|
|
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/** \mainpage V8 API Reference Guide
* * V8 is Google's open source JavaScript engine. * * This set of documents provides reference material generated from the * V8 header file, include/v8.h. * * For other documentation see http://code.google.com/apis/v8/
*/
#ifndef V8_H_
#define V8_H_
#include "v8stdint.h"
// We reserve the V8_* prefix for macros defined in V8 public API and
// assume there are no name conflicts with the embedder's code.
#ifdef V8_OS_WIN
// Setup for Windows DLL export/import. When building the V8 DLL the
// BUILDING_V8_SHARED needs to be defined. When building a program which uses
// the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
// static library or building a program which uses the V8 static library neither
// BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
#if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
#error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
build configuration to ensure that at most one of these is set #endif
#ifdef BUILDING_V8_SHARED
# define V8_EXPORT __declspec(dllexport)
#elif USING_V8_SHARED
# define V8_EXPORT __declspec(dllimport)
#else
# define V8_EXPORT
#endif // BUILDING_V8_SHARED
#else // V8_OS_WIN
// Setup for Linux shared library export.
# ifdef V8_SHARED
# define V8_EXPORT __attribute__ ((visibility("default")))
# else
# define V8_EXPORT
# endif
#endif // V8_OS_WIN
/**
* The v8 JavaScript engine. */ namespace v8 {
class AccessorSignature; class Array; class Boolean; class BooleanObject; class Context; class CpuProfiler; class Data; class Date; class DeclaredAccessorDescriptor; class External; class Function; class FunctionTemplate; class HeapProfiler; class ImplementationUtilities; class Int32; class Integer; class Isolate; class Name; class Number; class NumberObject; class Object; class ObjectOperationDescriptor; class ObjectTemplate; class Platform; class Primitive; class Promise; class RawOperationDescriptor; class Script; class Signature; class StackFrame; class StackTrace; class String; class StringObject; class Symbol; class SymbolObject; class Private; class Uint32; class Utils; class Value; template <class T> class Handle; template <class T> class Local; template <class T> class Eternal; template<class T> class NonCopyablePersistentTraits; template<class T> class PersistentBase; template<class T, class M = NonCopyablePersistentTraits<T> > class Persistent; template<class T> class UniquePersistent; template<class K, class V, class T> class PersistentValueMap; template<class V, class T> class PersistentValueVector; template<class T, class P> class WeakCallbackObject; class FunctionTemplate; class ObjectTemplate; class Data; template<typename T> class FunctionCallbackInfo; template<typename T> class PropertyCallbackInfo; class StackTrace; class StackFrame; class Isolate; class DeclaredAccessorDescriptor; class ObjectOperationDescriptor; class RawOperationDescriptor; class CallHandlerHelper; class EscapableHandleScope; template<typename T> class ReturnValue;
namespace internal { class Arguments; class Heap; class HeapObject; class Isolate; class Object; struct StreamedSource; template<typename T> class CustomArguments; class PropertyCallbackArguments; class FunctionCallbackArguments; class GlobalHandles; }
/**
* General purpose unique identifier. */ class UniqueId { public: explicit UniqueId(intptr_t data) : data_(data) {}
bool operator==(const UniqueId& other) const { return data_ == other.data_; }
bool operator!=(const UniqueId& other) const { return data_ != other.data_; }
bool operator<(const UniqueId& other) const { return data_ < other.data_; }
private: intptr_t data_; };
// --- Handles ---
#define TYPE_CHECK(T, S) \
while (false) { \ *(static_cast<T* volatile*>(0)) = static_cast<S*>(0); \ }
/**
* An object reference managed by the v8 garbage collector. * * All objects returned from v8 have to be tracked by the garbage * collector so that it knows that the objects are still alive. Also, * because the garbage collector may move objects, it is unsafe to * point directly to an object. Instead, all objects are stored in * handles which are known by the garbage collector and updated * whenever an object moves. Handles should always be passed by value * (except in cases like out-parameters) and they should never be * allocated on the heap. * * There are two types of handles: local and persistent handles. * Local handles are light-weight and transient and typically used in * local operations. They are managed by HandleScopes. Persistent * handles can be used when storing objects across several independent * operations and have to be explicitly deallocated when they're no * longer used. * * It is safe to extract the object stored in the handle by * dereferencing the handle (for instance, to extract the Object* from * a Handle<Object>); the value will still be governed by a handle * behind the scenes and the same rules apply to these values as to * their handles. */ template <class T> class Handle { public: /**
* Creates an empty handle. */ V8_INLINE Handle() : val_(0) {}
/**
* Creates a handle for the contents of the specified handle. This * constructor allows you to pass handles as arguments by value and * to assign between handles. However, if you try to assign between * incompatible handles, for instance from a Handle<String> to a * Handle<Number> it will cause a compile-time error. Assigning * between compatible handles, for instance assigning a * Handle<String> to a variable declared as Handle<Value>, is legal * because String is a subclass of Value. */ template <class S> V8_INLINE Handle(Handle<S> that) : val_(reinterpret_cast<T*>(*that)) { /**
* This check fails when trying to convert between incompatible * handles. For example, converting from a Handle<String> to a * Handle<Number>. */ TYPE_CHECK(T, S); }
/**
* Returns true if the handle is empty. */ V8_INLINE bool IsEmpty() const { return val_ == 0; }
/**
* Sets the handle to be empty. IsEmpty() will then return true. */ V8_INLINE void Clear() { val_ = 0; }
V8_INLINE T* operator->() const { return val_; }
V8_INLINE T* operator*() const { return val_; }
/**
* Checks whether two handles are the same. * Returns true if both are empty, or if the objects * to which they refer are identical. * The handles' references are not checked. */ template <class S> V8_INLINE bool operator==(const Handle<S>& that) const { internal::Object** a = reinterpret_cast<internal::Object**>(this->val_); internal::Object** b = reinterpret_cast<internal::Object**>(that.val_); if (a == 0) return b == 0; if (b == 0) return false; return *a == *b; }
template <class S> V8_INLINE bool operator==( const PersistentBase<S>& that) const { internal::Object** a = reinterpret_cast<internal::Object**>(this->val_); internal::Object** b = reinterpret_cast<internal::Object**>(that.val_); if (a == 0) return b == 0; if (b == 0) return false; return *a == *b; }
/**
* Checks whether two handles are different. * Returns true if only one of the handles is empty, or if * the objects to which they refer are different. * The handles' references are not checked. */ template <class S> V8_INLINE bool operator!=(const Handle<S>& that) const { return !operator==(that); }
template <class S> V8_INLINE bool operator!=( const Persistent<S>& that) const { return !operator==(that); }
template <class S> V8_INLINE static Handle<T> Cast(Handle<S> that) { #ifdef V8_ENABLE_CHECKS
// If we're going to perform the type check then we have to check
// that the handle isn't empty before doing the checked cast.
