You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1478 lines
60 KiB
1478 lines
60 KiB
//===== Copyright © 1996-2005, Valve Corporation, All rights reserved. ======//
|
|
//
|
|
// Purpose:
|
|
//
|
|
//===========================================================================//
|
|
|
|
#if defined(__SPU__)
|
|
#include "platform.h"
|
|
#include "basetypes.h"
|
|
#include "mathlib/mathlib.h"
|
|
#include "mathlib/math_pfns.h"
|
|
// #include "mathlib/fltx4.h"
|
|
#include "ps3/spu_job_shared.h"
|
|
#endif
|
|
|
|
#include "mathlib/ssemath.h"
|
|
#include "mathlib/ssequaternion.h"
|
|
#include "mathlib/compressed_vector.h"
|
|
|
|
// NOTE: This has to be the last file included!
|
|
#include "tier0/memdbgon.h"
|
|
|
|
#if !defined(__SPU__)
|
|
const fltx4 Four_PointFives={0.5,0.5,0.5,0.5};
|
|
#ifndef _X360
|
|
const fltx4 Four_Zeros={0.0,0.0,0.0,0.0};
|
|
const fltx4 Four_Ones={1.0,1.0,1.0,1.0};
|
|
#endif
|
|
const fltx4 Four_Twos={2.0,2.0,2.0,2.0};
|
|
const fltx4 Four_Threes={3.0,3.0,3.0,3.0};
|
|
const fltx4 Four_Fours={4.0,4.0,4.0,4.0};
|
|
const fltx4 Four_Origin={0,0,0,1};
|
|
const fltx4 Four_NegativeOnes={-1,-1,-1,-1};
|
|
|
|
const fltx4 Four_2ToThe21s={ (float) (1<<21), (float) (1<<21), (float) (1<<21), (float)(1<<21) };
|
|
const fltx4 Four_2ToThe22s={ (float) (1<<22), (float) (1<<22), (float) (1<<22), (float)(1<<22) };
|
|
const fltx4 Four_2ToThe23s={ (float) (1<<23), (float) (1<<23), (float) (1<<23), (float)(1<<23) };
|
|
const fltx4 Four_2ToThe24s={ (float) (1<<24), (float) (1<<24), (float) (1<<24), (float)(1<<24) };
|
|
const fltx4 Four_Thirds={ 0.33333333, 0.33333333, 0.33333333, 0.33333333 };
|
|
const fltx4 Four_TwoThirds={ 0.66666666, 0.66666666, 0.66666666, 0.66666666 };
|
|
const fltx4 Four_Point225s={ .225, .225, .225, .225 };
|
|
const fltx4 Four_Epsilons={FLT_EPSILON,FLT_EPSILON,FLT_EPSILON,FLT_EPSILON};
|
|
const fltx4 Four_DegToRad= { ((float)(M_PI_F / 180.f)), ((float)(M_PI_F / 180.f)), ((float)(M_PI_F / 180.f)), ((float)(M_PI_F / 180.f))};
|
|
|
|
const fltx4 Four_FLT_MAX={FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX};
|
|
const fltx4 Four_Negative_FLT_MAX={-FLT_MAX,-FLT_MAX,-FLT_MAX,-FLT_MAX};
|
|
const fltx4 g_SIMD_0123 = { 0., 1., 2., 3. };
|
|
|
|
const fltx4 Four_LinearToGammaCoefficients_A = { -3.7295, -3.7295, -3.7295, -3.7295 };
|
|
const fltx4 Four_LinearToGammaCoefficients_B = { 8.9635, 8.9635, 8.9635, 8.9635 };
|
|
const fltx4 Four_LinearToGammaCoefficients_C = { -7.7397, -7.7397, -7.7397, -7.7397 };
|
|
const fltx4 Four_LinearToGammaCoefficients_D = {3.443, 3.443, 3.443, 3.443 };
|
|
const fltx4 Four_LinearToGammaCoefficients_E = { 0.048, 0.048, 0.048, 0.048 };
|
|
|
|
const fltx4 Four_GammaToLinearCoefficients_A = { .1731, .1731, .1731, .1731 };
|
|
const fltx4 Four_GammaToLinearCoefficients_B = { .8717, .8717, .8717, .8717 };
|
|
const fltx4 Four_GammaToLinearCoefficients_C = { -.0452, -.0452, -.0452, -.0452 };
|
|
const fltx4 Four_GammaToLinearCoefficients_D = { .0012, .0012, .0012, .0012 };
|
|
|
|
const fltx4 g_QuatMultRowSign[4] =
|
|
{
|
|
{ 1.0f, 1.0f, -1.0f, 1.0f },
|
|
{ -1.0f, 1.0f, 1.0f, 1.0f },
|
|
{ 1.0f, -1.0f, 1.0f, 1.0f },
|
|
{ -1.0f, -1.0f, -1.0f, 1.0f }
|
|
};
|
|
#endif
|
|
|
|
|
|
const int32 ALIGN16 g_SIMD_clear_signmask[4] ALIGN16_POST = {0x7fffffff,0x7fffffff,0x7fffffff,0x7fffffff};
|
|
const int32 ALIGN16 g_SIMD_signmask[4] ALIGN16_POST = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 };
|
|
const int32 ALIGN16 g_SIMD_lsbmask[4] ALIGN16_POST = { 0xfffffffe, 0xfffffffe, 0xfffffffe, 0xfffffffe };
|
|
const int32 ALIGN16 g_SIMD_clear_wmask[4] ALIGN16_POST = { 0xffffffff, 0xffffffff, 0xffffffff, 0 };
|
|
const int32 ALIGN16 g_SIMD_AllOnesMask[4] ALIGN16_POST = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }; // ~0,~0,~0,~0
|
|
const int32 ALIGN16 g_SIMD_Low16BitsMask[4] ALIGN16_POST = { 0xffff, 0xffff, 0xffff, 0xffff }; // 0xffff x 4
|
|
|
|
|
|
const int32 ALIGN16 g_SIMD_ComponentMask[4][4] ALIGN16_POST =
|
|
{
|
|
{ 0xFFFFFFFF, 0, 0, 0 }, { 0, 0xFFFFFFFF, 0, 0 }, { 0, 0, 0xFFFFFFFF, 0 }, { 0, 0, 0, 0xFFFFFFFF }
|
|
};
|
|
|
|
const fltx4 g_SIMD_Identity[4] =
|
|
{
|
|
{ 1.0, 0, 0, 0 }, { 0, 1.0, 0, 0 }, { 0, 0, 1.0, 0 }, { 0, 0, 0, 1.0 }
|
|
};
|
|
|
|
const int32 ALIGN16 g_SIMD_SkipTailMask[4][4] ALIGN16_POST =
|
|
{
|
|
{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff },
|
|
{ 0xffffffff, 0x00000000, 0x00000000, 0x00000000 },
|
|
{ 0xffffffff, 0xffffffff, 0x00000000, 0x00000000 },
|
|
{ 0xffffffff, 0xffffffff, 0xffffffff, 0x00000000 },
|
|
};
|
|
|
|
const int32 ALIGN16 g_SIMD_EveryOtherMask[4] = { 0, ~0, 0, ~0 };
|
|
|
|
|
|
|
|
#ifdef PLATFORM_PPC
|
|
|
|
/// Passed as a parameter to vslh, shuffles the z component of a quat48 stored in the zw words left by one bit.
|
|
const uint16 ALIGN16 g_SIMD_Quat48_Unpack_Shift[] = {
|
|
0x00, 0x00, // x word
|
|
0x00, 0x00, // y word
|
|
0x00, 0x01, // z word
|
|
0x00, 0x00 }; // w word
|
|
|
|
// this permutes uint16's x,y,z packed in the most significant four halfwords of a fltx4
|
|
// so that each gets its own word in the output. expected use is // __vperm( XX, Four_Threes, permute )
|
|
// -- that way each int is represented as 3.0 + n * 2^-22 , which we can pull into the
|
|
// appropriate range with a single madd!
|
|
const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute0[16] =
|
|
{
|
|
16, 17, 0, 1, // word one: 00XX
|
|
16, 17, 2, 3, // word two: 00YY
|
|
16, 17, 4, 5, // word three: 00ZZ
|
|
16, 17, 6, 7 // word four: 00WW
|
|
};
|
|
|
|
// the other permutes are a little trickier. note: I'm defining them out of order.
|
|
// 2 and 5 blend together prior results, rather than a source with 3.0f
|
|
|
|
// out1 = __vperm( x0y0z0x1y1z1x2y2, Four_Threes, *reinterpret_cast<const fltx4 *>(g_SIMD_Quat48_Unpack_Permute1) ); // __x1__y1__z1____
|
|
const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute1[16] =
|
|
{
|
|
16, 17, 6, 7, // word one: 00XX
|
|
16, 17, 8, 9, // word two: 00YY
|
|
16, 17, 10, 11, // word three: 00ZZ
|
|
16, 17, 12, 13 // word four: 00WW
|
|
};
|
|
|
|
// out3 = __vperm( z2x3y3z3x4y4z4x5, Four_Threes, *reinterpret_cast<const fltx4 *>(g_SIMD_Quat48_Unpack_Permute3) ); // __x3__y3__z3__z2 // z2 is important, goes into out2
|
|
const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute3[16] =
|
|
{
|
|
16, 17, 2, 3,
|
|
16, 17, 4, 5,
|
|
16, 17, 6, 7,
|
|
16, 17, 0, 1
|
|
};
|
|
|
|
// out4 = __vperm( z2x3y3z3x4y4z4x5, Four_Threes, *reinterpret_cast<const fltx4 *>(g_SIMD_Quat48_Unpack_Permute4) ); // __x4__y4__z4__x5 // x5 is important, goes into out5
|
|
const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute4[16] =
|
|
{
|
|
16, 17, 8, 9,
|
|
16, 17, 10, 11,
|
|
16, 17, 12, 13,
|
|
16, 17, 14, 15
|
|
};
|
|
|
|
// out6 = __vperm( y5z5x6y6z6x7y7z7, Four_Threes, *reinterpret_cast<const fltx4 *>(g_SIMD_Quat48_Unpack_Permute6) ); // __x6__y6__z6____
|
|
const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute6[16] =
|
|
{
|
|
16, 17, 4, 5, // word one
|
|
16, 17, 6, 7, // word two
|
|
16, 17, 8, 9, // word three
|
|
16, 17, 10, 11 // word four (garbage)
|
|
};
|
|
|
|
// out7 = __vperm( y5z5x6y6z6x7y7z7, Four_Threes, *reinterpret_cast<const fltx4 *>(g_SIMD_Quat48_Unpack_Permute7) ); // __x7__y7__z7____
|
|
const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute7[16] =
|
|
{
|
|
16, 17, 10, 11, // word one
|
|
16, 17, 12, 13, // word two
|
|
16, 17, 14, 15, // word three
|
|
16, 17, 16, 17 // word four (garbage)
|
|
};
|
|
|
|
// these last two are tricky because we mix old output with source input. we get the 3.0f
|
|
// from the old output.
