Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1294 lines
34 KiB

//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: Linked list container class
//
// $Revision: $
// $NoKeywords: $
//=============================================================================//
#ifndef UTLLINKEDLIST_H
#define UTLLINKEDLIST_H
#ifdef _WIN32
#pragma once
#endif
#include "tier0/basetypes.h"
#include "utlmemory.h"
#include "utlfixedmemory.h"
#include "utlblockmemory.h"
#include "tier0/dbg.h"
// define to enable asserts griping about things you shouldn't be doing with multilists
// #define MULTILIST_PEDANTIC_ASSERTS 1
// This is a useful macro to iterate from head to tail in a linked list.
#define FOR_EACH_LL( listName, iteratorName ) \
for( auto iteratorName=(listName).Head(); (listName).IsUtlLinkedList && iteratorName != (listName).InvalidIndex(); iteratorName = (listName).Next( iteratorName ) )
#define FOR_EACH_LL_BACK( listName, iteratorName ) \
for( auto iteratorName=(listName).Tail(); (listName).IsUtlLinkedList && iteratorName != (listName).InvalidIndex(); iteratorName = (listName).Previous( iteratorName ) )
//-----------------------------------------------------------------------------
// class CUtlLinkedList:
// description:
// A lovely index-based linked list! T is the class type, I is the index
// type, which usually should be an unsigned short or smaller. However,
// you must avoid using 16- or 8-bit arithmetic on PowerPC architectures;
// therefore you should not use UtlLinkedListElem_t::I as the type of
// a local variable... ever. PowerPC integer arithmetic must be 32- or
// 64-bit only; otherwise performance plummets.
//-----------------------------------------------------------------------------
template <class T, class I>
struct UtlLinkedListElem_t
{
T m_Element;
I m_Previous;
I m_Next;
private:
// No copy constructor for these...
UtlLinkedListElem_t( const UtlLinkedListElem_t& );
};
// Class S is the storage type; the type you can use to save off indices in
// persistent memory. Class I is the iterator type, which is what should be used
// in local scopes. I defaults to be S, but be aware that on the 360, 16-bit
// arithmetic is catastrophically slow. Therefore you should try to save shorts
// in memory, but always operate on 32's or 64's in local scope.
// The ideal parameter order would be TSMI (you are more likely to override M than I)
// but since M depends on I we can't have the defaults in that order, alas.
template <class T, class S = unsigned short, bool ML = false, class I = S, class M = CUtlMemory< UtlLinkedListElem_t<T, S>, I > >
class CUtlLinkedList
{
public:
typedef T ElemType_t;
typedef S IndexType_t; // should really be called IndexStorageType_t, but that would be a huge change
typedef I IndexLocalType_t;
typedef M MemoryAllocator_t;
enum { IsUtlLinkedList = true }; // Used to match this at compiletime
// constructor, destructor
CUtlLinkedList( int growSize = 0, int initSize = 0 );
~CUtlLinkedList();
CUtlLinkedList( const CUtlLinkedList& ) = delete;
CUtlLinkedList& operator=( const CUtlLinkedList& ) = delete;
// gets particular elements
T& Element( I i );
T const& Element( I i ) const;
T& operator[]( I i );
T const& operator[]( I i ) const;
// Make sure we have a particular amount of memory
void EnsureCapacity( int num );
void SetGrowSize( int growSize );
// Memory deallocation
void Purge();
// Delete all the elements then call Purge.
void PurgeAndDeleteElements();
// Insertion methods....
I InsertBefore( I before );
I InsertAfter( I after );
I AddToHead( );
I AddToTail( );
I InsertBefore( I before, T const& src );
I InsertAfter( I after, T const& src );
I AddToHead( T const& src );
I AddToTail( T const& src );
// Find an element and return its index or InvalidIndex() if it couldn't be found.
I Find( const T &src ) const;
// Look for the element. If it exists, remove it and return true. Otherwise, return false.
bool FindAndRemove( const T &src );
// Removal methods
void Remove( I elem );
void RemoveAll();
// Allocation/deallocation methods
// If multilist == true, then list list may contain many
// non-connected lists, and IsInList and Head + Tail are meaningless...