if (that.IsEmpty()) return Handle<T>(); #endif
return Handle<T>(T::Cast(*that)); }
template <class S> V8_INLINE Handle<S> As() { return Handle<S>::Cast(*this); }
V8_INLINE static Handle<T> New(Isolate* isolate, Handle<T> that) { return New(isolate, that.val_); } V8_INLINE static Handle<T> New(Isolate* isolate, const PersistentBase<T>& that) { return New(isolate, that.val_); }
private: friend class Utils; template<class F, class M> friend class Persistent; template<class F> friend class PersistentBase; template<class F> friend class Handle; template<class F> friend class Local; template<class F> friend class FunctionCallbackInfo; template<class F> friend class PropertyCallbackInfo; template<class F> friend class internal::CustomArguments; friend Handle<Primitive> Undefined(Isolate* isolate); friend Handle<Primitive> Null(Isolate* isolate); friend Handle<Boolean> True(Isolate* isolate); friend Handle<Boolean> False(Isolate* isolate); friend class Context; friend class HandleScope; friend class Object; friend class Private;
/**
* Creates a new handle for the specified value. */ V8_INLINE explicit Handle(T* val) : val_(val) {}
V8_INLINE static Handle<T> New(Isolate* isolate, T* that);
T* val_; };
/**
* A light-weight stack-allocated object handle. All operations * that return objects from within v8 return them in local handles. They * are created within HandleScopes, and all local handles allocated within a * handle scope are destroyed when the handle scope is destroyed. Hence it * is not necessary to explicitly deallocate local handles. */ template <class T> class Local : public Handle<T> { public: V8_INLINE Local(); template <class S> V8_INLINE Local(Local<S> that) : Handle<T>(reinterpret_cast<T*>(*that)) { /**
* This check fails when trying to convert between incompatible * handles. For example, converting from a Handle<String> to a * Handle<Number>. */ TYPE_CHECK(T, S); }
template <class S> V8_INLINE static Local<T> Cast(Local<S> that) { #ifdef V8_ENABLE_CHECKS
// If we're going to perform the type check then we have to check
// that the handle isn't empty before doing the checked cast.
if (that.IsEmpty()) return Local<T>(); #endif
return Local<T>(T::Cast(*that)); } template <class S> V8_INLINE Local(Handle<S> that) : Handle<T>(reinterpret_cast<T*>(*that)) { TYPE_CHECK(T, S); }
template <class S> V8_INLINE Local<S> As() { return Local<S>::Cast(*this); }
/**
* Create a local handle for the content of another handle. * The referee is kept alive by the local handle even when * the original handle is destroyed/disposed. */ V8_INLINE static Local<T> New(Isolate* isolate, Handle<T> that); V8_INLINE static Local<T> New(Isolate* isolate, const PersistentBase<T>& that);
private: friend class Utils; template<class F> friend class Eternal; template<class F> friend class PersistentBase; template<class F, class M> friend class Persistent; template<class F> friend class Handle; template<class F> friend class Local; template<class F> friend class FunctionCallbackInfo; template<class F> friend class PropertyCallbackInfo; friend class String; friend class Object; friend class Context; template<class F> friend class internal::CustomArguments; friend class HandleScope; friend class EscapableHandleScope; template<class F1, class F2, class F3> friend class PersistentValueMap; template<class F1, class F2> friend class PersistentValueVector;
template <class S> V8_INLINE Local(S* that) : Handle<T>(that) { } V8_INLINE static Local<T> New(Isolate* isolate, T* that); };
// Eternal handles are set-once handles that live for the life of the isolate.
template <class T> class Eternal { public: V8_INLINE Eternal() : index_(kInitialValue) { } template<class S> V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) { Set(isolate, handle); } // Can only be safely called if already set.
V8_INLINE Local<T> Get(Isolate* isolate); V8_INLINE bool IsEmpty() { return index_ == kInitialValue; } template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
private: static const int kInitialValue = -1; int index_; };
template<class T, class P> class WeakCallbackData { public: typedef void (*Callback)(const WeakCallbackData<T, P>& data);
V8_INLINE Isolate* GetIsolate() const { return isolate_; } V8_INLINE Local<T> GetValue() const { return handle_; } V8_INLINE P* GetParameter() const { return parameter_; }
private: friend class internal::GlobalHandles; WeakCallbackData(Isolate* isolate, Local<T> handle, P* parameter) : isolate_(isolate), handle_(handle), parameter_(parameter) { } Isolate* isolate_; Local<T> handle_; P* parameter_; };
/**
* An object reference that is independent of any handle scope. Where * a Local handle only lives as long as the HandleScope in which it was * allocated, a PersistentBase handle remains valid until it is explicitly * disposed. * * A persistent handle contains a reference to a storage cell within * the v8 engine which holds an object value and which is updated by * the garbage collector whenever the object is moved. A new storage * cell can be created using the constructor or PersistentBase::Reset and * existing handles can be disposed using PersistentBase::Reset. * */ template <class T> class PersistentBase { public: /**
* If non-empty, destroy the underlying storage cell * IsEmpty() will return true after this call. */ V8_INLINE void Reset(); /**
* If non-empty, destroy the underlying storage cell * and create a new one with the contents of other if other is non empty */ template <class S> V8_INLINE void Reset(Isolate* isolate, const Handle<S>& other);
/**
* If non-empty, destroy the underlying storage cell * and create a new one with the contents of other if other is non empty */ template <class S> V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
V8_INLINE bool IsEmpty() const { return val_ == 0; }
template <class S> V8_INLINE bool operator==(const PersistentBase<S>& that) const { internal::Object** a = reinterpret_cast<internal::Object**>(this->val_); internal::Object** b = reinterpret_cast<internal::Object**>(that.val_); if (a == 0) return b == 0; if (b == 0) return false; return *a == *b; }
template <class S> V8_INLINE bool operator==(const Handle<S>& that) const { internal::Object** a = reinterpret_cast<internal::Object**>(this->val_); internal::Object** b = reinterpret_cast<internal::Object**>(that.val_); if (a == 0) return b == 0; if (b == 0) return false; return *a == *b; }
template <class S> V8_INLINE bool operator!=(const PersistentBase<S>& that) const { return !operator==(that); }
template <class S> V8_INLINE bool operator!=(const Handle<S>& that) const { return !operator==(that); }
/**
* Install a finalization callback on this object. * NOTE: There is no guarantee as to *when* or even *if* the callback is * invoked. The invocation is performed solely on a best effort basis. * As always, GC-based finalization should *not* be relied upon for any * critical form of resource management! */ template<typename P> V8_INLINE void SetWeak( P* parameter, typename WeakCallbackData<T, P>::Callback callback);
template<typename S, typename P> V8_INLINE void SetWeak( P* parameter, typename WeakCallbackData<S, P>::Callback callback);
template<typename P> V8_INLINE P* ClearWeak();
// TODO(dcarney): remove this.
