Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

532 lines
15 KiB

//===== Copyright © 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose:
//
// $Workfile: $
// $Date: $
// $NoKeywords: $
//===========================================================================//
#include <stdio.h>
#include "snd_dev_wave.h"
#include "snd_wave_source.h"
#include "soundsystem/snd_audio_source.h"
#include "snd_wave_mixer_private.h"
#include "snd_wave_mixer_adpcm.h"
#include "tier2/riff.h"
// NOTE: This has to be the last file included!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// These mixers provide an abstraction layer between the audio device and
// mixing/decoding code. They allow data to be decoded and mixed using
// optimized, format sensitive code by calling back into the device that
// controls them.
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Purpose: maps mixing to 8-bit mono mixer
//-----------------------------------------------------------------------------
class CAudioMixerWave8Mono : public CAudioMixerWave
{
public:
CAudioMixerWave8Mono( CWaveData *data ) : CAudioMixerWave( data ) {}
virtual void Mix( IAudioDevice *pDevice, channel_t *pChannel, void *pData, int outputOffset, int inputOffset, fixedint fracRate, int outCount, int timecompress, bool forward = true )
{
pDevice->Mix8Mono( pChannel, (char *)pData, outputOffset, inputOffset, fracRate, outCount, timecompress, forward );
}
};
//-----------------------------------------------------------------------------
// Purpose: maps mixing to 8-bit stereo mixer
//-----------------------------------------------------------------------------
class CAudioMixerWave8Stereo : public CAudioMixerWave
{
public:
CAudioMixerWave8Stereo( CWaveData *data ) : CAudioMixerWave( data ) {}
virtual void Mix( IAudioDevice *pDevice, channel_t *pChannel, void *pData, int outputOffset, int inputOffset, fixedint fracRate, int outCount, int timecompress, bool forward = true )
{
pDevice->Mix8Stereo( pChannel, (char *)pData, outputOffset, inputOffset, fracRate, outCount, timecompress, forward );
}
};
//-----------------------------------------------------------------------------
// Purpose: maps mixing to 16-bit mono mixer
//-----------------------------------------------------------------------------
class CAudioMixerWave16Mono : public CAudioMixerWave
{
public:
CAudioMixerWave16Mono( CWaveData *data ) : CAudioMixerWave( data ) {}
virtual void Mix( IAudioDevice *pDevice, channel_t *pChannel, void *pData, int outputOffset, int inputOffset, fixedint fracRate, int outCount, int timecompress, bool forward = true )
{
pDevice->Mix16Mono( pChannel, (short *)pData, outputOffset, inputOffset, fracRate, outCount, timecompress, forward );
}
};
//-----------------------------------------------------------------------------
// Purpose: maps mixing to 16-bit stereo mixer
//-----------------------------------------------------------------------------
class CAudioMixerWave16Stereo : public CAudioMixerWave
{
public:
CAudioMixerWave16Stereo( CWaveData *data ) : CAudioMixerWave( data ) {}
virtual void Mix( IAudioDevice *pDevice, channel_t *pChannel, void *pData, int outputOffset, int inputOffset, fixedint fracRate, int outCount, int timecompress, bool forward = true )
{
pDevice->Mix16Stereo( pChannel, (short *)pData, outputOffset, inputOffset, fracRate, outCount, timecompress, forward );
}
};
//-----------------------------------------------------------------------------
// Purpose: Create an approprite mixer type given the data format
// Input : *data - data access abstraction
// format - pcm or adpcm (1 or 2 -- RIFF format)
// channels - number of audio channels (1 = mono, 2 = stereo)
// bits - bits per sample
// Output : CAudioMixer * abstract mixer type that maps mixing to appropriate code
//-----------------------------------------------------------------------------
CAudioMixer *CreateWaveMixer( CWaveData *data, int format, int channels, int bits )
{
if ( format == WAVE_FORMAT_PCM )
{
if ( channels > 1 )
{
if ( bits == 8 )
return new CAudioMixerWave8Stereo( data );
else
return new CAudioMixerWave16Stereo( data );
}
else
{
if ( bits == 8 )
return new CAudioMixerWave8Mono( data );
else
return new CAudioMixerWave16Mono( data );
}
}
else if ( format == WAVE_FORMAT_ADPCM )
{
return CreateADPCMMixer( data );
}
return NULL;
}
//-----------------------------------------------------------------------------
// Purpose: Init the base WAVE mixer.
