Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

495 lines
13 KiB

#include <basetypes.h>
#include <float.h>
#include "simplex.h"
// a nice tutorial on simplex method: http://math.uww.edu/~mcfarlat/ism.htm
CSimplex::CSimplex():
m_numVariables(0),m_numConstraints(0),m_pTableau(0),m_pInitialTableau(0), m_pSolution(0), m_pBasis(0)
{
}
CSimplex::CSimplex(int numVariables, int numConstraints):
m_numVariables(0),m_numConstraints(0),m_pTableau(0),m_pInitialTableau(0), m_pSolution(0), m_pBasis(0)
{
Init(numVariables, numConstraints);
}
void CSimplex::Init(int numVariables, int numConstraints)
{
Destruct();
m_numVariables = numVariables; m_numConstraints = numConstraints;
m_pTableau = new float[(NumRows()+1) * NumColumns()];
m_pInitialTableau = new float[(NumRows()+1) * NumColumns()];
m_pSolution = m_pTableau + NumRows() * NumColumns();
// allocating basis and non-basis indices in one call
m_pBasis = new int[m_numConstraints + m_numVariables];
m_pNonBasis = m_pBasis + m_numConstraints;
m_state = kUnknown;
}
void CSimplex::PrintTableau()const
{
Msg("problem.Init(%d,%d);\nfloat test[%d]={", m_numVariables, m_numConstraints, (m_numVariables+1)*(m_numConstraints+1));
for(int i = 0; i < NumRows(); ++i)
{
for(int j = 0;j < NumColumns(); ++j)
{
Msg(" %g,",Tableau(i,j));
}
Msg("\n");
}
Msg("}");
}
void CSimplex::InitTableau(const float *pTableau)
{
const float *p = pTableau;
for(int nRow = 0; nRow <= m_numConstraints; ++nRow)
{
for(int nColumn = 0; nColumn < m_numVariables; ++nColumn)
{
Tableau(nRow, nColumn) = *(p++);
}
Tableau(nRow, NumColumns()-1) = *(p++);
}
}
CSimplex::~CSimplex()
{
Destruct();
}
void CSimplex::Destruct()
{
delete[]m_pInitialTableau;
m_pInitialTableau = NULL;
delete[]m_pTableau;
m_pTableau = NULL;
delete[]m_pBasis;
m_pBasis = NULL;
}
CSimplex::StateEnum CSimplex::Solve(float flThreshold, int maxStallIterations)
{
m_state = kUnknown;
PrepareTableau();
if(SolvePhase1(flThreshold, maxStallIterations) == kUnknown)
SolvePhase2(flThreshold, maxStallIterations);
GatherSolution();
return m_state;
}
///////////////////////////////////////////////////////////////////////////
// bring constraints to b>=0 form for phase-2 full solution
CSimplex::StateEnum CSimplex::SolvePhase1(float flThreshold, int maxStallIterations)
{
for(int nPotentiallyInfiniteLoop = 0; nPotentiallyInfiniteLoop < maxStallIterations; ++nPotentiallyInfiniteLoop)
{
if(!IteratePhase1())
break;
}
return m_state;
}
//////////////////////////////////////////////////////////////////////////
// Solve the linear problem ;
// \param flThreshold - this is how much we need to improve objective every step that's not considered lost
// \param maxStallIterations - this is how many "lost" (see flThreshold) steps we may take before we bail
//
CSimplex::StateEnum CSimplex::SolvePhase2(float flThreshold, int maxStallIterations)
{
for(int nPotentiallyInfiniteLoop = 0; nPotentiallyInfiniteLoop < maxStallIterations; ++nPotentiallyInfiniteLoop)
{
if(!IteratePhase2())
break;
}
Validate();
return m_state;
}
// fill out m-pSolution array (primal solution)
void CSimplex::GatherSolution()
{
// Notes:
// PRIMAL SOLUTION is indicated by the rightmost column of the tableau;
// there are at most m_numConstraint basic variables that participate in the solution.