V8_INLINE void ClearWeak() { ClearWeak<void>(); }
/**
* Marks the reference to this object independent. Garbage collector is free * to ignore any object groups containing this object. Weak callback for an * independent handle should not assume that it will be preceded by a global * GC prologue callback or followed by a global GC epilogue callback. */ V8_INLINE void MarkIndependent();
/**
* Marks the reference to this object partially dependent. Partially dependent * handles only depend on other partially dependent handles and these * dependencies are provided through object groups. It provides a way to build * smaller object groups for young objects that represent only a subset of all * external dependencies. This mark is automatically cleared after each * garbage collection. */ V8_INLINE void MarkPartiallyDependent();
V8_INLINE bool IsIndependent() const;
/** Checks if the handle holds the only reference to an object. */ V8_INLINE bool IsNearDeath() const;
/** Returns true if the handle's reference is weak. */ V8_INLINE bool IsWeak() const;
/**
* Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface * description in v8-profiler.h for details. */ V8_INLINE void SetWrapperClassId(uint16_t class_id);
/**
* Returns the class ID previously assigned to this handle or 0 if no class ID * was previously assigned. */ V8_INLINE uint16_t WrapperClassId() const;
private: friend class Isolate; friend class Utils; template<class F> friend class Handle; template<class F> friend class Local; template<class F1, class F2> friend class Persistent; template<class F> friend class UniquePersistent; template<class F> friend class PersistentBase; template<class F> friend class ReturnValue; template<class F1, class F2, class F3> friend class PersistentValueMap; template<class F1, class F2> friend class PersistentValueVector; friend class Object;
explicit V8_INLINE PersistentBase(T* val) : val_(val) {} PersistentBase(PersistentBase& other); // NOLINT
void operator=(PersistentBase&); V8_INLINE static T* New(Isolate* isolate, T* that);
T* val_; };
/**
* Default traits for Persistent. This class does not allow * use of the copy constructor or assignment operator. * At present kResetInDestructor is not set, but that will change in a future * version. */ template<class T> class NonCopyablePersistentTraits { public: typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent; static const bool kResetInDestructor = false; template<class S, class M> V8_INLINE static void Copy(const Persistent<S, M>& source, NonCopyablePersistent* dest) { Uncompilable<Object>(); } // TODO(dcarney): come up with a good compile error here.
template<class O> V8_INLINE static void Uncompilable() { TYPE_CHECK(O, Primitive); } };
/**
* Helper class traits to allow copying and assignment of Persistent. * This will clone the contents of storage cell, but not any of the flags, etc. */ template<class T> struct CopyablePersistentTraits { typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent; static const bool kResetInDestructor = true; template<class S, class M> static V8_INLINE void Copy(const Persistent<S, M>& source, CopyablePersistent* dest) { // do nothing, just allow copy
} };
/**
* A PersistentBase which allows copy and assignment. * * Copy, assignment and destructor bevavior is controlled by the traits * class M. * * Note: Persistent class hierarchy is subject to future changes. */ template <class T, class M> class Persistent : public PersistentBase<T> { public: /**
* A Persistent with no storage cell. */ V8_INLINE Persistent() : PersistentBase<T>(0) { } /**
* Construct a Persistent from a Handle. * When the Handle is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S> V8_INLINE Persistent(Isolate* isolate, Handle<S> that) : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) { TYPE_CHECK(T, S); } /**
* Construct a Persistent from a Persistent. * When the Persistent is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S, class M2> V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that) : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) { TYPE_CHECK(T, S); } /**
* The copy constructors and assignment operator create a Persistent * exactly as the Persistent constructor, but the Copy function from the * traits class is called, allowing the setting of flags based on the * copied Persistent. */ V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) { Copy(that); } template <class S, class M2> V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) { Copy(that); } V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
Copy(that); return *this; } template <class S, class M2> V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
Copy(that); return *this; } /**
* The destructor will dispose the Persistent based on the * kResetInDestructor flags in the traits class. Since not calling dispose * can result in a memory leak, it is recommended to always set this flag. */ V8_INLINE ~Persistent() { if (M::kResetInDestructor) this->Reset(); }
// TODO(dcarney): this is pretty useless, fix or remove
template <class S> V8_INLINE static Persistent<T>& Cast(Persistent<S>& that) { // NOLINT
#ifdef V8_ENABLE_CHECKS
// If we're going to perform the type check then we have to check
// that the handle isn't empty before doing the checked cast.
if (!that.IsEmpty()) T::Cast(*that); #endif
return reinterpret_cast<Persistent<T>&>(that); }
// TODO(dcarney): this is pretty useless, fix or remove
template <class S> V8_INLINE Persistent<S>& As() { // NOLINT
return Persistent<S>::Cast(*this); }
private: friend class Isolate; friend class Utils; template<class F> friend class Handle; template<class F> friend class Local; template<class F1, class F2> friend class Persistent; template<class F> friend class ReturnValue;
template <class S> V8_INLINE Persistent(S* that) : PersistentBase<T>(that) { } V8_INLINE T* operator*() const { return this->val_; } template<class S, class M2> V8_INLINE void Copy(const Persistent<S, M2>& that); };
/**
* A PersistentBase which has move semantics. * * Note: Persistent class hierarchy is subject to future changes. */ template<class T> class UniquePersistent : public PersistentBase<T> { struct RValue { V8_INLINE explicit RValue(UniquePersistent* obj) : object(obj) {} UniquePersistent* object; };
public: /**
* A UniquePersistent with no storage cell. */ V8_INLINE UniquePersistent() : PersistentBase<T>(0) { } /**
* Construct a UniquePersistent from a Handle. * When the Handle is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S> V8_INLINE UniquePersistent(Isolate* isolate, Handle<S> that) : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) { TYPE_CHECK(T, S); } /**
* Construct a UniquePersistent from a PersistentBase. * When the Persistent is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S> V8_INLINE UniquePersistent(Isolate* isolate, const PersistentBase<S>& that) : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) { TYPE_CHECK(T, S); } /**
* Move constructor. */ V8_INLINE UniquePersistent(RValue rvalue) : PersistentBase<T>(rvalue.object->val_) { rvalue.object->val_ = 0; } V8_INLINE ~UniquePersistent() { this->Reset(); } /**
* Move via assignment. */ template<class S> V8_INLINE UniquePersistent& operator=(UniquePersistent<S> rhs) { TYPE_CHECK(T, S); this->Reset(); this->val_ = rhs.val_; rhs.val_ = 0; return *this; } /**
* Cast operator for moves. */ V8_INLINE operator RValue() { return RValue(this); } /**
* Pass allows returning uniques from functions, etc. */ UniquePersistent Pass() { return UniquePersistent(RValue(this)); }
private: UniquePersistent(UniquePersistent&); void operator=(UniquePersistent&); };
/**
* A stack-allocated class that governs a number of local handles. * After a handle scope has been created, all local handles will be * allocated within that handle scope until either the handle scope is * deleted or another handle scope is created. If there is already a * handle scope and a new one is created, all allocations will take * place in the new handle scope until it is deleted. After that, * new handles will again be allocated in the original handle scope. * * After the handle scope of a local handle has been deleted the * garbage collector will no longer track the object stored in the * handle and may deallocate it. The behavior of accessing a handle * for which the handle scope has been deleted is undefined. */ class V8_EXPORT HandleScope { public: HandleScope(Isolate* isolate);
~HandleScope();
/**
* Counts the number of allocated handles. */ static int NumberOfHandles(Isolate* isolate);
V8_INLINE Isolate* GetIsolate() const { return reinterpret_cast<Isolate*>(isolate_); }
protected: V8_INLINE HandleScope() {}
void Initialize(Isolate* isolate);
static internal::Object** CreateHandle(internal::Isolate* isolate, internal::Object* value);
private: // Uses heap_object to obtain the current Isolate.
static internal::Object** CreateHandle(internal::HeapObject* heap_object, internal::Object* value);
// Make it hard to create heap-allocated or illegal handle scopes by
// disallowing certain operations.