I Alloc( bool multilist = false );
void Free( I elem );
// Identify the owner of this linked list's memory:
void SetAllocOwner( const char *pszAllocOwner );
// list modification
void LinkBefore( I before, I elem );
void LinkAfter( I after, I elem );
void Unlink( I elem );
void LinkToHead( I elem );
void LinkToTail( I elem );
// invalid index (M will never allocate an element at this index)
inline static S InvalidIndex() { return ( S )M::InvalidIndex(); }
// Is a given index valid to use? (representible by S and not the invalid index)
static bool IndexInRange( I index );
inline static size_t ElementSize() { return sizeof( ListElem_t ); }
// list statistics
int Count() const;
inline bool IsEmpty( void ) const
{
return ( Head() == InvalidIndex() );
}
I MaxElementIndex() const;
I NumAllocated( void ) const { return m_NumAlloced; }
// Traversing the list
I Head() const;
I Tail() const;
I Previous( I i ) const;
I Next( I i ) const;
// STL compatible const_iterator class
template < typename List_t >
class _CUtlLinkedList_constiterator_t
{
public:
typedef typename List_t::ElemType_t ElemType_t;
typedef typename List_t::IndexType_t IndexType_t;
// Default constructor -- gives a currently unusable iterator.
_CUtlLinkedList_constiterator_t()
: m_list( 0 )
, m_index( List_t::InvalidIndex() )
{
}
// Normal constructor.
_CUtlLinkedList_constiterator_t( const List_t& list, IndexType_t index )
: m_list( &list )
, m_index( index )
{
}
// Pre-increment operator++. This is the most efficient increment
// operator so it should always be used.
_CUtlLinkedList_constiterator_t& operator++()
{
m_index = m_list->Next( m_index );
return *this;
}
// Post-increment operator++. This is less efficient than pre-increment.
_CUtlLinkedList_constiterator_t operator++(int)
{
// Copy ourselves.
_CUtlLinkedList_constiterator_t temp = *this;
// Increment ourselves.
++*this;
// Return the copy.
return temp;
}
// Pre-decrement operator--. This is the most efficient decrement
// operator so it should always be used.
_CUtlLinkedList_constiterator_t& operator--()
{
Assert( m_index != m_list->Head() );
if ( m_index == m_list->InvalidIndex() )
{
m_index = m_list->Tail();
}
else
{
m_index = m_list->Previous( m_index );
}
return *this;
}
// Post-decrement operator--. This is less efficient than post-decrement.
_CUtlLinkedList_constiterator_t operator--(int)
{
// Copy ourselves.
_CUtlLinkedList_constiterator_t temp = *this;
// Decrement ourselves.
--*this;
// Return the copy.
return temp;
}
bool operator==( const _CUtlLinkedList_constiterator_t& other) const
{
Assert( m_list == other.m_list );
return m_index == other.m_index;
}
bool operator!=( const _CUtlLinkedList_constiterator_t& other) const
{
Assert( m_list == other.m_list );
return m_index != other.m_index;
}
const ElemType_t& operator*() const
{
return m_list->Element( m_index );
}
const ElemType_t* operator->() const
{
return (&**this);
}
protected:
// Use a pointer rather than a reference so that we can support
// assignment of iterators.
const List_t* m_list;
IndexType_t m_index;
};
// STL compatible iterator class, using derivation so that a non-const
// list can return a const_iterator.
template < typename List_t >
class _CUtlLinkedList_iterator_t : public _CUtlLinkedList_constiterator_t< List_t >
{
public:
typedef typename List_t::ElemType_t ElemType_t;
typedef typename List_t::IndexType_t IndexType_t;
typedef _CUtlLinkedList_constiterator_t< List_t > Base;
// Default constructor -- gives a currently unusable iterator.
_CUtlLinkedList_iterator_t()
{
}
// Normal constructor.
_CUtlLinkedList_iterator_t( const List_t& list, IndexType_t index )
: _CUtlLinkedList_constiterator_t< List_t >( list, index )
{
}
// Pre-increment operator++. This is the most efficient increment
// operator so it should always be used.
_CUtlLinkedList_iterator_t& operator++()
{
Base::m_index = Base::m_list->Next( Base::m_index );
return *this;
}
// Post-increment operator++. This is less efficient than pre-increment.
_CUtlLinkedList_iterator_t operator++(int)
{
// Copy ourselves.
_CUtlLinkedList_iterator_t temp = *this;
// Increment ourselves.
++*this;
// Return the copy.
return temp;
}
// Pre-decrement operator--. This is the most efficient decrement
// operator so it should always be used.
_CUtlLinkedList_iterator_t& operator--()
{
Assert( Base::m_index != Base::m_list->Head() );
if ( Base::m_index == Base::m_list->InvalidIndex() )
{
Base::m_index = Base::m_list->Tail();
}
else
{
Base::m_index = Base::m_list->Previous( Base::m_index );
}
return *this;
}
// Post-decrement operator--. This is less efficient than post-decrement.
_CUtlLinkedList_iterator_t operator--(int)
{
// Copy ourselves.
_CUtlLinkedList_iterator_t temp = *this;
// Decrement ourselves.
--*this;
// Return the copy.
return temp;
}
ElemType_t& operator*() const
{
// Const_cast to allow sharing the implementation with the
// base class.
