Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

5118 lines
125 KiB

//====== Copyright 1996-2005, Valve Corporation, All rights reserved. =======//
//
// Purpose: String Tools
//
//===========================================================================//
// These are redefined in the project settings to prevent anyone from using them.
// We in this module are of a higher caste and thus are privileged in their use.
#ifdef strncpy
#undef strncpy
#endif
#ifdef _snprintf
#undef _snprintf
#endif
#if defined( sprintf )
#undef sprintf
#endif
#if defined( vsprintf )
#undef vsprintf
#endif
#ifdef _vsnprintf
#ifdef _WIN32
#undef _vsnprintf
#endif
#endif
#ifdef vsnprintf
#ifndef _WIN32
#undef vsnprintf
#endif
#endif
#if defined( strcat )
#undef strcat
#endif
#ifdef strncat
#undef strncat
#endif
// NOTE: I have to include stdio + stdarg first so vsnprintf gets compiled in
#include <stdio.h>
#include <stdarg.h>
#include "tier0/basetypes.h"
#include "tier0/platform.h"
#ifdef stricmp
#undef stricmp
#endif
#ifdef POSIX
#ifndef _PS3
#include <iconv.h>
#endif // _PS3
#include <ctype.h>
#include <unistd.h>
#include <stdlib.h>
#define stricmp strcasecmp
#define _strtoi64 strtoll
#define _strtoui64 strtoull
#elif _WIN32
#include <direct.h>
#if !defined( _X360 )
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#endif
#ifdef _WIN32
#ifndef CP_UTF8
#define CP_UTF8 65001
#endif
#endif
#include "tier0/dbg.h"
#include "tier1/strtools.h"
#include <string.h>
#include <stdlib.h>
#include "tier1/utldict.h"
#include "tier1/characterset.h"
#include "tier1/utlstring.h"
#include "tier1/fmtstr.h"
#if defined( _X360 )
#include "xbox/xbox_win32stubs.h"
#elif defined( _PS3 )
#include "ps3_pathinfo.h"
#include <cell/l10n.h> // for UCS-2 to UTF-8 conversion
#endif
#include "tier0/vprof.h"
#include "tier0/memdbgon.h"
#ifndef NDEBUG
static volatile const char *pDebugString;
#define DEBUG_LINK_CHECK pDebugString = "tier1.lib built debug!"
#else
#define DEBUG_LINK_CHECK
#endif
void _V_memset (void *dest, int fill, int count)
{
DEBUG_LINK_CHECK;
Assert( count >= 0 );
memset(dest,fill,count);
}
void _V_memcpy (void *dest, const void *src, int count)
{
Assert( count >= 0 );
memcpy( dest, src, count );
}
void _V_memmove(void *dest, const void *src, int count)
{
Assert( count >= 0 );
memmove( dest, src, count );
}
int _V_memcmp (const void *m1, const void *m2, int count)
{
DEBUG_LINK_CHECK;
Assert( count >= 0 );
return memcmp( m1, m2, count );
}
int _V_strlen(const char *str)
{
#ifdef POSIX
if ( !str )
return 0;
#endif
return ( int )strlen( str );
}
#ifdef OSX
size_t strnlen( const char *s, size_t n )
{
const char *p = (const char *)memchr( s, 0, n );
return (p ? p - s : n);
}
#endif
int _V_strnlen(const char *str, int count )
{
#ifdef POSIX
if ( !str )
return 0;
#endif
return ( int )strnlen( str, count );
}
void _V_strcpy (char *dest, const char *src)
{
DEBUG_LINK_CHECK;
strcpy( dest, src );
}
int _V_wcslen(const wchar_t *pwch)
{
return ( int )wcslen( pwch );
}
char *_V_strrchr(const char *s, char c)
{
int len = V_strlen(s);
s += len;
while (len--)
if (*--s == c) return (char *)s;
return 0;
}
int _V_strcmp (const char *s1, const char *s2)
{
VPROF_2( "V_strcmp", VPROF_BUDGETGROUP_OTHER_UNACCOUNTED, false, BUDGETFLAG_ALL );
return strcmp( s1, s2 );
}
int _V_wcscmp (const wchar_t *s1, const wchar_t *s2)
{
while (1)
{
if (*s1 != *s2)
return *s1 < *s2 ? -1 : 1; // strings not equal
if (!*s1)
return 0; // strings are equal
s1++;
s2++;
}
return -1;
}
int _V_stricmp( const char *s1, const char *s2 )
{
VPROF_2( "V_stricmp", VPROF_BUDGETGROUP_OTHER_UNACCOUNTED, false, BUDGETFLAG_ALL );
// It is not uncommon to compare a string to itself. Since stricmp
// is expensive and pointer comparison is cheap, this simple test
// can save a lot of cycles, and cache pollution.
// This also implicitly does the s1 and s2 both equal to NULL check
// that the POSIX code used to have.
if ( s1 == s2 )
return 0;
#ifdef POSIX
if ( s1 == NULL )
return -1;
if ( s2 == NULL )
return 1;
return stricmp( s1, s2 );
#else
uint8 const *pS1 = ( uint8 const * ) s1;
uint8 const *pS2 = ( uint8 const * ) s2;
for(;;)
{
int c1 = *( pS1++ );
int c2 = *( pS2++ );
if ( c1 == c2 )
{
if ( !c1 ) return 0;
}
else
{
if ( ! c2 )
{
return c1 - c2;
}
c1 = FastASCIIToLower( c1 );
c2 = FastASCIIToLower( c2 );
if ( c1 != c2 )
{
return c1 - c2;
}
}
c1 = *( pS1++ );
c2 = *( pS2++ );
if ( c1 == c2 )
{
if ( !c1 ) return 0;
}
else
{
if ( ! c2 )
{
return c1 - c2;
}
c1 = FastASCIIToLower( c1 );
c2 = FastASCIIToLower( c2 );
if ( c1 != c2 )
{
return c1 - c2;
}
}
}
#endif
}
// A special high-performance case-insensitive compare function
// returns 0 if strings match exactly
// returns >0 if strings match in a case-insensitive way, but do not match exactly
// returns <0 if strings do not match even in a case-insensitive way
int _V_stricmp_NegativeForUnequal( const char *s1, const char *s2 )
{
VPROF_2( "V_stricmp", VPROF_BUDGETGROUP_OTHER_UNACCOUNTED, false, BUDGETFLAG_ALL );
// It is not uncommon to compare a string to itself. Since stricmp
// is expensive and pointer comparison is cheap, this simple test
// can save a lot of cycles, and cache pollution.
if ( s1 == s2 )
return 0;
uint8 const *pS1 = ( uint8 const * ) s1;
uint8 const *pS2 = ( uint8 const * ) s2;
int iExactMatchResult = 1;
for(;;)
{
int c1 = *( pS1++ );
int c2 = *( pS2++ );
if ( c1 == c2 )
{
// strings are case-insensitive equal, coerce accumulated
// case-difference to 0/1 and return it
if ( !c1 ) return !iExactMatchResult;
}
else
{
if ( ! c2 )
{
// c2=0 and != c1 => not equal
return -1;
}
iExactMatchResult = 0;
c1 = FastASCIIToLower( c1 );
c2 = FastASCIIToLower( c2 );
if ( c1 != c2 )
{
// strings are not equal
return -1;
}
}
c1 = *( pS1++ );
c2 = *( pS2++ );
if ( c1 == c2 )
{
// strings are case-insensitive equal, coerce accumulated
// case-difference to 0/1 and return it
if ( !c1 ) return !iExactMatchResult;
}
else
{
if ( ! c2 )
{
// c2=0 and != c1 => not equal
return -1;
}
iExactMatchResult = 0;
c1 = FastASCIIToLower( c1 );
c2 = FastASCIIToLower( c2 );
if ( c1 != c2 )
{
// strings are not equal
return -1;
}
}
}
}
char *_V_strstr( const char *s1, const char *search )
{
#if defined( _X360 )
return (char *)strstr( (char *)s1, search );
#else
return (char *)strstr( s1, search );
#endif
}
char *_V_strupr( char *start )
{
return strupr( start );
}
char *_V_strlower( char *start )
{
return strlwr( start );
}
wchar_t *_V_wcsupr (wchar_t *start)
{
return _wcsupr( start );
}
wchar_t *_V_wcslower (wchar_t *start)
{
return _wcslwr( start );
}
int V_strncmp(const char *s1, const char *s2, int count)
{
Assert( count >= 0 );
VPROF_2( "V_strcmp", VPROF_BUDGETGROUP_OTHER_UNACCOUNTED, false, BUDGETFLAG_ALL );
while ( count-- > 0 )
{
if ( *s1 != *s2 )
return *s1 < *s2 ? -1 : 1; // string different
if ( *s1 == '\0' )
return 0; // null terminator hit - strings the same
s1++;
s2++;
}
return 0; // count characters compared the same
}
char *V_strnlwr(char *s, size_t count)
{
Assert( count >= 0 );
char* pRet = s;
if ( !s || !count )
return s;
while ( -- count > 0 )
{
if ( !*s )
return pRet; // reached end of string
*s = tolower( *s );
++s;
}
*s = 0; // null-terminate original string at "count-1"
return pRet;
}
int V_strncasecmp (const char *s1, const char *s2, int n)
{
Assert( n >= 0 );
VPROF_2( "V_strcmp", VPROF_BUDGETGROUP_OTHER_UNACCOUNTED, false, BUDGETFLAG_ALL );
while ( n-- > 0 )
{
int c1 = *s1++;
int c2 = *s2++;
if (c1 != c2)
{
if (c1 >= 'a' && c1 <= 'z')
c1 -= ('a' - 'A');
if (c2 >= 'a' && c2 <= 'z')
c2 -= ('a' - 'A');
if (c1 != c2)
return c1 < c2 ? -1 : 1;
}
if ( c1 == '\0' )
return 0; // null terminator hit - strings the same
}
return 0; // n characters compared the same
}
int V_strcasecmp( const char *s1, const char *s2 )
{
VPROF_2( "V_strcmp", VPROF_BUDGETGROUP_OTHER_UNACCOUNTED, false, BUDGETFLAG_ALL );
return V_stricmp( s1, s2 );
}
int V_strnicmp (const char *s1, const char *s2, int n)
{
DEBUG_LINK_CHECK;
Assert( n >= 0 );
return V_strncasecmp( s1, s2, n );
}
const char *StringAfterPrefix( const char *str, const char *prefix )
{
do
{
if ( !*prefix )
return str;
}
while ( tolower( *str++ ) == tolower( *prefix++ ) );
return NULL;
}
const char *StringAfterPrefixCaseSensitive( const char *str, const char *prefix )
{
do
{
if ( !*prefix )
return str;
}
while ( *str++ == *prefix++ );
return NULL;
}
int64 V_atoi64( const char *str )
{
int64 val;
int64 sign;
int64 c;
Assert( str );
if (*str == '-')
{
sign = -1;
str++;
}
else if (*str == '+')
{
sign = 1;
str++;
}
else
{
sign = 1;
}
val = 0;
//
// check for hex
//
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X') )
{
str += 2;
while (1)
{
c = *str++;
if (c >= '0' && c <= '9')
val = (val<<4) + c - '0';
else if (c >= 'a' && c <= 'f')
val = (val<<4) + c - 'a' + 10;
else if (c >= 'A' && c <= 'F')
val = (val<<4) + c - 'A' + 10;
else
return val*sign;
}
}
//
// check for character
//
if (str[0] == '\'')
{
return sign * str[1];
}
//
// assume decimal
//
while (1)
{
c = *str++;
if (c <'0' || c > '9')
return val*sign;
val = val*10 + c - '0';
}
return 0;
}
uint64 V_atoui64( const char *str )
{
uint64 val;
uint64 c;
Assert( str );
val = 0;
//
// check for hex
//
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X') )
{
str += 2;
while (1)
{
c = *str++;
if (c >= '0' && c <= '9')
val = (val<<4) + c - '0';
else if (c >= 'a' && c <= 'f')
val = (val<<4) + c - 'a' + 10;
else if (c >= 'A' && c <= 'F')
val = (val<<4) + c - 'A' + 10;
else
return val;
}
}
//
// check for character
//
if (str[0] == '\'')
{
return str[1];
}
//
// assume decimal
//
while (1)
{
c = *str++;
if (c <'0' || c > '9')
return val;
val = val*10 + c - '0';
}
return 0;
}
int V_atoi( const char *str )
{
return (int)V_atoi64( str );
}
float V_atof (const char *str)
{
return (float)V_atod( str );
}
double V_atod(const char *str)
{
DEBUG_LINK_CHECK;
double val;
int sign;
int c;
int decimal, total;
if (*str == '-')
{
sign = -1;
str++;
}
else if (*str == '+')
{
sign = 1;
str++;
}
else
{
sign = 1;
}
val = 0;
//
// check for hex
//
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X') )
{
str += 2;
while (1)
{
c = *str++;
if (c >= '0' && c <= '9')
val = (val*16) + c - '0';
else if (c >= 'a' && c <= 'f')
val = (val*16) + c - 'a' + 10;
else if (c >= 'A' && c <= 'F')
val = (val*16) + c - 'A' + 10;
else
return val*sign;
}
}
//
// check for character
//
if (str[0] == '\'')
{
return sign * str[1];
}
//
// assume decimal
//
decimal = -1;
total = 0;
int exponent = 0;
while (1)
{
c = *str++;
if (c == '.')
{
if ( decimal != -1 )
{
break;
}
decimal = total;
continue;
}
if (c <'0' || c > '9')
{
if ( c == 'e' || c == 'E' )
{
exponent = V_atoi(str);
}
break;
}
val = val*10 + c - '0';
total++;
}
if ( exponent != 0 )
{
val *= pow( 10.0, exponent );
}
if (decimal == -1)
return val*sign;
while (total > decimal)
{
val /= 10;
total--;
}
return val*sign;
}
//-----------------------------------------------------------------------------
// Normalizes a float string in place.
//
// (removes leading zeros, trailing zeros after the decimal point, and the decimal point itself where possible)
//-----------------------------------------------------------------------------
void V_normalizeFloatString( char* pFloat )
{
// If we have a decimal point, remove trailing zeroes:
if( strchr( pFloat,'.' ) )
{
int len = V_strlen(pFloat);
while( len > 1 && pFloat[len - 1] == '0' )
{
pFloat[len - 1] = '\0';
len--;
}
if( len > 1 && pFloat[ len - 1 ] == '.' )
{
pFloat[len - 1] = '\0';
len--;
}
}
// TODO: Strip leading zeros
}
//-----------------------------------------------------------------------------
// Finds a string in another string with a case insensitive test
//-----------------------------------------------------------------------------
const char* V_stristr( const char* pStr, const char* pSearch )
{
Assert( pStr );
Assert( pSearch );
if (!pStr || !pSearch)
return 0;
const char* pLetter = pStr;
// Check the entire string
while (*pLetter != 0)
{
// Skip over non-matches
if ( FastASCIIToLower( *pLetter ) == FastASCIIToLower( *pSearch) )
{
// Check for match
const char* pMatch = pLetter + 1;
const char* pTest = pSearch + 1;
while (*pTest != 0)
{
// We've run off the end; don't bother.
if (*pMatch == 0)
return 0;
if ( FastASCIIToLower( *pMatch) != FastASCIIToLower( *pTest ) )
break;
++pMatch;
++pTest;
}
// Found a match!
if ( *pTest == 0 )
return pLetter;
}
++pLetter;
}
return 0;
}
char* V_stristr( char* pStr, const char* pSearch )
{
return (char*)V_stristr( (const char*)pStr, pSearch );
}
const wchar_t* V_wcsistr( const wchar_t* pStr, const wchar_t* pSearch )
{
Assert(pStr);
Assert(pSearch);
if (!pStr || !pSearch)
return 0;
wchar_t const* pLetter = pStr;
// Check the entire string
while (*pLetter != 0)
{
// Skip over non-matches
if (towlower((wchar_t)*pLetter) == towlower((wchar_t)*pSearch))
{
// Check for match
wchar_t const* pMatch = pLetter + 1;
wchar_t const* pTest = pSearch + 1;
while (*pTest != 0)
{
// We've run off the end; don't bother.
if (*pMatch == 0)
return 0;
if (towlower((wchar_t)*pMatch) != towlower((wchar_t)*pTest))
break;
++pMatch;
++pTest;
}
// Found a match!
if (*pTest == 0)
return pLetter;
}
++pLetter;
}
return 0;
}
wchar_t* V_wcsistr( wchar_t* pStr, const wchar_t* pSearch )
{
return (wchar_t*)V_wcsistr( (wchar_t const*)pStr, pSearch );
}
//-----------------------------------------------------------------------------
// Finds a string in another string with a case insensitive test w/ length validation
//-----------------------------------------------------------------------------
const char* V_strnistr( const char* pStr, const char* pSearch, int n )
{
Assert( pStr );
Assert( pSearch );
if (!pStr || !pSearch)
return 0;
const char* pLetter = pStr;
// Check the entire string
while (*pLetter != 0)
{
if ( n <= 0 )
return 0;
// Skip over non-matches
if (FastASCIIToLower(*pLetter) == FastASCIIToLower(*pSearch))
{
int n1 = n - 1;
// Check for match
const char* pMatch = pLetter + 1;
const char* pTest = pSearch + 1;
while (*pTest != 0)
{
if ( n1 <= 0 )
return 0;
// We've run off the end; don't bother.
if (*pMatch == 0)
return 0;
if (FastASCIIToLower(*pMatch) != FastASCIIToLower(*pTest))
break;
++pMatch;
++pTest;
--n1;
}
// Found a match!
if (*pTest == 0)
return pLetter;
}
++pLetter;
--n;
}
return 0;
}
const char* V_strnchr( const char* pStr, char c, int n )
{
const char* pLetter = pStr;
const char* pLast = pStr + n;
// Check the entire string
while ( (pLetter < pLast) && (*pLetter != 0) )
{
if (*pLetter == c)
return pLetter;
++pLetter;
}
return NULL;
}
void V_strncpy( char *pDest, const char *pSrc, int maxLen )
{
Assert( maxLen >= sizeof( *pDest ) );
DEBUG_LINK_CHECK;
// NOTE: Never never use strncpy! Here's what it actually does, which is not what we want!