HandleScope(const HandleScope&); void operator=(const HandleScope&); void* operator new(size_t size); void operator delete(void*, size_t);
internal::Isolate* isolate_; internal::Object** prev_next_; internal::Object** prev_limit_;
// Local::New uses CreateHandle with an Isolate* parameter.
template<class F> friend class Local;
// Object::GetInternalField and Context::GetEmbedderData use CreateHandle with
// a HeapObject* in their shortcuts.
friend class Object; friend class Context; };
/**
* A HandleScope which first allocates a handle in the current scope * which will be later filled with the escape value. */ class V8_EXPORT EscapableHandleScope : public HandleScope { public: EscapableHandleScope(Isolate* isolate); V8_INLINE ~EscapableHandleScope() {}
/**
* Pushes the value into the previous scope and returns a handle to it. * Cannot be called twice. */ template <class T> V8_INLINE Local<T> Escape(Local<T> value) { internal::Object** slot = Escape(reinterpret_cast<internal::Object**>(*value)); return Local<T>(reinterpret_cast<T*>(slot)); }
private: internal::Object** Escape(internal::Object** escape_value);
// Make it hard to create heap-allocated or illegal handle scopes by
// disallowing certain operations.
EscapableHandleScope(const EscapableHandleScope&); void operator=(const EscapableHandleScope&); void* operator new(size_t size); void operator delete(void*, size_t);
internal::Object** escape_slot_; };
/**
* A simple Maybe type, representing an object which may or may not have a * value. */ template<class T> struct Maybe { Maybe() : has_value(false) {} explicit Maybe(T t) : has_value(true), value(t) {} Maybe(bool has, T t) : has_value(has), value(t) {}
bool has_value; T value; };
// Convenience wrapper.
template <class T> inline Maybe<T> maybe(T t) { return Maybe<T>(t); }
// --- Special objects ---
/**
* The superclass of values and API object templates. */ class V8_EXPORT Data { private: Data(); };
/**
* The origin, within a file, of a script. */ class ScriptOrigin { public: V8_INLINE ScriptOrigin( Handle<Value> resource_name, Handle<Integer> resource_line_offset = Handle<Integer>(), Handle<Integer> resource_column_offset = Handle<Integer>(), Handle<Boolean> resource_is_shared_cross_origin = Handle<Boolean>(), Handle<Integer> script_id = Handle<Integer>()) : resource_name_(resource_name), resource_line_offset_(resource_line_offset), resource_column_offset_(resource_column_offset), resource_is_shared_cross_origin_(resource_is_shared_cross_origin), script_id_(script_id) { } V8_INLINE Handle<Value> ResourceName() const; V8_INLINE Handle<Integer> ResourceLineOffset() const; V8_INLINE Handle<Integer> ResourceColumnOffset() const; V8_INLINE Handle<Boolean> ResourceIsSharedCrossOrigin() const; V8_INLINE Handle<Integer> ScriptID() const; private: Handle<Value> resource_name_; Handle<Integer> resource_line_offset_; Handle<Integer> resource_column_offset_; Handle<Boolean> resource_is_shared_cross_origin_; Handle<Integer> script_id_; };
/**
* A compiled JavaScript script, not yet tied to a Context. */ class V8_EXPORT UnboundScript { public: /**
* Binds the script to the currently entered context. */ Local<Script> BindToCurrentContext();
int GetId(); Handle<Value> GetScriptName();
/**
* Data read from magic sourceURL comments. */ Handle<Value> GetSourceURL(); /**
* Data read from magic sourceMappingURL comments. */ Handle<Value> GetSourceMappingURL();
/**
* Returns zero based line number of the code_pos location in the script. * -1 will be returned if no information available. */ int GetLineNumber(int code_pos);
static const int kNoScriptId = 0; };
/**
* A compiled JavaScript script, tied to a Context which was active when the * script was compiled. */ class V8_EXPORT Script { public: /**
* A shorthand for ScriptCompiler::Compile(). */ static Local<Script> Compile(Handle<String> source, ScriptOrigin* origin = NULL);
// To be decprecated, use the Compile above.
static Local<Script> Compile(Handle<String> source, Handle<String> file_name);
/**
* Runs the script returning the resulting value. It will be run in the * context in which it was created (ScriptCompiler::CompileBound or * UnboundScript::BindToGlobalContext()). */ Local<Value> Run();
/**
* Returns the corresponding context-unbound script. */ Local<UnboundScript> GetUnboundScript();
V8_DEPRECATED("Use GetUnboundScript()->GetId()", int GetId()) { return GetUnboundScript()->GetId(); } };
/**
* For compiling scripts. */ class V8_EXPORT ScriptCompiler { public: /**
* Compilation data that the embedder can cache and pass back to speed up * future compilations. The data is produced if the CompilerOptions passed to * the compilation functions in ScriptCompiler contains produce_data_to_cache * = true. The data to cache can then can be retrieved from * UnboundScript. */ struct V8_EXPORT CachedData { enum BufferPolicy { BufferNotOwned, BufferOwned };
CachedData() : data(NULL), length(0), buffer_policy(BufferNotOwned) {}
// If buffer_policy is BufferNotOwned, the caller keeps the ownership of
// data and guarantees that it stays alive until the CachedData object is
// destroyed. If the policy is BufferOwned, the given data will be deleted
// (with delete[]) when the CachedData object is destroyed.
CachedData(const uint8_t* data, int length, BufferPolicy buffer_policy = BufferNotOwned); ~CachedData(); // TODO(marja): Async compilation; add constructors which take a callback
// which will be called when V8 no longer needs the data.
const uint8_t* data; int length; BufferPolicy buffer_policy;
private: // Prevent copying. Not implemented.
CachedData(const CachedData&); CachedData& operator=(const CachedData&); };
/**
* Source code which can be then compiled to a UnboundScript or Script. */ class Source { public: // Source takes ownership of CachedData.