|
|
// out2 = __vperm( x0y0z0x1y1z1x2y2, out3, *reinterpret_cast<const fltx4 *>(g_SIMD_Quat48_Unpack_Permute2) ); // __x2__y2__z2____
|
|
const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute2[16] =
|
|
{
|
|
16, 17, 12, 13, // 3.x2
|
|
16, 17, 14, 15, // 3.y2
|
|
16, 17, 30, 31, // 3.z2 (from out2)
|
|
16, 17, 16, 17
|
|
};
|
|
|
|
// out5 = __vperm( y5z5x6y6z6x7y7z7, out4, *reinterpret_cast<const fltx4 *>(g_SIMD_Quat48_Unpack_Permute5) ) // __x5__y5__z5____
|
|
const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute5[16] =
|
|
{
|
|
16, 17, 30, 31, // 3.x5 (from out5)
|
|
16, 17, 0, 1, // 3.y5
|
|
16, 17, 2, 3, // 3.z5
|
|
16, 17, 16, 17 // garbage
|
|
};
|
|
|
|
|
|
// magic constants that we use to convert the unpacked q48 components from 2 + n * 2^-22 (where n = 0 .. 65535)
|
|
// to -1.0 .. 1
|
|
#define UnpackMul16s ( (1 << 22) / 32767.5 )
|
|
#define UnpackAdd16s ( ( -UnpackMul16s * 3.0 ) - 1 )
|
|
// we put the constants all into one word to save a little memory bandwidth
|
|
// but otherwise it would look like this:
|
|
// static const fltx4 vUpkMul = { UnpackMul16s, UnpackMul16s, UnpackMul16s, UnpackMul16s };
|
|
// static const fltx4 vUpkAdd = { UnpackAdd16s , UnpackAdd16s , UnpackAdd16s , UnpackAdd16s };
|
|
const fltx4 g_SIMD_Quat48_Unpack_Magic_Constants = { UnpackMul16s , UnpackAdd16s, 0, 0 };
|
|
#undef UnpackMul16s
|
|
#undef UnpackAdd16s
|
|
|
|
#endif
|
|
|
|
|
|
// FUNCTIONS
|
|
// NOTE: WHY YOU **DO NOT** WANT TO PUT FUNCTIONS HERE
|
|
// Generally speaking, you want to make sure SIMD math functions
|
|
// are inlined, because that gives the compiler much more latitude
|
|
// in instruction scheduling. It's not that the overhead of calling
|
|
// the function is particularly great; rather, many of the SIMD
|
|
// opcodes have long latencies, and if you have a sequence of
|
|
// several dependent ones inside a function call, the latencies
|
|
// stack up to create a big penalty. If the function is inlined,
|
|
// the compiler can interleave its operations with ones from the
|
|
// caller to better hide those latencies. Finally, on the 360,
|
|
// putting parameters or return values on the stack, and then
|
|
// reading them back within the next forty cycles, is a very
|
|
// severe penalty. So, as much as possible, you want to leave your
|
|
// data on the registers.
|
|
|
|
// That said, there are certain occasions where it is appropriate
|
|
// to call into functions -- particularly for very large blocks
|
|
// of code that will spill most of the registers anyway. Unless your
|
|
// function is more than one screen long, yours is probably not one
|
|
// of those occasions.
|
|
|
|
#if !defined(__SPU__)
|
|
|
|
/// You can use this to rotate a long array of FourVectors all by the same
|
|
/// matrix. The first parameter is the head of the array. The second is the
|
|
/// number of vectors to rotate. The third is the matrix.
|
|
void FourVectors::RotateManyBy(FourVectors * RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix )
|
|
{
|
|
Assert(numVectors > 0);
|
|
if ( numVectors == 0 )
|
|
return;
|
|
|
|
// Splat out each of the entries in the matrix to a fltx4. Do this
|
|
// in the order that we will need them, to hide latency. I'm
|
|
// avoiding making an array of them, so that they'll remain in
|
|
// registers.
|
|
fltx4 matSplat00, matSplat01, matSplat02,
|
|
matSplat10, matSplat11, matSplat12,
|
|
matSplat20, matSplat21, matSplat22;
|
|
|
|
{
|
|
// Load the matrix into local vectors. Sadly, matrix3x4_ts are
|
|
// often unaligned. The w components will be the tranpose row of
|
|
// the matrix, but we don't really care about that.
|
|
fltx4 matCol0 = LoadUnalignedSIMD(rotationMatrix[0]);
|
|
fltx4 matCol1 = LoadUnalignedSIMD(rotationMatrix[1]);
|
|
fltx4 matCol2 = LoadUnalignedSIMD(rotationMatrix[2]);
|
|
|
|
matSplat00 = SplatXSIMD(matCol0);
|
|
matSplat01 = SplatYSIMD(matCol0);
|
|
matSplat02 = SplatZSIMD(matCol0);
|
|
|
|
matSplat10 = SplatXSIMD(matCol1);
|
|
matSplat11 = SplatYSIMD(matCol1);
|
|
matSplat12 = SplatZSIMD(matCol1);
|
|
|
|
matSplat20 = SplatXSIMD(matCol2);
|
|
matSplat21 = SplatYSIMD(matCol2);
|
|
matSplat22 = SplatZSIMD(matCol2);
|
|
}
|
|
|
|
#if defined(_X360) || defined(_PS3)
|
|
// Same algorithm as above, but the loop is unrolled to eliminate data hazard latencies
|
|
// and simplify prefetching. Named variables are deliberately used instead of arrays to
|
|
// ensure that the variables live on the registers instead of the stack (stack load/store
|
|
// is a serious penalty on 360). Nb: for prefetching to be most efficient here, the
|
|
// loop should be unrolled to 8 FourVectors per iteration; because each FourVectors is
|
|
// 48 bytes long, 48 * 8 = 384, its least common multiple with the 128-byte cache line.
|
|
// That way you can fetch the next 3 cache lines while you work on these three.
|
|
// If you do go this route, be sure to dissassemble and make sure it doesn't spill
|
|
// registers to stack as you do this; the cost of that will be excessive. Unroll the loop
|
|
// a little and just live with the fact that you'll be doing a couple of redundant dbcts
|
|
// (they don't cost you anything). Be aware that all three cores share L2 and it can only
|
|
// have eight cache lines fetching at a time.
|
|
fltx4 outX0, outY0, outZ0; // bank one of outputs
|
|
fltx4 outX1, outY1, outZ1; // bank two of outputs
|
|
|
|
|
|
// Because of instruction latencies and scheduling, it's actually faster to use adds and muls
|
|
// rather than madds. (Empirically determined by timing.)
|
|
const FourVectors * stop = pVectors + numVectors;
|
|
FourVectors * RESTRICT pVectNext;
|
|
// prime the pump.
|
|
if (numVectors & 0x01)
|
|
{
|
|
// odd number of vectors to process
|
|
// prime the 1 group of registers
|
|
pVectNext = pVectors++;
|
|
outX1 = AddSIMD( AddSIMD( MulSIMD( pVectNext->x, matSplat00 ), MulSIMD( pVectNext->y, matSplat01 ) ), MulSIMD( pVectNext->z, matSplat02 ) );
|
|
outY1 = AddSIMD( AddSIMD( MulSIMD( pVectNext->x, matSplat10 ), MulSIMD( pVectNext->y, matSplat11 ) ), MulSIMD( pVectNext->z, matSplat12 ) );
|
|
outZ1 = AddSIMD( AddSIMD( MulSIMD( pVectNext->x, matSplat20 ), MulSIMD( pVectNext->y, matSplat21 ) ), MulSIMD( pVectNext->z, matSplat22 ) );
|
|
}
|
|
else
|
|
{
|
|
// even number of total vectors to process;
|
|
// prime the zero group and jump into the middle of the loop
|
|
outX0 = AddSIMD( AddSIMD( MulSIMD( pVectors->x, matSplat00 ), MulSIMD( pVectors->y, matSplat01 ) ), MulSIMD( pVectors->z, matSplat02 ) );
|
|
outY0 = AddSIMD( AddSIMD( MulSIMD( pVectors->x, matSplat10 ), MulSIMD( pVectors->y, matSplat11 ) ), MulSIMD( pVectors->z, matSplat12 ) );
|
|
outZ0 = AddSIMD( AddSIMD( MulSIMD( pVectors->x, matSplat20 ), MulSIMD( pVectors->y, matSplat21 ) ), MulSIMD( pVectors->z, matSplat22 ) );
|
|
goto EVEN_CASE;
|
|
}
|
|
|
|
// perform an even number of iterations through this loop.
|
|
while (pVectors < stop)
|
|
{
|
|
outX0 = MaddSIMD( pVectors->z, matSplat02, AddSIMD( MulSIMD( pVectors->x, matSplat00 ), MulSIMD( pVectors->y, matSplat01 ) ) );
|
|
outY0 = MaddSIMD( pVectors->z, matSplat12, AddSIMD( MulSIMD( pVectors->x, matSplat10 ), MulSIMD( pVectors->y, matSplat11 ) ) );
|
|
outZ0 = MaddSIMD( pVectors->z, matSplat22, AddSIMD( MulSIMD( pVectors->x, matSplat20 ), MulSIMD( pVectors->y, matSplat21 ) ) );
|
|
|
|
pVectNext->x = outX1;
|
|
pVectNext->y = outY1;
|
|
pVectNext->z = outZ1;
|
|
|
|
EVEN_CASE:
|
|
pVectNext = pVectors+1;
|
|
|
|
outX1 = MaddSIMD( pVectNext->z, matSplat02, AddSIMD( MulSIMD( pVectNext->x, matSplat00 ), MulSIMD( pVectNext->y, matSplat01 ) ) );
|
|
outY1 = MaddSIMD( pVectNext->z, matSplat12, AddSIMD( MulSIMD( pVectNext->x, matSplat10 ), MulSIMD( pVectNext->y, matSplat11 ) ) );
|
|
outZ1 = MaddSIMD( pVectNext->z, matSplat22, AddSIMD( MulSIMD( pVectNext->x, matSplat20 ), MulSIMD( pVectNext->y, matSplat21 ) ) );
|
|
|
|
pVectors->x = outX0;
|
|
pVectors->y = outY0;
|
|
pVectors->z = outZ0;
|
|
|
|
pVectors += 2;
|
|
}
|
|
|
|
// flush the last round of output
|
|
pVectNext->x = outX1;
|
|
pVectNext->y = outY1;
|
|
pVectNext->z = outZ1;
|
|
#else
|
|
// PC does not benefit from the unroll/scheduling above
|
|
fltx4 outX0, outY0, outZ0; // bank one of outputs
|
|
|
|
|
|
// Because of instruction latencies and scheduling, it's actually faster to use adds and muls
|
|
// rather than madds. (Empirically determined by timing.)
|
|
const FourVectors * stop = pVectors + numVectors;
|
|
|
|
// perform an even number of iterations through this loop.
|
|
while (pVectors < stop)
|
|
{
|
|
outX0 = MaddSIMD( pVectors->z, matSplat02, AddSIMD( MulSIMD( pVectors->x, matSplat00 ), MulSIMD( pVectors->y, matSplat01 ) ) );
|
|
outY0 = MaddSIMD( pVectors->z, matSplat12, AddSIMD( MulSIMD( pVectors->x, matSplat10 ), MulSIMD( pVectors->y, matSplat11 ) ) );
|
|
outZ0 = MaddSIMD( pVectors->z, matSplat22, AddSIMD( MulSIMD( pVectors->x, matSplat20 ), MulSIMD( pVectors->y, matSplat21 ) ) );
|
|
|
|
pVectors->x = outX0;
|
|
pVectors->y = outY0;
|
|
pVectors->z = outZ0;
|
|
pVectors++;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Get the closest point from P to the (infinite) line through vLineA and vLineB and
|
|
// calculate the shortest distance from P to the line.
|
|
// If you pass in a value for t, it will tell you the t for (A + (B-A)t) to get the closest point.
|
|
// If the closest point lies on the segment between A and B, then 0 <= t <= 1.