// (from MSDN)
// The strncpy function copies the initial count characters of strSource to strDest
// and returns strDest. If count is less than or equal to the length of strSource,
// a null character is not appended automatically to the copied string. If count
// is greater than the length of strSource, the destination string is padded with
// null characters up to length count. The behavior of strncpy is undefined
// if the source and destination strings overlap.
// strncpy( pDest, pSrc, maxLen );
// FIXME: This could be optimized to do copies a dword at a time maybe?
char *pLast = pDest + maxLen - 1;
while ( (pDest < pLast) && (*pSrc != 0) )
{
*pDest = *pSrc;
++pDest; ++pSrc;
}
*pDest = 0;
}
// warning C6053: Call to 'wcsncpy' might not zero-terminate string 'pDest'
// warning C6059: Incorrect length parameter in call to 'strncat'. Pass the number of remaining characters, not the buffer size of 'argument 1'
// warning C6386: Buffer overrun: accessing 'argument 1', the writable size is 'destBufferSize' bytes, but '1000' bytes might be written
// These warnings were investigated through code inspection and writing of tests and they are
// believed to all be spurious.
#ifdef _PREFAST_
#pragma warning( push )
#pragma warning( disable : 6053 6059 6386 )
#endif
void V_wcsncpy( OUT_Z_BYTECAP(maxLenInBytes) wchar_t *pDest, wchar_t const *pSrc, int maxLenInBytes )
{
Assert( maxLenInBytes >= sizeof( *pDest ) );
int maxLen = maxLenInBytes / sizeof(wchar_t);
wcsncpy( pDest, pSrc, maxLen );
if( maxLen )
{
pDest[maxLen-1] = 0;
}
}
#ifdef _PREFAST_
// Suppress warnings about _vsnwprintf and _vsnprintf not zero-terminating the buffers.
// We explicitly null-terminate in the cases that matter.
#pragma warning( disable : 6053 )
#endif
int V_snwprintf( OUT_Z_CAP(maxLenInNumWideCharacters) wchar_t *pDest, int maxLenInNumWideCharacters, PRINTF_FORMAT_STRING const wchar_t *pFormat, ... )
{
Assert( maxLenInNumWideCharacters >= 0 );
va_list marker;
va_start( marker, pFormat );
#ifdef _WIN32
int len = _vsnwprintf( pDest, maxLenInNumWideCharacters, pFormat, marker );
#elif POSIX
int len = vswprintf( pDest, maxLenInNumWideCharacters, pFormat, marker );
#else
#error "define vsnwprintf type."
#endif
va_end( marker );
// Len < 0 represents an overflow
// Len == maxLen represents exactly fitting with no NULL termination
// Len can be > maxLen on Linux systems when the output was truncated
if ( ( len < 0 ) ||
( maxLenInNumWideCharacters > 0 && len >= maxLenInNumWideCharacters ) )
{
len = maxLenInNumWideCharacters - 1;
pDest[maxLenInNumWideCharacters-1] = 0;
}
return len;
}
int V_vsnwprintf( OUT_Z_CAP(maxLenInChars) wchar_t *pDest, int maxLenInChars, PRINTF_FORMAT_STRING const wchar_t *pFormat, va_list params )
{
Assert( maxLenInChars >= 0 );
AssertValidWritePtr( pDest, maxLenInChars );
AssertValidReadPtr( pFormat );
#ifdef _WIN32
int len = _vsnwprintf( pDest, maxLenInChars, pFormat, params );
#elif POSIX
int len = vswprintf( pDest, maxLenInChars, pFormat, params );
#else
#error "define vsnwprintf type."
#endif
// Len < 0 represents an overflow
if ( ( len < 0 ) ||
( maxLenInChars > 0 && len >= maxLenInChars ) )
{
len = maxLenInChars - 1;
pDest[maxLenInChars-1] = 0;
}
return len;
}
int V_snprintf( char *pDest, int maxLen, char const *pFormat, ... )
{
Assert( maxLen > 0 );
va_list marker;
va_start( marker, pFormat );
#ifdef _WIN32
int len = _vsnprintf( pDest, maxLen, pFormat, marker );
#elif POSIX
int len = vsnprintf( pDest, maxLen, pFormat, marker );
#else
#error "define vsnprintf type."
#endif
va_end( marker );
// Len < 0 represents an overflow
// Len == maxLen represents exactly fitting with no NULL termination
if ( ( len < 0 ) ||
( maxLen > 0 && len >= maxLen ) )
{
len = maxLen - 1;
pDest[maxLen-1] = 0;
}
return len;
}
int V_vsnprintf( char *pDest, int maxLen, const char *pFormat, va_list params )
{
Assert( maxLen > 0 );
int len = _vsnprintf( pDest, maxLen, pFormat, params );
if ( ( len < 0 ) ||
( maxLen > 0 && len >= maxLen ) )
{
len = maxLen - 1;
pDest[maxLen-1] = 0;
}
return len;
}
int V_vsnprintfRet( char *pDest, int maxLen, const char *pFormat, va_list params, bool *pbTruncated )
{
Assert( maxLen > 0 );
int len = _vsnprintf( pDest, maxLen, pFormat, params );
bool bTruncated = ( len < 0 ) || ( len >= maxLen );
if ( pbTruncated )
{
*pbTruncated = bTruncated;
}
if( bTruncated && maxLen > 0 )
{
len = maxLen - 1;
pDest[maxLen-1] = 0;
}
return len;
}
//-----------------------------------------------------------------------------
// Purpose: If COPY_ALL_CHARACTERS == max_chars_to_copy then we try to add the whole pSrc to the end of pDest, otherwise
// we copy only as many characters as are specified in max_chars_to_copy (or the # of characters in pSrc if thats's less).
// Input : *pDest - destination buffer
// *pSrc - string to append
// destBufferSize - sizeof the buffer pointed to by pDest
// max_chars_to_copy - COPY_ALL_CHARACTERS in pSrc or max # to copy
// Output : char * the copied buffer
//-----------------------------------------------------------------------------
char *V_strncat( char *pDest, const char *pSrc, size_t maxLenInBytes, int nMaxCharsToCopy )
{
DEBUG_LINK_CHECK;
size_t charstocopy = (size_t)0;
Assert( nMaxCharsToCopy >= 0 || nMaxCharsToCopy == COPY_ALL_CHARACTERS );
size_t len = V_strlen(pDest);
size_t srclen = V_strlen( pSrc );
if ( nMaxCharsToCopy == COPY_ALL_CHARACTERS )
{
charstocopy = srclen;
}
else
{
charstocopy = MIN( nMaxCharsToCopy, (int)srclen );
}
if ( len + charstocopy >= maxLenInBytes )
{
charstocopy = maxLenInBytes - len - 1;
}
// charstocopy can end up negative if you fill a buffer and then pass in a smaller
// buffer size. Yes, this actually happens.
// Cast to ptrdiff_t is necessary in order to check for negative (size_t is unsigned)
if ( charstocopy <= 0 )
{
return pDest;
}
ANALYZE_SUPPRESS( 6059 ); // warning C6059: : Incorrect length parameter in call to 'strncat'. Pass the number of remaining characters, not the buffer size of 'argument 1'
char *pOut = strncat( pDest, pSrc, charstocopy );
pOut[maxLenInBytes-1] = 0;
return pOut;
}
//-----------------------------------------------------------------------------
// Purpose: If COPY_ALL_CHARACTERS == max_chars_to_copy then we try to add the whole pSrc to the end of pDest, otherwise
// we copy only as many characters as are specified in max_chars_to_copy (or the # of characters in pSrc if thats's less).
// Input : *pDest - destination buffer
// *pSrc - string to append
// maxLenInCharacters - sizeof the buffer in characters pointed to by pDest
// max_chars_to_copy - COPY_ALL_CHARACTERS in pSrc or max # to copy
// Output : char * the copied buffer
//-----------------------------------------------------------------------------
wchar_t *V_wcsncat( INOUT_Z_BYTECAP(maxLenInBytes) wchar_t *pDest, const wchar_t *pSrc, int maxLenInBytes, int nMaxCharsToCopy )
{
DEBUG_LINK_CHECK;
size_t charstocopy = (size_t)0;
Assert( maxLenInBytes >= 0 );
int maxLenInCharacters = maxLenInBytes / sizeof( wchar_t );
size_t len = wcslen(pDest);
size_t srclen = wcslen( pSrc );
if ( nMaxCharsToCopy <= COPY_ALL_CHARACTERS )
{
charstocopy = srclen;
}
else
{
charstocopy = (size_t)MIN( nMaxCharsToCopy, (int)srclen );
}
if ( len + charstocopy >= (size_t)maxLenInCharacters )
{
charstocopy = maxLenInCharacters - len - 1;
}
if ( !charstocopy )
{
return pDest;
}
wchar_t *pOut = wcsncat( pDest, pSrc, charstocopy );
pOut[maxLenInCharacters-1] = 0;
return pOut;
}
//-----------------------------------------------------------------------------
// Purpose: Converts value into x.xx MB/ x.xx KB, x.xx bytes format, including commas
// Input : value -
// 2 -
// false -
// Output : char
//-----------------------------------------------------------------------------
#define NUM_PRETIFYMEM_BUFFERS 8
char *V_pretifymem( float value, int digitsafterdecimal /*= 2*/, bool usebinaryonek /*= false*/ )
{
static char output[ NUM_PRETIFYMEM_BUFFERS ][ 32 ];
static int current;
float onekb = usebinaryonek ? 1024.0f : 1000.0f;
float onemb = onekb * onekb;
char *out = output[ current ];
current = ( current + 1 ) & ( NUM_PRETIFYMEM_BUFFERS -1 );
char suffix[ 8 ];
// First figure out which bin to use
if ( value > onemb )
{
value /= onemb;
V_snprintf( suffix, sizeof( suffix ), " MB" );
}
else if ( value > onekb )
{
value /= onekb;
V_snprintf( suffix, sizeof( suffix ), " KB" );
}
else
{
V_snprintf( suffix, sizeof( suffix ), " bytes" );
}
char val[ 32 ];
// Clamp to >= 0
digitsafterdecimal = MAX( digitsafterdecimal, 0 );
// If it's basically integral, don't do any decimals
if ( FloatMakePositive( value - (int)value ) < 0.00001 )
{
V_snprintf( val, sizeof( val ), "%i%s", (int)value, suffix );
}
else
{
char fmt[ 32 ];
// Otherwise, create a format string for the decimals
V_snprintf( fmt, sizeof( fmt ), "%%.%if%s", digitsafterdecimal, suffix );
V_snprintf( val, sizeof( val ), fmt, value );
}
// Copy from in to out
char *i = val;
char *o = out;
// Search for decimal or if it was integral, find the space after the raw number
char *dot = strstr( i, "." );
if ( !dot )
{
dot = strstr( i, " " );
}
// Compute position of dot
int pos = dot - i;
// Don't put a comma if it's <= 3 long
pos -= 3;
while ( *i )
{
// If pos is still valid then insert a comma every third digit, except if we would be
// putting one in the first spot
if ( pos >= 0 && !( pos % 3 ) )
{
// Never in first spot
if ( o != out )
{
*o++ = ',';
}
}
// Count down comma position
pos--;
// Copy rest of data as normal
*o++ = *i++;
}
// Terminate
*o = 0;
return out;
}
//-----------------------------------------------------------------------------
// Purpose: Returns a string representation of an integer with commas
// separating the 1000s (ie, 37,426,421)
// Input : value - Value to convert
// Output : Pointer to a static buffer containing the output
//-----------------------------------------------------------------------------
#define NUM_PRETIFYNUM_BUFFERS 8 // Must be a power of two
char *V_pretifynum( int64 inputValue )
{
static char output[ NUM_PRETIFYMEM_BUFFERS ][ 32 ];
static int current;
// Point to the output buffer.
char * const out = output[ current ];
// Track the output buffer end for easy calculation of bytes-remaining.
const char* const outEnd = out + sizeof( output[ current ] );
// Point to the current output location in the output buffer.
char *pchRender = out;
// Move to the next output pointer.
current = ( current + 1 ) & ( NUM_PRETIFYMEM_BUFFERS -1 );
*out = 0;
// In order to handle the most-negative int64 we need to negate it
// into a uint64.
uint64 value;
// Render the leading minus sign, if necessary
if ( inputValue < 0 )
{
V_snprintf( pchRender, 32, "-" );
value = (uint64)-inputValue;
// Advance our output pointer.
pchRender += V_strlen( pchRender );
}
else
{
value = (uint64)inputValue;
}
// Now let's find out how big our number is. The largest number we can fit
// into 63 bits is about 9.2e18. So, there could potentially be six
// three-digit groups.
// We need the initial value of 'divisor' to be big enough to divide our
// number down to 1-999 range.
uint64 divisor = 1;
// Loop more than six times to avoid integer overflow.
for ( int i = 0; i < 6; ++i )
{
// If our divisor is already big enough then stop.
if ( value < divisor * 1000 )
break;
divisor *= 1000;
}
// Print the leading batch of one to three digits.
int toPrint = value / divisor;
V_snprintf( pchRender, outEnd - pchRender, "%d", toPrint );
for (;;)
{
// Advance our output pointer.
pchRender += V_strlen( pchRender );
// Adjust our value to be printed and our divisor.
value -= toPrint * divisor;
divisor /= 1000;
if ( !divisor )
break;
// The remaining blocks of digits always include a comma and three digits.
toPrint = value / divisor;
V_snprintf( pchRender, outEnd - pchRender, ",%03d", toPrint );
}
return out;
}
//-----------------------------------------------------------------------------
// Purpose: Converts a UTF8 string into a unicode string
//-----------------------------------------------------------------------------
int _V_UTF8ToUnicode( const char *pUTF8, wchar_t *pwchDest, int cubDestSizeInBytes )
{
Assert( cubDestSizeInBytes >= sizeof( *pwchDest ) );
pwchDest[0] = 0;
if ( !pUTF8 )
return 0;
#ifdef _WIN32
int cchResult = MultiByteToWideChar( CP_UTF8, 0, pUTF8, -1, pwchDest, cubDestSizeInBytes / sizeof(wchar_t) );
#elif POSIX
int cchResult = mbstowcs( pwchDest, pUTF8, cubDestSizeInBytes / sizeof(wchar_t) );
#endif
pwchDest[(cubDestSizeInBytes / sizeof(wchar_t)) - 1] = 0;
return cchResult;
}
//-----------------------------------------------------------------------------
// Purpose: Converts a unicode string into a UTF8 (standard) string
//-----------------------------------------------------------------------------
int _V_UnicodeToUTF8( const wchar_t *pUnicode, char *pUTF8, int cubDestSizeInBytes )
{
if ( cubDestSizeInBytes > 0 )
{
pUTF8[0] = 0;
}
#ifdef _WIN32
int cchResult = WideCharToMultiByte( CP_UTF8, 0, pUnicode, -1, pUTF8, cubDestSizeInBytes, NULL, NULL );
#elif POSIX
int cchResult = 0;
if ( pUnicode && pUTF8 )
cchResult = wcstombs( pUTF8, pUnicode, cubDestSizeInBytes );
#endif
if ( cubDestSizeInBytes > 0 )
{
pUTF8[cubDestSizeInBytes - 1] = 0;
}
return cchResult;
}
//-----------------------------------------------------------------------------
// Purpose: Converts a ucs2 string to a unicode (wchar_t) one, no-op on win32
//-----------------------------------------------------------------------------
int _V_UCS2ToUnicode( const ucs2 *pUCS2, wchar_t *pUnicode, int cubDestSizeInBytes )
{
Assert( cubDestSizeInBytes >= sizeof( *pUnicode ) );
pUnicode[0] = 0;
#ifdef _WIN32
int cchResult = V_wcslen( pUCS2 );
V_memcpy( pUnicode, pUCS2, cubDestSizeInBytes );
#else
iconv_t conv_t = iconv_open( "UCS-4LE", "UCS-2LE" );
int cchResult = -1;
size_t nLenUnicde = cubDestSizeInBytes;
size_t nMaxUTF8 = cubDestSizeInBytes;
char *pIn = (char *)pUCS2;
char *pOut = (char *)pUnicode;
if ( conv_t > 0 )
{
cchResult = 0;
cchResult = iconv( conv_t, &pIn, &nLenUnicde, &pOut, &nMaxUTF8 );
iconv_close( conv_t );
if ( (int)cchResult < 0 )
cchResult = 0;
else
cchResult = nMaxUTF8;
}
#endif
pUnicode[(cubDestSizeInBytes / sizeof(wchar_t)) - 1] = 0;
return cchResult;
}
#ifdef _PREFAST_
#pragma warning( pop ) // Restore the /analyze warnings
#endif
//-----------------------------------------------------------------------------
// Purpose: Converts a wchar_t string into a UCS2 string -noop on windows
//-----------------------------------------------------------------------------
int _V_UnicodeToUCS2( const wchar_t *pUnicode, int cubSrcInBytes, char *pUCS2, int cubDestSizeInBytes )
{
// TODO: MACMERGE: Figure out how to convert from 2-byte Win32 wchars to platform wchar_t type that can be 4 bytes
#if defined( _WIN32 ) || defined( _PS3 )
// Figure out which buffer is smaller and convert from bytes to character
// counts.
int cchResult = MIN(cubSrcInBytes/sizeof(wchar_t), cubDestSizeInBytes/sizeof(wchar_t) );
wchar_t *pDest = (wchar_t*)pUCS2;
wcsncpy( pDest, pUnicode, cchResult );
// Make sure we NULL-terminate.
