|
|
// Copyright 2010 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_V8_PROFILER_H_
#define V8_V8_PROFILER_H_
#include "v8.h"
/**
* Profiler support for the V8 JavaScript engine. */ namespace v8 {
class HeapGraphNode; struct HeapStatsUpdate;
typedef uint32_t SnapshotObjectId;
/**
* CpuProfileNode represents a node in a call graph. */ class V8_EXPORT CpuProfileNode { public: /** Returns function name (empty string for anonymous functions.) */ Handle<String> GetFunctionName() const;
/** Returns id of the script where function is located. */ int GetScriptId() const;
/** Returns resource name for script from where the function originates. */ Handle<String> GetScriptResourceName() const;
/**
* Returns the number, 1-based, of the line where the function originates. * kNoLineNumberInfo if no line number information is available. */ int GetLineNumber() const;
/**
* Returns 1-based number of the column where the function originates. * kNoColumnNumberInfo if no column number information is available. */ int GetColumnNumber() const;
/** Returns bailout reason for the function
* if the optimization was disabled for it. */ const char* GetBailoutReason() const;
/**
* Returns the count of samples where the function was currently executing. */ unsigned GetHitCount() const;
/** Returns function entry UID. */ unsigned GetCallUid() const;
/** Returns id of the node. The id is unique within the tree */ unsigned GetNodeId() const;
/** Returns child nodes count of the node. */ int GetChildrenCount() const;
/** Retrieves a child node by index. */ const CpuProfileNode* GetChild(int index) const;
static const int kNoLineNumberInfo = Message::kNoLineNumberInfo; static const int kNoColumnNumberInfo = Message::kNoColumnInfo; };
/**
* CpuProfile contains a CPU profile in a form of top-down call tree * (from main() down to functions that do all the work). */ class V8_EXPORT CpuProfile { public: /** Returns CPU profile title. */ Handle<String> GetTitle() const;
/** Returns the root node of the top down call tree. */ const CpuProfileNode* GetTopDownRoot() const;
/**
* Returns number of samples recorded. The samples are not recorded unless * |record_samples| parameter of CpuProfiler::StartCpuProfiling is true. */ int GetSamplesCount() const;
/**
* Returns profile node corresponding to the top frame the sample at * the given index. */ const CpuProfileNode* GetSample(int index) const;
/**
* Returns the timestamp of the sample. The timestamp is the number of * microseconds since some unspecified starting point. * The point is equal to the starting point used by GetStartTime. */ int64_t GetSampleTimestamp(int index) const;
/**
* Returns time when the profile recording was started (in microseconds) * since some unspecified starting point. */ int64_t GetStartTime() const;
/**
* Returns time when the profile recording was stopped (in microseconds) * since some unspecified starting point. * The point is equal to the starting point used by GetStartTime. */ int64_t GetEndTime() const;
/**
* Deletes the profile and removes it from CpuProfiler's list. * All pointers to nodes previously returned become invalid. */ void Delete(); };
/**
* Interface for controlling CPU profiling. Instance of the * profiler can be retrieved using v8::Isolate::GetCpuProfiler. */ class V8_EXPORT CpuProfiler { public: /**
* Changes default CPU profiler sampling interval to the specified number * of microseconds. Default interval is 1000us. This method must be called * when there are no profiles being recorded. */ void SetSamplingInterval(int us);
/**
* Starts collecting CPU profile. Title may be an empty string. It * is allowed to have several profiles being collected at * once. Attempts to start collecting several profiles with the same * title are silently ignored. While collecting a profile, functions * from all security contexts are included in it. The token-based * filtering is only performed when querying for a profile. * * |record_samples| parameter controls whether individual samples should * be recorded in addition to the aggregated tree. */ void StartProfiling(Handle<String> title, bool record_samples = false);
/** Deprecated. Use StartProfiling instead. */ V8_DEPRECATED("Use StartProfiling", void StartCpuProfiling(Handle<String> title, bool record_samples = false));
/**
* Stops collecting CPU profile with a given title and returns it. * If the title given is empty, finishes the last profile started. */ CpuProfile* StopProfiling(Handle<String> title);
/** Deprecated. Use StopProfiling instead. */ V8_DEPRECATED("Use StopProfiling", const CpuProfile* StopCpuProfiling(Handle<String> title));
/**
* Tells the profiler whether the embedder is idle. */ void SetIdle(bool is_idle);
private: CpuProfiler(); ~CpuProfiler(); CpuProfiler(const CpuProfiler&); CpuProfiler& operator=(const CpuProfiler&); };
/**
* HeapSnapshotEdge represents a directed connection between heap * graph nodes: from retainers to retained nodes. */ class V8_EXPORT HeapGraphEdge { public: enum Type { kContextVariable = 0, // A variable from a function context.