|
|
void FourVectors::CalcClosestPointOnLineSIMD( const FourVectors &P, const FourVectors &vLineA, const FourVectors &vLineB, FourVectors &vClosest, fltx4 *outT)
|
|
{
|
|
FourVectors vDir;
|
|
fltx4 t = CalcClosestPointToLineTSIMD( P, vLineA, vLineB, vDir );
|
|
if ( outT ) *outT = t;
|
|
vClosest = vDir;
|
|
vClosest *= t;
|
|
vClosest += vLineA;
|
|
}
|
|
|
|
fltx4 FourVectors::CalcClosestPointToLineTSIMD( const FourVectors &P, const FourVectors &vLineA, const FourVectors &vLineB, FourVectors &vDir )
|
|
{
|
|
Assert( s_bMathlibInitialized );
|
|
vDir = vLineB;
|
|
vDir -= vLineA;
|
|
|
|
fltx4 div = vDir * vDir;
|
|
bi32x4 Mask;
|
|
fltx4 Compare = ReplicateX4( 0.00001f );
|
|
fltx4 result;
|
|
Mask = CmpLtSIMD( div, Compare );
|
|
|
|
result = DivSIMD( SubSIMD( vDir * P, vDir * vLineA ), div );
|
|
|
|
MaskedAssign( Mask, Four_Zeros, result );
|
|
return result;
|
|
}
|
|
|
|
void FourVectors::RotateManyBy(FourVectors * RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix, FourVectors * RESTRICT pOut )
|
|
{
|
|
Assert(numVectors > 0);
|
|
if ( numVectors == 0 )
|
|
return;
|
|
|
|
// Splat out each of the entries in the matrix to a fltx4. Do this
|
|
// in the order that we will need them, to hide latency. I'm
|
|
// avoiding making an array of them, so that they'll remain in
|
|
// registers.
|
|
fltx4 matSplat00, matSplat01, matSplat02,
|
|
matSplat10, matSplat11, matSplat12,
|
|
matSplat20, matSplat21, matSplat22;
|
|
|
|
{
|
|
// Load the matrix into local vectors. Sadly, matrix3x4_ts are
|
|
// often unaligned. The w components will be the tranpose row of
|
|
// the matrix, but we don't really care about that.
|
|
fltx4 matCol0 = LoadUnalignedSIMD(rotationMatrix[0]);
|
|
fltx4 matCol1 = LoadUnalignedSIMD(rotationMatrix[1]);
|
|
fltx4 matCol2 = LoadUnalignedSIMD(rotationMatrix[2]);
|
|
|
|
matSplat00 = SplatXSIMD(matCol0);
|
|
matSplat01 = SplatYSIMD(matCol0);
|
|
matSplat02 = SplatZSIMD(matCol0);
|
|
|
|
matSplat10 = SplatXSIMD(matCol1);
|
|
matSplat11 = SplatYSIMD(matCol1);
|
|
matSplat12 = SplatZSIMD(matCol1);
|
|
|
|
matSplat20 = SplatXSIMD(matCol2);
|
|
matSplat21 = SplatYSIMD(matCol2);
|
|
matSplat22 = SplatZSIMD(matCol2);
|
|
}
|
|
|
|
#if defined(_X360) || defined(_PS3)
|
|
// Same algorithm as above, but the loop is unrolled to eliminate data hazard latencies
|
|
// and simplify prefetching. Named variables are deliberately used instead of arrays to
|
|
// ensure that the variables live on the registers instead of the stack (stack load/store
|
|
// is a serious penalty on 360). Nb: for prefetching to be most efficient here, the
|
|
// loop should be unrolled to 8 FourVectors per iteration; because each FourVectors is
|
|
// 48 bytes long, 48 * 8 = 384, its least common multiple with the 128-byte cache line.
|
|
// That way you can fetch the next 3 cache lines while you work on these three.
|
|
// If you do go this route, be sure to dissassemble and make sure it doesn't spill
|
|
// registers to stack as you do this; the cost of that will be excessive. Unroll the loop
|
|
// a little and just live with the fact that you'll be doing a couple of redundant dbcts
|
|
// (they don't cost you anything). Be aware that all three cores share L2 and it can only
|
|
// have eight cache lines fetching at a time.
|
|
fltx4 outX0, outY0, outZ0; // bank one of outputs
|
|
fltx4 outX1, outY1, outZ1; // bank two of outputs
|
|
|
|
|
|
// Because of instruction latencies and scheduling, it's actually faster to use adds and muls
|
|
// rather than madds. (Empirically determined by timing.)
|
|
const FourVectors * stop = pVectors + numVectors;
|
|
FourVectors * RESTRICT pVectNext;
|
|
FourVectors * RESTRICT pOutNext;
|
|
// prime the pump.
|
|
if (numVectors & 0x01)
|
|
{
|
|
// odd number of vectors to process
|
|
// prime the 1 group of registers
|
|
pVectNext = pVectors++;
|
|
pOutNext = pOut++;
|
|
outX1 = AddSIMD( AddSIMD( MulSIMD( pVectNext->x, matSplat00 ), MulSIMD( pVectNext->y, matSplat01 ) ), MulSIMD( pVectNext->z, matSplat02 ) );
|
|
outY1 = AddSIMD( AddSIMD( MulSIMD( pVectNext->x, matSplat10 ), MulSIMD( pVectNext->y, matSplat11 ) ), MulSIMD( pVectNext->z, matSplat12 ) );
|
|
outZ1 = AddSIMD( AddSIMD( MulSIMD( pVectNext->x, matSplat20 ), MulSIMD( pVectNext->y, matSplat21 ) ), MulSIMD( pVectNext->z, matSplat22 ) );
|
|
}
|
|
else
|
|
{
|
|
// even number of total vectors to process;
|
|
// prime the zero group and jump into the middle of the loop
|
|
outX0 = AddSIMD( AddSIMD( MulSIMD( pVectors->x, matSplat00 ), MulSIMD( pVectors->y, matSplat01 ) ), MulSIMD( pVectors->z, matSplat02 ) );
|
|
outY0 = AddSIMD( AddSIMD( MulSIMD( pVectors->x, matSplat10 ), MulSIMD( pVectors->y, matSplat11 ) ), MulSIMD( pVectors->z, matSplat12 ) );
|
|
outZ0 = AddSIMD( AddSIMD( MulSIMD( pVectors->x, matSplat20 ), MulSIMD( pVectors->y, matSplat21 ) ), MulSIMD( pVectors->z, matSplat22 ) );
|
|
goto EVEN_CASE;
|
|
}
|
|
|
|
// perform an even number of iterations through this loop.
|
|
while (pVectors < stop)
|
|
{
|
|
outX0 = MaddSIMD( pVectors->z, matSplat02, AddSIMD( MulSIMD( pVectors->x, matSplat00 ), MulSIMD( pVectors->y, matSplat01 ) ) );
|
|
outY0 = MaddSIMD( pVectors->z, matSplat12, AddSIMD( MulSIMD( pVectors->x, matSplat10 ), MulSIMD( pVectors->y, matSplat11 ) ) );
|
|
outZ0 = MaddSIMD( pVectors->z, matSplat22, AddSIMD( MulSIMD( pVectors->x, matSplat20 ), MulSIMD( pVectors->y, matSplat21 ) ) );
|
|
|
|
pOutNext->x = outX1;
|
|
pOutNext->y = outY1;
|
|
pOutNext->z = outZ1;
|
|
|
|
EVEN_CASE:
|
|
pVectNext = pVectors+1;
|
|
pOutNext = pOut+1;
|
|
|
|
outX1 = MaddSIMD( pVectNext->z, matSplat02, AddSIMD( MulSIMD( pVectNext->x, matSplat00 ), MulSIMD( pVectNext->y, matSplat01 ) ) );
|
|
outY1 = MaddSIMD( pVectNext->z, matSplat12, AddSIMD( MulSIMD( pVectNext->x, matSplat10 ), MulSIMD( pVectNext->y, matSplat11 ) ) );
|
|
outZ1 = MaddSIMD( pVectNext->z, matSplat22, AddSIMD( MulSIMD( pVectNext->x, matSplat20 ), MulSIMD( pVectNext->y, matSplat21 ) ) );
|
|
|
|
pOut->x = outX0;
|
|
pOut->y = outY0;
|
|
pOut->z = outZ0;
|
|
|
|
pVectors += 2;
|
|
pOut += 2;
|
|
}
|
|
|
|
// flush the last round of output
|
|
pVectNext->x = outX1;
|
|
pVectNext->y = outY1;
|
|
pVectNext->z = outZ1;
|
|
#else
|
|
// PC does not benefit from the unroll/scheduling above
|
|
fltx4 outX0, outY0, outZ0; // bank one of outputs
|
|
|
|
|
|
// Because of instruction latencies and scheduling, it's actually faster to use adds and muls
|
|
// rather than madds. (Empirically determined by timing.)
|
|
const FourVectors * stop = pVectors + numVectors;
|
|
|
|
// perform an even number of iterations through this loop.
|
|
while (pVectors < stop)
|
|
{
|
|
outX0 = MaddSIMD( pVectors->z, matSplat02, AddSIMD( MulSIMD( pVectors->x, matSplat00 ), MulSIMD( pVectors->y, matSplat01 ) ) );
|
|
outY0 = MaddSIMD( pVectors->z, matSplat12, AddSIMD( MulSIMD( pVectors->x, matSplat10 ), MulSIMD( pVectors->y, matSplat11 ) ) );
|
|
outZ0 = MaddSIMD( pVectors->z, matSplat22, AddSIMD( MulSIMD( pVectors->x, matSplat20 ), MulSIMD( pVectors->y, matSplat21 ) ) );
|
|
|
|
pOut->x = outX0;
|
|
pOut->y = outY0;
|
|
pOut->z = outZ0;
|
|
pVectors++;
|
|
pOut++;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef _X360
|
|
// Loop-scheduled code to process FourVectors in groups of eight quite efficiently.
|
|
void FourVectors_TransformManyGroupsOfEightBy(FourVectors * RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix, FourVectors * RESTRICT pOut )
|
|
{
|
|
Assert(numVectors > 0);
|
|
if ( numVectors == 0 )
|
|
return;
|
|
|
|
AssertMsg( (pOut < pVectors && pOut+numVectors <= pVectors) ||
|
|
(pOut > pVectors && pVectors+numVectors <= pOut), "FourVectors::TransformManyBy called with overlapping buffer pointers." );
|
|
|
|
// Splat out each of the entries in the matrix to a fltx4. Do this
|
|
// in the order that we will need them, to hide latency. I'm
|
|
// avoiding making an array of them, so that they'll remain in
|
|
// registers.
|
|
fltx4 matSplat00, matSplat01, matSplat02, matSplat03, // TWELVE REGISTERS
|
|
matSplat10, matSplat11, matSplat12, matSplat13,
|
|
matSplat20, matSplat21, matSplat22, matSplat23;
|
|
|
|
{
|
|
// Load the matrix into local vectors. Sadly, matrix3x4_ts are
|
|
// often unaligned. The w components will be the tranpose row of
|
|
// the matrix.