pDest[ cchResult - 1 ] = 0;
#elif defined (POSIX)
iconv_t conv_t = iconv_open( "UCS-2LE", "UTF-32LE" );
size_t cchResult = -1;
size_t nLenUnicde = cubSrcInBytes;
size_t nMaxUCS2 = cubDestSizeInBytes;
char *pIn = (char*)pUnicode;
char *pOut = pUCS2;
if ( conv_t > 0 )
{
cchResult = 0;
cchResult = iconv( conv_t, &pIn, &nLenUnicde, &pOut, &nMaxUCS2 );
iconv_close( conv_t );
if ( (int)cchResult < 0 )
cchResult = 0;
else
cchResult = cubSrcInBytes / sizeof( wchar_t );
}
#else
#error Must be implemented for this platform
#endif
return cchResult;
}
//-----------------------------------------------------------------------------
// Purpose: Converts a ucs-2 (windows wchar_t) string into a UTF8 (standard) string
//-----------------------------------------------------------------------------
int _V_UCS2ToUTF8( const ucs2 *pUCS2, char *pUTF8, int cubDestSizeInBytes )
{
pUTF8[0] = 0;
#ifdef _WIN32
// under win32 wchar_t == ucs2, sigh
int cchResult = WideCharToMultiByte( CP_UTF8, 0, pUCS2, -1, pUTF8, cubDestSizeInBytes, NULL, NULL );
#elif defined(POSIX)
iconv_t conv_t = iconv_open( "UTF-8", "UCS-2LE" );
size_t cchResult = -1;
size_t nLenUnicde = cubDestSizeInBytes;
size_t nMaxUTF8 = cubDestSizeInBytes;
char *pIn = (char *)pUCS2;
char *pOut = (char *)pUTF8;
if ( conv_t > 0 )
{
cchResult = 0;
cchResult = iconv( conv_t, &pIn, &nLenUnicde, &pOut, &nMaxUTF8 );
iconv_close( conv_t );
if ( (int)cchResult < 0 )
cchResult = 0;
else
cchResult = nMaxUTF8;
}
#endif
pUTF8[cubDestSizeInBytes - 1] = 0;
return cchResult;
}
//-----------------------------------------------------------------------------
// Purpose: Converts a UTF8 to ucs-2 (windows wchar_t)
//-----------------------------------------------------------------------------
int _V_UTF8ToUCS2( const char *pUTF8, int cubSrcInBytes, ucs2 *pUCS2, int cubDestSizeInBytes )
{
Assert( cubDestSizeInBytes >= sizeof(pUCS2[0]) );
pUCS2[0] = 0;
#ifdef _WIN32
// under win32 wchar_t == ucs2, sigh
int cchResult = MultiByteToWideChar( CP_UTF8, 0, pUTF8, -1, pUCS2, cubDestSizeInBytes / sizeof(wchar_t) );
#elif defined( _PS3 ) // bugbug JLB
int cchResult = 0;
Assert( 0 );
#elif defined(POSIX)
iconv_t conv_t = iconv_open( "UCS-2LE", "UTF-8" );
size_t cchResult = -1;
size_t nLenUnicde = cubSrcInBytes;
size_t nMaxUTF8 = cubDestSizeInBytes;
char *pIn = (char *)pUTF8;
char *pOut = (char *)pUCS2;
if ( conv_t > 0 )
{
cchResult = 0;
cchResult = iconv( conv_t, &pIn, &nLenUnicde, &pOut, &nMaxUTF8 );
iconv_close( conv_t );
if ( (int)cchResult < 0 )
cchResult = 0;
else
cchResult = cubSrcInBytes;
}
#endif
pUCS2[ (cubDestSizeInBytes/sizeof(ucs2)) - 1] = 0;
return cchResult;
}
//-----------------------------------------------------------------------------
// Purpose: Returns the 4 bit nibble for a hex character
// Input : c -
// Output : unsigned char
//-----------------------------------------------------------------------------
static unsigned char V_nibble( char c )
{
if ( ( c >= '0' ) &&
( c <= '9' ) )
{
return (unsigned char)(c - '0');
}
if ( ( c >= 'A' ) &&
( c <= 'F' ) )
{
return (unsigned char)(c - 'A' + 0x0a);
}
if ( ( c >= 'a' ) &&
( c <= 'f' ) )
{
return (unsigned char)(c - 'a' + 0x0a);
}
return '0';
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *in -
// numchars -
// *out -
// maxoutputbytes -
//-----------------------------------------------------------------------------
void V_hextobinary( const char *in, int numchars, byte *out, int maxoutputbytes )
{
int len = V_strlen( in );
numchars = MIN( len, numchars );
// Make sure it's even
numchars = ( numchars ) & ~0x1;
// Must be an even # of input characters (two chars per output byte)
Assert( numchars >= 2 );
memset( out, 0x00, maxoutputbytes );
byte *p;
int i;
p = out;
for ( i = 0;
( i < numchars ) && ( ( p - out ) < maxoutputbytes );
i+=2, p++ )
{
*p = ( V_nibble( in[i] ) << 4 ) | V_nibble( in[i+1] );
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *in -
// inputbytes -
// *out -
// outsize -
//-----------------------------------------------------------------------------
void V_binarytohex( const byte *in, int inputbytes, char *out, int outsize )
{
Assert( outsize >= 1 );
char doublet[10];
int i;
out[0]=0;
for ( i = 0; i < inputbytes; i++ )
{
unsigned char c = in[i];
V_snprintf( doublet, sizeof( doublet ), "%02x", c );
V_strncat( out, doublet, outsize, COPY_ALL_CHARACTERS );
}
}
#define PATHSEPARATOR(c) ((c) == '\\' || (c) == '/')
//-----------------------------------------------------------------------------
// Purpose: Extracts the base name of a file (no path, no extension, assumes '/' or '\' as path separator)
// Input : *in -
// *out -
// maxlen -
//-----------------------------------------------------------------------------
void V_FileBase( const char *in, char *out, int maxlen )
{
Assert( maxlen >= 1 );
Assert( in );
Assert( out );
if ( !in || !in[ 0 ] )
{
*out = 0;
return;
}
int len, start, end;
len = V_strlen( in );
// scan backward for '.'
end = len - 1;
while ( end&& in[end] != '.' && !PATHSEPARATOR( in[end] ) )
{
end--;
}
if ( in[end] != '.' ) // no '.', copy to end
{
end = len-1;
}
else
{
end--; // Found ',', copy to left of '.'
}
// Scan backward for '/'
start = len-1;
while ( start >= 0 && !PATHSEPARATOR( in[start] ) )
{
start--;
}
if ( start < 0 || !PATHSEPARATOR( in[start] ) )
{
start = 0;
}
else
{
start++;
}
// Length of new sting
len = end - start + 1;
int maxcopy = MIN( len + 1, maxlen );
// Copy partial string
V_strncpy( out, &in[start], maxcopy );
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *ppath -
//-----------------------------------------------------------------------------
void V_StripTrailingSlash( char *ppath )
{
Assert( ppath );
int len = V_strlen( ppath );
if ( len > 0 )
{
if ( PATHSEPARATOR( ppath[ len - 1 ] ) )
{
ppath[ len - 1 ] = 0;
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *ppline -
//-----------------------------------------------------------------------------
void V_StripTrailingWhitespace( char *ppline )
{
Assert( ppline );
int len = V_strlen( ppline );
while ( len > 0 )
{
if ( !V_isspace( ppline[ len - 1 ] ) )
break;
ppline[ len - 1 ] = 0;
len--;
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *ppline -
//-----------------------------------------------------------------------------
void V_StripLeadingWhitespace( char *ppline )
{
Assert( ppline );
// Skip past initial whitespace
int skip = 0;
while( V_isspace( ppline[ skip ] ) )
skip++;
// Shuffle the rest of the string back (including the NULL-terminator)
if ( skip )
{
while( ( ppline[0] = ppline[skip] ) != 0 )
ppline++;
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *ppline -
//-----------------------------------------------------------------------------
void V_StripSurroundingQuotes( char *ppline )
{
Assert( ppline );
int len = V_strlen( ppline ) - 2;
if ( ( ppline[0] == '"' ) && ( len >= 0 ) && ( ppline[len+1] == '"' ) )
{
for ( int i = 0; i < len; i++ )
ppline[i] = ppline[i+1];
ppline[len] = 0;
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *in -
// *out -
// outSize -
//-----------------------------------------------------------------------------
void V_StripExtension( const char *in, char *out, int outSize )
{
// Find the last dot. If it's followed by a dot or a slash, then it's part of a
// directory specifier like ../../somedir/./blah.
// scan backward for '.'
int end = V_strlen( in ) - 1;
while ( end > 0 && in[end] != '.' && !PATHSEPARATOR( in[end] ) )
{
--end;
}
if (end > 0 && !PATHSEPARATOR( in[end] ) && end < outSize)
{
int nChars = MIN( end, outSize-1 );
if ( out != in )
{
memcpy( out, in, nChars );
}
out[nChars] = 0;
}
else
{
// nothing found
if ( out != in )
{
V_strncpy( out, in, outSize );
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *path -
// *extension -
// pathStringLength -
//-----------------------------------------------------------------------------
void V_DefaultExtension( char *path, const char *extension, int pathStringLength )
{
Assert( path );
Assert( pathStringLength >= 1 );
Assert( extension );
char *src;
// if path doesn't have a .EXT, append extension
// (extension should include the .)
src = path + V_strlen(path) - 1;
while ( !PATHSEPARATOR( *src ) && ( src > path ) )
{
if (*src == '.')
{
// it has an extension
return;
}
src--;
}
// Concatenate the desired extension
char pTemp[MAX_PATH];
if ( extension[0] != '.' )
{
pTemp[0] = '.';
V_strncpy( &pTemp[1], extension, sizeof(pTemp) - 1 );
extension = pTemp;
}
V_strncat( path, extension, pathStringLength, COPY_ALL_CHARACTERS );
}
//-----------------------------------------------------------------------------
// Purpose: Force extension...
// Input : *path -
// *extension -
// pathStringLength -
//-----------------------------------------------------------------------------
void V_SetExtension( char *path, const char *extension, int pathStringLength )
{
V_StripExtension( path, path, pathStringLength );
// This fails if the filename has multiple extensions (i.e. "filename.360.vtex_c").
//V_DefaultExtension( path, extension, pathStringLength );
// Concatenate the desired extension
char pTemp[MAX_PATH];
if ( extension[0] != '.' )
{
pTemp[0] = '.';
V_strncpy( &pTemp[1], extension, sizeof(pTemp) - 1 );
extension = pTemp;
}
V_strncat( path, extension, pathStringLength, COPY_ALL_CHARACTERS );
}
//-----------------------------------------------------------------------------
// Purpose: Remove final filename from string
// Input : *path -
// Output : void V_StripFilename
//-----------------------------------------------------------------------------
void V_StripFilename (char *path)
{
int length;
length = V_strlen( path )-1;
if ( length <= 0 )
return;
while ( length > 0 &&
!PATHSEPARATOR( path[length] ) )
{
length--;
}
path[ length ] = 0;
}
#ifdef _WIN32
#define CORRECT_PATH_SEPARATOR '\\'
#define INCORRECT_PATH_SEPARATOR '/'
#elif POSIX
#define CORRECT_PATH_SEPARATOR '/'
#define INCORRECT_PATH_SEPARATOR '\\'
#endif
//-----------------------------------------------------------------------------
// Purpose: Changes all '/' or '\' characters into separator
// Input : *pname -
// separator -
//-----------------------------------------------------------------------------
void V_FixSlashes( char *pname, char separator /* = CORRECT_PATH_SEPARATOR */ )
{
while ( *pname )
{
if ( *pname == INCORRECT_PATH_SEPARATOR || *pname == CORRECT_PATH_SEPARATOR )
{
*pname = separator;
}
pname++;
}
}
//-----------------------------------------------------------------------------
// Purpose: This function fixes cases of filenames like materials\\blah.vmt or somepath\otherpath\\ and removes the extra double slash.
//-----------------------------------------------------------------------------
void V_FixDoubleSlashes( char *pStr )
{
int len = V_strlen( pStr );
for ( int i=1; i < len-1; i++ )
{
if ( (pStr[i] == '/' || pStr[i] == '\\') && (pStr[i+1] == '/' || pStr[i+1] == '\\') )
{
// This means there's a double slash somewhere past the start of the filename. That
// can happen in Hammer if they use a material in the root directory. You'll get a filename
// that looks like 'materials\\blah.vmt'
V_memmove( &pStr[i], &pStr[i+1], len - i );
--len;
}
}
}
//-----------------------------------------------------------------------------
// Check if 2 paths are the same, works if slashes are different.
//-----------------------------------------------------------------------------
bool V_PathsMatch( const char *pPath1, const char *pPath2)
{
char pPath1Fixed[MAX_PATH];
V_strcpy_safe( pPath1Fixed, pPath1 );
char pPath2Fixed[MAX_PATH];
V_strcpy_safe( pPath2Fixed, pPath2 );
V_FixSlashes( pPath1Fixed, '/' );
V_FixSlashes( pPath2Fixed, '/' );
return ( V_stricmp( pPath1Fixed, pPath2Fixed ) == 0 );
}
//-----------------------------------------------------------------------------
// Purpose: Strip off the last directory from dirName
// Input : *dirName -
// maxlen -
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool V_StripLastDir( char *dirName, int maxlen )
{
if( dirName[0] == 0 ||
!V_stricmp( dirName, "./" ) ||
!V_stricmp( dirName, ".\\" ) )
return false;
int len = V_strlen( dirName );
Assert( len < maxlen );
// skip trailing slash
if ( PATHSEPARATOR( dirName[len-1] ) )
{
len--;
}
bool bHitColon = false;
while ( len > 0 )
{
if ( PATHSEPARATOR( dirName[len-1] ) )
{
dirName[len] = 0;
V_FixSlashes( dirName, CORRECT_PATH_SEPARATOR );
return true;
}
else if ( dirName[len-1] == ':' )
{
bHitColon = true;
}
len--;
}
// If we hit a drive letter, then we're done.
// Ex: If they passed in c:\, then V_StripLastDir should return "" and false.
if ( bHitColon )
{
dirName[0] = 0;
return false;
}
// Allow it to return an empty string and true. This can happen if something like "tf2/" is passed in.
// The correct behavior is to strip off the last directory ("tf2") and return true.
if ( len == 0 && !bHitColon )
{
V_snprintf( dirName, maxlen, ".%c", CORRECT_PATH_SEPARATOR );
return true;
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose: Returns a pointer to the beginning of the unqualified file name
// (no path information)
// Input: in - file name (may be unqualified, relative or absolute path)
// Output: pointer to unqualified file name
//-----------------------------------------------------------------------------
const char * V_UnqualifiedFileName( const char * in )
{
if ( !in || !in[0] )
return in;
// back up until the character after the first path separator we find,
// or the beginning of the string
const char * out = in + strlen( in ) - 1;
while ( ( out > in ) && ( !PATHSEPARATOR( *( out-1 ) ) ) )
out--;
return out;
}
//-----------------------------------------------------------------------------
// Purpose: Composes a path and filename together, inserting a path separator
// if need be
// Input: path - path to use
// filename - filename to use
// dest - buffer to compose result in
// destSize - size of destination buffer
//-----------------------------------------------------------------------------
void V_ComposeFileName( const char *path, const char *filename, char *dest, int destSize )
{
V_strncpy( dest, path, destSize );
V_FixSlashes( dest );
V_AppendSlash( dest, destSize );
V_strncat( dest, filename, destSize, COPY_ALL_CHARACTERS );
V_FixSlashes( dest );
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *path -
// *dest -
// destSize -
// Output : void V_ExtractFilePath
//-----------------------------------------------------------------------------
bool V_ExtractFilePath (const char *path, char *dest, int destSize )
{
Assert( destSize >= 1 );
if ( destSize < 1 )
{
return false;
}
// Last char
int len = V_strlen(path);
const char *src = path + (len ? len-1 : 0);
// back up until a \ or the start
while ( src != path && !PATHSEPARATOR( *(src-1) ) )
{
src--;
}
int copysize = MIN( src - path, destSize - 1 );
memcpy( dest, path, copysize );
dest[copysize] = 0;
return copysize != 0 ? true : false;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *path -
// *dest -
// destSize -
// Output : void V_ExtractFileExtension
//-----------------------------------------------------------------------------
void V_ExtractFileExtension( const char *path, char *dest, int destSize )
{
*dest = 0;
const char * extension = V_GetFileExtension( path );
if ( NULL != extension )
V_strncpy( dest, extension, destSize );
}
//-----------------------------------------------------------------------------
// Purpose: Returns a pointer to the file extension within a file name string
// Input: in - file name
// Output: pointer to beginning of extension (after the "."), or ""
// if there is no extension
//-----------------------------------------------------------------------------
const char *V_GetFileExtensionSafe( const char *path )
{
const char *pExt = V_GetFileExtension( path );
if ( pExt == NULL )
return "";
else
return pExt;
}
//-----------------------------------------------------------------------------
// Purpose: Returns a pointer to the file extension within a file name string
// Input: in - file name
// Output: pointer to beginning of extension (after the "."), or NULL
// if there is no extension
//-----------------------------------------------------------------------------
const char *V_GetFileExtension( const char *path )
{
int len = V_strlen( path );
if ( len <= 1 )
return NULL;
const char *src = path + len - 1;
//
// back up until a . or the start
//
while (src != path && *(src-1) != '.' )
src--;
// check to see if the '.' is part of a pathname
if (src == path || PATHSEPARATOR( *src ) )
{
return NULL; // no extension
}
return src;
}
bool V_RemoveDotSlashes( char *pFilename, char separator )
{
// Remove '//' or '\\'
char *pIn = pFilename;
char *pOut = pFilename;
// (But skip a leading separator, for leading \\'s in network paths)
if ( *pIn && PATHSEPARATOR( *pIn ) )
{
*pOut = *pIn;
++pIn;
++pOut;
}
bool bPrevPathSep = false;
while ( *pIn )
{
bool bIsPathSep = PATHSEPARATOR( *pIn );
if ( !bIsPathSep || !bPrevPathSep )
{
*pOut++ = *pIn;
}
bPrevPathSep = bIsPathSep;
++pIn;
}
*pOut = 0;
// Get rid of "./"'s
pIn = pFilename;
pOut = pFilename;
while ( *pIn )
{
// The logic on the second line is preventing it from screwing up "../"
if ( pIn[0] == '.' && PATHSEPARATOR( pIn[1] ) &&
(pIn == pFilename || pIn[-1] != '.') )
{
pIn += 2;
}
else
{
*pOut = *pIn;
++pIn;
++pOut;
}
}
*pOut = 0;
// Get rid of a trailing "/." (needless).
int len = V_strlen( pFilename );
if ( len > 2 && pFilename[len-1] == '.' && PATHSEPARATOR( pFilename[len-2] ) )
{
pFilename[len-2] = 0;
}
// Each time we encounter a "..", back up until we've read the previous directory name,
// then get rid of it.
pIn = pFilename;
while ( *pIn )
{
if ( pIn[0] == '.' &&
pIn[1] == '.' &&
(pIn == pFilename || PATHSEPARATOR(pIn[-1])) && // Preceding character must be a slash.