List_t* pMutableList = const_cast<List_t*>( Base::m_list );
return pMutableList->Element( Base::m_index );
}
ElemType_t* operator->() const
{
return (&**this);
}
};
typedef _CUtlLinkedList_constiterator_t<CUtlLinkedList<T, S, ML, I, M> > const_iterator;
typedef _CUtlLinkedList_iterator_t<CUtlLinkedList<T, S, ML, I, M> > iterator;
const_iterator begin() const
{
return const_iterator( *this, Head() );
}
iterator begin()
{
return iterator( *this, Head() );
}
const_iterator end() const
{
return const_iterator( *this, InvalidIndex() );
}
iterator end()
{
return iterator( *this, InvalidIndex() );
}
// Are nodes in the list or valid?
bool IsValidIndex( I i ) const;
bool IsInList( I i ) const;
protected:
// What the linked list element looks like
typedef UtlLinkedListElem_t<T, S> ListElem_t;
// constructs the class
I AllocInternal( bool multilist = false ) RESTRICT;
void ConstructList();
// Gets at the list element....
ListElem_t& InternalElement( I i ) { return m_Memory[i]; }
ListElem_t const& InternalElement( I i ) const { return m_Memory[i]; }
M m_Memory;
I m_Head;
I m_Tail;
I m_FirstFree;
I m_ElementCount; // The number actually in the list
I m_NumAlloced; // The number of allocated elements
typename M::Iterator_t m_LastAlloc; // the last index allocated
// For debugging purposes;
// it's in release builds so this can be used in libraries correctly
ListElem_t *m_pElements;
FORCEINLINE M const &Memory( void ) const
{
return m_Memory;
}
void ResetDbgInfo()
{
m_pElements = m_Memory.Base();
}
};
// this is kind of ugly, but until C++ gets templatized typedefs in C++0x, it's our only choice
template < class T >
class CUtlFixedLinkedList : public CUtlLinkedList< T, intp, true, intp, CUtlFixedMemory< UtlLinkedListElem_t< T, intp > > >
{
public:
CUtlFixedLinkedList( int growSize = 0, int initSize = 0 )
: CUtlLinkedList< T, intp, true, intp, CUtlFixedMemory< UtlLinkedListElem_t< T, intp > > >( growSize, initSize ) {}
bool IsValidIndex( intp i ) const
{
if ( !this->Memory().IsIdxValid( i ) )
return false;
#ifdef _DEBUG // it's safe to skip this here, since the only way to get indices after m_LastAlloc is to use MaxElementIndex
if ( this->Memory().IsIdxAfter( i, this->m_LastAlloc ) )
{
Assert( 0 );
return false; // don't read values that have been allocated, but not constructed
}
#endif
return ( this->Memory()[ i ].m_Previous != i ) || ( this->Memory()[ i ].m_Next == i );
}
private:
int MaxElementIndex() const { Assert( 0 ); return this->InvalidIndex(); } // fixedmemory containers don't support iteration from 0..maxelements-1
void ResetDbgInfo() {}
};
// this is kind of ugly, but until C++ gets templatized typedefs in C++0x, it's our only choice
template < class T, class I = unsigned short >
class CUtlBlockLinkedList : public CUtlLinkedList< T, I, true, I, CUtlBlockMemory< UtlLinkedListElem_t< T, I >, I > >
{
public:
CUtlBlockLinkedList( int growSize = 0, int initSize = 0 )
: CUtlLinkedList< T, I, true, I, CUtlBlockMemory< UtlLinkedListElem_t< T, I >, I > >( growSize, initSize ) {}
protected:
void ResetDbgInfo() {}
};
//-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
template <class T, class S, bool ML, class I, class M>
CUtlLinkedList<T,S,ML,I,M>::CUtlLinkedList( int growSize, int initSize ) :
m_Memory( growSize, initSize ), m_LastAlloc( m_Memory.InvalidIterator() )
{
#if !defined( PLATFORM_WINDOWS_PC64 ) && !defined( PLATFORM_64BITS )
// Prevent signed non-int datatypes
COMPILE_TIME_ASSERT( sizeof(S) == 4 || ( ( (S)-1 ) > 0 ) );
#endif