V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin, CachedData* cached_data = NULL); V8_INLINE Source(Local<String> source_string, CachedData* cached_data = NULL); V8_INLINE ~Source();
// Ownership of the CachedData or its buffers is *not* transferred to the
// caller. The CachedData object is alive as long as the Source object is
// alive.
V8_INLINE const CachedData* GetCachedData() const;
private: friend class ScriptCompiler; // Prevent copying. Not implemented.
Source(const Source&); Source& operator=(const Source&);
Local<String> source_string;
// Origin information
Handle<Value> resource_name; Handle<Integer> resource_line_offset; Handle<Integer> resource_column_offset; Handle<Boolean> resource_is_shared_cross_origin;
// Cached data from previous compilation (if a kConsume*Cache flag is
// set), or hold newly generated cache data (kProduce*Cache flags) are
// set when calling a compile method.
CachedData* cached_data; };
/**
* For streaming incomplete script data to V8. The embedder should implement a * subclass of this class. */ class ExternalSourceStream { public: virtual ~ExternalSourceStream() {}
/**
* V8 calls this to request the next chunk of data from the embedder. This * function will be called on a background thread, so it's OK to block and * wait for the data, if the embedder doesn't have data yet. Returns the * length of the data returned. When the data ends, GetMoreData should * return 0. Caller takes ownership of the data. * * When streaming UTF-8 data, V8 handles multi-byte characters split between * two data chunks, but doesn't handle multi-byte characters split between * more than two data chunks. The embedder can avoid this problem by always * returning at least 2 bytes of data. * * If the embedder wants to cancel the streaming, they should make the next * GetMoreData call return 0. V8 will interpret it as end of data (and most * probably, parsing will fail). The streaming task will return as soon as * V8 has parsed the data it received so far. */ virtual size_t GetMoreData(const uint8_t** src) = 0; };
/**
* Source code which can be streamed into V8 in pieces. It will be parsed * while streaming. It can be compiled after the streaming is complete. * StreamedSource must be kept alive while the streaming task is ran (see * ScriptStreamingTask below). */ class V8_EXPORT StreamedSource { public: enum Encoding { ONE_BYTE, TWO_BYTE, UTF8 };
StreamedSource(ExternalSourceStream* source_stream, Encoding encoding); ~StreamedSource();
// Ownership of the CachedData or its buffers is *not* transferred to the
// caller. The CachedData object is alive as long as the StreamedSource
// object is alive.
const CachedData* GetCachedData() const;
internal::StreamedSource* impl() const { return impl_; }
private: // Prevent copying. Not implemented.
StreamedSource(const StreamedSource&); StreamedSource& operator=(const StreamedSource&);
internal::StreamedSource* impl_; };
/**
* A streaming task which the embedder must run on a background thread to * stream scripts into V8. Returned by ScriptCompiler::StartStreamingScript. */ class ScriptStreamingTask { public: virtual ~ScriptStreamingTask() {} virtual void Run() = 0; };
enum CompileOptions { kNoCompileOptions = 0, kProduceParserCache, kConsumeParserCache, kProduceCodeCache, kConsumeCodeCache,
// Support the previous API for a transition period.
kProduceDataToCache };
/**
* Compiles the specified script (context-independent). * Cached data as part of the source object can be optionally produced to be * consumed later to speed up compilation of identical source scripts. * * Note that when producing cached data, the source must point to NULL for * cached data. When consuming cached data, the cached data must have been * produced by the same version of V8. * * \param source Script source code. * \return Compiled script object (context independent; for running it must be * bound to a context). */ static Local<UnboundScript> CompileUnbound( Isolate* isolate, Source* source, CompileOptions options = kNoCompileOptions);
/**
* Compiles the specified script (bound to current context). * * \param source Script source code. * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile() * using pre_data speeds compilation if it's done multiple times. * Owned by caller, no references are kept when this function returns. * \return Compiled script object, bound to the context that was active * when this function was called. When run it will always use this * context. */ static Local<Script> Compile( Isolate* isolate, Source* source, CompileOptions options = kNoCompileOptions);
/**
* Returns a task which streams script data into V8, or NULL if the script * cannot be streamed. The user is responsible for running the task on a * background thread and deleting it. When ran, the task starts parsing the * script, and it will request data from the StreamedSource as needed. When * ScriptStreamingTask::Run exits, all data has been streamed and the script * can be compiled (see Compile below). * * This API allows to start the streaming with as little data as possible, and * the remaining data (for example, the ScriptOrigin) is passed to Compile. */ static ScriptStreamingTask* StartStreamingScript( Isolate* isolate, StreamedSource* source, CompileOptions options = kNoCompileOptions);
/**
* Compiles a streamed script (bound to current context). * * This can only be called after the streaming has finished * (ScriptStreamingTask has been run). V8 doesn't construct the source string * during streaming, so the embedder needs to pass the full source here. */ static Local<Script> Compile(Isolate* isolate, StreamedSource* source, Handle<String> full_source_string, const ScriptOrigin& origin); };
/**
* An error message. */ class V8_EXPORT Message { public: Local<String> Get() const; Local<String> GetSourceLine() const;
/**
* Returns the origin for the script from where the function causing the * error originates. */ ScriptOrigin GetScriptOrigin() const;
/**
* Returns the resource name for the script from where the function causing * the error originates. */ Handle<Value> GetScriptResourceName() const;
/**
* Exception stack trace. By default stack traces are not captured for * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows * to change this option. */ Handle<StackTrace> GetStackTrace() const;
/**
* Returns the number, 1-based, of the line where the error occurred. */ int GetLineNumber() const;
/**
* Returns the index within the script of the first character where * the error occurred. */ int GetStartPosition() const;
/**
* Returns the index within the script of the last character where * the error occurred. */ int GetEndPosition() const;
/**
* Returns the index within the line of the first character where * the error occurred. */ int GetStartColumn() const;
/**
* Returns the index within the line of the last character where * the error occurred. */ int GetEndColumn() const;
/**
* Passes on the value set by the embedder when it fed the script from which * this Message was generated to V8. */ bool IsSharedCrossOrigin() const;
// TODO(1245381): Print to a string instead of on a FILE.