(pIn[2] == 0 || PATHSEPARATOR(pIn[2])) ) // Following character must be a slash or the end of the string.
{
char *pEndOfDots = pIn + 2;
char *pStart = pIn - 2;
// Ok, now scan back for the path separator that starts the preceding directory.
while ( 1 )
{
if ( pStart < pFilename )
return false;
if ( PATHSEPARATOR( *pStart ) )
break;
--pStart;
}
// Now slide the string down to get rid of the previous directory and the ".."
memmove( pStart, pEndOfDots, strlen( pEndOfDots ) + 1 );
// Start over.
pIn = pFilename;
}
else
{
++pIn;
}
}
V_FixSlashes( pFilename, separator );
return true;
}
void V_AppendSlash( char *pStr, int strSize, char separator )
{
int len = V_strlen( pStr );
if ( len > 0 && !PATHSEPARATOR(pStr[len-1]) )
{
if ( len+1 >= strSize )
Plat_FatalError( "V_AppendSlash: ran out of space on %s.", pStr );
pStr[len] = separator;
pStr[len+1] = 0;
}
}
#if defined(_MSC_VER) && _MSC_VER >= 1900
bool
#else
void
#endif
V_MakeAbsolutePath( char *pOut, int outLen, const char *pPath, const char *pStartingDir )
{
if ( V_IsAbsolutePath( pPath ) )
{
// pPath is not relative.. just copy it.
V_strncpy( pOut, pPath, outLen );
}
else
{
// Make sure the starting directory is absolute..
if ( pStartingDir && V_IsAbsolutePath( pStartingDir ) )
{
V_strncpy( pOut, pStartingDir, outLen );
}
else
{
#ifdef _PS3
{
V_strncpy( pOut, g_pPS3PathInfo->GameImagePath(), outLen );
}
#else
{
if ( !_getcwd( pOut, outLen ) )
Plat_FatalError( "V_MakeAbsolutePath: _getcwd failed." );
}
#endif
if ( pStartingDir )
{
V_AppendSlash( pOut, outLen );
V_strncat( pOut, pStartingDir, outLen, COPY_ALL_CHARACTERS );
}
}
// Concatenate the paths.
V_AppendSlash( pOut, outLen );
V_strncat( pOut, pPath, outLen, COPY_ALL_CHARACTERS );
}
V_FixSlashes(pOut);
bool bRet = true;
if (!V_RemoveDotSlashes(pOut))
{
V_strncpy(pOut, pPath, outLen);
V_FixSlashes(pOut);
bRet = false;
}
#if defined(_MSC_VER) && _MSC_VER >= 1900
return bRet;
#endif
}
//-----------------------------------------------------------------------------
// Makes a relative path
//-----------------------------------------------------------------------------
bool V_MakeRelativePath( const char *pFullPath, const char *pDirectory, char *pRelativePath, int nBufLen )
{
pRelativePath[0] = 0;
const char *pPath = pFullPath;
const char *pDir = pDirectory;
// Strip out common parts of the path
const char *pLastCommonPath = NULL;
const char *pLastCommonDir = NULL;
while ( *pPath && ( tolower( *pPath ) == tolower( *pDir ) ||
( PATHSEPARATOR( *pPath ) && ( PATHSEPARATOR( *pDir ) || (*pDir == 0) ) ) ) )
{
if ( PATHSEPARATOR( *pPath ) )
{
pLastCommonPath = pPath + 1;
pLastCommonDir = pDir + 1;
}
if ( *pDir == 0 )
{
--pLastCommonDir;
break;
}
++pDir; ++pPath;
}
// Nothing in common
if ( !pLastCommonPath )
return false;
// For each path separator remaining in the dir, need a ../
int nOutLen = 0;
bool bLastCharWasSeparator = true;
for ( ; *pLastCommonDir; ++pLastCommonDir )
{
if ( PATHSEPARATOR( *pLastCommonDir ) )
{
pRelativePath[nOutLen++] = '.';
pRelativePath[nOutLen++] = '.';
pRelativePath[nOutLen++] = CORRECT_PATH_SEPARATOR;
bLastCharWasSeparator = true;
}
else
{
bLastCharWasSeparator = false;
}
}
// Deal with relative paths not specified with a trailing slash
if ( !bLastCharWasSeparator )
{
pRelativePath[nOutLen++] = '.';
pRelativePath[nOutLen++] = '.';
pRelativePath[nOutLen++] = CORRECT_PATH_SEPARATOR;
}
// Copy the remaining part of the relative path over, fixing the path separators
for ( ; *pLastCommonPath; ++pLastCommonPath )
{
if ( PATHSEPARATOR( *pLastCommonPath ) )
{
pRelativePath[nOutLen++] = CORRECT_PATH_SEPARATOR;
}
else
{
pRelativePath[nOutLen++] = *pLastCommonPath;
}
// Check for overflow
if ( nOutLen == nBufLen - 1 )
break;
}
pRelativePath[nOutLen] = 0;
return true;
}
int LengthOfMatchingPaths( char const *pFilenamePath, char const *pMatchPath )
{
char const *pStartPath = pFilenamePath;
char const *pLastSeparator = pFilenamePath - 1;
for(;;)
{
char c0 = pFilenamePath[0];
char c1 = pMatchPath[0];
c0 = ( c0 == INCORRECT_PATH_SEPARATOR ) ? CORRECT_PATH_SEPARATOR : FastASCIIToUpper( c0 );
c1 = ( c1 == INCORRECT_PATH_SEPARATOR ) ? CORRECT_PATH_SEPARATOR : FastASCIIToUpper( c1 );
if ( strchr( CHARACTERS_WHICH_SEPARATE_DIRECTORY_COMPONENTS_IN_PATHNAMES, c0 ) &&
( ( c0 == c1 ) || ( c1 == 0 ) ) )
{
pLastSeparator = pFilenamePath;
}
if ( c0 != c1 )
return 1 + ( pLastSeparator - pStartPath );
if ( c0 == 0 )
{
return pFilenamePath - pStartPath; // whole string matched
}
++pFilenamePath;
++pMatchPath;
}
}
//-----------------------------------------------------------------------------
// small helper function shared by lots of modules
//-----------------------------------------------------------------------------
bool V_IsAbsolutePath( const char *pStr )
{
if ( !( pStr[0] && pStr[1] ) )
return false;
#if defined( PLATFORM_WINDOWS )
bool bIsAbsolute = ( pStr[0] && pStr[1] == ':' ) ||
( ( pStr[0] == '/' || pStr[0] == '\\' ) && ( pStr[1] == '/' || pStr[1] == '\\' ) );
#else
bool bIsAbsolute = ( pStr[0] && pStr[1] == ':' ) || pStr[0] == '/' || pStr[0] == '\\';
#endif
if ( IsX360() && !bIsAbsolute )
{
bIsAbsolute = ( V_stristr( pStr, ":" ) != NULL );
}
return bIsAbsolute;
}
//-----------------------------------------------------------------------------
// Fixes up a file name, replacing ' ' with '_'
//-----------------------------------------------------------------------------
void V_FixupPathSpaceToUnderscore( char *pPath )
{
for ( ; *pPath; pPath++ )
{
if( *pPath == ' ' )
{
*pPath = '_';
}
}
}
//-----------------------------------------------------------------------------
// Fixes up a file name, removing dot slashes, fixing slashes, converting to lowercase, etc.
//-----------------------------------------------------------------------------
void V_FixupPathName( char *pOut, int nOutLen, const char *pPath )
{
V_strncpy( pOut, pPath, nOutLen );
V_FixSlashes( pOut );
V_RemoveDotSlashes( pOut );
V_FixDoubleSlashes( pOut );
V_strlower( pOut );
}
// Copies at most nCharsToCopy bytes from pIn into pOut.
// Returns false if it would have overflowed pOut's buffer.
static bool CopyToMaxChars( char *pOut, int outSize, const char *pIn, int nCharsToCopy )
{
if ( outSize == 0 )
return false;
int iOut = 0;
while ( *pIn && nCharsToCopy > 0 )
{
if ( iOut == (outSize-1) )
{
pOut[iOut] = 0;
return false;
}
pOut[iOut] = *pIn;
++iOut;
++pIn;
--nCharsToCopy;
}
pOut[iOut] = 0;
return true;
}
// Returns true if it completed successfully.
// If it would overflow pOut, it fills as much as it can and returns false.
bool V_StrSubst(
const char *pIn,
const char *pMatch,
const char *pReplaceWith,
char *pOut,
int outLen,
bool bCaseSensitive
)
{
int replaceFromLen = V_strlen( pMatch );
int replaceToLen = V_strlen( pReplaceWith );
const char *pInStart = pIn;
char *pOutPos = pOut;
pOutPos[0] = 0;
while ( 1 )
{
int nRemainingOut = outLen - (pOutPos - pOut);
const char *pTestPos = ( bCaseSensitive ? V_strstr( pInStart, pMatch ) : V_stristr( pInStart, pMatch ) );
if ( pTestPos )
{
// Found an occurence of pMatch. First, copy whatever leads up to the string.
int copyLen = pTestPos - pInStart;
if ( !CopyToMaxChars( pOutPos, nRemainingOut, pInStart, copyLen ) )
return false;
// Did we hit the end of the output string?
if ( copyLen > nRemainingOut-1 )
return false;
pOutPos += V_strlen( pOutPos );
nRemainingOut = outLen - (pOutPos - pOut);
// Now add the replacement string.
if ( !CopyToMaxChars( pOutPos, nRemainingOut, pReplaceWith, replaceToLen ) )
return false;
pInStart += copyLen + replaceFromLen;
pOutPos += replaceToLen;
}
else
{
// We're at the end of pIn. Copy whatever remains and get out.
int copyLen = V_strlen( pInStart );
V_strncpy( pOutPos, pInStart, nRemainingOut );
return ( copyLen <= nRemainingOut-1 );
}
}
}
char* AllocString( const char *pStr, int nMaxChars )
{
int allocLen;
if ( nMaxChars == -1 )
allocLen = V_strlen( pStr ) + 1;
else
allocLen = MIN( V_strlen(pStr), nMaxChars ) + 1;
char *pOut = new char[allocLen];
V_strncpy( pOut, pStr, allocLen );
return pOut;
}
void V_SplitString2( const char *pString, const char **pSeparators, int nSeparators, CUtlVector<char*> &outStrings )
{
// We must pass in an empty outStrings buffer or call outStrings.PurgeAndDeleteElements between
// calls.
Assert( outStrings.Count() == 0 );
// This will make outStrings empty but it will not free any memory that the elements were pointing to.
outStrings.Purge();
const char *pCurPos = pString;
while ( 1 )
{
int iFirstSeparator = -1;
const char *pFirstSeparator = 0;
for ( int i=0; i < nSeparators; i++ )
{
const char *pTest = V_stristr( pCurPos, pSeparators[i] );
if ( pTest && (!pFirstSeparator || pTest < pFirstSeparator) )
{
iFirstSeparator = i;
pFirstSeparator = pTest;
}
}
if ( pFirstSeparator )
{
// Split on this separator and continue on.
int separatorLen = V_strlen( pSeparators[iFirstSeparator] );
if ( pFirstSeparator > pCurPos )
{
outStrings.AddToTail( AllocString( pCurPos, pFirstSeparator-pCurPos ) );
}
pCurPos = pFirstSeparator + separatorLen;
}
else
{
// Copy the rest of the string
if ( V_strlen( pCurPos ) )
{
outStrings.AddToTail( AllocString( pCurPos, -1 ) );
}
return;
}
}
}
void V_SplitString( const char *pString, const char *pSeparator, CUtlVector<char*> &outStrings )
{
V_SplitString2( pString, &pSeparator, 1, outStrings );
}
void V_SplitString2(const char *pString, const char * const *pSeparators, int nSeparators, CUtlVector<CUtlString> &outStrings, bool bIncludeEmptyStrings)
{
outStrings.Purge();
const char *pCurPos = pString;
for (;;)
{
int iFirstSeparator = -1;
const char *pFirstSeparator = 0;
for (int i = 0; i < nSeparators; i++)
{
const char *pTest = V_stristr_fast(pCurPos, pSeparators[i]);
if (pTest && (!pFirstSeparator || pTest < pFirstSeparator))
{
iFirstSeparator = i;
pFirstSeparator = pTest;
}
}
if (pFirstSeparator)
{
// Split on this separator and continue on.
int separatorLen = (int)strlen(pSeparators[iFirstSeparator]);
if (pFirstSeparator > pCurPos || (pFirstSeparator == pCurPos && bIncludeEmptyStrings))
{
outStrings[outStrings.AddToTail()].SetDirect(pCurPos, (int)(pFirstSeparator - pCurPos));
}
pCurPos = pFirstSeparator + separatorLen;
}
else
{
// Copy the rest of the string, if there's anything there
if (pCurPos[0] != 0)
{
outStrings[outStrings.AddToTail()].Set(pCurPos);
}
return;
}
}
}
void V_SplitString(const char *pString, const char *pSeparator, CUtlVector<CUtlString> &outStrings, bool bIncludeEmptyStrings)
{
V_SplitString2(pString, &pSeparator, 1, outStrings, bIncludeEmptyStrings);
}
wchar_t* AllocWString( const wchar_t *pStr, int nMaxChars )
{
int allocLen;
if ( nMaxChars == -1 )
allocLen = V_wcslen( pStr ) + 1;
else
allocLen = MIN( (int)V_wcslen(pStr), nMaxChars ) + 1;
wchar_t *pOut = new wchar_t[allocLen];
V_wcsncpy( pOut, pStr, allocLen * sizeof(wchar_t) );
return pOut;
}
void V_SplitWString2( const wchar_t *pString, const wchar_t **pSeparators, int nSeparators, CUtlVector<wchar_t*> &outStrings )
{
outStrings.Purge();
const wchar_t *pCurPos = pString;
while ( 1 )
{
int iFirstSeparator = -1;
const wchar_t *pFirstSeparator = 0;
for ( int i=0; i < nSeparators; i++ )
{
const wchar_t *pTest = V_wcsistr( pCurPos, pSeparators[i] );
if ( pTest && (!pFirstSeparator || pTest < pFirstSeparator) )
{
iFirstSeparator = i;
pFirstSeparator = pTest;
}
}
if ( pFirstSeparator )
{
// Split on this separator and continue on.
int separatorLen = V_wcslen( pSeparators[iFirstSeparator] );
if ( pFirstSeparator > pCurPos )
{
outStrings.AddToTail( AllocWString( pCurPos, pFirstSeparator-pCurPos ) );
}
pCurPos = pFirstSeparator + separatorLen;
}
else
{
// Copy the rest of the string
if ( V_wcslen( pCurPos ) )
{
outStrings.AddToTail( AllocWString( pCurPos, -1 ) );
}
return;
}
}
}
void V_SplitWString( const wchar_t *pString, const wchar_t *pSeparator, CUtlVector<wchar_t*> &outStrings )
{
V_SplitWString2( pString, &pSeparator, 1, outStrings );
}
bool V_GetCurrentDirectory( char *pOut, int maxLen )
{
#if defined( _PS3 )
Assert( 0 );
return false; // not supported
#else // !_PS3
return _getcwd( pOut, maxLen ) == pOut;
#endif // _PS3
}
bool V_SetCurrentDirectory( const char *pDirName )
{
#if defined( _PS3 )
Assert( 0 );
return false; // not supported
#else // !_PS3
return _chdir( pDirName ) == 0;
#endif // _PS3
}
// This function takes a slice out of pStr and stores it in pOut.
// It follows the Python slice convention:
// Negative numbers wrap around the string (-1 references the last character).
// Numbers are clamped to the end of the string.
void V_StrSlice( const char *pStr, int firstChar, int lastCharNonInclusive, char *pOut, int outSize )
{
if ( outSize == 0 )
return;
int length = V_strlen( pStr );
// Fixup the string indices.
if ( firstChar < 0 )
{
firstChar = length - (-firstChar % length);
}
else if ( firstChar >= length )
{
pOut[0] = 0;
return;
}
if ( lastCharNonInclusive < 0 )
{
lastCharNonInclusive = length - (-lastCharNonInclusive % length);
}
else if ( lastCharNonInclusive > length )
{
lastCharNonInclusive %= length;
}
if ( lastCharNonInclusive <= firstChar )
{
pOut[0] = 0;
return;
}
int copyLen = lastCharNonInclusive - firstChar;
if ( copyLen <= (outSize-1) )
{
memcpy( pOut, &pStr[firstChar], copyLen );
pOut[copyLen] = 0;
}
else
{
memcpy( pOut, &pStr[firstChar], outSize-1 );
pOut[outSize-1] = 0;
}
}
void V_StrLeft( const char *pStr, int nChars, char *pOut, int outSize )
{
if ( nChars == 0 )
{
if ( outSize != 0 )
pOut[0] = 0;
return;
}
V_StrSlice( pStr, 0, nChars, pOut, outSize );
}
void V_StrRight( const char *pStr, int nChars, char *pOut, int outSize )
{
int len = V_strlen( pStr );
if ( nChars >= len )
{
V_strncpy( pOut, pStr, outSize );
}
else
{
V_StrSlice( pStr, -nChars, V_strlen( pStr ), pOut, outSize );
}
}
//-----------------------------------------------------------------------------
// Convert multibyte to wchar + back
//-----------------------------------------------------------------------------
void V_strtowcs( const char *pString, int nInSize, wchar_t *pWString, int nOutSizeInBytes )
{
Assert( nOutSizeInBytes >= sizeof(pWString[0]) );
#ifdef _WIN32
int nOutSizeInChars = nOutSizeInBytes / sizeof(pWString[0]);
int result = MultiByteToWideChar( CP_UTF8, 0, pString, nInSize, pWString, nOutSizeInChars );
// If the string completely fails to fit then MultiByteToWideChar will return 0.