|
|
fltx4 matCol0 = LoadUnalignedSIMD(rotationMatrix[0]);
|
|
fltx4 matCol1 = LoadUnalignedSIMD(rotationMatrix[1]);
|
|
fltx4 matCol2 = LoadUnalignedSIMD(rotationMatrix[2]);
|
|
|
|
matSplat00 = SplatXSIMD(matCol0);
|
|
matSplat01 = SplatYSIMD(matCol0);
|
|
matSplat02 = SplatZSIMD(matCol0);
|
|
matSplat03 = SplatWSIMD(matCol0);
|
|
|
|
matSplat10 = SplatXSIMD(matCol1);
|
|
matSplat11 = SplatYSIMD(matCol1);
|
|
matSplat12 = SplatZSIMD(matCol1);
|
|
matSplat13 = SplatWSIMD(matCol1);
|
|
|
|
matSplat20 = SplatXSIMD(matCol2);
|
|
matSplat21 = SplatYSIMD(matCol2);
|
|
matSplat22 = SplatZSIMD(matCol2);
|
|
matSplat23 = SplatWSIMD(matCol2);
|
|
}
|
|
|
|
// this macro defines how to compute a specific row from an input and certain splat columns
|
|
#define COMPUTE(res, invec, xterm, yterm, zterm, transterm) res = AddSIMD( AddSIMD( MulSIMD((invec)->z, zterm), AddSIMD( MulSIMD( (invec)->x, xterm ), MulSIMD( (invec)->y, yterm ) ) ), transterm )
|
|
#define WRITE(term, reg, toptr) toptr->term = reg
|
|
|
|
// define result groups (we're going to have an eight-way unroll)
|
|
|
|
fltx4 res0X, res0Y, res0Z, res0XTemp, res0YTemp, res0ZTemp; // 48 REGISTERS
|
|
fltx4 res1X, res1Y, res1Z, res1XTemp, res1YTemp, res1ZTemp;
|
|
fltx4 res2X, res2Y, res2Z, res2XTemp, res2YTemp, res2ZTemp;
|
|
fltx4 res3X, res3Y, res3Z, res3XTemp, res3YTemp, res3ZTemp;
|
|
fltx4 res4X, res4Y, res4Z, res4XTemp, res4YTemp, res4ZTemp;
|
|
fltx4 res5X, res5Y, res5Z, res5XTemp, res5YTemp, res5ZTemp;
|
|
fltx4 res6X, res6Y, res6Z, res6XTemp, res6YTemp, res6ZTemp;
|
|
fltx4 res7X, res7Y, res7Z, res7XTemp, res7YTemp, res7ZTemp;
|
|
|
|
|
|
// #define FROZ(out,in,offset) COMPUTE((out+offset)->x, (in + offset), matSplat00, matSplat01, matSplat02, matSplat03); COMPUTE((out + offset )->y, (in + offset), matSplat10, matSplat11, matSplat12, matSplat13); COMPUTE((out + offset)->z, (in + offset), matSplat20, matSplat21, matSplat22, matSplat23)
|
|
#define COMPUTE_GROUP(resgroup,dataptr) COMPUTE(resgroup ## X, (dataptr), matSplat00, matSplat01, matSplat02, matSplat03); COMPUTE(resgroup ## Y, (dataptr), matSplat10, matSplat11, matSplat12, matSplat13); COMPUTE(resgroup ## Z, (dataptr), matSplat20, matSplat21, matSplat22, matSplat23)
|
|
#define WRITE_GROUP(ptr, resgroup) (ptr)->x = resgroup ## X; (ptr)->y = resgroup ## Y; (ptr)->z = resgroup ## Z
|
|
|
|
/*
|
|
// stage 1 -- 6 ops for xyz, each w 12 cycle latency
|
|
res0X = MulSIMD( (invec)->y, matSplat01 );
|
|
res0Temp = MaddSIMD((invec)->z, matSplat02, matSplat03);
|
|
// stage 2 -- 3 clocks for xyz
|
|
res0X = MaddSIMD( (invec)->x, matSplat00, res0X );
|
|
// stage 3 -- 3 clocks for xyz
|
|
res0X = AddSIMD(res0X, res0Temp);
|
|
*/
|
|
#define COMPUTE_STAGE1_ROW(res, tempvar, invec, xsplat, ysplat, zsplat, transplat) res = MulSIMD( (invec)->y, ysplat ); tempvar = MaddSIMD((invec)->z, zsplat, transplat)
|
|
#define COMPUTE_STAGE2_ROW(res, tempvar, invec, xsplat, ysplat, zsplat, transplat) res = MaddSIMD( (invec)->x, xsplat, res )
|
|
#define COMPUTE_STAGE3_ROW(res, tempvar, invec, xsplat, ysplat, zsplat, transplat) res = AddSIMD(res, tempvar) // frees up the tempvar
|
|
|
|
#define COMPUTE_STAGE1_GROUP(resgroup, invec) COMPUTE_STAGE1_ROW(resgroup ## X, resgroup ## X ## Temp, invec, matSplat00, matSplat01, matSplat02, matSplat03);\
|
|
COMPUTE_STAGE1_ROW(resgroup ## Y, resgroup ## Y ## Temp, invec, matSplat10, matSplat11, matSplat12, matSplat13);\
|
|
COMPUTE_STAGE1_ROW(resgroup ## Z, resgroup ## Z ## Temp, invec, matSplat20, matSplat21, matSplat22, matSplat23)
|
|
|
|
#define COMPUTE_STAGE2_GROUP(resgroup, invec) COMPUTE_STAGE2_ROW(resgroup ## X, resgroup ## X ## Temp, invec, matSplat00, matSplat01, matSplat02, matSplat03);\
|
|
COMPUTE_STAGE2_ROW(resgroup ## Y, resgroup ## Y ## Temp, invec, matSplat10, matSplat11, matSplat12, matSplat13);\
|
|
COMPUTE_STAGE2_ROW(resgroup ## Z, resgroup ## Z ## Temp, invec, matSplat20, matSplat21, matSplat22, matSplat23)
|
|
|
|
#define COMPUTE_STAGE3_GROUP(resgroup, invec) COMPUTE_STAGE3_ROW(resgroup ## X, resgroup ## X ## Temp, invec, matSplat00, matSplat01, matSplat02, matSplat03);\
|
|
COMPUTE_STAGE3_ROW(resgroup ## Y, resgroup ## Y ## Temp, invec, matSplat10, matSplat11, matSplat12, matSplat13);\
|
|
COMPUTE_STAGE3_ROW(resgroup ## Z, resgroup ## Z ## Temp, invec, matSplat20, matSplat21, matSplat22, matSplat23)
|
|
|
|
FourVectors * RESTRICT inData = pVectors;
|
|
FourVectors * RESTRICT outData = pOut;
|
|
const FourVectors * const RESTRICT STOP = pVectors + numVectors;
|
|
|
|
// Use techniques of loop scheduling to eliminate data hazards; process
|
|
// eight groups simultaneously so that we never have any operations stalling
|
|
// waiting for data.
|
|
// Note: this loop, while pretty fast, could be faster still -- you'll notice
|
|
// that it does all of its loads, then all computation, then writes everything
|
|
// out. If made truly cyclic, such that every line interleaved a stage 1, stage 2,
|
|
// stage 3, and write, then throughput could be higher (probably by about 50%).
|
|
while (inData < STOP)
|
|
{
|
|
// start prefetching the three cache lines
|
|
// we'll hit two iterations from now
|
|
__dcbt( sizeof(FourVectors) * 16, inData );
|
|
__dcbt( sizeof(FourVectors) * 16 + 128, inData );
|
|
__dcbt( sizeof(FourVectors) * 16 + 256, inData );
|
|
|
|
// synchro
|
|
COMPUTE_STAGE1_GROUP(res0, inData + 0);
|
|
COMPUTE_STAGE1_GROUP(res1, inData + 1);
|
|
COMPUTE_STAGE1_GROUP(res2, inData + 2);
|
|
COMPUTE_STAGE1_GROUP(res3, inData + 3);
|
|
|
|
COMPUTE_STAGE2_GROUP(res0, inData + 0);
|
|
COMPUTE_STAGE1_GROUP(res4, inData + 4);
|
|
COMPUTE_STAGE2_GROUP(res1, inData + 1);
|
|
COMPUTE_STAGE1_GROUP(res5, inData + 5);
|
|
COMPUTE_STAGE2_GROUP(res2, inData + 2);
|
|
COMPUTE_STAGE1_GROUP(res6, inData + 6);
|
|
COMPUTE_STAGE2_GROUP(res3, inData + 3);
|
|
COMPUTE_STAGE1_GROUP(res7, inData + 7);
|
|
|
|
COMPUTE_STAGE3_GROUP(res0, inData + 0);
|
|
COMPUTE_STAGE2_GROUP(res4, inData + 4);
|
|
COMPUTE_STAGE3_GROUP(res1, inData + 1);
|
|
COMPUTE_STAGE2_GROUP(res5, inData + 5);
|
|
COMPUTE_STAGE3_GROUP(res2, inData + 2);
|
|
COMPUTE_STAGE2_GROUP(res6, inData + 6);
|
|
COMPUTE_STAGE3_GROUP(res3, inData + 3);
|
|
COMPUTE_STAGE2_GROUP(res7, inData + 7);
|
|
|
|
COMPUTE_STAGE3_GROUP(res4, inData + 4);
|
|
WRITE_GROUP( outData + 0, res0 );
|
|
COMPUTE_STAGE3_GROUP(res5, inData + 5);
|
|
WRITE_GROUP( outData + 1, res1 );
|
|
COMPUTE_STAGE3_GROUP(res6, inData + 6);
|
|
WRITE_GROUP( outData + 2, res2 );
|
|
COMPUTE_STAGE3_GROUP(res7, inData + 7);
|
|
WRITE_GROUP( outData + 3, res3 );
|
|
|
|
|
|
WRITE_GROUP( outData + 4, res4 );
|
|
WRITE_GROUP( outData + 5, res5 );
|
|
WRITE_GROUP( outData + 6, res6 );
|
|
WRITE_GROUP( outData + 7, res7 );
|
|
|
|
inData += 8;
|
|
outData += 8;
|
|
}
|
|
|
|
|
|
#undef COMPUTE
|
|
#undef WRITE
|
|
#undef COMPUTE_STAGE1_ROW
|
|
#undef COMPUTE_STAGE2_ROW
|
|
#undef COMPUTE_STAGE3_ROW
|
|
#undef COMPUTE_STAGE1_GROUP
|
|
#undef COMPUTE_STAGE2_GROUP
|
|
#undef COMPUTE_STAGE3_GROUP
|
|
#undef COMPUTE_GROUP
|
|
#undef WRITE_GROUP
|
|
}
|
|
|
|
#ifdef _X360
|
|
// Loop-scheduled code to process FourVectors in groups of eight quite efficiently. This is the version
|
|
// to call when starting on a 128-byte-aligned address.
|
|
void FourVectors_TransformManyGroupsOfEightBy_128byteAligned(FourVectors * RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix, FourVectors * RESTRICT pOut )
|
|
{
|
|
/* If this has changed, you will need to change all the prefetches, *
|
|
* and groups of eight are no longer the ideal unit for iterating *
|
|
* on many vectors. */
|
|
COMPILE_TIME_ASSERT( sizeof(FourVectors) == 48 ) ;
|
|
|
|
Assert(numVectors > 0);
|
|
if ( numVectors == 0 )
|
|
return;
|
|
|
|
AssertMsg((numVectors & 0x07) == 0, "FourVectors_TransformManyGroupsOfEight called with numVectors % 8 != 0!");
|
|
|
|
// Assert alignment
|
|
AssertMsg( ( ( reinterpret_cast<uint32>( pVectors ) & 127 ) == 0) &&
|
|
( ( reinterpret_cast<uint32>(pOut) & 127 ) == 0),
|
|
"FourVectors_Transform..aligned called with non-128-byte-aligned buffers." );
|
|
|
|
// Assert non overlap
|
|
AssertMsg( (pOut < pVectors && pOut+numVectors <= pVectors) ||
|
|
(pOut > pVectors && pVectors+numVectors <= pOut), "FourVectors::TransformManyBy called with overlapping buffer pointers." );
|
|
|
|
// Here's the plan. 8 four-vecs = 3 cache lines exactly. It takes about 400 cycles to process a group
|
|
// of eight, and cache latency is 600 cycles, so we try to prefetch two iterations ahead (eg fetch
|
|
// iteration 3 while working on iteration 1). In the case of the output, we can simply zero-flush
|
|
// the cache lines since we are sure to write into them. Because we're reading and fetching two ahead,
|
|
// we want to stop two away from the last iteration.