// The original problem PRIMAL unknowns are numbered 0..m_numVariables; the rest (m_numVariables+1..m_numVariables+m_numConstraints) are the PRIMAL SLACK variables
// DUAL SOLUTION is in the row [m_numConstraints], and it's basic variables are indicated by m_pNonBasic array and are reversed:
// first the DUAL SLACK variables are numbered 0..m_numVariables; the rest (m_numVariables+1..m_numVariables+m_numConstraints) are the DUAL variables
memset(m_pSolution, 0, sizeof(*m_pSolution) * NumColumns()); // initial value of all X's are 0's
for(int nRow = 0; nRow < m_numConstraints; ++nRow)
{
int nBasisVariable = m_pBasis[nRow];
m_pSolution[nBasisVariable] = Tableau(nRow, NumColumns()-1);
}
m_pSolution[m_numVariables+m_numConstraints] = Tableau(m_numConstraints, NumColumns()-1);
}
///////////////////////////////////////////////////////////////////////////
// Find and pivot a row with negative constraint const (right side)
// return false - if can't find such constraint or can't pivot
//
bool CSimplex::IteratePhase1()
{
int nFixRow = FindLastNegConstrRow();
if(nFixRow < 0)
return false; // phase 1 complete: no rows to fix
int nPivotColumn = ChooseNegativeElementInRow(nFixRow);
if(nPivotColumn < 0)
{
m_state = kInfeasible;
return false;
}
int nPivotRow = nFixRow;
float flMinimizer = Tableau (nPivotRow, NumColumns()-1)/Tableau(nPivotRow, nPivotColumn); // minimize this
// UNTESTED! What's the rule to choose pivot in phase1?
for(int nCandidatePivotRow = nPivotRow + 1; nCandidatePivotRow < m_numConstraints; ++nCandidatePivotRow)
{
float flCandidateConst = Tableau (nCandidatePivotRow,NumColumns()-1), flCandidatePivot = Tableau (nCandidatePivotRow, nPivotColumn);
if ( flCandidateConst < 0 && flCandidatePivot > 1e-6f )
{
float flCandidateMinimizer = flCandidateConst / flCandidatePivot;
if(flCandidateMinimizer < flMinimizer)
{
flCandidateMinimizer = flMinimizer;
nPivotRow = nCandidatePivotRow; // UNTESTED!
}
}
}
return Pivot(nPivotRow, nPivotColumn);
}
//////////////////////////////////////////////////////////////////////////
// Return the index of the last row with negative Constraint Const (b[i] in A.x<=b formulation)
int CSimplex::FindLastNegConstrRow()
{
int nFixRow = -1;
for(int nRow = 0; nRow < m_numConstraints; ++nRow)
{
if(Tableau(nRow, NumColumns()-1) < 0)
{
nFixRow = nRow;
}
}
return nFixRow;
}
///////////////////////////////////////////////////////////////////////////
// Choose some (e.g. the most negative) negative number in the row
int CSimplex::ChooseNegativeElementInRow(int nFixRow)
{
int indexNegElement = -1;
float flMinElement = 0;
for(int nColumn = 0; nColumn < m_numVariables; ++nColumn)
{
float flElement = Tableau(nFixRow, nColumn);
if(flElement < flMinElement)
{
indexNegElement = nColumn;
flMinElement = flElement;
}
}
return indexNegElement;
}
bool CSimplex::IteratePhase2()
{
int nPivotColumn = FindPivotColumn();
if(nPivotColumn < 0)
{
m_state = kOptimal;
return false;
}
int nPivotRow = FindPivotRow(nPivotColumn);
if(nPivotRow < 0)
{
m_state = kUnbound;
return false;
}
bool ok = Pivot(nPivotRow, nPivotColumn);
// since we replaced the basis variable, we have to replace its corresponding column
return ok;
}
//////////////////////////////////////////////////////////////////////////
// Self-explanatory, isn't it?