kElement = 1, // An element of an array.
kProperty = 2, // A named object property.
kInternal = 3, // A link that can't be accessed from JS,
// thus, its name isn't a real property name
// (e.g. parts of a ConsString).
kHidden = 4, // A link that is needed for proper sizes
// calculation, but may be hidden from user.
kShortcut = 5, // A link that must not be followed during
// sizes calculation.
kWeak = 6 // A weak reference (ignored by the GC).
};
/** Returns edge type (see HeapGraphEdge::Type). */ Type GetType() const;
/**
* Returns edge name. This can be a variable name, an element index, or * a property name. */ Handle<Value> GetName() const;
/** Returns origin node. */ const HeapGraphNode* GetFromNode() const;
/** Returns destination node. */ const HeapGraphNode* GetToNode() const; };
/**
* HeapGraphNode represents a node in a heap graph. */ class V8_EXPORT HeapGraphNode { public: enum Type { kHidden = 0, // Hidden node, may be filtered when shown to user.
kArray = 1, // An array of elements.
kString = 2, // A string.
kObject = 3, // A JS object (except for arrays and strings).
kCode = 4, // Compiled code.
kClosure = 5, // Function closure.
kRegExp = 6, // RegExp.
kHeapNumber = 7, // Number stored in the heap.
kNative = 8, // Native object (not from V8 heap).
kSynthetic = 9, // Synthetic object, usualy used for grouping
// snapshot items together.
kConsString = 10, // Concatenated string. A pair of pointers to strings.
kSlicedString = 11, // Sliced string. A fragment of another string.
kSymbol = 12 // A Symbol (ES6).
};
/** Returns node type (see HeapGraphNode::Type). */ Type GetType() const;
/**
* Returns node name. Depending on node's type this can be the name * of the constructor (for objects), the name of the function (for * closures), string value, or an empty string (for compiled code). */ Handle<String> GetName() const;
/**
* Returns node id. For the same heap object, the id remains the same * across all snapshots. */ SnapshotObjectId GetId() const;
/** Returns node's own size, in bytes. */ V8_DEPRECATED("Use GetShallowSize instead", int GetSelfSize() const);
/** Returns node's own size, in bytes. */ size_t GetShallowSize() const;
/** Returns child nodes count of the node. */ int GetChildrenCount() const;
/** Retrieves a child by index. */ const HeapGraphEdge* GetChild(int index) const; };
/**
* An interface for exporting data from V8, using "push" model. */ class V8_EXPORT OutputStream { // NOLINT
public: enum WriteResult { kContinue = 0, kAbort = 1 }; virtual ~OutputStream() {} /** Notify about the end of stream. */ virtual void EndOfStream() = 0; /** Get preferred output chunk size. Called only once. */ virtual int GetChunkSize() { return 1024; } /**
* Writes the next chunk of snapshot data into the stream. Writing * can be stopped by returning kAbort as function result. EndOfStream * will not be called in case writing was aborted. */ virtual WriteResult WriteAsciiChunk(char* data, int size) = 0; /**
* Writes the next chunk of heap stats data into the stream. Writing * can be stopped by returning kAbort as function result. EndOfStream * will not be called in case writing was aborted. */ virtual WriteResult WriteHeapStatsChunk(HeapStatsUpdate* data, int count) { return kAbort; } };
/**
* HeapSnapshots record the state of the JS heap at some moment. */ class V8_EXPORT HeapSnapshot { public: enum SerializationFormat { kJSON = 0 // See format description near 'Serialize' method.