// If the string exactly fits but with no room for a null-terminator then MultiByteToWideChar
// will happily fill the buffer and omit the null-terminator, returning nOutSizeInChars.
// Either way we need to return an empty string rather than a bogus and possibly not
// null-terminated result.
if ( result <= 0 || result >= nOutSizeInChars )
{
// If nInSize includes the null-terminator then a result of nOutSizeInChars is
// legal. We check this by seeing if the last character in the output buffer is
// a zero.
if ( result == nOutSizeInChars && pWString[ nOutSizeInChars - 1 ] == 0)
{
// We're okay! Do nothing.
}
else
{
// The string completely to fit. Null-terminate the buffer.
*pWString = L'\0';
}
}
else
{
// We have successfully converted our string. Now we need to null-terminate it, because
// MultiByteToWideChar will only do that if nInSize includes the source null-terminator!
pWString[ result ] = 0;
}
#elif POSIX
if ( mbstowcs( pWString, pString, nOutSizeInBytes / sizeof(pWString[0]) ) <= 0 )
{
*pWString = 0;
}
#endif
}
void V_wcstostr( const wchar_t *pWString, int nInSize, char *pString, int nOutSizeInChars )
{
#ifdef _WIN32
int result = WideCharToMultiByte( CP_UTF8, 0, pWString, nInSize, pString, nOutSizeInChars, NULL, NULL );
// If the string completely fails to fit then MultiByteToWideChar will return 0.
// If the string exactly fits but with no room for a null-terminator then MultiByteToWideChar
// will happily fill the buffer and omit the null-terminator, returning nOutSizeInChars.
// Either way we need to return an empty string rather than a bogus and possibly not
// null-terminated result.
if ( result <= 0 || result >= nOutSizeInChars )
{
// If nInSize includes the null-terminator then a result of nOutSizeInChars is
// legal. We check this by seeing if the last character in the output buffer is
// a zero.
if ( result == nOutSizeInChars && pWString[ nOutSizeInChars - 1 ] == 0)
{
// We're okay! Do nothing.
}
else
{
*pString = '\0';
}
}
else
{
// We have successfully converted our string. Now we need to null-terminate it, because
// MultiByteToWideChar will only do that if nInSize includes the source null-terminator!
pString[ result ] = '\0';
}
#elif POSIX
if ( wcstombs( pString, pWString, nOutSizeInChars ) <= 0 )
{
*pString = '\0';
}
#endif
}
//--------------------------------------------------------------------------------
// backslashification
//--------------------------------------------------------------------------------
static char s_BackSlashMap[]="\tt\nn\rr\"\"\\\\";
char *V_AddBackSlashesToSpecialChars( const char *pSrc )
{
// first, count how much space we are going to need
int nSpaceNeeded = 0;
for( const char *pScan = pSrc; *pScan; pScan++ )
{
nSpaceNeeded++;
for(const char *pCharSet=s_BackSlashMap; *pCharSet; pCharSet += 2 )
{
if ( *pCharSet == *pScan )
nSpaceNeeded++; // we need to store a bakslash
}
}
char *pRet = new char[ nSpaceNeeded + 1 ]; // +1 for null
char *pOut = pRet;
for( const char *pScan = pSrc; *pScan; pScan++ )
{
bool bIsSpecial = false;
for(const char *pCharSet=s_BackSlashMap; *pCharSet; pCharSet += 2 )
{
if ( *pCharSet == *pScan )
{
*( pOut++ ) = '\\';
*( pOut++ ) = pCharSet[1];
bIsSpecial = true;
break;
}
}
if (! bIsSpecial )
{
*( pOut++ ) = *pScan;
}
}
*( pOut++ ) = 0;
return pRet;
}
int V_StringToIntArray( int *pVector, int count, const char *pString )
{
char *pstr, *pfront, tempString[128];
int j;
V_strncpy( tempString, pString, sizeof(tempString) );
pstr = pfront = tempString;
for ( j = 0; j < count; j++ ) // lifted from pr_edict.c
{
pVector[j] = atoi( pfront );
while ( *pstr && *pstr != ' ' )
pstr++;
if (!*pstr)
break;
pstr++;
pfront = pstr;
}
int nFound = j + 1;
for ( j++; j < count; j++ )
{
pVector[j] = 0;
}
return nFound;
}
int V_StringToFloatArray( float *pVector, int count, const char *pString )
{
char *pstr, *pfront, tempString[128];
int j;
V_strncpy( tempString, pString, sizeof(tempString) );
pstr = pfront = tempString;
for ( j = 0; j < count; j++ ) // lifted from pr_edict.c
{
pVector[j] = atof( pfront );
// skip any leading whitespace
while ( *pstr && *pstr <= ' ' )
pstr++;
// skip to next whitespace
while ( *pstr && *pstr > ' ' )
pstr++;
if (!*pstr)
break;
pstr++;
pfront = pstr;
}
int nFound = j + 1;
for ( j++; j < count; j++ )
{
pVector[j] = 0;
}
return nFound;
}
void V_StringToVector( float *pVector, const char *pString )
{
V_StringToFloatArray( pVector, 3, pString );
}
void V_StringToColor32( color32 *color, const char *pString )
{
int tmp[4];
int nCount = V_StringToIntArray( tmp, 4, pString );
color->r = tmp[0];
color->g = tmp[1];
color->b = tmp[2];
color->a = ( nCount == 4 ) ? tmp[3] : 255;
}
// 3d memory copy
void CopyMemory3D( void *pDest, void const *pSrc,
int nNumCols, int nNumRows, int nNumSlices, // dimensions of copy
int nSrcBytesPerRow, int nSrcBytesPerSlice, // strides for source.
int nDestBytesPerRow, int nDestBytesPerSlice // strides for dest
)
{
if ( nNumSlices && nNumRows && nNumCols )
{
uint8 *pDestAdr = reinterpret_cast<uint8 *>( pDest );
uint8 const *pSrcAdr = reinterpret_cast<uint8 const *>( pSrc );
// first check for optimized cases
if ( ( nNumCols == nSrcBytesPerRow ) && ( nNumCols == nDestBytesPerRow ) ) // no row-to-row stride?
{
int n2DSize = nNumCols * nNumRows;
if ( nSrcBytesPerSlice == nDestBytesPerSlice ) // can we do one memcpy?
{
memcpy( pDestAdr, pSrcAdr, n2DSize * nNumSlices );
}
else
{
// there might be some slice-to-slice stride
do
{
memcpy( pDestAdr, pSrcAdr, n2DSize );
pDestAdr += nDestBytesPerSlice;
pSrcAdr += nSrcBytesPerSlice;
} while( nNumSlices-- );
}
}
else
{
// there is row-by-row stride - we have to do the full nested loop
do
{
int nRowCtr = nNumRows;
uint8 const *pSrcRow = pSrcAdr;
uint8 *pDestRow = pDestAdr;
do
{
memcpy( pDestRow, pSrcRow, nNumCols );
pDestRow += nDestBytesPerRow;
pSrcRow += nSrcBytesPerRow;
} while( --nRowCtr );
pSrcAdr += nSrcBytesPerSlice;
pDestAdr += nDestBytesPerSlice;
} while( --nNumSlices );
}
}
}
void V_TranslateLineFeedsToUnix( char *pStr )
{
char *pIn = pStr;
char *pOut = pStr;
while ( *pIn )
{
if ( pIn[0] == '\r' && pIn[1] == '\n' )
{
++pIn;
}
*pOut++ = *pIn++;
}
*pOut = 0;
}
// Returns true if additional data is waiting to be processed on this line
bool V_TokenWaiting( const char *buffer )
{
const char *p = buffer;
while ( *p && *p != '\n' )
{
if ( !V_isspace( *p ) || V_isalnum( *p ) )
return true;
p++;
}
return false;
}
// If pBreakCharacters == NULL, then the tokenizer will split tokens at the following characters:
// { } ( ) ' :
const char *V_ParseToken( const char *pStrIn, char *pToken, int bufsize, bool *pbOverflowed /*= NULL*/, struct characterset_t *pTokenBreakCharacters /*= NULL*/ )
{
if ( pbOverflowed )
{
*pbOverflowed = false;
}
int maxpos = bufsize - 1;
unsigned char c;
int len;
characterset_t *breaks = pTokenBreakCharacters;
if ( !breaks )
{
static bool built = false;
static characterset_t s_BreakSetIncludingColons;
if ( !built )
{
built = true;
CharacterSetBuild( &s_BreakSetIncludingColons, "{}()':" );
}
breaks = &s_BreakSetIncludingColons;
}
len = 0;
pToken[0] = 0;
if (!pStrIn)
return NULL;
if ( maxpos <= 0 )
return pStrIn;
// skip whitespace
skipwhite:
while ( (c = *pStrIn) <= ' ')
{
if (c == 0)
return NULL; // end of file;
pStrIn++;
}
// skip // comments
if (c=='/' && pStrIn[1] == '/')
{
while (*pStrIn && *pStrIn != '\n')
pStrIn++;
goto skipwhite;
}
// handle quoted strings specially
if (c == '\"')
{
pStrIn++;
while ( 1 )
{
c = *pStrIn++;
if (c=='\"' || !c)
{
pToken[len] = 0;
return pStrIn;
}
pToken[len] = c;
len++;
// Got to last valid spot
if ( len >= maxpos )
{
if ( pbOverflowed )
{
*pbOverflowed = true;
}
pToken[ len ] = 0;
while ( 1 )
{
c = *pStrIn++;
if ( c == '\"' || !c )
break;
}
return pStrIn;
}
}
}
// parse single characters
if ( IN_CHARACTERSET( *breaks, c ) )
{
pToken[len] = c;
len++;
pToken[len] = 0;
return pStrIn+1;
}
// parse a regular word
do
{
pToken[len] = c;
pStrIn++;
len++;
c = *pStrIn;
if ( IN_CHARACTERSET( *breaks, c ) )
break;
if ( len >= maxpos )
{
if ( pbOverflowed )
{
*pbOverflowed = true;
}
break;
}
} while (c>32);
pToken[len] = 0;
return pStrIn;
}
// Parses a single line, does not trim any whitespace from start or end. Does not include the final '\n'.
// NOTE: This function has not been rigorously tested!!!
char const *V_ParseLine( char const *pStrIn, char *pToken, int bufsize, bool *pbOverflowed /*= NULL*/ )
{
if ( pbOverflowed )
{
*pbOverflowed = false;
}
int maxpos = bufsize - 1;
int len;
len = 0;
pToken[0] = 0;
if (!pStrIn)
return NULL;
if ( maxpos <= 0 )
return pStrIn;
while ( *pStrIn && *pStrIn != '\n')
{
pToken[ len++ ] = *pStrIn++;
if ( len >= maxpos )
{
if ( pbOverflowed )
{
*pbOverflowed = true;
}
return NULL;
}
}
pToken[len] = 0;
if ( *pStrIn == 0 )
return NULL;
return pStrIn + 1;
}
static char s_hex[16] = {'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'};
int HexToValue( char hex )
{
if( hex >= '0' && hex <= '9' )
{
return hex - '0';
}
if( hex >= 'A' && hex <= 'F' )
{
return hex - 'A' + 10;
}
if( hex >= 'a' && hex <= 'f' )
{
return hex - 'a' + 10;
}
// report error here
return -1;
}
bool V_StringToBin( const char*pString, void *pBin, uint nBinSize )
{
if ( (uint)V_strlen( pString ) != nBinSize * 2 )
{
return false;
}
for ( uint i = 0; i < nBinSize; ++i )
{
int high = HexToValue( pString[i*2+0] );
int low = HexToValue( pString[i*2+1] ) ;
if( high < 0 || low < 0 )
{
return false;
}
( ( uint8* )pBin )[i] = uint8( ( high << 4 ) | low );
}
return true;
}
bool V_BinToString( char*pString, void *pBin, uint nBinSize )
{
for ( uint i = 0; i < nBinSize; ++i )
{
pString[i*2+0] = s_hex[( ( uint8* )pBin )[i] >> 4 ];
pString[i*2+1] = s_hex[( ( uint8* )pBin )[i] & 0xF];
}
pString[nBinSize*2] = '\0';
return true;
}
// The following characters are not allowed to begin a line for Asian language line-breaking
// purposes. They include the right parenthesis/bracket, space character, period, exclamation,
// question mark, and a number of language-specific characters for Chinese, Japanese, and Korean
static const wchar_t wszCantBeginLine[] =
{
0x0020, 0x0021, 0x0025, 0x0029, 0x002c, 0x002e, 0x003a, 0x003b,
0x003e, 0x003f, 0x005d, 0x007d, 0x00a2, 0x00a8, 0x00b0, 0x00b7,
0x00bb, 0x02c7, 0x02c9, 0x2010, 0x2013, 0x2014, 0x2015, 0x2016,
0x2019, 0x201d, 0x201e, 0x201f, 0x2020, 0x2021, 0x2022, 0x2025,
0x2026, 0x2027, 0x203a, 0x203c, 0x2047, 0x2048, 0x2049, 0x2103,
0x2236, 0x2574, 0x3001, 0x3002, 0x3003, 0x3005, 0x3006, 0x3009,
0x300b, 0x300d, 0x300f, 0x3011, 0x3015, 0x3017, 0x3019, 0x301b,
0x301c, 0x301e, 0x301f, 0x303b, 0x3041, 0x3043, 0x3045, 0x3047,
0x3049, 0x3063, 0x3083, 0x3085, 0x3087, 0x308e, 0x3095, 0x3096,
0x30a0, 0x30a1, 0x30a3, 0x30a5, 0x30a7, 0x30a9, 0x30c3, 0x30e3,
0x30e5, 0x30e7, 0x30ee, 0x30f5, 0x30f6, 0x30fb, 0x30fd, 0x30fe,
0x30fc, 0x31f0, 0x31f1, 0x31f2, 0x31f3, 0x31f4, 0x31f5, 0x31f6,
0x31f7, 0x31f8, 0x31f9, 0x31fa, 0x31fb, 0x31fc, 0x31fd, 0x31fe,
0x31ff, 0xfe30, 0xfe31, 0xfe32, 0xfe33, 0xfe36, 0xfe38, 0xfe3a,
0xfe3c, 0xfe3e, 0xfe40, 0xfe42, 0xfe44, 0xfe4f, 0xfe50, 0xfe51,
0xfe52, 0xfe53, 0xfe54, 0xfe55, 0xfe56, 0xfe57, 0xfe58, 0xfe5a,
0xfe5c, 0xfe5e, 0xff01, 0xff02, 0xff05, 0xff07, 0xff09, 0xff0c,
0xff0e, 0xff1a, 0xff1b, 0xff1f, 0xff3d, 0xff40, 0xff5c, 0xff5d,
0xff5e, 0xff60, 0xff64
};
// The following characters are not allowed to end a line for Asian Language line-breaking
// purposes. They include left parenthesis/bracket, currency symbols, and an number
// of language-specific characters for Chinese, Japanese, and Korean
static const wchar_t wszCantEndLine[] =
{
0x0024, 0x0028, 0x002a, 0x003c, 0x005b, 0x005c, 0x007b, 0x00a3,
0x00a5, 0x00ab, 0x00ac, 0x00b7, 0x02c6, 0x2018, 0x201c, 0x201f,
0x2035, 0x2039, 0x3005, 0x3007, 0x3008, 0x300a, 0x300c, 0x300e,
0x3010, 0x3014, 0x3016, 0x3018, 0x301a, 0x301d, 0xfe34, 0xfe35,
0xfe37, 0xfe39, 0xfe3b, 0xfe3d, 0xfe3f, 0xfe41, 0xfe43, 0xfe59,
0xfe5b, 0xfe5d, 0xff04, 0xff08, 0xff0e, 0xff3b, 0xff5b, 0xff5f,
0xffe1, 0xffe5, 0xffe6
};
// Can't break between some repeated punctuation patterns ("--", "...", "<asian period repeated>")
static const wchar_t wszCantBreakRepeated[] =
{
0x002d, 0x002e, 0x3002
};
bool AsianWordWrap::CanEndLine( wchar_t wcCandidate )
{
for( int i = 0; i < SIZE_OF_ARRAY( wszCantEndLine ); ++i )
{
if( wcCandidate == wszCantEndLine[i] )
return false;
}
return true;
}
bool AsianWordWrap::CanBeginLine( wchar_t wcCandidate )
{
for( int i = 0; i < SIZE_OF_ARRAY( wszCantBeginLine ); ++i )
{
if( wcCandidate == wszCantBeginLine[i] )
return false;
}
return true;
}
bool AsianWordWrap::CanBreakRepeated( wchar_t wcCandidate )
{
for( int i = 0; i < SIZE_OF_ARRAY( wszCantBreakRepeated ); ++i )
{
if( wcCandidate == wszCantBreakRepeated[i] )
return false;
}
return true;
}
#if defined( _PS3 ) || defined( LINUX )
inline int __cdecl iswascii(wchar_t c) { return ((unsigned)(c) < 0x80); } // not defined in wctype.h on the PS3
#endif
// Used to determine if we can break a line between the first two characters passed
bool AsianWordWrap::CanBreakAfter( const wchar_t* wsz )
{
if( wsz == NULL || wsz[0] == '\0' || wsz[1] == '\0' )
{
return false;
}
wchar_t first_char = wsz[0];
wchar_t second_char = wsz[1];
if( ( iswascii( first_char ) && iswascii( second_char ) ) // If not both CJK, return early
|| ( iswalnum( first_char ) && iswalnum( second_char ) ) ) // both characters are alphanumeric - Don't split a number or a word!
{
return false;
}
if( !CanEndLine( first_char ) )
{
return false;
}
if( !CanBeginLine( second_char) )
{
return false;
}
// don't allow line wrapping in the middle of "--" or "..."
if( ( first_char == second_char ) && ( !CanBreakRepeated( first_char ) ) )
{
return false;
}
// If no rules would prevent us from breaking, assume it's safe to break here
return true;
}
// We use this function to determine where it is permissible to break lines
// of text while wrapping them. On some platforms, the native iswspace() function
// returns FALSE for the "non-breaking space" characters 0x00a0 and 0x202f, and so we don't
// break on them. On others (including the X360 and PC), iswspace returns TRUE for them.