bool CSimplex::Pivot(int nPivotRow, int nPivotColumn)
{
if(fabs(Tableau(nPivotRow, nPivotColumn)) < 1e-8f)
{
m_state = kCannotPivot;
return false; // Can NOT pivot on zero :( choose another (ie. fancier) pivot rule
}
/// get the 1/Tij, then replace the multiplied element with it
float flFactor = 1.0f / Tableau(nPivotRow, nPivotColumn);
MultiplyRow(nPivotRow, flFactor);
for(int i = 0; i <= m_numConstraints; ++i)
{
if(i != nPivotRow)
{
float flFactorOther = -Tableau(i,nPivotColumn);
AddRowMulFactor(i, nPivotRow, flFactorOther);
Tableau(i,nPivotColumn) = flFactorOther * flFactor; // replace the column with original column / -pivot
}
}
Tableau(nPivotRow, nPivotColumn) = flFactor;
int nEnteringVariable = m_pNonBasis[nPivotColumn];
int nExitingVariable = m_pBasis[nPivotRow];
// remember the index of the entering new basis var
m_pBasis[nPivotRow] = nEnteringVariable;
m_pNonBasis[nPivotColumn] = nExitingVariable;
Validate();
return true;
}
//////////////////////////////////////////////////////////////////////////
// find the column with the most negative number in the last (objective) row
int CSimplex::FindPivotColumn()
{
int nBest = -1;
float flBest = 0;
for(int i = 0; i < m_numVariables; ++i)
{
float flElement = Tableau(m_numConstraints, i);
if(flElement > flBest)
{
flBest = flElement;
nBest = i;
}
}
if(nBest < 0)
{
m_state = kOptimal;
return -1;
}
else
return nBest;
};
int CSimplex::FindPivotRow(int nColumn)
{
float flBest = FLT_MAX;
int nBest = -1;
for(int nRow = 0; nRow < m_numConstraints; ++nRow)
{
float flPivotCandidate = Tableau(nRow, nColumn);
if(flPivotCandidate > 1e-6f)
{
// don't perform any tests unless flTest is finite
float flTest = Tableau(nRow, NumColumns()-1) / flPivotCandidate;
if(flTest < flBest)
{
// flBest is either Infinity or is worse; it's worse in any case, so replace it
flBest = flTest;
nBest = nRow;
}
}
}
return nBest;
}
void CSimplex::MultiplyRow(int nRow, float flFactor)
{
for(int nColumn = 0; nColumn < NumColumns(); ++nColumn)
{
Tableau(nRow, nColumn) *= flFactor;
}
}
void CSimplex::AddRowMulFactor(int nTargetRow, int nPivotRow, float fFactor)
{
for(int nColumn = 0; nColumn < NumColumns(); ++nColumn)
{
Tableau(nTargetRow, nColumn) += Tableau(nPivotRow, nColumn) * fFactor;
}
}
// set the I matrix in the slack columns of the tableau
void CSimplex::PrepareTableau()
{
/*
for(int nRow = 0; nRow < m_numConstraints + 1; ++nRow)
{
for(int nColumn = 0; nColumn < m_numConstraints; ++nColumn)
Tableau(nRow, nColumn + m_numVariables) = 0;
}
*/
for(int nonBasis = 0; nonBasis < m_numVariables; ++nonBasis)
{
m_pNonBasis[nonBasis] = nonBasis;
}
for(int nConstraint = 0; nConstraint < m_numConstraints; ++nConstraint)
{
m_pBasis[nConstraint] = m_numVariables + nConstraint; // slack variables
//Tableau(nConstraint, nConstraint + m_numVariables) = 1.0f;
}
//m_pSolution[m_numVariables+m_numConstraints] =
Tableau(m_numConstraints, NumColumns()-1) = 0.0f; // starting with "0" objective, and all "0" variables
memcpy(m_pInitialTableau,m_pTableau,(NumRows()+1) * NumColumns() * sizeof(float));
}
void CSimplex::SetConstraintConst(int nConstraint, float fConst)
{
m_pSolution[m_numVariables + nConstraint] = Tableau(nConstraint, NumColumns()-1) = fConst;
}