};
/** Returns heap snapshot UID (assigned by the profiler.) */ unsigned GetUid() const;
/** Returns heap snapshot title. */ Handle<String> GetTitle() const;
/** Returns the root node of the heap graph. */ const HeapGraphNode* GetRoot() const;
/** Returns a node by its id. */ const HeapGraphNode* GetNodeById(SnapshotObjectId id) const;
/** Returns total nodes count in the snapshot. */ int GetNodesCount() const;
/** Returns a node by index. */ const HeapGraphNode* GetNode(int index) const;
/** Returns a max seen JS object Id. */ SnapshotObjectId GetMaxSnapshotJSObjectId() const;
/**
* Deletes the snapshot and removes it from HeapProfiler's list. * All pointers to nodes, edges and paths previously returned become * invalid. */ void Delete();
/**
* Prepare a serialized representation of the snapshot. The result * is written into the stream provided in chunks of specified size. * The total length of the serialized snapshot is unknown in * advance, it can be roughly equal to JS heap size (that means, * it can be really big - tens of megabytes). * * For the JSON format, heap contents are represented as an object * with the following structure: * * { * snapshot: { * title: "...", * uid: nnn, * meta: { meta-info }, * node_count: nnn, * edge_count: nnn * }, * nodes: [nodes array], * edges: [edges array], * strings: [strings array] * } * * Nodes reference strings, other nodes, and edges by their indexes * in corresponding arrays. */ void Serialize(OutputStream* stream, SerializationFormat format) const; };
/**
* An interface for reporting progress and controlling long-running * activities. */ class V8_EXPORT ActivityControl { // NOLINT
public: enum ControlOption { kContinue = 0, kAbort = 1 }; virtual ~ActivityControl() {} /**
* Notify about current progress. The activity can be stopped by * returning kAbort as the callback result. */ virtual ControlOption ReportProgressValue(int done, int total) = 0; };
/**
* Interface for controlling heap profiling. Instance of the * profiler can be retrieved using v8::Isolate::GetHeapProfiler. */ class V8_EXPORT HeapProfiler { public: /**
* Callback function invoked for obtaining RetainedObjectInfo for * the given JavaScript wrapper object. It is prohibited to enter V8 * while the callback is running: only getters on the handle and * GetPointerFromInternalField on the objects are allowed. */ typedef RetainedObjectInfo* (*WrapperInfoCallback) (uint16_t class_id, Handle<Value> wrapper);
/** Returns the number of snapshots taken. */ int GetSnapshotCount();
/** Returns a snapshot by index. */ const HeapSnapshot* GetHeapSnapshot(int index);
/**
* Returns SnapshotObjectId for a heap object referenced by |value| if * it has been seen by the heap profiler, kUnknownObjectId otherwise. */ SnapshotObjectId GetObjectId(Handle<Value> value);
/**
* Returns heap object with given SnapshotObjectId if the object is alive, * otherwise empty handle is returned. */ Handle<Value> FindObjectById(SnapshotObjectId id);
/**
* Clears internal map from SnapshotObjectId to heap object. The new objects * will not be added into it unless a heap snapshot is taken or heap object * tracking is kicked off. */ void ClearObjectIds();
/**
* A constant for invalid SnapshotObjectId. GetSnapshotObjectId will return * it in case heap profiler cannot find id for the object passed as * parameter. HeapSnapshot::GetNodeById will always return NULL for such id. */ static const SnapshotObjectId kUnknownObjectId = 0;
/**
* Callback interface for retrieving user friendly names of global objects. */ class ObjectNameResolver { public: /**
* Returns name to be used in the heap snapshot for given node. Returned * string must stay alive until snapshot collection is completed. */ virtual const char* GetName(Handle<Object> object) = 0; protected: virtual ~ObjectNameResolver() {} };
/**
* Takes a heap snapshot and returns it. Title may be an empty string. */ const HeapSnapshot* TakeHeapSnapshot( Handle<String> title, ActivityControl* control = NULL, ObjectNameResolver* global_object_name_resolver = NULL);
/**
* Starts tracking of heap objects population statistics. After calling * this method, all heap objects relocations done by the garbage collector * are being registered. * * |track_allocations| parameter controls whether stack trace of each * allocation in the heap will be recorded and reported as part of * HeapSnapshot. */ void StartTrackingHeapObjects(bool track_allocations = false);
/**