static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
static const int kNoLineNumberInfo = 0; static const int kNoColumnInfo = 0; static const int kNoScriptIdInfo = 0; };
/**
* Representation of a JavaScript stack trace. The information collected is a * snapshot of the execution stack and the information remains valid after * execution continues. */ class V8_EXPORT StackTrace { public: /**
* Flags that determine what information is placed captured for each * StackFrame when grabbing the current stack trace. */ enum StackTraceOptions { kLineNumber = 1, kColumnOffset = 1 << 1 | kLineNumber, kScriptName = 1 << 2, kFunctionName = 1 << 3, kIsEval = 1 << 4, kIsConstructor = 1 << 5, kScriptNameOrSourceURL = 1 << 6, kScriptId = 1 << 7, kExposeFramesAcrossSecurityOrigins = 1 << 8, kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName, kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL };
/**
* Returns a StackFrame at a particular index. */ Local<StackFrame> GetFrame(uint32_t index) const;
/**
* Returns the number of StackFrames. */ int GetFrameCount() const;
/**
* Returns StackTrace as a v8::Array that contains StackFrame objects. */ Local<Array> AsArray();
/**
* Grab a snapshot of the current JavaScript execution stack. * * \param frame_limit The maximum number of stack frames we want to capture. * \param options Enumerates the set of things we will capture for each * StackFrame. */ static Local<StackTrace> CurrentStackTrace( Isolate* isolate, int frame_limit, StackTraceOptions options = kOverview); };
/**
* A single JavaScript stack frame. */ class V8_EXPORT StackFrame { public: /**
* Returns the number, 1-based, of the line for the associate function call. * This method will return Message::kNoLineNumberInfo if it is unable to * retrieve the line number, or if kLineNumber was not passed as an option * when capturing the StackTrace. */ int GetLineNumber() const;
/**
* Returns the 1-based column offset on the line for the associated function * call. * This method will return Message::kNoColumnInfo if it is unable to retrieve * the column number, or if kColumnOffset was not passed as an option when * capturing the StackTrace. */ int GetColumn() const;
/**
* Returns the id of the script for the function for this StackFrame. * This method will return Message::kNoScriptIdInfo if it is unable to * retrieve the script id, or if kScriptId was not passed as an option when * capturing the StackTrace. */ int GetScriptId() const;
/**
* Returns the name of the resource that contains the script for the * function for this StackFrame. */ Local<String> GetScriptName() const;
/**
* Returns the name of the resource that contains the script for the * function for this StackFrame or sourceURL value if the script name * is undefined and its source ends with //# sourceURL=... string or
* deprecated //@ sourceURL=... string.
*/ Local<String> GetScriptNameOrSourceURL() const;
/**
* Returns the name of the function associated with this stack frame. */ Local<String> GetFunctionName() const;
/**
* Returns whether or not the associated function is compiled via a call to * eval(). */ bool IsEval() const;
/**
* Returns whether or not the associated function is called as a * constructor via "new". */ bool IsConstructor() const; };
// A StateTag represents a possible state of the VM.
enum StateTag { JS, GC, COMPILER, OTHER, EXTERNAL, IDLE };
// A RegisterState represents the current state of registers used
// by the sampling profiler API.
struct RegisterState { RegisterState() : pc(NULL), sp(NULL), fp(NULL) {} void* pc; // Instruction pointer.
void* sp; // Stack pointer.
void* fp; // Frame pointer.
};
// The output structure filled up by GetStackSample API function.
struct SampleInfo { size_t frames_count; StateTag vm_state; };
/**
* A JSON Parser. */ class V8_EXPORT JSON { public: /**
* Tries to parse the string |json_string| and returns it as value if * successful. * * \param json_string The string to parse. * \return The corresponding value if successfully parsed. */ static Local<Value> Parse(Local<String> json_string); };
// --- Value ---
/**
* The superclass of all JavaScript values and objects. */ class V8_EXPORT Value : public Data { public: /**
* Returns true if this value is the undefined value. See ECMA-262 * 4.3.10. */ V8_INLINE bool IsUndefined() const;
/**
* Returns true if this value is the null value. See ECMA-262 * 4.3.11. */ V8_INLINE bool IsNull() const;
/**
* Returns true if this value is true. */ bool IsTrue() const;
/**
* Returns true if this value is false. */ bool IsFalse() const;
/**
* Returns true if this value is a symbol or a string. * This is an experimental feature. */ bool IsName() const;
/**
* Returns true if this value is an instance of the String type. * See ECMA-262 8.4. */ V8_INLINE bool IsString() const;
/**
* Returns true if this value is a symbol. * This is an experimental feature. */ bool IsSymbol() const;
/**
* Returns true if this value is a function. */ bool IsFunction() const;
/**
* Returns true if this value is an array. */ bool IsArray() const;
/**
* Returns true if this value is an object. */ bool IsObject() const;
/**
* Returns true if this value is boolean. */ bool IsBoolean() const;
/**
* Returns true if this value is a number. */ bool IsNumber() const;
/**
* Returns true if this value is external. */ bool IsExternal() const;
/**
* Returns true if this value is a 32-bit signed integer. */ bool IsInt32() const;
/**
* Returns true if this value is a 32-bit unsigned integer. */ bool IsUint32() const;
/**
* Returns true if this value is a Date. */ bool IsDate() const;
/**
* Returns true if this value is an Arguments object. */ bool IsArgumentsObject() const;
/**
* Returns true if this value is a Boolean object. */ bool IsBooleanObject() const;
/**
* Returns true if this value is a Number object. */ bool IsNumberObject() const;
/**
* Returns true if this value is a String object. */ bool IsStringObject() const;
/**
* Returns true if this value is a Symbol object. * This is an experimental feature. */ bool IsSymbolObject() const;
/**
* Returns true if this value is a NativeError. */ bool IsNativeError() const;
/**
* Returns true if this value is a RegExp. */ bool IsRegExp() const;
/**
* Returns true if this value is a Generator function. * This is an experimental feature. */ bool IsGeneratorFunction() const;
/**
* Returns true if this value is a Generator object (iterator). * This is an experimental feature. */ bool IsGeneratorObject() const;
/**
* Returns true if this value is a Promise. * This is an experimental feature. */ bool IsPromise() const;
/**
* Returns true if this value is a Map. * This is an experimental feature. */ bool IsMap() const;
/**
* Returns true if this value is a Set. * This is an experimental feature. */ bool IsSet() const;
/**
* Returns true if this value is a WeakMap. * This is an experimental feature. */ bool IsWeakMap() const;
/**
* Returns true if this value is a WeakSet. * This is an experimental feature. */ bool IsWeakSet() const;
/**
* Returns true if this value is an ArrayBuffer. * This is an experimental feature. */ bool IsArrayBuffer() const;
/**
* Returns true if this value is an ArrayBufferView. * This is an experimental feature. */ bool IsArrayBufferView() const;
/**
* Returns true if this value is one of TypedArrays. * This is an experimental feature. */ bool IsTypedArray() const;
/**
* Returns true if this value is an Uint8Array. * This is an experimental feature. */ bool IsUint8Array() const;
/**
* Returns true if this value is an Uint8ClampedArray. * This is an experimental feature. */ bool IsUint8ClampedArray() const;
/**
* Returns true if this value is an Int8Array. * This is an experimental feature. */ bool IsInt8Array() const;
/**
* Returns true if this value is an Uint16Array. * This is an experimental feature. */ bool IsUint16Array() const;
/**
* Returns true if this value is an Int16Array. * This is an experimental feature. */ bool IsInt16Array() const;
/**
* Returns true if this value is an Uint32Array. * This is an experimental feature. */ bool IsUint32Array() const;