ConstructList();
ResetDbgInfo();
}
template <class T, class S, bool ML, class I, class M>
CUtlLinkedList<T,S,ML,I,M>::~CUtlLinkedList( )
{
RemoveAll();
}
template <class T, class S, bool ML, class I, class M>
void CUtlLinkedList<T,S,ML,I,M>::ConstructList()
{
m_Head = InvalidIndex();
m_Tail = InvalidIndex();
m_FirstFree = InvalidIndex();
m_ElementCount = 0;
m_NumAlloced = 0;
}
//-----------------------------------------------------------------------------
// gets particular elements
//-----------------------------------------------------------------------------
template <class T, class S, bool ML, class I, class M>
inline T& CUtlLinkedList<T,S,ML,I,M>::Element( I i )
{
return m_Memory[i].m_Element;
}
template <class T, class S, bool ML, class I, class M>
inline T const& CUtlLinkedList<T,S,ML,I,M>::Element( I i ) const
{
return m_Memory[i].m_Element;
}
template <class T, class S, bool ML, class I, class M>
inline T& CUtlLinkedList<T,S,ML,I,M>::operator[]( I i )
{
return m_Memory[i].m_Element;
}
template <class T, class S, bool ML, class I, class M>
inline T const& CUtlLinkedList<T,S,ML,I,M>::operator[]( I i ) const
{
return m_Memory[i].m_Element;
}
//-----------------------------------------------------------------------------
// list statistics
//-----------------------------------------------------------------------------
template <class T, class S, bool ML, class I, class M>
inline int CUtlLinkedList<T,S,ML,I,M>::Count() const
{
#ifdef MULTILIST_PEDANTIC_ASSERTS
AssertMsg( !ML, "CUtlLinkedList::Count() is meaningless for linked lists." );
#endif
return m_ElementCount;
}
template <class T, class S, bool ML, class I, class M>
inline I CUtlLinkedList<T,S,ML,I,M>::MaxElementIndex() const
{
return m_Memory.NumAllocated();
}
//-----------------------------------------------------------------------------
// Traversing the list
//-----------------------------------------------------------------------------
template <class T, class S, bool ML, class I, class M>
inline I CUtlLinkedList<T,S,ML,I,M>::Head() const
{
return m_Head;
}
template <class T, class S, bool ML, class I, class M>
inline I CUtlLinkedList<T,S,ML,I,M>::Tail() const
{
return m_Tail;
}
template <class T, class S, bool ML, class I, class M>
inline I CUtlLinkedList<T,S,ML,I,M>::Previous( I i ) const
{
Assert( IsValidIndex(i) );
return InternalElement(i).m_Previous;
}
template <class T, class S, bool ML, class I, class M>
inline I CUtlLinkedList<T,S,ML,I,M>::Next( I i ) const
{
Assert( IsValidIndex(i) );
return InternalElement(i).m_Next;
}
//-----------------------------------------------------------------------------
// Are nodes in the list or valid?
//-----------------------------------------------------------------------------
#pragma warning(push)
#pragma warning( disable: 4310 ) // Allows "(I)(S)M::INVALID_INDEX" below
template <class T, class S, bool ML, class I, class M>
inline bool CUtlLinkedList<T,S,ML,I,M>::IndexInRange( I index ) // Static method
{
// Since S is not necessarily the type returned by M, we need to check that M returns indices
// which are representable by S. A common case is 'S === unsigned short', 'I == int', in which
// case CUtlMemory will have 'InvalidIndex == (int)-1' (which casts to 65535 in S), and will
// happily return elements at index 65535 and above.
// Do some static checks here:
// 'I' needs to be able to store 'S'
// These COMPILE_TIME_ASSERT checks need to be in individual scopes to avoid build breaks
// on MacOS and Linux due to a gcc bug.