// We get rid of the platform dependency by defining this wrapper which returns false
// for &nbsp; and calls through to the library function for everything else.
int isbreakablewspace( wchar_t ch )
{
// 0x00a0 and 0x202f are the wide and narrow non-breaking space UTF-16 values, respectively
return ch != 0x00a0 && ch != 0x202f && iswspace(ch);
}
bool V_StringMatchesPattern( const char* pszSource, const char* pszPattern, int nFlags /*= 0 */ )
{
bool bExact = true;
while( 1 )
{
if ( ( *pszPattern ) == 0 )
{
return ( (*pszSource ) == 0 );
}
if ( ( *pszPattern ) == '*' )
{
pszPattern++;
if ( ( *pszPattern ) == 0 )
{
return true;
}
bExact = false;
continue;
}
int nLength = 0;
while( ( *pszPattern ) != '*' && ( *pszPattern ) != 0 )
{
nLength++;
pszPattern++;
}
while( 1 )
{
const char *pszStartPattern = pszPattern - nLength;
const char *pszSearch = pszSource;
for( int i = 0; i < nLength; i++, pszSearch++, pszStartPattern++ )
{
if ( ( *pszSearch ) == 0 )
{
return false;
}
if ( ( *pszSearch ) != ( *pszStartPattern ) )
{
break;
}
}
if ( pszSearch - pszSource == nLength )
{
break;
}
if ( bExact == true )
{
return false;
}
if ( ( nFlags & PATTERN_DIRECTORY ) != 0 )
{
if ( ( *pszPattern ) != '/' && ( *pszSource ) == '/' )
{
return false;
}
}
pszSource++;
}
pszSource += nLength;
}
}
//-----------------------------------------------------------------------------
// Purpose: Helper for converting a numeric value to a hex digit, value should be 0-15.
//-----------------------------------------------------------------------------
char cIntToHexDigit( int nValue )
{
Assert( nValue >= 0 && nValue <= 15 );
return "0123456789ABCDEF"[ nValue & 15 ];
}
//-----------------------------------------------------------------------------
// Purpose: Helper for converting a hex char value to numeric, return -1 if the char
// is not a valid hex digit.
//-----------------------------------------------------------------------------
int iHexCharToInt( char cValue )
{
int32 iValue = cValue;
if ( (uint32)( iValue - '0' ) < 10 )
return iValue - '0';
iValue |= 0x20;
if ( (uint32)( iValue - 'a' ) < 6 )
return iValue - 'a' + 10;
return -1;
}
//-----------------------------------------------------------------------------
// Purpose: Internal implementation of encode, works in the strict RFC manner, or
// with spaces turned to + like HTML form encoding.
//-----------------------------------------------------------------------------
void Q_URLEncodeInternal( char *pchDest, int nDestLen, const char *pchSource, int nSourceLen, bool bUsePlusForSpace )
{
if ( nDestLen < 3*nSourceLen )
{
pchDest[0] = '\0';
AssertMsg( false, "Target buffer for Q_URLEncode needs to be 3 times larger than source to guarantee enough space\n" );
return;
}
int iDestPos = 0;
for ( int i=0; i < nSourceLen; ++i )
{
// We allow only a-z, A-Z, 0-9, period, underscore, and hyphen to pass through unescaped.
// These are the characters allowed by both the original RFC 1738 and the latest RFC 3986.
// Current specs also allow '~', but that is forbidden under original RFC 1738.
if ( !( pchSource[i] >= 'a' && pchSource[i] <= 'z' ) && !( pchSource[i] >= 'A' && pchSource[i] <= 'Z' ) && !(pchSource[i] >= '0' && pchSource[i] <= '9' )
&& pchSource[i] != '-' && pchSource[i] != '_' && pchSource[i] != '.'
)
{
if ( bUsePlusForSpace && pchSource[i] == ' ' )
{
pchDest[iDestPos++] = '+';
}
else
{
pchDest[iDestPos++] = '%';
uint8 iValue = pchSource[i];
if ( iValue == 0 )
{
pchDest[iDestPos++] = '0';
pchDest[iDestPos++] = '0';
}
else
{
char cHexDigit1 = cIntToHexDigit( iValue % 16 );
iValue /= 16;
char cHexDigit2 = cIntToHexDigit( iValue );
pchDest[iDestPos++] = cHexDigit2;
pchDest[iDestPos++] = cHexDigit1;
}
}
}
else
{
pchDest[iDestPos++] = pchSource[i];
}
}
// Null terminate
pchDest[iDestPos++] = 0;
}
//-----------------------------------------------------------------------------
// Purpose: Internal implementation of decode, works in the strict RFC manner, or
// with spaces turned to + like HTML form encoding.
//
// Returns the amount of space used in the output buffer.
//-----------------------------------------------------------------------------
size_t Q_URLDecodeInternal( char *pchDecodeDest, int nDecodeDestLen, const char *pchEncodedSource, int nEncodedSourceLen, bool bUsePlusForSpace )
{
if ( nDecodeDestLen < nEncodedSourceLen )
{
AssertMsg( false, "Q_URLDecode needs a dest buffer at least as large as the source" );
return 0;
}
int iDestPos = 0;
for( int i=0; i < nEncodedSourceLen; ++i )
{
if ( bUsePlusForSpace && pchEncodedSource[i] == '+' )
{
pchDecodeDest[ iDestPos++ ] = ' ';
}
else if ( pchEncodedSource[i] == '%' )
{
// Percent signifies an encoded value, look ahead for the hex code, convert to numeric, and use that
// First make sure we have 2 more chars
if ( i < nEncodedSourceLen - 2 )
{
char cHexDigit1 = pchEncodedSource[i+1];
char cHexDigit2 = pchEncodedSource[i+2];
// Turn the chars into a hex value, if they are not valid, then we'll
// just place the % and the following two chars direct into the string,
// even though this really shouldn't happen, who knows what bad clients
// may do with encoding.
bool bValid = false;
int iValue = iHexCharToInt( cHexDigit1 );
if ( iValue != -1 )
{
iValue *= 16;
int iValue2 = iHexCharToInt( cHexDigit2 );
if ( iValue2 != -1 )
{
iValue += iValue2;
pchDecodeDest[ iDestPos++ ] = iValue;
bValid = true;
}
}
if ( !bValid )
{
pchDecodeDest[ iDestPos++ ] = '%';
pchDecodeDest[ iDestPos++ ] = cHexDigit1;
pchDecodeDest[ iDestPos++ ] = cHexDigit2;
}
}
// Skip ahead
i += 2;
}
else
{
pchDecodeDest[ iDestPos++ ] = pchEncodedSource[i];
}
}
// We may not have extra room to NULL terminate, since this can be used on raw data, but if we do
// go ahead and do it as this can avoid bugs.
if ( iDestPos < nDecodeDestLen )
{
pchDecodeDest[iDestPos] = 0;
}
return (size_t)iDestPos;
}
//-----------------------------------------------------------------------------
// Purpose: Encodes a string (or binary data) from URL encoding format, see rfc1738 section 2.2.
// This version of the call isn't a strict RFC implementation, but uses + for space as is
// the standard in HTML form encoding, despite it not being part of the RFC.
//
// Dest buffer should be at least as large as source buffer to guarantee room for decode.
//-----------------------------------------------------------------------------
void Q_URLEncode( char *pchDest, int nDestLen, const char *pchSource, int nSourceLen )
{
return Q_URLEncodeInternal( pchDest, nDestLen, pchSource, nSourceLen, true );
}
//-----------------------------------------------------------------------------
// Purpose: Decodes a string (or binary data) from URL encoding format, see rfc1738 section 2.2.
// This version of the call isn't a strict RFC implementation, but uses + for space as is
// the standard in HTML form encoding, despite it not being part of the RFC.
//
// Dest buffer should be at least as large as source buffer to guarantee room for decode.
// Dest buffer being the same as the source buffer (decode in-place) is explicitly allowed.
//-----------------------------------------------------------------------------
size_t Q_URLDecode( char *pchDecodeDest, int nDecodeDestLen, const char *pchEncodedSource, int nEncodedSourceLen )
{
return Q_URLDecodeInternal( pchDecodeDest, nDecodeDestLen, pchEncodedSource, nEncodedSourceLen, true );
}
//-----------------------------------------------------------------------------
// Purpose: Encodes a string (or binary data) from URL encoding format, see rfc1738 section 2.2.
// This version will not encode space as + (which HTML form encoding uses despite not being part of the RFC)
//
// Dest buffer should be at least as large as source buffer to guarantee room for decode.
//-----------------------------------------------------------------------------
void Q_URLEncodeRaw( char *pchDest, int nDestLen, const char *pchSource, int nSourceLen )
{
return Q_URLEncodeInternal( pchDest, nDestLen, pchSource, nSourceLen, false );
}
//-----------------------------------------------------------------------------
// Purpose: Decodes a string (or binary data) from URL encoding format, see rfc1738 section 2.2.
// This version will not recognize + as a space (which HTML form encoding uses despite not being part of the RFC)
//
// Dest buffer should be at least as large as source buffer to guarantee room for decode.
// Dest buffer being the same as the source buffer (decode in-place) is explicitly allowed.
//-----------------------------------------------------------------------------
size_t Q_URLDecodeRaw( char *pchDecodeDest, int nDecodeDestLen, const char *pchEncodedSource, int nEncodedSourceLen )
{
return Q_URLDecodeInternal( pchDecodeDest, nDecodeDestLen, pchEncodedSource, nEncodedSourceLen, false );
}
#if defined( LINUX ) || defined( _PS3 )
extern "C" void qsort_s( void *base, size_t num, size_t width, int (*compare )(void *, const void *, const void *), void * context );
#endif
void V_qsort_s( void *base, size_t num, size_t width, int ( __cdecl *compare )(void *, const void *, const void *), void * context )
{
#if defined OSX
// the arguments are swapped 'round on the mac - awesome, huh?
return qsort_r( base, num, width, context, compare );
#elif defined LINUX
// FIXME: still not finding qsort_s, even though it's defined in qsort_s.cpp
// What's up with that?
return;
#else
return qsort_s( base, num, width, compare, context );
#endif
}
class CBoyerMooreSearch
{
public:
explicit CBoyerMooreSearch( const byte *pNeedle, int nNeedleSize );
int Search( const byte *pHayStack, int nHayStackLength );
private:
int m_JumpTable[256];
int m_nNeedleSize;
const byte *m_pNeedle;
};
CBoyerMooreSearch::CBoyerMooreSearch( const byte *pNeedle, int nNeedleSize )
{
m_pNeedle = pNeedle;
m_nNeedleSize = nNeedleSize;
int i = 0;
// All jumps by size of search string by default
for ( i = 0; i < 256; ++i )
{
m_JumpTable[ i ] = m_nNeedleSize;
}
// Now for each character in the needle, if it matches, we jump by less on failure
for ( i = 0; i < m_nNeedleSize - 1; ++i )
{
m_JumpTable[m_pNeedle[i]] = m_nNeedleSize - i - 1;
}
}
int CBoyerMooreSearch::Search( const byte *pHayStack, int nHayStackLength )
{
if ( m_nNeedleSize > nHayStackLength )
{
return -1;
}
int k = m_nNeedleSize - 1;
while ( k < nHayStackLength )
{
int j = m_nNeedleSize - 1;
int i = k;
while ( j >= 0 &&
pHayStack[i] == m_pNeedle[j] )
{
j--;
i--;
}
if (j == -1)
{
return i + 1;
}
k += m_JumpTable[ pHayStack[ k ] ];
}
return -1;
}
// Performs boyer moore text search, returns offset of first occurrence of needle in haystack, or -1 on failure. Note that haystack and the needle can be binary (non-text) data
int V_BoyerMooreSearch( const byte *pNeedle, int nNeedleLength, const byte *pHayStack, int nHayStackLength )
{
CBoyerMooreSearch search( pNeedle, nNeedleLength );
return search.Search( pHayStack, nHayStackLength );
}
CUtlString V_RandomString( int nLen )
{
CUtlString out;
for ( int i = 0; i < nLen; ++i )
{
char c = 0;
do
{
c = rand() & 0x7f;
} while ( !V_isalnum( c ) );
out += CFmtStr( "%c", c );
}
return out;
}
// Prints out a memory dump where stuff that's ascii is human readable, etc.
void V_LogMultiline( bool input, char const *label, const char *data, size_t len, CUtlString &output )
{
static const char HEX[] = "0123456789abcdef";
const char * direction = (input ? " << " : " >> ");
const size_t LINE_SIZE = 24;
char hex_line[LINE_SIZE * 9 / 4 + 2], asc_line[LINE_SIZE + 1];
while (len > 0)
{
V_memset(asc_line, ' ', sizeof(asc_line));
V_memset(hex_line, ' ', sizeof(hex_line));
size_t line_len = MIN(len, LINE_SIZE);
for (size_t i=0; i<line_len; ++i) {
unsigned char ch = static_cast<unsigned char>(data[i]);
asc_line[i] = ( V_isprint(ch) && !V_iscntrl(ch) ) ? data[i] : '.';
hex_line[i*2 + i/4] = HEX[ch >> 4];
hex_line[i*2 + i/4 + 1] = HEX[ch & 0xf];
}
asc_line[sizeof(asc_line)-1] = 0;
hex_line[sizeof(hex_line)-1] = 0;
output += CFmtStr( "%s %s %s %s\n", label, direction, asc_line, hex_line );
data += line_len;
len -= line_len;
}
}
#ifdef WIN32
// Win32 CRT doesn't support the full range of UChar32, has no extended planes
inline int V_iswspace( int c ) { return ( c <= 0xFFFF ) ? iswspace( (wint_t)c ) : 0; }
#else
#define V_iswspace(x) iswspace(x)
#endif
//-----------------------------------------------------------------------------
// Purpose: Slightly modified strtok. Does not modify the input string. Does
// not skip over more than one separator at a time. This allows parsing
// strings where tokens between separators may or may not be present:
//
// Door01,,,0 would be parsed as "Door01" "" "" "0"
// Door01,Open,,0 would be parsed as "Door01" "Open" "" "0"
//
// Input : token - Returns with a token, or zero length if the token was missing.
// str - String to parse.
// sep - Character to use as separator. UNDONE: allow multiple separator chars
// Output : Returns a pointer to the next token to be parsed.
//-----------------------------------------------------------------------------
const char *nexttoken(char *token, const char *str, char sep)
{
if ((str == NULL) || (*str == '\0'))
{
*token = '\0';
return(NULL);
}
//
// Copy everything up to the first separator into the return buffer.
// Do not include separators in the return buffer.
//
while ((*str != sep) && (*str != '\0'))
{
*token++ = *str++;
}
*token = '\0';
//
// Advance the pointer unless we hit the end of the input string.
//
if (*str == '\0')
{
return(str);
}
return(++str);
}
int V_StrTrim( char *pStr )
{
char *pSource = pStr;
char *pDest = pStr;
// skip white space at the beginning
while ( *pSource != 0 && V_isspace( *pSource ) )
{
pSource++;
}
// copy everything else
char *pLastWhiteBlock = NULL;
char *pStart = pDest;
while ( *pSource != 0 )
{
*pDest = *pSource++;
if ( V_isspace( *pDest ) )
{
if ( pLastWhiteBlock == NULL )
pLastWhiteBlock = pDest;
}
else
{
pLastWhiteBlock = NULL;
}
pDest++;
}
*pDest = 0;
// did we end in a whitespace block?
