You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
3.7 KiB
91 lines
3.7 KiB
//========= Copyright c 1996-2009, Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose:
|
|
//
|
|
// $NoKeywords: $
|
|
//=============================================================================//
|
|
|
|
#ifndef VPHYSICS_PHYSX_SIMPLEX_H
|
|
#define VPHYSICS_PHYSX_SIMPLEX_H
|
|
|
|
#include "tier0/dbg.h"
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// Direct simplex LP solver using tableau and Gauss pivoting rule;
|
|
// see http://www.teachers.ash.org.au/mikemath/mathsc/linearprogramming/simplex.PDF
|
|
// After constructing an instance of this class with the appropriate number of vars and constraints,
|
|
// fill in constraints using SetConstraintFactor and SetConstraintConst
|
|
//
|
|
// Here's the problem in its canonical form:
|
|
// Maximize objective = c'x : x[i] >= 0, A.x <= b; and make that c' positive! negative will automatically mean 0 is your best answer
|
|
// Vector x is the vector of unknowns (variables) and has dimentionality of numVariables
|
|
// Vector c is dotted with the x, so has the same dimentionality; you set it with SetObjectiveFactor()
|
|
// every component of x must be positive in feasible solution
|
|
// A is constraint matrix and has dims: m_numConstraints by m_numVariables; you set it with SetConstraintFactor();
|
|
// b has dims: m_numConstraints, you set it with SetConstraintConst()
|
|
//
|
|
// This is solved with the simplest possible simplex method (I have no good reason to implement pivot rules now)
|
|
// The simplex tableau (m_pTableau) starts like this:
|
|
// | A | b |
|
|
// | c' | 0 |
|
|
//
|
|
class CSimplex
|
|
{
|
|
public:
|
|
int m_numConstraints, m_numVariables;
|
|
float *m_pTableau;
|
|
float *m_pInitialTableau;
|
|
float *m_pSolution;
|
|
int *m_pBasis; // indices of basis variables, corresponding to each row in the tableau; >= numVars if the slack var corresponds to that row
|
|
int *m_pNonBasis; // indices of non-basis primal variables (labels on the top of the classic Tucker(?) tableau)
|
|
enum StateEnum{kInfeasible, kUnbound, kOptimal, kUnknown, kCannotPivot};
|
|
StateEnum m_state;
|
|
//CVarBitVec m_isBasis;
|
|
public:
|
|
CSimplex();
|
|
CSimplex(int numVariables, int numConstraints);
|
|
~CSimplex();
|
|
|
|
void Init(int numVariables, int numConstraints);
|
|
void InitTableau(const float *pTableau);
|
|
void SetObjectiveFactors(int numFactors, const float *pFactors);
|
|
|
|
void SetConstraintFactor(int nConstraint, int nConstant, float fFactor);
|
|
void SetConstraintConst(int nConstraint, float fConst);
|
|
void SetObjectiveFactor(int nConstant, float fFactor);
|
|
|
|
StateEnum Solve(float flThreshold = 1e-5f, int maxStallIterations = 128);
|
|
StateEnum SolvePhase1(float flThreshold = 1e-5f, int maxStallIterations = 128);
|
|
StateEnum SolvePhase2(float flThreshold = 1e-5f, int maxStallIterations = 128);
|
|
float GetSolution(int nVariable)const;
|
|
float GetSlack(int nConstraint)const;
|
|
float GetObjective()const;
|
|
void PrintTableau()const;
|
|
|
|
protected:
|
|
void Destruct();
|
|
float *operator [] (int row) {Assert(row >= 0 && row < NumRows());return m_pTableau + row * NumColumns();}
|
|
float &Tableau(int row, int col){Assert(row >= 0 && row < NumRows());return m_pTableau[row * NumColumns()+col];}
|
|
float Tableau(int row, int col)const{Assert(row >= 0 && row < NumRows());return m_pTableau[row * NumColumns()+col];}
|
|
float GetInitialTableau(int row, int col)const{return m_pInitialTableau[row * NumColumns()+col];}
|
|
bool IteratePhase1();
|
|
bool IteratePhase2();
|
|
int NumRows()const {return m_numConstraints + 1;}
|
|
int NumColumns()const{return m_numVariables + 1;}
|
|
void Validate();
|
|
void PrepareTableau();
|
|
void GatherSolution();
|
|
bool Pivot(int nPivotRow, int nPivotColumn);
|
|
|
|
void MultiplyRow(int nRow, float fFactor);
|
|
void AddRowMulFactor(int nTargetRow, int nPivotRow, float fFactor);
|
|
|
|
int FindPivotColumn();
|
|
int FindPivotRow(int nColumn);
|
|
|
|
int FindLastNegConstrRow();
|
|
int ChooseNegativeElementInRow(int nRow);
|
|
};
|
|
|
|
|
|
#endif
|