPos.y; # y' = -y \n" );
}
}
if ( m_bGLSL )
{
StrcatToALUCode( "gl_Position = vTempPos;\n" );
}
else
{
StrcatToALUCode( "MOV oPosGL, oPos;\n" );
}
}
else
{
StrcatToParamCode( "OUTPUT oPos = result.position;\n" );
// TODO: insert clip distance computation something like this:
//
// StrcatToALUCode( "DP4 oCLP[0].x, oPos, c[215]; \n" );
//
}
}
if ( m_bVertexShader && m_bDoUserClipPlanes && !m_bGLSL )
{
// insert oCLP generation instructions
char temp[256];
if(0)
{
V_snprintf( temp, sizeof( temp ), "DP4 result.clip[0].x, oPos, c[%d];\n", DXABSTRACT_VS_CLIP_PLANE_BASE ); // ask GLM where to stash the secret params
V_snprintf( temp, sizeof( temp ), "DP4 result.clip[1].x, oPos, c[%d];\n", DXABSTRACT_VS_CLIP_PLANE_BASE+1 );
}
if(0)
{
V_snprintf( temp, sizeof( temp ), "DP4 o[CLP0].x, oPos, c[%d];\n", DXABSTRACT_VS_CLIP_PLANE_BASE ); // ask GLM where to stash the secret params
V_snprintf( temp, sizeof( temp ), "DP4 o[CLP1].x, oPos, c[%d];\n", DXABSTRACT_VS_CLIP_PLANE_BASE+1 );
}
if(1)
{
V_snprintf( temp, sizeof( temp ), "DP4 oClip0.x, oPos, c[%d];\n", DXABSTRACT_VS_CLIP_PLANE_BASE ); // ask GLM where to stash the secret params
V_snprintf( temp, sizeof( temp ), "DP4 oClip1.x, oPos, c[%d];\n", DXABSTRACT_VS_CLIP_PLANE_BASE+1 );
}
StrcatToALUCode( temp );
}
if ( m_bGLSL )
{
if ( m_bVertexShader )
{
for ( int i=0; i<32; i++ )
{
char outTexCoordBuff[64];
if ( m_dwTexCoordOutMask & ( 0x00000001 << i ) )
{
if ( m_nCentroidMask & ( 0x00000001 << i ) )
{
V_snprintf( outTexCoordBuff, sizeof( outTexCoordBuff ), "centroid varying vec4 oT%d;\n", i ); // centroid varying
StrcatToHeaderCode( outTexCoordBuff );
}
else
{
V_snprintf( outTexCoordBuff, sizeof( outTexCoordBuff ), "varying vec4 oT%d;\n", i );
StrcatToHeaderCode( outTexCoordBuff );
}
}
}
}
}
else // asm
{
if ( m_bDeclareVSOFog && m_bVertexShader )
{
StrcatToParamCode( "OUTPUT oFog = result.fogcoord;\n" );
}
for ( int i=0; i<32; i++ )
{
char outTexCoordBuff[64];
if ( m_dwTexCoordOutMask & ( 0x00000001 << i ) )
{
V_snprintf( outTexCoordBuff, sizeof( outTexCoordBuff ), "OUTPUT oT%d = result.texcoord[%d];\n", i, i );
StrcatToParamCode( outTexCoordBuff );
}
}
if ( m_bOutputColorRegister[0] && m_bVertexShader )
{
StrcatToParamCode( "OUTPUT oD0 = result.color;\n" );
}
if ( m_bOutputColorRegister[1] && m_bVertexShader )
{
StrcatToParamCode( "OUTPUT oD1 = result.color.secondary;\n" );
}
}
if ( m_bOutputDepthRegister && !m_bVertexShader && !m_bGLSL )
{
StrcatToParamCode( "OUTPUT oDepth = result.depth;\n" );
}
if ( m_bDoUserClipPlanes && m_bVertexShader && !m_bGLSL )
{
StrcatToParamCode( "OUTPUT oClip0 = result.clip[0];\n" );
StrcatToParamCode( "OUTPUT oClip1 = result.clip[1];\n" );
}
// do some annotation at the end of the attrib block
{
char temp[1000];
if ( m_bVertexShader )
{
// write attrib map into the text starting at pAttribMapStart - two hex digits per attrib
for( int i=0; i<16; i++ )
{
if ( m_dwAttribMap[i] != 0xFFFFFFFF )
{
V_snprintf( temp, sizeof(temp), "%02X", m_dwAttribMap[i] );
memcpy( pAttribMapStart + (i*3), temp, 2 );
}
}
}
V_snprintf( temp, sizeof(temp), "%s trans#%d label:%s\n", m_bGLSL ? "//" : "#", g_translationCounter, debugLabel ? debugLabel : "none" );
StrcatToAttribCode( temp );
g_translationCounter++;
}
// If we actually sample from a shadow depth sampler, we need to declare the shadow option at the top
if ( m_bDeclareShadowOption )
{
StrcatToHeaderCode( "OPTION ARB_fragment_program_shadow;\n" );
}
if ( m_bGLSL )
{
StrcatToHeaderCode( "\nvoid main()\n{\n" );
if ( m_bUsedAtomicTempVar )
{
PrintToBuf( *m_pBufHeaderCode, "vec4 %s;\n\n", g_pAtomicTempVarName );
}
}
// sRGB Write suffix
if ( m_bGenerateSRGBWriteSuffix )
{
Assert( m_bGLSL );
if ( m_bGLSL )
{
StrcatToALUCode( "vec3 sRGBFragData;\n" );
StrcatToALUCode( "sRGBFragData.xyz = log( gl_FragData[0].xyz );\n" );
StrcatToALUCode( "sRGBFragData.xyz = sRGBFragData.xyz * vec3( 0.454545f, 0.454545f, 0.454545f );\n" );
StrcatToALUCode( "sRGBFragData.xyz = exp( sRGBFragData.xyz );\n" );
StrcatToALUCode( "gl_FragData[0].xyz = mix( gl_FragData[0].xyz, sRGBFragData, flSRGBWrite );\n" );
}
}
if ( m_bGLSL )
{
WriteGLSLOutputVariableAssignments();
StrcatToALUCode( "\n}\n" );
}
else
{
StrcatToALUCode( "END\n\0" );
}
// Put all of the strings together for final program ( pHeaderCode + pAttribCode + pParamCode + pALUCode )
StrcatToHeaderCode( (char*)m_pBufAttribCode->Base() );
StrcatToHeaderCode( (char*)m_pBufParamCode->Base() );
StrcatToHeaderCode( (char*)m_pBufALUCode->Base() );
// Cleanup - don't touch m_pBufHeaderCode, as it is managed by the caller
delete m_pBufAttribCode;
delete m_pBufParamCode;
delete m_pBufALUCode;
m_pBufAttribCode = m_pBufParamCode = m_pBufALUCode = NULL;
if ( m_bSpew )
{
printf("\n************* translation complete\n\n " );
}
return DISASM_OK;
}