// Input : *data - data access object
//-----------------------------------------------------------------------------
CAudioMixerWave::CAudioMixerWave( CWaveData *data ) : m_pData(data), m_pChannel(NULL)
{
m_loop = 0;
m_sample = 0;
m_absoluteSample = 0;
m_scubSample = -1;
m_fracOffset = 0;
m_bActive = false;
m_nModelIndex = -1;
m_bForward = true;
m_bAutoDelete = true;
m_pChannel = new channel_t;
m_pChannel->leftvol = 127;
m_pChannel->rightvol = 127;
m_pChannel->pitch = 1.0;
}
//-----------------------------------------------------------------------------
// Purpose: Frees the data access object (we own it after construction)
//-----------------------------------------------------------------------------
CAudioMixerWave::~CAudioMixerWave( void )
{
delete m_pData;
delete m_pChannel;
}
//-----------------------------------------------------------------------------
// Purpose: Decode and read the data
// by default we just pass the request on to the data access object
// other mixers may need to buffer or decode the data for some reason
//
// Input : **pData - dest pointer
// sampleCount - number of samples needed
// Output : number of samples available in this batch
//-----------------------------------------------------------------------------
int CAudioMixerWave::GetOutputData( void **pData, int samplePosition, int sampleCount, bool forward /*= true*/ )
{
if ( samplePosition != m_sample )
{
// Seek
m_sample = samplePosition;
m_absoluteSample = samplePosition;
}
return m_pData->ReadSourceData( pData, m_sample, sampleCount, forward );
}
//-----------------------------------------------------------------------------
// Purpose: calls through the wavedata to get the audio source
// Output : CAudioSource
//-----------------------------------------------------------------------------
CAudioSource *CAudioMixerWave::GetSource( void )
{
if ( m_pData )
return &m_pData->Source();
return NULL;
}
//-----------------------------------------------------------------------------
// Purpose: Gets the current sample location in playback
// Output : int (samples from start of wave)
//-----------------------------------------------------------------------------
int CAudioMixerWave::GetSamplePosition( void )
{
return m_sample;
}
//-----------------------------------------------------------------------------
// Purpose: Gets the current sample location in playback
// Output : int (samples from start of wave)
//-----------------------------------------------------------------------------
int CAudioMixerWave::GetScubPosition( void )
{
if (m_scubSample != -1)
{
return m_scubSample;
}
return m_sample;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : position -
//-----------------------------------------------------------------------------
bool CAudioMixerWave::SetSamplePosition( int position, bool scrubbing )
{
position = MAX( 0, position );
m_sample = position;
m_absoluteSample = position;
m_startpos = m_sample;
if (scrubbing)
{
m_scubSample = position;
}
else
{
m_scubSample = -1;
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : position -
//-----------------------------------------------------------------------------
void CAudioMixerWave::SetLoopPosition( int position )
{
m_loop = position;
}
//-----------------------------------------------------------------------------
// Purpose:
// Output : int
//-----------------------------------------------------------------------------
int CAudioMixerWave::GetStartPosition( void )
{
return m_startpos;
}
bool CAudioMixerWave::GetActive( void )
{
return m_bActive;
}
void CAudioMixerWave::SetActive( bool active )
{
m_bActive = active;
}
void CAudioMixerWave::SetModelIndex( int index )
{
m_nModelIndex = index;
}
int CAudioMixerWave::GetModelIndex( void ) const
{
return m_nModelIndex;
}
void CAudioMixerWave::SetDirection( bool forward )
{
m_bForward = forward;
}
bool CAudioMixerWave::GetDirection( void ) const
{
return m_bForward;
}
void CAudioMixerWave::SetAutoDelete( bool autodelete )
{
m_bAutoDelete = autodelete;
}
bool CAudioMixerWave::GetAutoDelete( void ) const
{
return m_bAutoDelete;
}
void CAudioMixerWave::SetVolume( float volume )
{
int ivolume = (int)( clamp( volume, 0.0f, 1.0f ) * 127.0f );
m_pChannel->leftvol = ivolume;
m_pChannel->rightvol = ivolume;
}
channel_t *CAudioMixerWave::GetChannel()
{
Assert( m_pChannel );
return m_pChannel;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pChannel -
// sampleCount -
// outputRate -
//-----------------------------------------------------------------------------
void CAudioMixerWave::IncrementSamples( channel_t *pChannel, int startSample, int sampleCount,int outputRate, bool forward /*= true*/ )
{
int inputSampleRate = (int)(pChannel->pitch * m_pData->Source().SampleRate());
float rate = (float)inputSampleRate / outputRate;
int startpos = startSample;
if ( !forward )
{
int requestedstart = startSample - (int)( sampleCount * rate );
if ( requestedstart < 0 )
return;
startpos = MAX( 0, requestedstart );
SetSamplePosition( startpos );
}
while ( sampleCount > 0 )
{
int inputSampleCount;
int outputSampleCount = sampleCount;
if ( outputRate != inputSampleRate )
{
inputSampleCount = (int)(sampleCount * rate);
}
else
{
inputSampleCount = sampleCount;
}
sampleCount -= outputSampleCount;
if ( forward )
{
m_sample += inputSampleCount;
m_absoluteSample += inputSampleCount;
}
}
}
//-----------------------------------------------------------------------------
// Purpose: The device calls this to request data. The mixer must provide the
// full amount of samples or have silence in its output stream.