{ COMPILE_TIME_ASSERT( sizeof(I) >= sizeof(S) ); }
// 'S' should be unsigned (to avoid signed arithmetic errors for plausibly exhaustible ranges)
{ COMPILE_TIME_ASSERT( ( sizeof(S) > 2 ) || ( ( (S)-1 ) > 0 ) ); }
// M::INVALID_INDEX should be storable in S to avoid ambiguities (e.g. with 65536)
{ COMPILE_TIME_ASSERT( ( M::INVALID_INDEX == -1 ) || ( M::INVALID_INDEX == (S)M::INVALID_INDEX ) ); }
return ( ( (S)index == index ) && ( (S)index != InvalidIndex() ) );
}
#pragma warning(pop)
template <class T, class S, bool ML, class I, class M>
inline bool CUtlLinkedList<T,S,ML,I,M>::IsValidIndex( I i ) const
{
if ( !m_Memory.IsIdxValid( i ) )
return false;
if ( m_Memory.IsIdxAfter( i, m_LastAlloc ) )
return false; // don't read values that have been allocated, but not constructed
return ( m_Memory[ i ].m_Previous != i ) || ( m_Memory[ i ].m_Next == i );
}
template <class T, class S, bool ML, class I, class M>
inline bool CUtlLinkedList<T,S,ML,I,M>::IsInList( I i ) const
{
if ( !m_Memory.IsIdxValid( i ) || m_Memory.IsIdxAfter( i, m_LastAlloc ) )
return false; // don't read values that have been allocated, but not constructed
return Previous( i ) != i;
}
/*
template <class T>
inline bool CUtlFixedLinkedList<T>::IsInList( int i ) const
{
return m_Memory.IsIdxValid( i ) && (Previous( i ) != i);
}
*/
//-----------------------------------------------------------------------------
// Makes sure we have enough memory allocated to store a requested # of elements
//-----------------------------------------------------------------------------
template< class T, class S, bool ML, class I, class M >
void CUtlLinkedList<T,S,ML,I,M>::EnsureCapacity( int num )
{
MEM_ALLOC_CREDIT_CLASS();
m_Memory.EnsureCapacity(num);
ResetDbgInfo();
}
template< class T, class S, bool ML, class I, class M >
void CUtlLinkedList<T,S,ML,I,M>::SetGrowSize( int growSize )
{
RemoveAll();
m_Memory.Init( growSize );
ResetDbgInfo();
}
template< class T, class S, bool ML, class I, class M >
void CUtlLinkedList<T,S,ML,I,M>::SetAllocOwner( const char *pszAllocOwner )
{
m_Memory.SetAllocOwner( pszAllocOwner );
}
//-----------------------------------------------------------------------------
// Deallocate memory
//-----------------------------------------------------------------------------
template <class T, class S, bool ML, class I, class M>
void CUtlLinkedList<T,S,ML,I,M>::Purge()
{
RemoveAll();
m_Memory.Purge();
m_FirstFree = InvalidIndex();
m_NumAlloced = 0;
//Routing "m_LastAlloc = m_Memory.InvalidIterator();" through a local const to sidestep an internal compiler error on 360 builds
const typename M::Iterator_t scInvalidIterator = m_Memory.InvalidIterator();
m_LastAlloc = scInvalidIterator;
ResetDbgInfo();
}
template<class T, class S, bool ML, class I, class M>
void CUtlLinkedList<T,S,ML,I,M>::PurgeAndDeleteElements()
{
I iNext;
for( I i=Head(); i != InvalidIndex(); i=iNext )
{
iNext = Next(i);
delete Element(i);
}
Purge();
}
//-----------------------------------------------------------------------------
// Node allocation/deallocation
//-----------------------------------------------------------------------------
template <class T, class S, bool ML, class I, class M>
I CUtlLinkedList<T,S,ML,I,M>::AllocInternal( bool multilist ) RESTRICT
{
Assert( !multilist || ML );
#ifdef MULTILIST_PEDANTIC_ASSERTS
Assert( multilist == ML );
#endif
I elem;
if ( m_FirstFree == InvalidIndex() )
{
Assert( m_Memory.IsValidIterator( m_LastAlloc ) || m_ElementCount == 0 );
typename M::Iterator_t it = m_Memory.IsValidIterator( m_LastAlloc ) ? m_Memory.Next( m_LastAlloc ) : m_Memory.First();
if ( !m_Memory.IsValidIterator( it ) )
{
MEM_ALLOC_CREDIT_CLASS();
m_Memory.Grow();
ResetDbgInfo();
it = m_Memory.IsValidIterator( m_LastAlloc ) ? m_Memory.Next( m_LastAlloc ) : m_Memory.First();
Assert( m_Memory.IsValidIterator( it ) );
if ( !m_Memory.IsValidIterator( it ) )
{
// We rarely if ever handle alloc failure. Continuing leads to corruption.
Error( "CUtlLinkedList overflow! (exhausted memory allocator)\n" );
return InvalidIndex();
}
}
// We can overflow before the utlmemory overflows, since S != I
if ( !IndexInRange( m_Memory.GetIndex( it ) ) )
{
// We rarely if ever handle alloc failure. Continuing leads to corruption.