if ( pLastWhiteBlock != NULL )
{
// yep; shorten the string
pDest = pLastWhiteBlock;
*pLastWhiteBlock = 0;
}
return pDest - pStart;
}
int64 V_strtoi64( const char *nptr, char **endptr, int base )
{
return _strtoi64( nptr, endptr, base );
}
uint64 V_strtoui64( const char *nptr, char **endptr, int base )
{
return _strtoui64( nptr, endptr, base );
}
struct HtmlEntity_t
{
unsigned short uCharCode;
const char *pchEntity;
int nEntityLength;
};
const static HtmlEntity_t g_BasicHTMLEntities[] = {
{ '"', "&quot;", 6 },
{ '\'', "&#039;", 6 },
{ '<', "&lt;", 4 },
{ '>', "&gt;", 4 },
{ '&', "&amp;", 5 },
{ 0, NULL, 0 } // sentinel for end of array
};
const static HtmlEntity_t g_WhitespaceEntities[] = {
{ ' ', "&nbsp;", 6 },
{ '\n', "<br>", 4 },
{ 0, NULL, 0 } // sentinel for end of array
};
struct Tier1FullHTMLEntity_t
{
uchar32 uCharCode;
const char *pchEntity;
int nEntityLength;
};
#pragma warning( push )
#pragma warning( disable : 4428 ) // universal-character-name encountered in source
const Tier1FullHTMLEntity_t g_Tier1_FullHTMLEntities[] =
{
{ L'"', "&quot;", 6 },
{ L'\'', "&apos;", 6 },
{ L'&', "&amp;", 5 },
{ L'<', "&lt;", 4 },
{ L'>', "&gt;", 4 },
{ L' ', "&nbsp;", 6 },
{ L'\u2122', "&trade;", 7 },
{ L'\u00A9', "&copy;", 6 },
{ L'\u00AE', "&reg;", 5 },
{ L'\u2013', "&ndash;", 7 },
{ L'\u2014', "&mdash;", 7 },
{ L'\u20AC', "&euro;", 6 },
{ L'\u00A1', "&iexcl;", 7 },
{ L'\u00A2', "&cent;", 6 },
{ L'\u00A3', "&pound;", 7 },
{ L'\u00A4', "&curren;", 8 },
{ L'\u00A5', "&yen;", 5 },
{ L'\u00A6', "&brvbar;", 8 },
{ L'\u00A7', "&sect;", 6 },
{ L'\u00A8', "&uml;", 5 },
{ L'\u00AA', "&ordf;", 6 },
{ L'\u00AB', "&laquo;", 7 },
{ L'\u00AC', "&not;", 8 },
{ L'\u00AD', "&shy;", 5 },
{ L'\u00AF', "&macr;", 6 },
{ L'\u00B0', "&deg;", 5 },
{ L'\u00B1', "&plusmn;", 8 },
{ L'\u00B2', "&sup2;", 6 },
{ L'\u00B3', "&sup3;", 6 },
{ L'\u00B4', "&acute;", 7 },
{ L'\u00B5', "&micro;", 7 },
{ L'\u00B6', "&para;", 6 },
{ L'\u00B7', "&middot;", 8 },
{ L'\u00B8', "&cedil;", 7 },
{ L'\u00B9', "&sup1;", 6 },
{ L'\u00BA', "&ordm;", 6 },
{ L'\u00BB', "&raquo;", 7 },
{ L'\u00BC', "&frac14;", 8 },
{ L'\u00BD', "&frac12;", 8 },
{ L'\u00BE', "&frac34;", 8 },
{ L'\u00BF', "&iquest;", 8 },
{ L'\u00D7', "&times;", 7 },
{ L'\u00F7', "&divide;", 8 },
{ L'\u00C0', "&Agrave;", 8 },
{ L'\u00C1', "&Aacute;", 8 },
{ L'\u00C2', "&Acirc;", 7 },
{ L'\u00C3', "&Atilde;", 8 },
{ L'\u00C4', "&Auml;", 6 },
{ L'\u00C5', "&Aring;", 7 },
{ L'\u00C6', "&AElig;", 7 },
{ L'\u00C7', "&Ccedil;", 8 },
{ L'\u00C8', "&Egrave;", 8 },
{ L'\u00C9', "&Eacute;", 8 },
{ L'\u00CA', "&Ecirc;", 7 },
{ L'\u00CB', "&Euml;", 6 },
{ L'\u00CC', "&Igrave;", 8 },
{ L'\u00CD', "&Iacute;", 8 },
{ L'\u00CE', "&Icirc;", 7 },
{ L'\u00CF', "&Iuml;", 6 },
{ L'\u00D0', "&ETH;", 5 },
{ L'\u00D1', "&Ntilde;", 8 },
{ L'\u00D2', "&Ograve;", 8 },
{ L'\u00D3', "&Oacute;", 8 },
{ L'\u00D4', "&Ocirc;", 7 },
{ L'\u00D5', "&Otilde;", 8 },
{ L'\u00D6', "&Ouml;", 6 },
{ L'\u00D8', "&Oslash;", 8 },
{ L'\u00D9', "&Ugrave;", 8 },
{ L'\u00DA', "&Uacute;", 8 },
{ L'\u00DB', "&Ucirc;", 7 },
{ L'\u00DC', "&Uuml;", 6 },
{ L'\u00DD', "&Yacute;", 8 },
{ L'\u00DE', "&THORN;", 7 },
{ L'\u00DF', "&szlig;", 7 },
{ L'\u00E0', "&agrave;", 8 },
{ L'\u00E1', "&aacute;", 8 },
{ L'\u00E2', "&acirc;", 7 },
{ L'\u00E3', "&atilde;", 8 },
{ L'\u00E4', "&auml;", 6 },
{ L'\u00E5', "&aring;", 7 },
{ L'\u00E6', "&aelig;", 7 },
{ L'\u00E7', "&ccedil;", 8 },
{ L'\u00E8', "&egrave;", 8 },
{ L'\u00E9', "&eacute;", 8 },
{ L'\u00EA', "&ecirc;", 7 },
{ L'\u00EB', "&euml;", 6 },
{ L'\u00EC', "&igrave;", 8 },
{ L'\u00ED', "&iacute;", 8 },
{ L'\u00EE', "&icirc;", 7 },
{ L'\u00EF', "&iuml;", 6 },
{ L'\u00F0', "&eth;", 5 },
{ L'\u00F1', "&ntilde;", 8 },
{ L'\u00F2', "&ograve;", 8 },
{ L'\u00F3', "&oacute;", 8 },
{ L'\u00F4', "&ocirc;", 7 },
{ L'\u00F5', "&otilde;", 8 },
{ L'\u00F6', "&ouml;", 6 },
{ L'\u00F8', "&oslash;", 8 },
{ L'\u00F9', "&ugrave;", 8 },
{ L'\u00FA', "&uacute;", 8 },
{ L'\u00FB', "&ucirc;", 7 },
{ L'\u00FC', "&uuml;", 6 },
{ L'\u00FD', "&yacute;", 8 },
{ L'\u00FE', "&thorn;", 7 },
{ L'\u00FF', "&yuml;", 6 },
{ 0, NULL, 0 } // sentinel for end of array
};
#pragma warning( pop )
bool V_BasicHtmlEntityEncode( char *pDest, const int nDestSize, char const *pIn, const int nInSize, bool bPreserveWhitespace /*= false*/ )
{
Assert( nDestSize == 0 || pDest != NULL );
int iOutput = 0;
for ( int iInput = 0; iInput < nInSize; ++iInput )
{
bool bReplacementDone = false;
// See if the current char matches any of the basic entities
for ( int i = 0; g_BasicHTMLEntities[ i ].uCharCode != 0; ++i )
{
if ( pIn[ iInput ] == g_BasicHTMLEntities[ i ].uCharCode )
{
bReplacementDone = true;
for ( int j = 0; j < g_BasicHTMLEntities[ i ].nEntityLength; ++j )
{
if ( iOutput >= nDestSize - 1 )
{
pDest[ nDestSize - 1 ] = 0;
return false;
}
pDest[ iOutput++ ] = g_BasicHTMLEntities[ i ].pchEntity[ j ];
}
}
}
if ( bPreserveWhitespace && !bReplacementDone )
{
// See if the current char matches any of the basic entities
for ( int i = 0; g_WhitespaceEntities[ i ].uCharCode != 0; ++i )
{
if ( pIn[ iInput ] == g_WhitespaceEntities[ i ].uCharCode )
{
bReplacementDone = true;
for ( int j = 0; j < g_WhitespaceEntities[ i ].nEntityLength; ++j )
{
if ( iOutput >= nDestSize - 1 )
{
pDest[ nDestSize - 1 ] = 0;
return false;
}
pDest[ iOutput++ ] = g_WhitespaceEntities[ i ].pchEntity[ j ];
}
}
}
}
if ( !bReplacementDone )
{
pDest[ iOutput++ ] = pIn[ iInput ];
}
}
// Null terminate the output
pDest[ iOutput ] = 0;
return true;
}
bool V_HtmlEntityDecodeToUTF8( char *pDest, const int nDestSize, char const *pIn, const int nInSize )
{
Assert( nDestSize == 0 || pDest != NULL );
int iOutput = 0;
for ( int iInput = 0; iInput < nInSize && iOutput < nDestSize; ++iInput )
{
bool bReplacementDone = false;
if ( pIn[ iInput ] == '&' )
{
bReplacementDone = true;
uchar32 wrgchReplacement[ 2 ] = { 0, 0 };
char rgchReplacement[ 8 ];
rgchReplacement[ 0 ] = 0;
const char *pchEnd = Q_strstr( pIn + iInput + 1, ";" );
if ( pchEnd )
{
if ( iInput + 1 < nInSize && pIn[ iInput + 1 ] == '#' )
{
// Numeric
int iBase = 10;
int iOffset = 2;
if ( iInput + 3 < nInSize && pIn[ iInput + 2 ] == 'x' )
{
iBase = 16;
iOffset = 3;
}
wrgchReplacement[ 0 ] = (uchar32)V_strtoi64( pIn + iInput + iOffset, NULL, iBase );
if ( !Q_UTF32ToUTF8( wrgchReplacement, rgchReplacement, sizeof( rgchReplacement ) ) )
{
rgchReplacement[ 0 ] = 0;
}
}
else
{
// Lookup in map
const Tier1FullHTMLEntity_t *pFullEntities = g_Tier1_FullHTMLEntities;
for ( int i = 0; pFullEntities[ i ].uCharCode != 0; ++i )
{
if ( nInSize - iInput - 1 >= pFullEntities[ i ].nEntityLength )
{
if ( Q_memcmp( pIn + iInput, pFullEntities[ i ].pchEntity, pFullEntities[ i ].nEntityLength ) == 0 )
{
wrgchReplacement[ 0 ] = pFullEntities[ i ].uCharCode;
if ( !Q_UTF32ToUTF8( wrgchReplacement, rgchReplacement, sizeof( rgchReplacement ) ) )
{
rgchReplacement[ 0 ] = 0;
}
break;
}
}
}
}
// make sure we found a replacement. If not, skip
int cchReplacement = V_strlen( rgchReplacement );
if ( cchReplacement > 0 )
{
if ( (int)cchReplacement + iOutput < nDestSize )
{
for ( int i = 0; rgchReplacement[ i ] != 0; ++i )
{
pDest[ iOutput++ ] = rgchReplacement[ i ];
}
}
// Skip extra space that we passed
iInput += pchEnd - ( pIn + iInput );
}
else
{
bReplacementDone = false;
}
}
}
if ( !bReplacementDone )
{
pDest[ iOutput++ ] = pIn[ iInput ];
}
}
// Null terminate the output
if ( iOutput < nDestSize )
{
pDest[ iOutput ] = 0;
}
else
{
pDest[ nDestSize - 1 ] = 0;
}
return true;
}
static const char *g_pszSimpleBBCodeReplacements[] = {
"[b]", "<b>",
"[/b]", "</b>",
"[i]", "<i>",
"[/i]", "</i>",
"[u]", "<u>",
"[/u]", "</u>",
"[s]", "<s>",
"[/s]", "</s>",
"[code]", "<pre>",
"[/code]", "</pre>",
"[h1]", "<h1>",
"[/h1]", "</h1>",
"[list]", "<ul>",
"[/list]", "</ul>",
"[*]", "<li>",
"[/url]", "</a>",
"[img]", "<img src=\"",
"[/img]", "\"></img>",
};
// Converts BBCode tags to HTML tags
bool V_BBCodeToHTML( OUT_Z_CAP( nDestSize ) char *pDest, const int nDestSize, char const *pIn, const int nInSize )
{
Assert( nDestSize == 0 || pDest != NULL );
int iOutput = 0;
for ( int iInput = 0; iInput < nInSize && iOutput < nDestSize && pIn[ iInput ]; ++iInput )
{
if ( pIn[ iInput ] == '[' )
{
// check simple replacements
bool bFoundReplacement = false;
for ( int r = 0; r < ARRAYSIZE( g_pszSimpleBBCodeReplacements ); r += 2 )
{
int nBBCodeLength = V_strlen( g_pszSimpleBBCodeReplacements[ r ] );
if ( !V_strnicmp( &pIn[ iInput ], g_pszSimpleBBCodeReplacements[ r ], nBBCodeLength ) )
{
int nHTMLReplacementLength = V_strlen( g_pszSimpleBBCodeReplacements[ r + 1 ] );
for ( int c = 0; c < nHTMLReplacementLength && iOutput < nDestSize; c++ )
{
pDest[ iOutput ] = g_pszSimpleBBCodeReplacements[ r + 1 ][ c ];
iOutput++;
}
iInput += nBBCodeLength - 1;
bFoundReplacement = true;
break;
}
}
// check URL replacement
if ( !bFoundReplacement && !V_strnicmp( &pIn[ iInput ], "[url=", 5 ) && nDestSize - iOutput > 9 )
{
iInput += 5;
pDest[ iOutput++ ] = '<';
pDest[ iOutput++ ] = 'a';
pDest[ iOutput++ ] = ' ';
pDest[ iOutput++ ] = 'h';
pDest[ iOutput++ ] = 'r';
pDest[ iOutput++ ] = 'e';
pDest[ iOutput++ ] = 'f';
pDest[ iOutput++ ] = '=';
pDest[ iOutput++ ] = '\"';
// copy all characters up to the closing square bracket
while ( pIn[ iInput ] != ']' && iInput < nInSize && iOutput < nDestSize )
{
pDest[ iOutput++ ] = pIn[ iInput++ ];
}
if ( pIn[ iInput ] == ']' && nDestSize - iOutput > 2 )
{
pDest[ iOutput++ ] = '\"';
pDest[ iOutput++ ] = '>';
}
bFoundReplacement = true;
}
// otherwise, skip over everything up to the closing square bracket
if ( !bFoundReplacement )
{
while ( pIn[ iInput ] != ']' && iInput < nInSize )
{
iInput++;
}
}
}
else if ( pIn[ iInput ] == '\r' && pIn[ iInput + 1 ] == '\n' )
{
// convert carriage return and newline to a <br>
if ( nDestSize - iOutput > 4 )
{
pDest[ iOutput++ ] = '<';
pDest[ iOutput++ ] = 'b';
pDest[ iOutput++ ] = 'r';
pDest[ iOutput++ ] = '>';
}
iInput++;
}
else if ( pIn[ iInput ] == '\n' )
{
// convert newline to a <br>
if ( nDestSize - iOutput > 4 )
{
pDest[ iOutput++ ] = '<';
pDest[ iOutput++ ] = 'b';
pDest[ iOutput++ ] = 'r';
pDest[ iOutput++ ] = '>';
}
}
else
{
// copy character to destination
pDest[ iOutput++ ] = pIn[ iInput ];
}
}
// always terminate string
if ( iOutput >= nDestSize )
{
iOutput = nDestSize - 1;
}
pDest[ iOutput ] = 0;
return true;
}
//-----------------------------------------------------------------------------
// Purpose: returns true if a wide character is a "mean" space; that is,
// if it is technically a space or punctuation, but causes disruptive
// behavior when used in names, web pages, chat windows, etc.
//
// characters in this set are removed from the beginning and/or end of strings
// by Q_AggressiveStripPrecedingAndTrailingWhitespaceW()
//-----------------------------------------------------------------------------
bool V_IsMeanUnderscoreW( wchar_t wch )
{
bool bIsMean = false;
switch ( wch )
{
case L'\x005f': // low line (normal underscore)
case L'\xff3f': // fullwidth low line
case L'\x0332': // combining low line
bIsMean = true;
break;
default:
break;
}
return bIsMean;
}
//-----------------------------------------------------------------------------
// Purpose: returns true if a wide character is a "mean" space; that is,
// if it is technically a space or punctuation, but causes disruptive
// behavior when used in names, web pages, chat windows, etc.
//
// characters in this set are removed from the beginning and/or end of strings
// by Q_AggressiveStripPrecedingAndTrailingWhitespaceW()
//-----------------------------------------------------------------------------
bool V_IsMeanSpaceW( wchar_t wch )
{
bool bIsMean = false;
switch ( wch )
{
case L'\x0080': // PADDING CHARACTER
case L'\x0081': // HIGH OCTET PRESET
case L'\x0082': // BREAK PERMITTED HERE
case L'\x0083': // NO BREAK PERMITTED HERE
case L'\x0084': // INDEX
case L'\x0085': // NEXT LINE
case L'\x0086': // START OF SELECTED AREA
case L'\x0087': // END OF SELECTED AREA
case L'\x0088': // CHARACTER TABULATION SET
case L'\x0089': // CHARACTER TABULATION WITH JUSTIFICATION
case L'\x008A': // LINE TABULATION SET
case L'\x008B': // PARTIAL LINE FORWARD
case L'\x008C': // PARTIAL LINE BACKWARD
case L'\x008D': // REVERSE LINE FEED
case L'\x008E': // SINGLE SHIFT 2
case L'\x008F': // SINGLE SHIFT 3
case L'\x0090': // DEVICE CONTROL STRING
case L'\x0091': // PRIVATE USE
case L'\x0092': // PRIVATE USE
case L'\x0093': // SET TRANSMIT STATE
case L'\x0094': // CANCEL CHARACTER
case L'\x0095': // MESSAGE WAITING
case L'\x0096': // START OF PROTECTED AREA
case L'\x0097': // END OF PROTECED AREA
case L'\x0098': // START OF STRING
case L'\x0099': // SINGLE GRAPHIC CHARACTER INTRODUCER
case L'\x009A': // SINGLE CHARACTER INTRODUCER
case L'\x009B': // CONTROL SEQUENCE INTRODUCER
case L'\x009C': // STRING TERMINATOR
case L'\x009D': // OPERATING SYSTEM COMMAND
case L'\x009E': // PRIVACY MESSAGE
case L'\x009F': // APPLICATION PROGRAM COMMAND
case L'\x00A0': // NO-BREAK SPACE
case L'\x034F': // COMBINING GRAPHEME JOINER
case L'\x2000': // EN QUAD
case L'\x2001': // EM QUAD
case L'\x2002': // EN SPACE
case L'\x2003': // EM SPACE
case L'\x2004': // THICK SPACE
case L'\x2005': // MID SPACE
case L'\x2006': // SIX SPACE
case L'\x2007': // figure space
case L'\x2008': // PUNCTUATION SPACE
case L'\x2009': // THIN SPACE
case L'\x200A': // HAIR SPACE
case L'\x200B': // ZERO-WIDTH SPACE
case L'\x200C': // ZERO-WIDTH NON-JOINER
case L'\x200D': // ZERO WIDTH JOINER
case L'\x2028': // LINE SEPARATOR
case L'\x2029': // PARAGRAPH SEPARATOR
case L'\x202F': // NARROW NO-BREAK SPACE
case L'\x2060': // word joiner
case L'\xFEFF': // ZERO-WIDTH NO BREAK SPACE
case L'\xFFFC': // OBJECT REPLACEMENT CHARACTER
bIsMean = true;
break;
}
return bIsMean;
}
//-----------------------------------------------------------------------------
// Purpose: tell us if a Unicode character is deprecated
//
// See Unicode Technical Report #20: http://www.unicode.org/reports/tr20/
//
// Some characters are difficult or unreliably rendered. These characters eventually
// fell out of the Unicode standard, but are abusable by users. For example,
// setting "RIGHT-TO-LEFT OVERRIDE" without popping or undoing the action causes
// the layout instruction to bleed into following characters in HTML renderings,
// or upset layout calculations in vgui panels.
//
// Many games don't cope with these characters well, and end up providing opportunities
// for griefing others. For example, a user might join a game with a malformed player
// name and it turns out that player name can't be selected or typed into the admin
// console or UI to mute, kick, or ban the disruptive player.