// Input : *pDevice - requesting device
// sampleCount - number of samples at the output rate
// outputRate - sampling rate of the request
// Output : Returns true to keep mixing, false to delete this mixer
//-----------------------------------------------------------------------------
bool CAudioMixerWave::SkipSamples( IAudioDevice *pDevice, channel_t *pChannel,
int startSample, int sampleCount, int outputRate, bool forward /*= true*/ )
{
int offset = 0;
int inputSampleRate = (int)(pChannel->pitch * m_pData->Source().SampleRate());
float rate = (float)inputSampleRate / outputRate;
sampleCount = MIN( sampleCount, pDevice->PaintBufferSampleCount() );
int startpos = startSample;
if ( !forward )
{
int requestedstart = startSample - (int)( sampleCount * rate );
if ( requestedstart < 0 )
return false;
startpos = MAX( 0, requestedstart );
SetSamplePosition( startpos );
}
while ( sampleCount > 0 )
{
int availableSamples;
int inputSampleCount;
char *pData = NULL;
int outputSampleCount = sampleCount;
if ( outputRate != inputSampleRate )
{
inputSampleCount = (int)(sampleCount * rate);
if ( !forward )
{
startSample = MAX( 0, startSample - inputSampleCount );
}
int availableSamples = GetOutputData( (void **)&pData, startSample, inputSampleCount, forward );
if ( !availableSamples )
break;
if ( availableSamples < inputSampleCount )
{
outputSampleCount = (int)(availableSamples / rate);
inputSampleCount = availableSamples;
}
// compute new fraction part of sample index
float offset = (m_fracOffset / FIX_SCALE) + (rate * outputSampleCount);
offset = offset - (float)((int)offset);
m_fracOffset = FIX_FLOAT(offset);
}
else
{
if ( !forward )
{
startSample = MAX( 0, startSample - sampleCount );
}
availableSamples = GetOutputData( (void **)&pData, startSample, sampleCount, forward );
if ( !availableSamples )
break;
outputSampleCount = availableSamples;
inputSampleCount = availableSamples;
}
offset += outputSampleCount;
sampleCount -= outputSampleCount;
if ( forward )
{
m_sample += inputSampleCount;
m_absoluteSample += inputSampleCount;
}
if ( m_loop != 0 && m_sample >= m_loop )
{
SetSamplePosition( m_startpos );
}
}
if ( sampleCount > 0 )
return false;
return true;
}
//-----------------------------------------------------------------------------
// Purpose: The device calls this to request data. The mixer must provide the
// full amount of samples or have silence in its output stream.
// Input : *pDevice - requesting device
// sampleCount - number of samples at the output rate
// outputRate - sampling rate of the request
// Output : Returns true to keep mixing, false to delete this mixer
//-----------------------------------------------------------------------------
bool CAudioMixerWave::MixDataToDevice( IAudioDevice *pDevice, channel_t *pChannel, int startSample, int sampleCount, int outputRate, bool forward /*= true*/ )
{
int offset = 0;
int inputSampleRate = (int)(pChannel->pitch * m_pData->Source().SampleRate());
float rate = (float)inputSampleRate / outputRate;
fixedint fracstep = FIX_FLOAT( rate );
sampleCount = MIN( sampleCount, pDevice->PaintBufferSampleCount() );
int startpos = startSample;
if ( !forward )
{
int requestedstart = startSample - (int)( sampleCount * rate );
if ( requestedstart < 0 )
return false;
startpos = MAX( 0, requestedstart );
SetSamplePosition( startpos );
}
while ( sampleCount > 0 )
{
int availableSamples;
int inputSampleCount;
char *pData = NULL;
int outputSampleCount = sampleCount;
if ( outputRate != inputSampleRate )
{
inputSampleCount = (int)(sampleCount * rate);
int availableSamples = GetOutputData( (void **)&pData, startpos, inputSampleCount, forward );
if ( !availableSamples )
break;
if ( availableSamples < inputSampleCount )
{
outputSampleCount = (int)(availableSamples / rate);
inputSampleCount = availableSamples;
}
Mix( pDevice, pChannel, pData, offset, m_fracOffset, fracstep, outputSampleCount, 0, forward );
// compute new fraction part of sample index
float offset = (m_fracOffset / FIX_SCALE) + (rate * outputSampleCount);
offset = offset - (float)((int)offset);
m_fracOffset = FIX_FLOAT(offset);
}
else
{
availableSamples = GetOutputData( (void **)&pData, startpos, sampleCount, forward );
if ( !availableSamples )
break;
outputSampleCount = availableSamples;
inputSampleCount = availableSamples;
Mix( pDevice, pChannel, pData, offset, m_fracOffset, FIX(1), outputSampleCount, 0, forward );
}
offset += outputSampleCount;
sampleCount -= outputSampleCount;
if ( forward )
{
m_sample += inputSampleCount;
m_absoluteSample += inputSampleCount;
}
if ( m_loop != 0 && m_sample >= m_loop )
{
SetSamplePosition( m_startpos );
}
}
if ( sampleCount > 0 )
return false;
return true;
}