/**
* Returns true if this value is an Int32Array. * This is an experimental feature. */ bool IsInt32Array() const;
/**
* Returns true if this value is a Float32Array. * This is an experimental feature. */ bool IsFloat32Array() const;
/**
* Returns true if this value is a Float64Array. * This is an experimental feature. */ bool IsFloat64Array() const;
/**
* Returns true if this value is a DataView. * This is an experimental feature. */ bool IsDataView() const;
Local<Boolean> ToBoolean() const; Local<Number> ToNumber() const; Local<String> ToString() const; Local<String> ToDetailString() const; Local<Object> ToObject() const; Local<Integer> ToInteger() const; Local<Uint32> ToUint32() const; Local<Int32> ToInt32() const;
/**
* Attempts to convert a string to an array index. * Returns an empty handle if the conversion fails. */ Local<Uint32> ToArrayIndex() const;
bool BooleanValue() const; double NumberValue() const; int64_t IntegerValue() const; uint32_t Uint32Value() const; int32_t Int32Value() const;
/** JS == */ bool Equals(Handle<Value> that) const; bool StrictEquals(Handle<Value> that) const; bool SameValue(Handle<Value> that) const;
template <class T> V8_INLINE static Value* Cast(T* value);
private: V8_INLINE bool QuickIsUndefined() const; V8_INLINE bool QuickIsNull() const; V8_INLINE bool QuickIsString() const; bool FullIsUndefined() const; bool FullIsNull() const; bool FullIsString() const; };
/**
* The superclass of primitive values. See ECMA-262 4.3.2. */ class V8_EXPORT Primitive : public Value { };
/**
* A primitive boolean value (ECMA-262, 4.3.14). Either the true * or false value. */ class V8_EXPORT Boolean : public Primitive { public: bool Value() const; V8_INLINE static Handle<Boolean> New(Isolate* isolate, bool value); };
/**
* A superclass for symbols and strings. */ class V8_EXPORT Name : public Primitive { public: V8_INLINE static Name* Cast(v8::Value* obj); private: static void CheckCast(v8::Value* obj); };
/**
* A JavaScript string value (ECMA-262, 4.3.17). */ class V8_EXPORT String : public Name { public: enum Encoding { UNKNOWN_ENCODING = 0x1, TWO_BYTE_ENCODING = 0x0, ASCII_ENCODING = 0x4, // TODO(yangguo): deprecate this.
ONE_BYTE_ENCODING = 0x4 }; /**
* Returns the number of characters in this string. */ int Length() const;
/**
* Returns the number of bytes in the UTF-8 encoded * representation of this string. */ int Utf8Length() const;
/**
* Returns whether this string is known to contain only one byte data. * Does not read the string. * False negatives are possible. */ bool IsOneByte() const;
/**
* Returns whether this string contain only one byte data. * Will read the entire string in some cases. */ bool ContainsOnlyOneByte() const;
/**
* Write the contents of the string to an external buffer. * If no arguments are given, expects the buffer to be large * enough to hold the entire string and NULL terminator. Copies * the contents of the string and the NULL terminator into the * buffer. * * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop * before the end of the buffer. * * Copies up to length characters into the output buffer. * Only null-terminates if there is enough space in the buffer. * * \param buffer The buffer into which the string will be copied. * \param start The starting position within the string at which * copying begins. * \param length The number of characters to copy from the string. For * WriteUtf8 the number of bytes in the buffer. * \param nchars_ref The number of characters written, can be NULL. * \param options Various options that might affect performance of this or * subsequent operations. * \return The number of characters copied to the buffer excluding the null * terminator. For WriteUtf8: The number of bytes copied to the buffer * including the null terminator (if written). */ enum WriteOptions { NO_OPTIONS = 0, HINT_MANY_WRITES_EXPECTED = 1, NO_NULL_TERMINATION = 2, PRESERVE_ASCII_NULL = 4, // TODO(yangguo): deprecate this.
PRESERVE_ONE_BYTE_NULL = 4, // Used by WriteUtf8 to replace orphan surrogate code units with the
// unicode replacement character. Needs to be set to guarantee valid UTF-8
// output.
REPLACE_INVALID_UTF8 = 8 };
// 16-bit character codes.
int Write(uint16_t* buffer, int start = 0, int length = -1, int options = NO_OPTIONS) const; // One byte characters.
int WriteOneByte(uint8_t* buffer, int start = 0, int length = -1, int options = NO_OPTIONS) const; // UTF-8 encoded characters.
int WriteUtf8(char* buffer, int length = -1, int* nchars_ref = NULL, int options = NO_OPTIONS) const;
/**
* A zero length string. */ V8_INLINE static v8::Local<v8::String> Empty(Isolate* isolate);
/**
* Returns true if the string is external */ bool IsExternal() const;
/**
* Returns true if the string is both external and one-byte. */ bool IsExternalOneByte() const;
// TODO(yangguo): deprecate this.
bool IsExternalAscii() const { return IsExternalOneByte(); }
class V8_EXPORT ExternalStringResourceBase { // NOLINT
public: virtual ~ExternalStringResourceBase() {}
protected: ExternalStringResourceBase() {}
/**
* Internally V8 will call this Dispose method when the external string * resource is no longer needed. The default implementation will use the * delete operator. This method can be overridden in subclasses to * control how allocated external string resources are disposed. */ virtual void Dispose() { delete this; }
private: // Disallow copying and assigning.
ExternalStringResourceBase(const ExternalStringResourceBase&); void operator=(const ExternalStringResourceBase&);
friend class v8::internal::Heap; };
/**
* An ExternalStringResource is a wrapper around a two-byte string * buffer that resides outside V8's heap. Implement an * ExternalStringResource to manage the life cycle of the underlying * buffer. Note that the string data must be immutable. */ class V8_EXPORT ExternalStringResource : public ExternalStringResourceBase { public: /**
* Override the destructor to manage the life cycle of the underlying * buffer. */ virtual ~ExternalStringResource() {}
/**
* The string data from the underlying buffer. */ virtual const uint16_t* data() const = 0;
/**
* The length of the string. That is, the number of two-byte characters. */ virtual size_t length() const = 0;
protected: ExternalStringResource() {} };
/**
* An ExternalOneByteStringResource is a wrapper around an one-byte * string buffer that resides outside V8's heap. Implement an * ExternalOneByteStringResource to manage the life cycle of the * underlying buffer. Note that the string data must be immutable * and that the data must be Latin-1 and not UTF-8, which would require * special treatment internally in the engine and do not allow efficient * indexing. Use String::New or convert to 16 bit data for non-Latin1. */
class V8_EXPORT ExternalOneByteStringResource : public ExternalStringResourceBase { public: /**
* Override the destructor to manage the life cycle of the underlying * buffer. */ virtual ~ExternalOneByteStringResource() {} /** The string data from the underlying buffer.*/ virtual const char* data() const = 0; /** The number of Latin-1 characters in the string.*/ virtual size_t length() const = 0; protected: ExternalOneByteStringResource() {} };
typedef ExternalOneByteStringResource ExternalAsciiStringResource;
/**
* If the string is an external string, return the ExternalStringResourceBase * regardless of the encoding, otherwise return NULL. The encoding of the * string is returned in encoding_out. */ V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase( Encoding* encoding_out) const;
/**
* Get the ExternalStringResource for an external string. Returns * NULL if IsExternal() doesn't return true. */ V8_INLINE ExternalStringResource* GetExternalStringResource() const;
/**
* Get the ExternalOneByteStringResource for an external one-byte string. * Returns NULL if IsExternalOneByte() doesn't return true. */ const ExternalOneByteStringResource* GetExternalOneByteStringResource() const;
// TODO(yangguo): deprecate this.