//
// Ideally, we'd perfectly support these end-to-end but we never realistically will.
// The benefit of doing so far outweighs the cost, anyway.
//-----------------------------------------------------------------------------
bool V_IsDeprecatedW( wchar_t wch )
{
bool bIsDeprecated = false;
switch ( wch )
{
case L'\x202A': // LEFT-TO-RIGHT EMBEDDING
case L'\x202B': // RIGHT-TO-LEFT EMBEDDING
case L'\x202C': // POP DIRECTIONAL FORMATTING
case L'\x202D': // LEFT-TO-RIGHT OVERRIDE
case L'\x202E': // RIGHT-TO-LEFT OVERRIDE
case L'\x206A': // INHIBIT SYMMETRIC SWAPPING
case L'\x206B': // ACTIVATE SYMMETRIC SWAPPING
case L'\x206C': // INHIBIT ARABIC FORM SHAPING
case L'\x206D': // ACTIVATE ARABIC FORM SHAPING
case L'\x206E': // NATIONAL DIGIT SHAPES
case L'\x206F': // NOMINAL DIGIT SHAPES
bIsDeprecated = true;
}
return bIsDeprecated;
}
//-----------------------------------------------------------------------------
// returns true if the character is allowed in a DNS doman name, false otherwise
//-----------------------------------------------------------------------------
bool V_IsValidDomainNameCharacter( const char *pch, int *pAdvanceBytes )
{
if ( pAdvanceBytes )
*pAdvanceBytes = 0;
// We allow unicode in Domain Names without the an encoding unless it corresponds to
// a whitespace or control sequence or something we think is an underscore looking thing.
// If this character is the start of a UTF-8 sequence, try decoding it.
unsigned char ch = (unsigned char)*pch;
if ( ( ch & 0xC0 ) == 0xC0 )
{
uchar32 rgch32Buf;
bool bError = false;
int iAdvance = Q_UTF8ToUChar32( pch, rgch32Buf, bError );
if ( bError || iAdvance == 0 )
{
// Invalid UTF8 sequence, lets consider that invalid
return false;
}
if ( pAdvanceBytes )
*pAdvanceBytes = iAdvance;
if ( iAdvance )
{
// Ick. Want uchar32 versions of unicode character classification functions.
// Really would like Q_IsWhitespace32 and Q_IsNonPrintable32, but this is OK.
if ( rgch32Buf < 0x10000 && ( V_IsMeanSpaceW( (wchar_t)rgch32Buf ) || V_IsDeprecatedW( (wchar_t)rgch32Buf ) || V_IsMeanUnderscoreW( (wchar_t)rgch32Buf ) ) )
{
return false;
}
return true;
}
else
{
// Unreachable but would be invalid utf8
return false;
}
}
else
{
// Was not unicode
if ( pAdvanceBytes )
*pAdvanceBytes = 1;
// The only allowable non-unicode chars are a-z A-Z 0-9 and -
if ( ( ch >= 'a' && ch <= 'z' ) || ( ch >= 'A' && ch <= 'Z' ) || ( ch >= '0' && ch <= '9' ) || ch == '-' || ch == '.' )
return true;
return false;
}
}
//-----------------------------------------------------------------------------
// returns true if the character is allowed in a URL, false otherwise
//-----------------------------------------------------------------------------
bool V_IsValidURLCharacter( const char *pch, int *pAdvanceBytes )
{
if ( pAdvanceBytes )
*pAdvanceBytes = 0;
// We allow unicode in URLs unless it corresponds to a whitespace or control sequence.
// If this character is the start of a UTF-8 sequence, try decoding it.
unsigned char ch = (unsigned char)*pch;
if ( ( ch & 0xC0 ) == 0xC0 )
{
uchar32 rgch32Buf;
bool bError = false;
int iAdvance = Q_UTF8ToUChar32( pch, rgch32Buf, bError );
if ( bError || iAdvance == 0 )
{
// Invalid UTF8 sequence, lets consider that invalid
return false;
}
if ( pAdvanceBytes )
*pAdvanceBytes = iAdvance;
if ( iAdvance )
{
// Ick. Want uchar32 versions of unicode character classification functions.
// Really would like Q_IsWhitespace32 and Q_IsNonPrintable32, but this is OK.
if ( rgch32Buf < 0x10000 && ( V_IsMeanSpaceW( (wchar_t)rgch32Buf ) || V_IsDeprecatedW( (wchar_t)rgch32Buf ) ) )
{
return false;
}
return true;
}
else
{
// Unreachable but would be invalid utf8
return false;
}
}
else
{
// Was not unicode
if ( pAdvanceBytes )
*pAdvanceBytes = 1;
// Spaces, control characters, quotes, and angle brackets are not legal URL characters.
if ( ch <= 32 || ch == 127 || ch == '"' || ch == '<' || ch == '>' )
return false;
return true;
}
}
//-----------------------------------------------------------------------------
// Purpose: helper function to get a domain from a url
// Checks both standard url and steam://openurl/<url>
//-----------------------------------------------------------------------------
bool V_ExtractDomainFromURL( const char *pchURL, char *pchDomain, int cchDomain )
{
pchDomain[ 0 ] = 0;
static const char *k_pchSteamOpenUrl = "steam://openurl/";
static const char *k_pchSteamOpenUrlExt = "steam://openurl_external/";
const char *pchOpenUrlSuffix = StringAfterPrefix( pchURL, k_pchSteamOpenUrl );
if ( pchOpenUrlSuffix == NULL )
pchOpenUrlSuffix = StringAfterPrefix( pchURL, k_pchSteamOpenUrlExt );
if ( pchOpenUrlSuffix )
pchURL = pchOpenUrlSuffix;
if ( !pchURL || pchURL[ 0 ] == '\0' )
return false;
const char *pchDoubleSlash = strstr( pchURL, "//" );
// Put the domain and everything after into pchDomain.
// We'll find where to terminate it later.
if ( pchDoubleSlash )
{
// Skip the slashes
pchDoubleSlash += 2;
// If that's all there was, then there's no domain here. Bail.
if ( *pchDoubleSlash == '\0' )
{
return false;
}
// Skip any extra slashes
// ex: http:///steamcommunity.com/
while ( *pchDoubleSlash == '/' )
{
pchDoubleSlash++;
}
Q_strncpy( pchDomain, pchDoubleSlash, cchDomain );
}
else
{
// No double slash, so pchURL has no protocol.
Q_strncpy( pchDomain, pchURL, cchDomain );
}
// First character has to be valid
if ( *pchDomain == '?' || *pchDomain == '\0' )
{
return false;
}
// terminate the domain after the first non domain char
int iAdvance = 0;
int iStrLen = 0;
char cLast = 0;
while ( pchDomain[ iStrLen ] )
{
if ( !V_IsValidDomainNameCharacter( pchDomain + iStrLen, &iAdvance ) || ( pchDomain[ iStrLen ] == '.' && cLast == '.' ) )
{
pchDomain[ iStrLen ] = 0;
break;
}
cLast = pchDomain[ iStrLen ];
iStrLen += iAdvance;
}
return ( pchDomain[ 0 ] != 0 );
}
//-----------------------------------------------------------------------------
// Purpose: helper function to get a domain from a url
//-----------------------------------------------------------------------------
bool V_URLContainsDomain( const char *pchURL, const char *pchDomain )
{
char rgchExtractedDomain[ 2048 ];
if ( V_ExtractDomainFromURL( pchURL, rgchExtractedDomain, sizeof( rgchExtractedDomain ) ) )
{
// see if the last part of the domain matches what we extracted
int cchExtractedDomain = V_strlen( rgchExtractedDomain );
if ( pchDomain[ 0 ] == '.' )
{
++pchDomain; // If the domain has a leading '.', skip it. The test below assumes there is none.
}
int cchDomain = V_strlen( pchDomain );
if ( cchDomain > cchExtractedDomain )
{
return false;
}
else if ( cchExtractedDomain >= cchDomain )
{
// If the actual domain is longer than what we're searching for, the character previous
// to the domain we're searching for must be a period
if ( cchExtractedDomain > cchDomain && rgchExtractedDomain[ cchExtractedDomain - cchDomain - 1 ] != '.' )
return false;
if ( 0 == V_stricmp( rgchExtractedDomain + cchExtractedDomain - cchDomain, pchDomain ) )
return true;
}
}
return false;
}
//-----------------------------------------------------------------------------
// Purpose: Strips all HTML tags not specified in rgszPreserveTags
// Does some additional formatting, like turning <li> into * when not preserving that tag,
// and auto-closing unclosed tags if they aren't specified in rgszNoCloseTags
//-----------------------------------------------------------------------------
void V_StripAndPreserveHTMLCore( CUtlBuffer *pbuffer, const char *pchHTML, const char **rgszPreserveTags, uint cPreserveTags, const char **rgszNoCloseTags, uint cNoCloseTags, uint cMaxResultSize )
{
uint cHTMLCur = 0;
bool bStripNewLines = true;
if ( cPreserveTags > 0 )
{
for ( uint i = 0; i < cPreserveTags; ++i )
{
if ( !Q_stricmp( rgszPreserveTags[ i ], "\n" ) )
bStripNewLines = false;
}
}
//state-
bool bInStrippedTag = false;
bool bInStrippedContentTag = false;
bool bInPreservedTag = false;
bool bInListItemTag = false;
bool bLastCharWasWhitespace = true; //set to true to strip leading whitespace
bool bInComment = false;
bool bInDoubleQuote = false;
bool bInSingleQuote = false;
int nPreTagDepth = 0;
CUtlVector< const char* > vecTagStack;
for ( int iContents = 0; pchHTML[ iContents ] != '\0' && cHTMLCur < cMaxResultSize; iContents++ )
{
char c = pchHTML[ iContents ];
// If we are entering a comment, flag as such and skip past the begin comment tag
const char *pchCur = &pchHTML[ iContents ];
if ( !Q_strnicmp( pchCur, "<!--", 4 ) )
{
bInComment = true;
iContents += 3;
continue;
}
// If we are in a comment, check if we are exiting
if ( bInComment )
{
if ( !Q_strnicmp( pchCur, "-->", 3 ) )
{
bInComment = false;
iContents += 2;
continue;
}
else
{
continue;
}
}
if ( bInStrippedTag || bInPreservedTag )
{
// we're inside a tag, keep stripping/preserving until we get to a >
if ( bInPreservedTag )
pbuffer->PutChar( c );
// While inside a tag, ignore ending > properties if they are inside a property value in "" or ''
if ( c == '"' )
{
if ( bInDoubleQuote )
bInDoubleQuote = false;
else
bInDoubleQuote = true;
}
if ( c == '\'' )
{
if ( bInSingleQuote )
bInSingleQuote = false;
else
bInSingleQuote = true;
}
if ( !bInDoubleQuote && !bInSingleQuote && c == '>' )
{
if ( bInPreservedTag )
bLastCharWasWhitespace = false;
bInPreservedTag = false;
bInStrippedTag = false;
}
}
else if ( bInStrippedContentTag )
{
if ( c == '<' && !Q_strnicmp( pchCur, "</script>", 9 ) )
{
bInStrippedContentTag = false;
iContents += 8;
continue;
}
else
{
continue;
}
}
else if ( c & 0x80 && !bInStrippedContentTag )
{
// start/continuation of a multibyte sequence, copy to output.
int nMultibyteRemaining = 0;
if ( ( c & 0xF8 ) == 0xF0 ) // first 5 bits are 11110
nMultibyteRemaining = 3;
else if ( ( c & 0xF0 ) == 0xE0 ) // first 4 bits are 1110
nMultibyteRemaining = 2;
else if ( ( c & 0xE0 ) == 0xC0 ) // first 3 bits are 110
nMultibyteRemaining = 1;
// cHTMLCur is in characters, so just +1
cHTMLCur++;
pbuffer->Put( pchCur, 1 + nMultibyteRemaining );
iContents += nMultibyteRemaining;
// Need to determine if we just added whitespace or not
wchar_t rgwch[ 3 ] = { 0 };
Q_UTF8CharsToWString( pchCur, 1, rgwch, sizeof( rgwch ) );
if ( !V_iswspace( rgwch[ 0 ] ) )
bLastCharWasWhitespace = false;
else
bLastCharWasWhitespace = true;
}
else
{
//not in a multibyte sequence- do our parsing/stripping
if ( c == '<' )
{
if ( !rgszPreserveTags || cPreserveTags == 0 )
{
//not preserving any tags, just strip it
bInStrippedTag = true;
}
else
{
//look ahead, is this our kind of tag?
bool bPreserve = false;
bool bEndTag = false;
const char *szTagStart = &pchHTML[ iContents + 1 ];
// if it's a close tag, skip the /
if ( *szTagStart == '/' )
{
bEndTag = true;
szTagStart++;
}
if ( Q_strnicmp( "script", szTagStart, 6 ) == 0 )
{
bInStrippedTag = true;
bInStrippedContentTag = true;
}
else
{
//see if this tag is one we want to preserve
for ( uint iTag = 0; iTag < cPreserveTags; iTag++ )
{
const char *szTag = rgszPreserveTags[ iTag ];
int cchTag = Q_strlen( szTag );
//make sure characters match, and are followed by some non-alnum char
// so "i" can match <i> or <i class=...>, but not <img>
if ( Q_strnicmp( szTag, szTagStart, cchTag ) == 0 && !V_isalnum( szTagStart[ cchTag ] ) )
{
bPreserve = true;
if ( bEndTag )
{
// ending a paragraph tag is optional. If we were expecting to find one, and didn't, skip
if ( Q_stricmp( szTag, "p" ) != 0 )
{
while ( vecTagStack.Count() > 0 && Q_stricmp( vecTagStack[ vecTagStack.Count() - 1 ], "p" ) == 0 )
{
vecTagStack.Remove( vecTagStack.Count() - 1 );
}
}
if ( vecTagStack.Count() > 0 && vecTagStack[ vecTagStack.Count() - 1 ] == szTag )
{
vecTagStack.Remove( vecTagStack.Count() - 1 );
if ( Q_stricmp( szTag, "pre" ) == 0 )
{
nPreTagDepth--;
if ( nPreTagDepth < 0 )
{
nPreTagDepth = 0;
}
}
}
else
{
// don't preserve this unbalanced tag. All open tags will be closed at the end of the blurb
bPreserve = false;
}
}
else
{
bool bNoCloseTag = false;
for ( uint iNoClose = 0; iNoClose < cNoCloseTags; iNoClose++ )
{
if ( Q_stricmp( szTag, rgszNoCloseTags[ iNoClose ] ) == 0 )
{
bNoCloseTag = true;
break;
}
}
if ( !bNoCloseTag )
{
vecTagStack.AddToTail( szTag );
if ( Q_stricmp( szTag, "pre" ) == 0 )
{
nPreTagDepth++;
}
}
}
break;
}
}
if ( !bPreserve )
{
bInStrippedTag = true;
}
else
{
bInPreservedTag = true;
pbuffer->PutChar( c );
}
}
}
if ( bInStrippedTag )
{
const char *szTagStart = &pchHTML[ iContents ];
if ( Q_strnicmp( szTagStart, "<li>", Q_strlen( "<li>" ) ) == 0 )
{
if ( bInListItemTag )
{
pbuffer->PutChar( ';' );
cHTMLCur++;
bInListItemTag = false;
}
if ( !bLastCharWasWhitespace )
{
pbuffer->PutChar( ' ' );
cHTMLCur++;
}
pbuffer->PutChar( '*' );
pbuffer->PutChar( ' ' );
cHTMLCur += 2;
bInListItemTag = true;
}
else if ( !bLastCharWasWhitespace )
{
if ( bInListItemTag )
{
char cLastChar = ' ';
if ( pbuffer->TellPut() > 0 )
{
cLastChar = ( ( (char*)pbuffer->Base() ) + pbuffer->TellPut() - 1 )[ 0 ];
}
if ( cLastChar != '.' && cLastChar != '?' && cLastChar != '!' )
{
pbuffer->PutChar( ';' );
cHTMLCur++;
}
bInListItemTag = false;
}
//we're decided to remove a tag, simulate a space in the original text
pbuffer->PutChar( ' ' );
cHTMLCur++;
}
bLastCharWasWhitespace = true;
}
}
else
{
//just a normal character, nothin' special.
if ( nPreTagDepth == 0 && V_isspace( c ) && ( bStripNewLines || c != '\n' ) )
{
if ( !bLastCharWasWhitespace )
{
//replace any block of whitespace with a single space
cHTMLCur++;
pbuffer->PutChar( ' ' );
bLastCharWasWhitespace = true;
}
// don't put anything for whitespace if the previous character was whitespace
// (effectively trimming all blocks of whitespace down to a single ' ')
}
else
{
cHTMLCur++;
pbuffer->PutChar( c );
bLastCharWasWhitespace = false;
}
}
}
}
if ( cHTMLCur >= cMaxResultSize )
{
// we terminated because the blurb was full. Add a '...' to the end
pbuffer->Put( "...", 3 );
}
//close any preserved tags that were open at the end.
FOR_EACH_VEC_BACK( vecTagStack, iTagStack )
{
pbuffer->PutChar( '<' );
pbuffer->PutChar( '/' );
pbuffer->Put( vecTagStack[ iTagStack ], Q_strlen( vecTagStack[ iTagStack ] ) );
pbuffer->PutChar( '>' );
}
// Null terminate
pbuffer->PutChar( '\0' );
}
//-----------------------------------------------------------------------------
// Purpose: Strips all HTML tags not specified in rgszPreserveTags
// Does some additional formatting, like turning <li> into * when not preserving that tag
//-----------------------------------------------------------------------------
void V_StripAndPreserveHTML( CUtlBuffer *pbuffer, const char *pchHTML, const char **rgszPreserveTags, uint cPreserveTags, uint cMaxResultSize )
{
const char *rgszNoCloseTags[] = { "br", "img" };
V_StripAndPreserveHTMLCore( pbuffer, pchHTML, rgszPreserveTags, cPreserveTags, rgszNoCloseTags, V_ARRAYSIZE( rgszNoCloseTags ), cMaxResultSize );
}