|
|
|
|
// No matter what, we will need to prefetch the first two groups of eight of input (that's the
|
|
// first six cache lines)
|
|
__dcbt( 0, pVectors );
|
|
__dcbt( 128, pVectors );
|
|
__dcbt( 256, pVectors );
|
|
__dcbt( 384, pVectors );
|
|
__dcbt( 512, pVectors );
|
|
__dcbt( 640, pVectors );
|
|
|
|
|
|
// Splat out each of the entries in the matrix to a fltx4. Do this
|
|
// in the order that we will need them, to hide latency. I'm
|
|
// avoiding making an array of them, so that they'll remain in
|
|
// registers.
|
|
fltx4 matSplat00, matSplat01, matSplat02, matSplat03, // TWELVE REGISTERS
|
|
matSplat10, matSplat11, matSplat12, matSplat13,
|
|
matSplat20, matSplat21, matSplat22, matSplat23;
|
|
|
|
{
|
|
// Load the matrix into local vectors. Sadly, matrix3x4_ts are
|
|
// often unaligned. The w components will be the tranpose row of
|
|
// the matrix.
|
|
fltx4 matCol0 = LoadUnalignedSIMD(rotationMatrix[0]);
|
|
fltx4 matCol1 = LoadUnalignedSIMD(rotationMatrix[1]);
|
|
fltx4 matCol2 = LoadUnalignedSIMD(rotationMatrix[2]);
|
|
|
|
matSplat00 = SplatXSIMD(matCol0);
|
|
matSplat01 = SplatYSIMD(matCol0);
|
|
matSplat02 = SplatZSIMD(matCol0);
|
|
matSplat03 = SplatWSIMD(matCol0);
|
|
|
|
matSplat10 = SplatXSIMD(matCol1);
|
|
matSplat11 = SplatYSIMD(matCol1);
|
|
matSplat12 = SplatZSIMD(matCol1);
|
|
matSplat13 = SplatWSIMD(matCol1);
|
|
|
|
matSplat20 = SplatXSIMD(matCol2);
|
|
matSplat21 = SplatYSIMD(matCol2);
|
|
matSplat22 = SplatZSIMD(matCol2);
|
|
matSplat23 = SplatWSIMD(matCol2);
|
|
}
|
|
|
|
// this macro defines how to compute a specific row from an input and certain splat columns
|
|
#define COMPUTE(res, invec, xterm, yterm, zterm, transterm) res = AddSIMD( AddSIMD( MulSIMD((invec)->z, zterm), AddSIMD( MulSIMD( (invec)->x, xterm ), MulSIMD( (invec)->y, yterm ) ) ), transterm )
|
|
#define WRITE(term, reg, toptr) toptr->term = reg
|
|
|
|
// define result groups (we're going to have an eight-way unroll)
|
|
|
|
fltx4 res0X, res0Y, res0Z, res0XTemp, res0YTemp, res0ZTemp; // 48 REGISTERS
|
|
fltx4 res1X, res1Y, res1Z, res1XTemp, res1YTemp, res1ZTemp;
|
|
fltx4 res2X, res2Y, res2Z, res2XTemp, res2YTemp, res2ZTemp;
|
|
fltx4 res3X, res3Y, res3Z, res3XTemp, res3YTemp, res3ZTemp;
|
|
fltx4 res4X, res4Y, res4Z, res4XTemp, res4YTemp, res4ZTemp;
|
|
fltx4 res5X, res5Y, res5Z, res5XTemp, res5YTemp, res5ZTemp;
|
|
fltx4 res6X, res6Y, res6Z, res6XTemp, res6YTemp, res6ZTemp;
|
|
fltx4 res7X, res7Y, res7Z, res7XTemp, res7YTemp, res7ZTemp;
|
|
|
|
|
|
// #define FROZ(out,in,offset) COMPUTE((out+offset)->x, (in + offset), matSplat00, matSplat01, matSplat02, matSplat03); COMPUTE((out + offset )->y, (in + offset), matSplat10, matSplat11, matSplat12, matSplat13); COMPUTE((out + offset)->z, (in + offset), matSplat20, matSplat21, matSplat22, matSplat23)
|
|
#define COMPUTE_GROUP(resgroup,dataptr) COMPUTE(resgroup ## X, (dataptr), matSplat00, matSplat01, matSplat02, matSplat03); COMPUTE(resgroup ## Y, (dataptr), matSplat10, matSplat11, matSplat12, matSplat13); COMPUTE(resgroup ## Z, (dataptr), matSplat20, matSplat21, matSplat22, matSplat23)
|
|
#define WRITE_GROUP(ptr, resgroup) (ptr)->x = resgroup ## X; (ptr)->y = resgroup ## Y; (ptr)->z = resgroup ## Z
|
|
|
|
/*
|
|
// stage 1 -- 6 ops for xyz, each w 12 cycle latency
|
|
res0X = MulSIMD( (invec)->y, matSplat01 );
|
|
res0Temp = MaddSIMD((invec)->z, matSplat02, matSplat03);
|
|
// stage 2 -- 3 clocks for xyz
|
|
res0X = MaddSIMD( (invec)->x, matSplat00, res0X );
|
|
// stage 3 -- 3 clocks for xyz
|
|
res0X = AddSIMD(res0X, res0Temp);
|
|
*/
|
|
#define COMPUTE_STAGE1_ROW(res, tempvar, invec, xsplat, ysplat, zsplat, transplat) res = MulSIMD( (invec)->y, ysplat ); tempvar = MaddSIMD((invec)->z, zsplat, transplat)
|
|
#define COMPUTE_STAGE2_ROW(res, tempvar, invec, xsplat, ysplat, zsplat, transplat) res = MaddSIMD( (invec)->x, xsplat, res )
|
|
#define COMPUTE_STAGE3_ROW(res, tempvar, invec, xsplat, ysplat, zsplat, transplat) res = AddSIMD(res, tempvar) // frees up the tempvar
|
|
|
|
#define COMPUTE_STAGE1_GROUP(resgroup, invec) COMPUTE_STAGE1_ROW(resgroup ## X, resgroup ## X ## Temp, invec, matSplat00, matSplat01, matSplat02, matSplat03);\
|
|
COMPUTE_STAGE1_ROW(resgroup ## Y, resgroup ## Y ## Temp, invec, matSplat10, matSplat11, matSplat12, matSplat13);\
|
|
COMPUTE_STAGE1_ROW(resgroup ## Z, resgroup ## Z ## Temp, invec, matSplat20, matSplat21, matSplat22, matSplat23)
|
|
|
|
#define COMPUTE_STAGE2_GROUP(resgroup, invec) COMPUTE_STAGE2_ROW(resgroup ## X, resgroup ## X ## Temp, invec, matSplat00, matSplat01, matSplat02, matSplat03);\
|
|
COMPUTE_STAGE2_ROW(resgroup ## Y, resgroup ## Y ## Temp, invec, matSplat10, matSplat11, matSplat12, matSplat13);\
|
|
COMPUTE_STAGE2_ROW(resgroup ## Z, resgroup ## Z ## Temp, invec, matSplat20, matSplat21, matSplat22, matSplat23)
|
|
|
|
#define COMPUTE_STAGE3_GROUP(resgroup, invec) COMPUTE_STAGE3_ROW(resgroup ## X, resgroup ## X ## Temp, invec, matSplat00, matSplat01, matSplat02, matSplat03);\
|
|
COMPUTE_STAGE3_ROW(resgroup ## Y, resgroup ## Y ## Temp, invec, matSplat10, matSplat11, matSplat12, matSplat13);\
|
|
COMPUTE_STAGE3_ROW(resgroup ## Z, resgroup ## Z ## Temp, invec, matSplat20, matSplat21, matSplat22, matSplat23)
|
|
|
|
|
|
// Okay. First do all but the last two turns of the crank; we don't want to overshoot with the flush-to-zero.
|
|
FourVectors * RESTRICT inData = pVectors;
|
|
FourVectors * RESTRICT outData = pOut;
|
|
const FourVectors * RESTRICT STOP;
|
|
if (numVectors > 16)
|
|
{
|
|
STOP = pVectors + numVectors - 16;
|
|
// flush the first two blocks we'll write into
|
|
__dcbz128( 0, outData );
|
|
__dcbz128( 128, outData );
|
|
__dcbz128( 256, outData );
|
|
|
|
while (inData < STOP)
|
|
{
|
|
// start prefetching the three cache lines
|
|
// we'll hit two iterations from now
|
|
__dcbt( sizeof(FourVectors) * 16, inData );
|
|
__dcbt( sizeof(FourVectors) * 16 + 128, inData );
|
|
__dcbt( sizeof(FourVectors) * 16 + 256, inData );
|
|
|
|
// synchro
|
|
COMPUTE_STAGE1_GROUP(res0, inData + 0);
|
|
COMPUTE_STAGE1_GROUP(res1, inData + 1);
|
|
COMPUTE_STAGE1_GROUP(res2, inData + 2);
|
|
COMPUTE_STAGE1_GROUP(res3, inData + 3);
|
|
|
|
// pre-zero the three cache lines we'll overwrite
|
|
// in the next iteration
|
|
__dcbz128( 384, outData );
|
|
__dcbz128( 512, outData );
|
|
__dcbz128( 640, outData );
|
|
|
|
|
|
COMPUTE_STAGE2_GROUP(res0, inData + 0);
|
|
COMPUTE_STAGE1_GROUP(res4, inData + 4);
|
|
COMPUTE_STAGE2_GROUP(res1, inData + 1);
|
|
COMPUTE_STAGE1_GROUP(res5, inData + 5);
|
|
COMPUTE_STAGE2_GROUP(res2, inData + 2);
|
|
COMPUTE_STAGE1_GROUP(res6, inData + 6);
|
|
COMPUTE_STAGE2_GROUP(res3, inData + 3);
|
|
COMPUTE_STAGE1_GROUP(res7, inData + 7);
|
|
|
|
COMPUTE_STAGE3_GROUP(res0, inData + 0);
|
|
COMPUTE_STAGE2_GROUP(res4, inData + 4);
|
|
COMPUTE_STAGE3_GROUP(res1, inData + 1);
|
|
COMPUTE_STAGE2_GROUP(res5, inData + 5);
|
|
COMPUTE_STAGE3_GROUP(res2, inData + 2);
|
|
COMPUTE_STAGE2_GROUP(res6, inData + 6);
|
|
COMPUTE_STAGE3_GROUP(res3, inData + 3);
|
|
COMPUTE_STAGE2_GROUP(res7, inData + 7);
|
|
|
|
COMPUTE_STAGE3_GROUP(res4, inData + 4);
|
|
WRITE_GROUP( outData + 0, res0 );
|
|
COMPUTE_STAGE3_GROUP(res5, inData + 5);
|
|
WRITE_GROUP( outData + 1, res1 );
|
|
COMPUTE_STAGE3_GROUP(res6, inData + 6);
|
|
WRITE_GROUP( outData + 2, res2 );
|
|
COMPUTE_STAGE3_GROUP(res7, inData + 7);
|
|
WRITE_GROUP( outData + 3, res3 );
|
|
|
|
|
|
WRITE_GROUP( outData + 4, res4 );
|
|
WRITE_GROUP( outData + 5, res5 );
|
|
WRITE_GROUP( outData + 6, res6 );
|
|
WRITE_GROUP( outData + 7, res7 );
|
|
|
|
inData += 8;
|
|
outData += 8;
|
|
}
|
|
}
|
|
else if (numVectors == 16)
|
|
{
|
|
// zero out the exactly six cache lines we will write into
|
|
__dcbz128( 0, outData );
|
|
__dcbz128( 128, outData );
|
|
__dcbz128( 256, outData );
|
|
__dcbz128( 384, outData );
|
|
__dcbz128( 512, outData );
|
|
__dcbz128( 640, outData );
|
|
}
|
|
else if (numVectors == 8)
|
|
{
|
|
// zero out the exactly three cache lines we will write into
|
|
__dcbz128( 0, outData );
|
|
__dcbz128( 128, outData );
|
|
__dcbz128( 256, outData );
|
|
}
|
|
else
|
|
{
|
|
AssertMsg(false, "Can't happen!");
|
|
}
|
|
|
|
// deal with the ultimate two groups (or, if we were fed
|
|
// less than 16 groups, the whole shebang)
|
|
STOP = pVectors + numVectors - 16;
|
|
|
|
|
|
// Use techniques of loop scheduling to eliminate data hazards; process
|
|
// eight groups simultaneously so that we never have any operations stalling
|
|
// waiting for data.