void CSimplex::SetConstraintFactor(int nConstraint, int nConstant, float fFactor)
{
Tableau(nConstraint, nConstant) = fFactor;
}
void CSimplex::SetObjectiveFactor(int nConstant, float fFactor)
{
// the objective factor is negated because for the objective P = cx , we write it as -c x + P -> max
Tableau(m_numConstraints, nConstant) = fFactor;
}
void CSimplex::SetObjectiveFactors(int numFactors, const float *pFactors)
{
Assert(numFactors == m_numVariables);
for(int i =0; i < m_numVariables && i < numFactors; ++i)
SetObjectiveFactor(i,pFactors[i]);
}
float CSimplex::GetSolution(int nVariable)const
{
Assert(nVariable < m_numVariables);
return m_pSolution[nVariable];
}
float CSimplex::GetSlack(int nConstraint)const
{
Assert(nConstraint < m_numConstraints);
return m_pSolution[m_numVariables + nConstraint];
}
float CSimplex::GetObjective()const
{
/*
float flResult = 0;
for(int i = 0; i < m_numVariables + m_numConstraints; ++i)
flResult -= m_pSolution[i] * Tableau(m_numConstraints,i);
return flResult;
*/
return Tableau(m_numConstraints, NumColumns()-1);
}
void CSimplex::Validate()
{
#if defined(_DEBUG) && 0
GatherSolution();
for(int i = 0; i <= m_numConstraints; ++i)
{
float flRes = 0;
for(int j = 0; j < m_numVariables; ++j)
flRes += GetInitialTableau(i,j) * m_pSolution[j];
if(i == m_numConstraints)
{
Msg("Objective = %g; basis:",flRes);
for (int j = 0; j < m_numVariables; ++j)
Msg(" %g", m_pSolution[j]);
Msg(" |slacks:");
for(int j = 0; j < m_numConstraints; ++j)
Msg(" %g", m_pSolution[j+m_numVariables]);
Msg("\n");
}
else
Msg("%g\t<= %g\n", flRes, GetInitialTableau(i,NumColumns()-1));
}
#endif
}
class CSimplexTestUnit
{
public:
CSimplexTestUnit()
{
CSimplex test(3,2);
test.SetObjectiveFactor(0, 12);
test.SetObjectiveFactor(1, 8);
test.SetObjectiveFactor(2, 24);
test.SetConstraintFactor(0, 0, 6);
test.SetConstraintFactor(0, 1, 2);
test.SetConstraintFactor(0, 2, 4);
test.SetConstraintConst(0, 200);
test.SetConstraintFactor(1, 0, 2);
test.SetConstraintFactor(1, 1, 2);
test.SetConstraintFactor(1, 2, 12);
test.SetConstraintConst(1, 160);
test.Solve();
test.Init(2,2);
float test2[] = {2,1,3, 3,1,4, 17,5,0};
test.InitTableau(test2);
test.Solve();
// m_pSolution (test.m_pSolution) should be : 30 40 | 0 0 | 4100
//////////////////////////////////////////////////////////////////////////
// unbound-solution problem: x1-x2<=1 && x2-x1<=1, maximize x1+x2; if x1==x2, we can go unbound x1==x2 -> +inf
// the dual formulation is infeasible in this case: v2-v1 >= 1 && v1-v2 >= 1, which are self-contradictory
test.Init(2,2);
float testUnsolvable[] = {-1,1,1, 1,-1,1, 1,1,0};
test.InitTableau(testUnsolvable);
test.Solve();
//////////////////////////////////////////////////////////////////////////
// General Simplex problem: equality constraint
test.Init(2, 3);
float testGenSimplex[] = {1,1,20, 1,2,30, -1,-2,-30, 2,1,0};
test.InitTableau(testGenSimplex);
test.Solve();
test.Init(7,6);
float testA[56]={ -1, 1, 0, -0, -0, 0, 1, 13.0048,
1, -1, 0, -0, -0, 0, 1, 13.0048,
0, -0, -1, 1, -0, 0, 1, 13.0048,
0, -0, 1, -1, -0, 0, 1, 13.0048,
0, -0, 0, -0, 1, -1, 1, 0.00100005,
0, -0, 0, -0, -1, 1, 1, 0.405401,
0, 0, 0, 0, 0, 0, 1, 0
};
test.InitTableau(testA);
test.Solve();
}
};
// this is for debugging and unit-testing
//static CSimplexTestUnit s_test;