* Adds a new time interval entry to the aggregated statistics array. The * time interval entry contains information on the current heap objects * population size. The method also updates aggregated statistics and * reports updates for all previous time intervals via the OutputStream * object. Updates on each time interval are provided as a stream of the * HeapStatsUpdate structure instances. * The return value of the function is the last seen heap object Id. * * StartTrackingHeapObjects must be called before the first call to this * method. */ SnapshotObjectId GetHeapStats(OutputStream* stream);
/**
* Stops tracking of heap objects population statistics, cleans up all * collected data. StartHeapObjectsTracking must be called again prior to * calling PushHeapObjectsStats next time. */ void StopTrackingHeapObjects();
/**
* Deletes all snapshots taken. All previously returned pointers to * snapshots and their contents become invalid after this call. */ void DeleteAllHeapSnapshots();
/** Binds a callback to embedder's class ID. */ void SetWrapperClassInfoProvider( uint16_t class_id, WrapperInfoCallback callback);
/**
* Default value of persistent handle class ID. Must not be used to * define a class. Can be used to reset a class of a persistent * handle. */ static const uint16_t kPersistentHandleNoClassId = 0;
/** Returns memory used for profiler internal data and snapshots. */ size_t GetProfilerMemorySize();
/**
* Sets a RetainedObjectInfo for an object group (see V8::SetObjectGroupId). */ void SetRetainedObjectInfo(UniqueId id, RetainedObjectInfo* info);
private: HeapProfiler(); ~HeapProfiler(); HeapProfiler(const HeapProfiler&); HeapProfiler& operator=(const HeapProfiler&); };
/**
* Interface for providing information about embedder's objects * held by global handles. This information is reported in two ways: * * 1. When calling AddObjectGroup, an embedder may pass * RetainedObjectInfo instance describing the group. To collect * this information while taking a heap snapshot, V8 calls GC * prologue and epilogue callbacks. * * 2. When a heap snapshot is collected, V8 additionally * requests RetainedObjectInfos for persistent handles that * were not previously reported via AddObjectGroup. * * Thus, if an embedder wants to provide information about native * objects for heap snapshots, he can do it in a GC prologue * handler, and / or by assigning wrapper class ids in the following way: * * 1. Bind a callback to class id by calling SetWrapperClassInfoProvider. * 2. Call SetWrapperClassId on certain persistent handles. * * V8 takes ownership of RetainedObjectInfo instances passed to it and * keeps them alive only during snapshot collection. Afterwards, they * are freed by calling the Dispose class function. */ class V8_EXPORT RetainedObjectInfo { // NOLINT
public: /** Called by V8 when it no longer needs an instance. */ virtual void Dispose() = 0;
/** Returns whether two instances are equivalent. */ virtual bool IsEquivalent(RetainedObjectInfo* other) = 0;
/**
* Returns hash value for the instance. Equivalent instances * must have the same hash value. */ virtual intptr_t GetHash() = 0;
/**
* Returns human-readable label. It must be a null-terminated UTF-8 * encoded string. V8 copies its contents during a call to GetLabel. */ virtual const char* GetLabel() = 0;
/**
* Returns human-readable group label. It must be a null-terminated UTF-8 * encoded string. V8 copies its contents during a call to GetGroupLabel. * Heap snapshot generator will collect all the group names, create * top level entries with these names and attach the objects to the * corresponding top level group objects. There is a default * implementation which is required because embedders don't have their * own implementation yet. */ virtual const char* GetGroupLabel() { return GetLabel(); }
/**
* Returns element count in case if a global handle retains * a subgraph by holding one of its nodes. */ virtual intptr_t GetElementCount() { return -1; }
/** Returns embedder's object size in bytes. */ virtual intptr_t GetSizeInBytes() { return -1; }
protected: RetainedObjectInfo() {} virtual ~RetainedObjectInfo() {}
private: RetainedObjectInfo(const RetainedObjectInfo&); RetainedObjectInfo& operator=(const RetainedObjectInfo&); };
/**
* A struct for exporting HeapStats data from V8, using "push" model. * See HeapProfiler::GetHeapStats. */ struct HeapStatsUpdate { HeapStatsUpdate(uint32_t index, uint32_t count, uint32_t size) : index(index), count(count), size(size) { } uint32_t index; // Index of the time interval that was changed.
uint32_t count; // New value of count field for the interval with this index.
uint32_t size; // New value of size field for the interval with this index.
};
} // namespace v8
#endif // V8_V8_PROFILER_H_
|