|
|
// Note: this loop, while pretty fast, could be faster still -- you'll notice
|
|
// that it does all of its loads, then all computation, then writes everything
|
|
// out. If made truly cyclic, such that every line interleaved a stage 1, stage 2,
|
|
// stage 3, and write, then throughput could be higher (probably by about 50%).
|
|
while (inData < STOP)
|
|
{
|
|
// synchro
|
|
COMPUTE_STAGE1_GROUP(res0, inData + 0);
|
|
COMPUTE_STAGE1_GROUP(res1, inData + 1);
|
|
COMPUTE_STAGE1_GROUP(res2, inData + 2);
|
|
COMPUTE_STAGE1_GROUP(res3, inData + 3);
|
|
|
|
COMPUTE_STAGE2_GROUP(res0, inData + 0);
|
|
COMPUTE_STAGE1_GROUP(res4, inData + 4);
|
|
COMPUTE_STAGE2_GROUP(res1, inData + 1);
|
|
COMPUTE_STAGE1_GROUP(res5, inData + 5);
|
|
COMPUTE_STAGE2_GROUP(res2, inData + 2);
|
|
COMPUTE_STAGE1_GROUP(res6, inData + 6);
|
|
COMPUTE_STAGE2_GROUP(res3, inData + 3);
|
|
COMPUTE_STAGE1_GROUP(res7, inData + 7);
|
|
|
|
COMPUTE_STAGE3_GROUP(res0, inData + 0);
|
|
COMPUTE_STAGE2_GROUP(res4, inData + 4);
|
|
COMPUTE_STAGE3_GROUP(res1, inData + 1);
|
|
COMPUTE_STAGE2_GROUP(res5, inData + 5);
|
|
COMPUTE_STAGE3_GROUP(res2, inData + 2);
|
|
COMPUTE_STAGE2_GROUP(res6, inData + 6);
|
|
COMPUTE_STAGE3_GROUP(res3, inData + 3);
|
|
COMPUTE_STAGE2_GROUP(res7, inData + 7);
|
|
|
|
COMPUTE_STAGE3_GROUP(res4, inData + 4);
|
|
WRITE_GROUP( outData + 0, res0 );
|
|
COMPUTE_STAGE3_GROUP(res5, inData + 5);
|
|
WRITE_GROUP( outData + 1, res1 );
|
|
COMPUTE_STAGE3_GROUP(res6, inData + 6);
|
|
WRITE_GROUP( outData + 2, res2 );
|
|
COMPUTE_STAGE3_GROUP(res7, inData + 7);
|
|
WRITE_GROUP( outData + 3, res3 );
|
|
|
|
|
|
WRITE_GROUP( outData + 4, res4 );
|
|
WRITE_GROUP( outData + 5, res5 );
|
|
WRITE_GROUP( outData + 6, res6 );
|
|
WRITE_GROUP( outData + 7, res7 );
|
|
|
|
inData += 8;
|
|
outData += 8;
|
|
}
|
|
|
|
|
|
#undef COMPUTE
|
|
#undef WRITE
|
|
#undef COMPUTE_STAGE1_ROW
|
|
#undef COMPUTE_STAGE2_ROW
|
|
#undef COMPUTE_STAGE3_ROW
|
|
#undef COMPUTE_STAGE1_GROUP
|
|
#undef COMPUTE_STAGE2_GROUP
|
|
#undef COMPUTE_STAGE3_GROUP
|
|
#undef COMPUTE_GROUP
|
|
#undef WRITE_GROUP
|
|
}
|
|
#endif
|
|
|
|
// Transform a long array of FourVectors by a given matrix.
|
|
void FourVectors::TransformManyBy(FourVectors * RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix, FourVectors * RESTRICT pOut )
|
|
{
|
|
Assert(numVectors > 0);
|
|
|
|
AssertMsg( (pOut < pVectors && pOut+numVectors <= pVectors) ||
|
|
(pOut > pVectors && pVectors+numVectors <= pOut), "FourVectors::TransformManyBy called with overlapping buffer pointers." );
|
|
|
|
#ifdef _X360
|
|
// The really fast version of this function likes to operate on blocks of eight. So, chug through
|
|
// groups of eight, then deal with any leftovers.
|
|
int numVectorsRoundedToNearestEight = numVectors & (~0x07);
|
|
if (numVectors >= 8)
|
|
{
|
|
// aligned?
|
|
if ((reinterpret_cast<unsigned int>(pVectors) & 127) == 0 && (reinterpret_cast<unsigned int>(pOut) & 127) == 0)
|
|
{
|
|
FourVectors_TransformManyGroupsOfEightBy_128byteAligned(pVectors, numVectorsRoundedToNearestEight, rotationMatrix, pOut);
|
|
}
|
|
else
|
|
{
|
|
FourVectors_TransformManyGroupsOfEightBy(pVectors, numVectorsRoundedToNearestEight, rotationMatrix, pOut);
|
|
}
|
|
numVectors -= numVectorsRoundedToNearestEight;
|
|
pVectors += numVectorsRoundedToNearestEight;
|
|
pOut += numVectorsRoundedToNearestEight;
|
|
}
|
|
#endif
|
|
|
|
// any left over?
|
|
if (numVectors > 0)
|
|
{
|
|
|
|
// Splat out each of the entries in the matrix to a fltx4. Do this
|
|
// in the order that we will need them, to hide latency. I'm
|
|
// avoiding making an array of them, so that they'll remain in
|
|
// registers.
|
|
fltx4 matSplat00, matSplat01, matSplat02, matSplat03, // TWELVE REGISTERS
|
|
matSplat10, matSplat11, matSplat12, matSplat13,
|
|
matSplat20, matSplat21, matSplat22, matSplat23;
|
|
|
|
{
|
|
// Load the matrix into local vectors. Sadly, matrix3x4_ts are
|
|
// often unaligned. The w components will be the transpose row of
|
|
// the matrix.
|
|
fltx4 matCol0 = LoadUnalignedSIMD(rotationMatrix[0]);
|
|
fltx4 matCol1 = LoadUnalignedSIMD(rotationMatrix[1]);
|
|
fltx4 matCol2 = LoadUnalignedSIMD(rotationMatrix[2]);
|
|
|
|
matSplat00 = SplatXSIMD(matCol0);
|
|
matSplat01 = SplatYSIMD(matCol0);
|
|
matSplat02 = SplatZSIMD(matCol0);
|
|
matSplat03 = SplatWSIMD(matCol0);
|
|
|
|
matSplat10 = SplatXSIMD(matCol1);
|
|
matSplat11 = SplatYSIMD(matCol1);
|
|
matSplat12 = SplatZSIMD(matCol1);
|
|
matSplat13 = SplatWSIMD(matCol1);
|
|
|
|
matSplat20 = SplatXSIMD(matCol2);
|
|
matSplat21 = SplatYSIMD(matCol2);
|
|
matSplat22 = SplatZSIMD(matCol2);
|
|
matSplat23 = SplatWSIMD(matCol2);
|
|
}
|
|
|
|
do
|
|
{
|
|
// Trust in the compiler to schedule these operations correctly:
|
|
pOut->x = MaddSIMD(pVectors->z, matSplat02, MaddSIMD(pVectors->y, matSplat01, MaddSIMD(pVectors->x, matSplat00, matSplat03)));
|
|
pOut->y = MaddSIMD(pVectors->z, matSplat12, MaddSIMD(pVectors->y, matSplat11, MaddSIMD(pVectors->x, matSplat00, matSplat13)));
|
|
pOut->z = MaddSIMD(pVectors->z, matSplat22, MaddSIMD(pVectors->y, matSplat21, MaddSIMD(pVectors->x, matSplat00, matSplat23)));
|
|
|
|
++pOut;
|
|
++pVectors;
|
|
--numVectors;
|
|
} while(numVectors > 0);
|
|
}
|
|
}
|
|
|
|
#ifdef _X360
|
|
// Loop-scheduled code to process FourVectors in groups of eight quite efficiently.
|
|
static void FourVectors_TransformManyGroupsOfEightBy_InPlace(FourVectors * RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix )
|
|
{
|
|
Assert(numVectors > 0);
|
|
if ( numVectors == 0 )
|
|
return;
|
|
|
|
// Prefetch line 1 and 2
|
|
__dcbt(0,pVectors);
|
|
__dcbt(128,pVectors);
|
|
|
|
// Splat out each of the entries in the matrix to a fltx4. Do this
|
|
// in the order that we will need them, to hide latency. I'm
|
|
// avoiding making an array of them, so that they'll remain in
|
|
// registers.
|
|
fltx4 matSplat00, matSplat01, matSplat02, matSplat03, // TWELVE REGISTERS
|
|
matSplat10, matSplat11, matSplat12, matSplat13,
|
|
matSplat20, matSplat21, matSplat22, matSplat23;
|
|
|
|
{
|
|
// Load the matrix into local vectors. Sadly, matrix3x4_ts are
|
|
// often unaligned. The w components will be the tranpose row of
|
|
// the matrix.