Error( "CUtlLinkedList overflow! (exhausted index range)\n" );
return InvalidIndex();
}
m_LastAlloc = it;
elem = m_Memory.GetIndex( m_LastAlloc );
m_NumAlloced++;
}
else
{
elem = m_FirstFree;
m_FirstFree = InternalElement( m_FirstFree ).m_Next;
}
if ( !multilist )
{
InternalElement( elem ).m_Next = elem;
InternalElement( elem ).m_Previous = elem;
}
else
{
InternalElement( elem ).m_Next = InvalidIndex();
InternalElement( elem ).m_Previous = InvalidIndex();
}
return elem;
}
template <class T, class S, bool ML, class I, class M>
I CUtlLinkedList<T,S,ML,I,M>::Alloc( bool multilist )
{
I elem = AllocInternal( multilist );
if ( elem == InvalidIndex() )
return elem;
Construct( &Element(elem) );
return elem;
}
template <class T, class S, bool ML, class I, class M>
void CUtlLinkedList<T,S,ML,I,M>::Free( I elem )
{
Assert( IsValidIndex(elem) && IndexInRange( elem ) );
Unlink(elem);
ListElem_t &internalElem = InternalElement(elem);
Destruct( &internalElem.m_Element );
internalElem.m_Next = m_FirstFree;
m_FirstFree = elem;
}
//-----------------------------------------------------------------------------
// Insertion methods; allocates and links (uses default constructor)
//-----------------------------------------------------------------------------
template <class T, class S, bool ML, class I, class M>
I CUtlLinkedList<T,S,ML,I,M>::InsertBefore( I before )
{
// Make a new node
I newNode = AllocInternal();
if ( newNode == InvalidIndex() )
return newNode;
// Link it in
LinkBefore( before, newNode );
// Construct the data
Construct( &Element(newNode) );
return newNode;
}
template <class T, class S, bool ML, class I, class M>
I CUtlLinkedList<T,S,ML,I,M>::InsertAfter( I after )
{
// Make a new node
I newNode = AllocInternal();
if ( newNode == InvalidIndex() )
return newNode;
// Link it in
LinkAfter( after, newNode );
// Construct the data
Construct( &Element(newNode) );
return newNode;
}
template <class T, class S, bool ML, class I, class M>
inline I CUtlLinkedList<T,S,ML,I,M>::AddToHead( )
{
return InsertAfter( InvalidIndex() );
}
template <class T, class S, bool ML, class I, class M>
inline I CUtlLinkedList<T,S,ML,I,M>::AddToTail( )
{
return InsertBefore( InvalidIndex() );
}
//-----------------------------------------------------------------------------
// Insertion methods; allocates and links (uses copy constructor)
//-----------------------------------------------------------------------------
template <class T, class S, bool ML, class I, class M>
I CUtlLinkedList<T,S,ML,I,M>::InsertBefore( I before, T const& src )
{
// Make a new node
I newNode = AllocInternal();
if ( newNode == InvalidIndex() )
return newNode;
// Link it in
LinkBefore( before, newNode );
// Construct the data
CopyConstruct( &Element(newNode), src );
return newNode;
}
template <class T, class S, bool ML, class I, class M>
I CUtlLinkedList<T,S,ML,I,M>::InsertAfter( I after, T const& src )
{
// Make a new node
I newNode = AllocInternal();
if ( newNode == InvalidIndex() )
return newNode;
// Link it in
LinkAfter( after, newNode );
// Construct the data
CopyConstruct( &Element(newNode), src );
return newNode;
}
template <class T, class S, bool ML, class I, class M>
inline I CUtlLinkedList<T,S,ML,I,M>::AddToHead( T const& src )
{
return InsertAfter( InvalidIndex(), src );
}
template <class T, class S, bool ML, class I, class M>
inline I CUtlLinkedList<T,S,ML,I,M>::AddToTail( T const& src )
{
return InsertBefore( InvalidIndex(), src );
}
//-----------------------------------------------------------------------------
// Removal methods
//-----------------------------------------------------------------------------
template<class T, class S, bool ML, class I, class M>
I CUtlLinkedList<T,S,ML,I,M>::Find( const T &src ) const
{
for ( I i=Head(); i != InvalidIndex(); i = Next( i ) )
{
if ( Element( i ) == src )
return i;
}
return InvalidIndex();
}
template<class T, class S, bool ML, class I, class M>
bool CUtlLinkedList<T,S,ML,I,M>::FindAndRemove( const T &src )
{
I i = Find( src );
if ( i == InvalidIndex() )
{
return false;
}
else
{
Remove( i );
return true;
}
}
template <class T, class S, bool ML, class I, class M>
void CUtlLinkedList<T,S,ML,I,M>::Remove( I elem )
{
Free( elem );
}
template <class T, class S, bool ML, class I, class M>
void CUtlLinkedList<T,S,ML,I,M>::RemoveAll()
{
// Have to do some convoluted stuff to invoke the destructor on all
// valid elements for the multilist case (since we don't have all elements
// connected to each other in a list).
if ( m_LastAlloc == m_Memory.InvalidIterator() )
{
Assert( m_Head == InvalidIndex() );
Assert( m_Tail == InvalidIndex() );
Assert( m_FirstFree == InvalidIndex() );
Assert( m_ElementCount == 0 );
return;
}
if ( ML )
{
for ( typename M::Iterator_t it = m_Memory.First(); it != m_Memory.InvalidIterator(); it = m_Memory.Next( it ) )
{
I i = m_Memory.GetIndex( it );
if ( IsValidIndex( i ) ) // skip elements already in the free list
{
ListElem_t &internalElem = InternalElement( i );
Destruct( &internalElem.m_Element );
internalElem.m_Previous = i;
internalElem.m_Next = m_FirstFree;
m_FirstFree = i;
}
if ( it == m_LastAlloc )
break; // don't destruct elements that haven't ever been constructed
}
}
else
{
I i = Head();
I next;
while ( i != InvalidIndex() )
{
next = Next( i );
ListElem_t &internalElem = InternalElement( i );
Destruct( &internalElem.m_Element );
internalElem.m_Previous = i;
internalElem.m_Next = next == InvalidIndex() ? m_FirstFree : next;
i = next;
}
if ( Head() != InvalidIndex() )
{
m_FirstFree = Head();
}
}
// Clear everything else out
m_Head = InvalidIndex();
m_Tail = InvalidIndex();
m_ElementCount = 0;
}
//-----------------------------------------------------------------------------
// list modification
//-----------------------------------------------------------------------------
template <class T, class S, bool ML, class I, class M>
void CUtlLinkedList<T,S,ML,I,M>::LinkBefore( I before, I elem )
{
Assert( IsValidIndex(elem) );
// Unlink it if it's in the list at the moment
Unlink(elem);
ListElem_t * RESTRICT pNewElem = &InternalElement(elem);
// The element *after* our newly linked one is the one we linked before.
pNewElem->m_Next = before;
S newElem_mPrevious; // we need to hang on to this for the compairson against InvalidIndex()
// below; otherwise we get a a load-hit-store on pNewElem->m_Previous, even
// with RESTRICT
if (before == InvalidIndex())
{
// In this case, we're linking to the end of the list, so reset the tail
newElem_mPrevious = m_Tail;
pNewElem->m_Previous = m_Tail;
m_Tail = elem;
}
else
{
// Here, we're not linking to the end. Set the prev pointer to point to
// the element we're linking.
Assert( IsInList(before) );
ListElem_t * RESTRICT beforeElem = &InternalElement(before);
pNewElem->m_Previous = newElem_mPrevious = beforeElem->m_Previous;
beforeElem->m_Previous = elem;
}
// Reset the head if we linked to the head of the list
if (newElem_mPrevious == InvalidIndex())
m_Head = elem;
else
InternalElement(newElem_mPrevious).m_Next = elem;
// one more element baby
++m_ElementCount;
}
template <class T, class S, bool ML, class I, class M>
void CUtlLinkedList<T,S,ML,I,M>::LinkAfter( I after, I elem )
{
Assert( IsValidIndex(elem) );
// Unlink it if it's in the list at the moment
if ( IsInList(elem) )
Unlink(elem);
ListElem_t& newElem = InternalElement(elem);
// The element *before* our newly linked one is the one we linked after
newElem.m_Previous = after;
if (after == InvalidIndex())
{
// In this case, we're linking to the head of the list, reset the head
newElem.m_Next = m_Head;
m_Head = elem;
}
else
{
// Here, we're not linking to the end. Set the next pointer to point to
// the element we're linking.
Assert( IsInList(after) );
ListElem_t& afterElem = InternalElement(after);
newElem.m_Next = afterElem.m_Next;
afterElem.m_Next = elem;
}
// Reset the tail if we linked to the tail of the list
if (newElem.m_Next == InvalidIndex())
m_Tail = elem;
else
InternalElement(newElem.m_Next).m_Previous = elem;
// one more element baby
++m_ElementCount;
}
template <class T, class S, bool ML, class I, class M>
void CUtlLinkedList<T,S,ML,I,M>::Unlink( I elem )
{
Assert( IsValidIndex(elem) );
if (IsInList(elem))
{
ListElem_t * RESTRICT pOldElem = &m_Memory[ elem ];
// If we're the first guy, reset the head
// otherwise, make our previous node's next pointer = our next
if ( pOldElem->m_Previous != InvalidIndex() )
{
m_Memory[ pOldElem->m_Previous ].m_Next = pOldElem->m_Next;
}
else
{
m_Head = pOldElem->m_Next;
}