|
|
fltx4 matCol0 = LoadUnalignedSIMD(rotationMatrix[0]);
|
|
fltx4 matCol1 = LoadUnalignedSIMD(rotationMatrix[1]);
|
|
fltx4 matCol2 = LoadUnalignedSIMD(rotationMatrix[2]);
|
|
|
|
matSplat00 = SplatXSIMD(matCol0);
|
|
matSplat01 = SplatYSIMD(matCol0);
|
|
matSplat02 = SplatZSIMD(matCol0);
|
|
matSplat03 = SplatWSIMD(matCol0);
|
|
|
|
matSplat10 = SplatXSIMD(matCol1);
|
|
matSplat11 = SplatYSIMD(matCol1);
|
|
matSplat12 = SplatZSIMD(matCol1);
|
|
matSplat13 = SplatWSIMD(matCol1);
|
|
|
|
matSplat20 = SplatXSIMD(matCol2);
|
|
matSplat21 = SplatYSIMD(matCol2);
|
|
matSplat22 = SplatZSIMD(matCol2);
|
|
matSplat23 = SplatWSIMD(matCol2);
|
|
}
|
|
|
|
// this macro defines how to compute a specific row from an input and certain splat columns
|
|
#define COMPUTE(res, invec, xterm, yterm, zterm, transterm) res = AddSIMD( AddSIMD( MulSIMD((invec)->z, zterm), AddSIMD( MulSIMD( (invec)->x, xterm ), MulSIMD( (invec)->y, yterm ) ) ), transterm )
|
|
#define WRITE(term, reg, toptr) toptr->term = reg
|
|
|
|
// define result groups (we're going to have an eight-way unroll)
|
|
|
|
fltx4 res0X, res0Y, res0Z, res0XTemp, res0YTemp, res0ZTemp; // 48 REGISTERS
|
|
fltx4 res1X, res1Y, res1Z, res1XTemp, res1YTemp, res1ZTemp;
|
|
fltx4 res2X, res2Y, res2Z, res2XTemp, res2YTemp, res2ZTemp;
|
|
fltx4 res3X, res3Y, res3Z, res3XTemp, res3YTemp, res3ZTemp;
|
|
fltx4 res4X, res4Y, res4Z, res4XTemp, res4YTemp, res4ZTemp;
|
|
fltx4 res5X, res5Y, res5Z, res5XTemp, res5YTemp, res5ZTemp;
|
|
fltx4 res6X, res6Y, res6Z, res6XTemp, res6YTemp, res6ZTemp;
|
|
fltx4 res7X, res7Y, res7Z, res7XTemp, res7YTemp, res7ZTemp;
|
|
|
|
|
|
// #define FROZ(out,in,offset) COMPUTE((out+offset)->x, (in + offset), matSplat00, matSplat01, matSplat02, matSplat03); COMPUTE((out + offset )->y, (in + offset), matSplat10, matSplat11, matSplat12, matSplat13); COMPUTE((out + offset)->z, (in + offset), matSplat20, matSplat21, matSplat22, matSplat23)
|
|
#define COMPUTE_GROUP(resgroup,dataptr) COMPUTE(resgroup ## X, (dataptr), matSplat00, matSplat01, matSplat02, matSplat03); COMPUTE(resgroup ## Y, (dataptr), matSplat10, matSplat11, matSplat12, matSplat13); COMPUTE(resgroup ## Z, (dataptr), matSplat20, matSplat21, matSplat22, matSplat23)
|
|
#define WRITE_GROUP(ptr, resgroup) (ptr)->x = resgroup ## X; (ptr)->y = resgroup ## Y; (ptr)->z = resgroup ## Z
|
|
|
|
/*
|
|
// stage 1 -- 6 ops for xyz, each w 12 cycle latency
|
|
res0X = MulSIMD( (invec)->y, matSplat01 );
|
|
res0Temp = MaddSIMD((invec)->z, matSplat02, matSplat03);
|
|
// stage 2 -- 3 clocks for xyz
|
|
res0X = MaddSIMD( (invec)->x, matSplat00, res0X );
|
|
// stage 3 -- 3 clocks for xyz
|
|
res0X = AddSIMD(res0X, res0Temp);
|
|
*/
|
|
#define COMPUTE_STAGE1_ROW(res, tempvar, invec, xsplat, ysplat, zsplat, transplat) res = MulSIMD( (invec)->y, ysplat ); tempvar = MaddSIMD((invec)->z, zsplat, transplat)
|
|
#define COMPUTE_STAGE2_ROW(res, tempvar, invec, xsplat, ysplat, zsplat, transplat) res = MaddSIMD( (invec)->x, xsplat, res )
|
|
#define COMPUTE_STAGE3_ROW(res, tempvar, invec, xsplat, ysplat, zsplat, transplat) res = AddSIMD(res, tempvar) // frees up the tempvar
|
|
|
|
#define COMPUTE_STAGE1_GROUP(resgroup, invec) COMPUTE_STAGE1_ROW(resgroup ## X, resgroup ## X ## Temp, invec, matSplat00, matSplat01, matSplat02, matSplat03);\
|
|
COMPUTE_STAGE1_ROW(resgroup ## Y, resgroup ## Y ## Temp, invec, matSplat10, matSplat11, matSplat12, matSplat13);\
|
|
COMPUTE_STAGE1_ROW(resgroup ## Z, resgroup ## Z ## Temp, invec, matSplat20, matSplat21, matSplat22, matSplat23)
|
|
|
|
#define COMPUTE_STAGE2_GROUP(resgroup, invec) COMPUTE_STAGE2_ROW(resgroup ## X, resgroup ## X ## Temp, invec, matSplat00, matSplat01, matSplat02, matSplat03);\
|
|
COMPUTE_STAGE2_ROW(resgroup ## Y, resgroup ## Y ## Temp, invec, matSplat10, matSplat11, matSplat12, matSplat13);\
|
|
COMPUTE_STAGE2_ROW(resgroup ## Z, resgroup ## Z ## Temp, invec, matSplat20, matSplat21, matSplat22, matSplat23)
|
|
|
|
#define COMPUTE_STAGE3_GROUP(resgroup, invec) COMPUTE_STAGE3_ROW(resgroup ## X, resgroup ## X ## Temp, invec, matSplat00, matSplat01, matSplat02, matSplat03);\
|
|
COMPUTE_STAGE3_ROW(resgroup ## Y, resgroup ## Y ## Temp, invec, matSplat10, matSplat11, matSplat12, matSplat13);\
|
|
COMPUTE_STAGE3_ROW(resgroup ## Z, resgroup ## Z ## Temp, invec, matSplat20, matSplat21, matSplat22, matSplat23)
|
|
|
|
const FourVectors * const RESTRICT STOP = pVectors + numVectors;
|
|
|
|
// Use techniques of loop scheduling to eliminate data hazards; process
|
|
// eight groups simultaneously so that we never have any operations stalling
|
|
// waiting for data.
|
|
// Note: this loop, while pretty fast, could be faster still -- you'll notice
|
|
// that it does all of its loads, then all computation, then writes everything
|
|
// out. If made truly cyclic, such that every line interleaved a stage 1, stage 2,
|
|
// stage 3, and write, then throughput could be higher (probably by about 50%).
|
|
while (pVectors < STOP)
|
|
{
|
|
// start prefetching the three cache lines
|
|
// we'll hit two iterations from now
|
|
__dcbt( sizeof(FourVectors) * 16, pVectors );
|
|
__dcbt( sizeof(FourVectors) * 16 + 128, pVectors );
|
|
__dcbt( sizeof(FourVectors) * 16 + 256, pVectors );
|
|
|
|
// synchro
|
|
COMPUTE_STAGE1_GROUP(res0, pVectors + 0);
|
|
COMPUTE_STAGE1_GROUP(res1, pVectors + 1);
|
|
COMPUTE_STAGE1_GROUP(res2, pVectors + 2);
|
|
COMPUTE_STAGE1_GROUP(res3, pVectors + 3);
|
|
|
|
COMPUTE_STAGE2_GROUP(res0, pVectors + 0);
|
|
COMPUTE_STAGE1_GROUP(res4, pVectors + 4);
|
|
COMPUTE_STAGE2_GROUP(res1, pVectors + 1);
|
|
COMPUTE_STAGE1_GROUP(res5, pVectors + 5);
|
|
COMPUTE_STAGE2_GROUP(res2, pVectors + 2);
|
|
COMPUTE_STAGE1_GROUP(res6, pVectors + 6);
|
|
COMPUTE_STAGE2_GROUP(res3, pVectors + 3);
|
|
COMPUTE_STAGE1_GROUP(res7, pVectors + 7);
|
|
|
|
COMPUTE_STAGE3_GROUP(res0, pVectors + 0);
|
|
COMPUTE_STAGE2_GROUP(res4, pVectors + 4);
|
|
COMPUTE_STAGE3_GROUP(res1, pVectors + 1);
|
|
COMPUTE_STAGE2_GROUP(res5, pVectors + 5);
|
|
COMPUTE_STAGE3_GROUP(res2, pVectors + 2);
|
|
COMPUTE_STAGE2_GROUP(res6, pVectors + 6);
|
|
COMPUTE_STAGE3_GROUP(res3, pVectors + 3);
|
|
COMPUTE_STAGE2_GROUP(res7, pVectors + 7);
|
|
|
|
COMPUTE_STAGE3_GROUP(res4, pVectors + 4);
|
|
WRITE_GROUP( pVectors + 0, res0 );
|
|
COMPUTE_STAGE3_GROUP(res5, pVectors + 5);
|
|
WRITE_GROUP( pVectors + 1, res1 );
|
|
COMPUTE_STAGE3_GROUP(res6, pVectors + 6);
|
|
WRITE_GROUP( pVectors + 2, res2 );
|
|
COMPUTE_STAGE3_GROUP(res7, pVectors + 7);
|
|
WRITE_GROUP( pVectors + 3, res3 );
|
|
|
|
WRITE_GROUP( pVectors + 4, res4 );
|
|
WRITE_GROUP( pVectors + 5, res5 );
|
|
WRITE_GROUP( pVectors + 6, res6 );
|
|
WRITE_GROUP( pVectors + 7, res7 );
|
|
|
|
pVectors += 8;
|
|
}
|
|
|
|
|
|
#undef COMPUTE
|
|
#undef WRITE
|
|
#undef COMPUTE_STAGE1_ROW
|
|
#undef COMPUTE_STAGE2_ROW
|
|
#undef COMPUTE_STAGE3_ROW
|
|
#undef COMPUTE_STAGE1_GROUP
|
|
#undef COMPUTE_STAGE2_GROUP
|
|
#undef COMPUTE_STAGE3_GROUP
|
|
#undef COMPUTE_GROUP
|
|
#undef WRITE_GROUP
|
|
}
|
|
#endif
|
|
|
|
// In-place version of above. It's necessary to have this, rather than just allowing pOut and pVectors
|
|
// to equal each other, because of the semantics of RESTRICT: pVectors and pOut must not be allowed
|
|
// to alias. (Simply un-restricting the pointers results in very poor scheduling.)
|
|
void FourVectors::TransformManyBy(FourVectors * RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix )
|
|
{
|
|
Assert(numVectors > 0);
|
|
|
|
#ifdef _X360
|
|
// The really fast version of this function likes to operate on blocks of eight. So, chug through
|
|
// groups of eight, then deal with any leftovers.
|
|
int numVectorsRoundedToNearestEight = numVectors & (~0x07);
|
|
if (numVectors >= 8)
|
|
{
|
|
FourVectors_TransformManyGroupsOfEightBy_InPlace(pVectors, numVectorsRoundedToNearestEight, rotationMatrix);
|
|
numVectors -= numVectorsRoundedToNearestEight;
|
|
pVectors += numVectorsRoundedToNearestEight;
|
|
}
|
|
#endif
|
|
|
|
// any left over?
|
|
if (numVectors > 0)
|
|
{
|
|
|
|
// Splat out each of the entries in the matrix to a fltx4. Do this
|
|
// in the order that we will need them, to hide latency. I'm
|
|
// avoiding making an array of them, so that they'll remain in
|
|
// registers.
|
|
fltx4 matSplat00, matSplat01, matSplat02, matSplat03, // TWELVE REGISTERS
|
|
matSplat10, matSplat11, matSplat12, matSplat13,
|
|
matSplat20, matSplat21, matSplat22, matSplat23;
|
|
|
|
{
|
|
// Load the matrix into local vectors. Sadly, matrix3x4_ts are
|
|
// often unaligned. The w components will be the transpose row of
|
|
// the matrix.