// If we're the last guy, reset the tail
// otherwise, make our next node's prev pointer = our prev
if ( pOldElem->m_Next != InvalidIndex() )
{
m_Memory[ pOldElem->m_Next ].m_Previous = pOldElem->m_Previous;
}
else
{
m_Tail = pOldElem->m_Previous;
}
// This marks this node as not in the list,
// but not in the free list either
pOldElem->m_Previous = pOldElem->m_Next = elem;
// One less puppy
--m_ElementCount;
}
}
template <class T, class S, bool ML, class I, class M>
inline void CUtlLinkedList<T,S,ML,I,M>::LinkToHead( I elem )
{
LinkAfter( InvalidIndex(), elem );
}
template <class T, class S, bool ML, class I, class M>
inline void CUtlLinkedList<T,S,ML,I,M>::LinkToTail( I elem )
{
LinkBefore( InvalidIndex(), elem );
}
//-----------------------------------------------------------------------------
// Class to drop in to replace a CUtlLinkedList that needs to be more memory agressive
//-----------------------------------------------------------------------------
DECLARE_POINTER_HANDLE( UtlPtrLinkedListIndex_t ); // to enforce correct usage
template < typename T >
class CUtlPtrLinkedList
{
public:
CUtlPtrLinkedList()
: m_pFirst( NULL ),
m_nElems( 0 )
{
COMPILE_TIME_ASSERT( sizeof(IndexType_t) == sizeof(Node_t *) );
}
~CUtlPtrLinkedList()
{
RemoveAll();
}
typedef UtlPtrLinkedListIndex_t IndexType_t;
T &operator[]( IndexType_t i )
{
return (( Node_t * )i)->elem;
}
const T &operator[]( IndexType_t i ) const
{
return (( Node_t * )i)->elem;
}
IndexType_t AddToTail()
{
return DoInsertBefore( (IndexType_t)m_pFirst, NULL );
}
IndexType_t AddToTail( T const& src )
{
return DoInsertBefore( (IndexType_t)m_pFirst, &src );
}
IndexType_t AddToHead()
{
IndexType_t result = DoInsertBefore( (IndexType_t)m_pFirst, NULL );
m_pFirst = ((Node_t *)result);
return result;
}
IndexType_t AddToHead( T const& src )
{
IndexType_t result = DoInsertBefore( (IndexType_t)m_pFirst, &src );
m_pFirst = ((Node_t *)result);
return result;
}
IndexType_t InsertBefore( IndexType_t before )
{
return DoInsertBefore( before, NULL );
}
IndexType_t InsertAfter( IndexType_t after )
{
Node_t *pBefore = ((Node_t *)after)->next;
return DoInsertBefore( pBefore, NULL );
}
IndexType_t InsertBefore( IndexType_t before, T const& src )
{
return DoInsertBefore( before, &src );
}
IndexType_t InsertAfter( IndexType_t after, T const& src )
{
Node_t *pBefore = ((Node_t *)after)->next;
return DoInsertBefore( pBefore, &src );
}
void Remove( IndexType_t elem )
{
Node_t *p = (Node_t *)elem;
if ( p->pNext == p )
{
m_pFirst = NULL;
}
else
{
if ( m_pFirst == p )
{
m_pFirst = p->pNext;
}
p->pNext->pPrev = p->pPrev;
p->pPrev->pNext = p->pNext;
}
delete p;
m_nElems--;
}
void RemoveAll()
{
Node_t *p = m_pFirst;
if ( p )
{
do
{
Node_t *pNext = p->pNext;
delete p;
p = pNext;
} while( p != m_pFirst );
}
m_pFirst = NULL;
m_nElems = 0;
}
int Count() const
{
return m_nElems;
}
IndexType_t Head() const
{
return (IndexType_t)m_pFirst;
}
IndexType_t Next( IndexType_t i ) const
{
Node_t *p = ((Node_t *)i)->pNext;
if ( p != m_pFirst )
{
return (IndexType_t)p;
}
return NULL;
}
bool IsValidIndex( IndexType_t i ) const
{
Node_t *p = ((Node_t *)i);
return ( p && p->pNext && p->pPrev );
}
inline static IndexType_t InvalidIndex()
{
return NULL;
}
private:
struct Node_t
{
Node_t() {}
Node_t( const T &_elem ) : elem( _elem ) {}
T elem;
Node_t *pPrev, *pNext;
};
Node_t *AllocNode( const T *pCopyFrom )
{
MEM_ALLOC_CREDIT_CLASS();
Node_t *p;
if ( !pCopyFrom )
{
p = new Node_t;
}
else
{
p = new Node_t( *pCopyFrom );
}
return p;
}
IndexType_t DoInsertBefore( IndexType_t before, const T *pCopyFrom )
{
Node_t *p = AllocNode( pCopyFrom );
Node_t *pBefore = (Node_t *)before;
if ( pBefore )
{
p->pNext = pBefore;
p->pPrev = pBefore->pPrev;
pBefore->pPrev = p;
p->pPrev->pNext = p;
}
else
{
Assert( !m_pFirst );
m_pFirst = p->pNext = p->pPrev = p;
}
m_nElems++;
return (IndexType_t)p;
}
Node_t *m_pFirst;
unsigned m_nElems;
};
//-----------------------------------------------------------------------------
#endif // UTLLINKEDLIST_H