|
|
fltx4 matCol0 = LoadUnalignedSIMD(rotationMatrix[0]);
|
|
fltx4 matCol1 = LoadUnalignedSIMD(rotationMatrix[1]);
|
|
fltx4 matCol2 = LoadUnalignedSIMD(rotationMatrix[2]);
|
|
|
|
matSplat00 = SplatXSIMD(matCol0);
|
|
matSplat01 = SplatYSIMD(matCol0);
|
|
matSplat02 = SplatZSIMD(matCol0);
|
|
matSplat03 = SplatWSIMD(matCol0);
|
|
|
|
matSplat10 = SplatXSIMD(matCol1);
|
|
matSplat11 = SplatYSIMD(matCol1);
|
|
matSplat12 = SplatZSIMD(matCol1);
|
|
matSplat13 = SplatWSIMD(matCol1);
|
|
|
|
matSplat20 = SplatXSIMD(matCol2);
|
|
matSplat21 = SplatYSIMD(matCol2);
|
|
matSplat22 = SplatZSIMD(matCol2);
|
|
matSplat23 = SplatWSIMD(matCol2);
|
|
}
|
|
|
|
do
|
|
{
|
|
fltx4 resultX, resultY, resultZ;
|
|
// Trust in the compiler to schedule these operations correctly:
|
|
resultX = MaddSIMD(pVectors->z, matSplat02, MaddSIMD(pVectors->y, matSplat01, MaddSIMD(pVectors->x, matSplat00, matSplat03)));
|
|
resultY = MaddSIMD(pVectors->z, matSplat12, MaddSIMD(pVectors->y, matSplat11, MaddSIMD(pVectors->x, matSplat00, matSplat13)));
|
|
resultZ = MaddSIMD(pVectors->z, matSplat22, MaddSIMD(pVectors->y, matSplat21, MaddSIMD(pVectors->x, matSplat00, matSplat23)));
|
|
|
|
pVectors->x = resultX;
|
|
pVectors->y = resultY;
|
|
pVectors->z = resultZ;
|
|
|
|
++pVectors;
|
|
--numVectors;
|
|
} while(numVectors > 0);
|
|
}
|
|
}
|
|
|
|
|
|
#endif
|
|
|
|
// Transform many (horizontal) points in-place by a 3x4 matrix,
|
|
// here already loaded onto three fltx4 registers but not transposed.
|
|
// The points must be stored as 16-byte aligned. They are points
|
|
// and not vectors because we assume the w-component to be 1.
|
|
#ifdef _X360
|
|
void TransformManyPointsBy(VectorAligned * RESTRICT pVectors, unsigned int numVectors, FLTX4 mRow0, FLTX4 mRow1, FLTX4 mRow2)
|
|
{
|
|
/**************************************************
|
|
* Here is an elaborate and carefully scheduled *
|
|
* algorithm nicked from xboxmath.inl and hacked *
|
|
* up for 3x4 matrices. *
|
|
**************************************************/
|
|
|
|
COMPILE_TIME_ASSERT(sizeof(VectorAligned) == sizeof(XMFLOAT4)); // VectorAligned's need to be 16 bytes
|
|
|
|
XMVECTOR R0[8], R1[8], R2[8];
|
|
XMVECTOR vIn[8];
|
|
|
|
// C_ASSERT(UnrollCount == 8);
|
|
// C_ASSERT(sizeof(XMFLOAT4) == 16);
|
|
Assert(pVectors);
|
|
Assert(((UINT_PTR)pVectors & 3) == 0); // assert alignment
|
|
|
|
UINT GroupIndex;
|
|
|
|
VectorAligned * RESTRICT vCurrent = pVectors;
|
|
// sentinel pointers
|
|
VectorAligned * vStreamEnd, *vStreamGroupBase, *vStreamGroupEnd;
|
|
|
|
{
|
|
// cook up the pointers from integer math. Necessary because otherwise we LHS all over
|
|
// the place. (Odd that this doesn't happen to the xbox math.)
|
|
|
|
UINT_PTR InputVector = (UINT_PTR)pVectors;
|
|
UINT_PTR InputStreamEnd = InputVector + numVectors * sizeof(XMFLOAT4);
|
|
// compute start and end points on 128-byte alignment
|
|
UINT_PTR InputStreamCGroupBase = XMMin(InputVector + (XM_CACHE_LINE_SIZE - 1), InputStreamEnd) & ~(XM_CACHE_LINE_SIZE - 1);
|
|
UINT_PTR InputStreamCGroupEnd = InputStreamCGroupBase + ((InputStreamEnd - InputStreamCGroupBase) & ~(4 * XM_CACHE_LINE_SIZE - 1));
|
|
|
|
vStreamEnd = (VectorAligned *)InputStreamEnd;
|
|
vStreamGroupBase = (VectorAligned *)InputStreamCGroupBase;
|
|
vStreamGroupEnd = (VectorAligned *)InputStreamCGroupEnd;
|
|
}
|
|
|
|
|
|
__dcbt(0, vStreamGroupBase);
|
|
__dcbt(XM_CACHE_LINE_SIZE, vStreamGroupBase);
|
|
__dcbt(XM_CACHE_LINE_SIZE * 2, vStreamGroupBase);
|
|
__dcbt(XM_CACHE_LINE_SIZE * 3, vStreamGroupBase);
|
|
|
|
while (vCurrent < vStreamGroupBase)
|
|
{
|
|
fltx4 vec = __lvx(vCurrent->Base(), 0);
|
|
|
|
R0[0] = __vmsum4fp(vec, mRow0);
|
|
R1[0] = __vmsum4fp(vec, mRow1);
|
|
R2[0] = __vmsum4fp(vec, mRow2);
|
|
|
|
__stvewx(R0[0], vCurrent->Base(), 0);
|
|
__stvewx(R1[0], vCurrent->Base(), 4);
|
|
__stvewx(R2[0], vCurrent->Base(), 8);
|
|
|
|
vCurrent++;
|
|
}
|
|
|
|
while (vCurrent < vStreamGroupEnd)
|
|
{
|
|
__dcbt(XM_CACHE_LINE_SIZE * 4, vCurrent);
|
|
__dcbt(XM_CACHE_LINE_SIZE * 5, vCurrent);
|
|
__dcbt(XM_CACHE_LINE_SIZE * 6, vCurrent);
|
|
__dcbt(XM_CACHE_LINE_SIZE * 7, vCurrent);
|
|
|
|
for (GroupIndex = 0; GroupIndex < 4; GroupIndex++)
|
|
{
|
|
// all kinds of LHS on this pointer. Why?
|
|
VectorAligned* OutputVector = vCurrent;
|
|
|
|
vIn[0] = __lvx(vCurrent->Base(), 0);
|
|
vCurrent++;
|
|
vIn[1] = __lvx(vCurrent->Base(), 0);
|
|
vCurrent++;
|
|
vIn[2] = __lvx(vCurrent->Base(), 0);
|
|
vCurrent++;
|
|
vIn[3] = __lvx(vCurrent->Base(), 0);
|
|
vCurrent++;
|
|
vIn[4] = __lvx(vCurrent->Base(), 0);
|
|
vCurrent++;
|
|
vIn[5] = __lvx(vCurrent->Base(), 0);
|
|
vCurrent++;
|
|
vIn[6] = __lvx(vCurrent->Base(), 0);
|
|
vCurrent++;
|
|
vIn[7] = __lvx(vCurrent->Base(), 0);
|
|
vCurrent++;
|
|
|
|
R0[0] = __vmsum4fp(vIn[0], mRow0);
|
|
R1[0] = __vmsum4fp(vIn[0], mRow1);
|
|
R2[0] = __vmsum4fp(vIn[0], mRow2);
|
|
|
|
R0[1] = __vmsum4fp(vIn[1], mRow0);
|
|
R1[1] = __vmsum4fp(vIn[1], mRow1);
|
|
R2[1] = __vmsum4fp(vIn[1], mRow2);
|
|
|
|
R0[2] = __vmsum4fp(vIn[2], mRow0);
|
|
R1[2] = __vmsum4fp(vIn[2], mRow1);
|
|
R2[2] = __vmsum4fp(vIn[2], mRow2);
|
|
|
|
R0[3] = __vmsum4fp(vIn[3], mRow0);
|
|
R1[3] = __vmsum4fp(vIn[3], mRow1);
|
|
R2[3] = __vmsum4fp(vIn[3], mRow2);
|
|
|
|
R0[4] = __vmsum4fp(vIn[4], mRow0);
|
|
R1[4] = __vmsum4fp(vIn[4], mRow1);
|
|
R2[4] = __vmsum4fp(vIn[4], mRow2);
|
|
|
|
R0[5] = __vmsum4fp(vIn[5], mRow0);
|
|
R1[5] = __vmsum4fp(vIn[5], mRow1);
|
|
R2[5] = __vmsum4fp(vIn[5], mRow2);
|
|
|
|
R0[6] = __vmsum4fp(vIn[6], mRow0);
|
|
R1[6] = __vmsum4fp(vIn[6], mRow1);
|
|
R2[6] = __vmsum4fp(vIn[6], mRow2);
|
|
|
|
R0[7] = __vmsum4fp(vIn[7], mRow0);
|
|
R1[7] = __vmsum4fp(vIn[7], mRow1);
|
|
R2[7] = __vmsum4fp(vIn[7], mRow2);
|
|
|
|
__stvewx(R0[0], OutputVector, 0);
|
|
__stvewx(R1[0], OutputVector, 4);
|
|
__stvewx(R2[0], OutputVector, 8);
|
|
OutputVector++;
|
|
|
|
__stvewx(R0[1], OutputVector, 0);
|
|
__stvewx(R1[1], OutputVector, 4);
|
|
__stvewx(R2[1], OutputVector, 8);
|
|
OutputVector++;
|
|
|
|
__stvewx(R0[2], OutputVector, 0);
|
|
__stvewx(R1[2], OutputVector, 4);
|
|
__stvewx(R2[2], OutputVector, 8);
|
|
OutputVector++;
|
|
|
|
__stvewx(R0[3], OutputVector, 0);
|
|
__stvewx(R1[3], OutputVector, 4);
|
|
__stvewx(R2[3], OutputVector, 8);
|
|
OutputVector++;
|
|
|
|
__stvewx(R0[4], OutputVector, 0);
|
|
__stvewx(R1[4], OutputVector, 4);
|
|
__stvewx(R2[4], OutputVector, 8);
|
|
OutputVector++;
|
|
|
|
__stvewx(R0[5], OutputVector, 0);
|
|
__stvewx(R1[5], OutputVector, 4);
|
|
__stvewx(R2[5], OutputVector, 8);
|
|
OutputVector++;
|
|
|
|
__stvewx(R0[6], OutputVector, 0);
|
|
__stvewx(R1[6], OutputVector, 4);
|
|
__stvewx(R2[6], OutputVector, 8);
|
|
OutputVector++;
|
|
|
|
__stvewx(R0[7], OutputVector, 0);
|
|
__stvewx(R1[7], OutputVector, 4);
|
|
__stvewx(R2[7], OutputVector, 8);
|
|
OutputVector++;
|
|
}
|
|
}
|
|
|
|
while (vCurrent < vStreamEnd)
|
|
{
|
|
vIn[0] = __lvx(vCurrent->Base(), 0);
|
|
|
|
R0[0] = __vmsum4fp(vIn[0], mRow0);
|
|
R1[0] = __vmsum4fp(vIn[0], mRow1);
|
|
R2[0] = __vmsum4fp(vIn[0], mRow2);
|
|
|
|
__stvewx(R0[0], vCurrent->Base(), 0);
|
|
__stvewx(R1[0], vCurrent->Base(), 4);
|
|
__stvewx(R2[0], vCurrent->Base(), 8);
|
|
|
|
vCurrent++;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
#endif // #if !defined(__SPU__)
|
|
|
|
|
|
|
|
#endif
|