const ExternalAsciiStringResource* GetExternalAsciiStringResource() const { return GetExternalOneByteStringResource(); }
V8_INLINE static String* Cast(v8::Value* obj);
enum NewStringType { kNormalString, kInternalizedString, kUndetectableString };
/** Allocates a new string from UTF-8 data.*/ static Local<String> NewFromUtf8(Isolate* isolate, const char* data, NewStringType type = kNormalString, int length = -1);
/** Allocates a new string from Latin-1 data.*/ static Local<String> NewFromOneByte( Isolate* isolate, const uint8_t* data, NewStringType type = kNormalString, int length = -1);
/** Allocates a new string from UTF-16 data.*/ static Local<String> NewFromTwoByte( Isolate* isolate, const uint16_t* data, NewStringType type = kNormalString, int length = -1);
/**
* Creates a new string by concatenating the left and the right strings * passed in as parameters. */ static Local<String> Concat(Handle<String> left, Handle<String> right);
/**
* Creates a new external string using the data defined in the given * resource. When the external string is no longer live on V8's heap the * resource will be disposed by calling its Dispose method. The caller of * this function should not otherwise delete or modify the resource. Neither * should the underlying buffer be deallocated or modified except through the * destructor of the external string resource. */ static Local<String> NewExternal(Isolate* isolate, ExternalStringResource* resource);
/**
* Associate an external string resource with this string by transforming it * in place so that existing references to this string in the JavaScript heap * will use the external string resource. The external string resource's * character contents need to be equivalent to this string. * Returns true if the string has been changed to be an external string. * The string is not modified if the operation fails. See NewExternal for * information on the lifetime of the resource. */ bool MakeExternal(ExternalStringResource* resource);
/**
* Creates a new external string using the one-byte data defined in the given * resource. When the external string is no longer live on V8's heap the * resource will be disposed by calling its Dispose method. The caller of * this function should not otherwise delete or modify the resource. Neither * should the underlying buffer be deallocated or modified except through the * destructor of the external string resource. */ static Local<String> NewExternal(Isolate* isolate, ExternalOneByteStringResource* resource);
/**
* Associate an external string resource with this string by transforming it * in place so that existing references to this string in the JavaScript heap * will use the external string resource. The external string resource's * character contents need to be equivalent to this string. * Returns true if the string has been changed to be an external string. * The string is not modified if the operation fails. See NewExternal for * information on the lifetime of the resource. */ bool MakeExternal(ExternalOneByteStringResource* resource);
/**
* Returns true if this string can be made external. */ bool CanMakeExternal();
/**
* Converts an object to a UTF-8-encoded character array. Useful if * you want to print the object. If conversion to a string fails * (e.g. due to an exception in the toString() method of the object) * then the length() method returns 0 and the * operator returns * NULL. */ class V8_EXPORT Utf8Value { public: explicit Utf8Value(Handle<v8::Value> obj); ~Utf8Value(); char* operator*() { return str_; } const char* operator*() const { return str_; } int length() const { return length_; } private: char* str_; int length_;
// Disallow copying and assigning.
Utf8Value(const Utf8Value&); void operator=(const Utf8Value&); };
/**
* Converts an object to a two-byte string. * If conversion to a string fails (eg. due to an exception in the toString() * method of the object) then the length() method returns 0 and the * operator * returns NULL. */ class V8_EXPORT Value { public: explicit Value(Handle<v8::Value> obj); ~Value(); uint16_t* operator*() { return str_; } const uint16_t* operator*() const { return str_; } int length() const { return length_; } private: uint16_t* str_; int length_;
// Disallow copying and assigning.
Value(const Value&); void operator=(const Value&); };
private: void VerifyExternalStringResourceBase(ExternalStringResourceBase* v, Encoding encoding) const; void VerifyExternalStringResource(ExternalStringResource* val) const; static void CheckCast(v8::Value* obj); };
/**
* A JavaScript symbol (ECMA-262 edition 6) * * This is an experimental feature. Use at your own risk. */ class V8_EXPORT Symbol : public Name { public: // Returns the print name string of the symbol, or undefined if none.
Local<Value> Name() const;
// Create a symbol. If name is not empty, it will be used as the description.
static Local<Symbol> New( Isolate *isolate, Local<String> name = Local<String>());
// Access global symbol registry.
// Note that symbols created this way are never collected, so
// they should only be used for statically fixed properties.
// Also, there is only one global name space for the names used as keys.
// To minimize the potential for clashes, use qualified names as keys.
static Local<Symbol> For(Isolate *isolate, Local<String> name);
// Retrieve a global symbol. Similar to |For|, but using a separate
// registry that is not accessible by (and cannot clash with) JavaScript code.
static Local<Symbol> ForApi(Isolate *isolate, Local<String> name);
// Well-known symbols
static Local<Symbol> GetIterator(Isolate* isolate); static Local<Symbol> GetUnscopables(Isolate* isolate);
V8_INLINE static Symbol* Cast(v8::Value* obj);
private: Symbol(); static void CheckCast(v8::Value* obj); };
/**
* A private symbol * * This is an experimental feature. Use at your own risk. */ class V8_EXPORT Private : public Data { public: // Returns the print name string of the private symbol, or undefined if none.
Local<Value> Name() const;
// Create a private symbol. If name is not empty, it will be the description.
static Local<Private> New( Isolate *isolate, Local<String> name = Local<String>());
// Retrieve a global private symbol. If a symbol with this name has not
// been retrieved in the same isolate before, it is created.
// Note that private symbols created this way are never collected, so
// they should only be used for statically fixed properties.
// Also, there is only one global name space for the names used as keys.
// To minimize the potential for clashes, use qualified names as keys,
// e.g., "Class#property".
static Local<Private> ForApi(Isolate *isolate, Local<String> name);
private: Private(); };
/**
* A JavaScript number value (ECMA-262, 4.3.20) */ class V8_EXPORT Number : public Primitive { public: double Value() const; static Local<Number> New(Isolate* isolate, double value); V8_INLINE static Number* Cast(v8::Value* obj); private: Number(); static void CheckCast(v8::Value* obj); };
/**
* A JavaScript value representing a signed integer. */ class V8_EXPORT Integer : public Number { public: static Local<Integer> New(Isolate* isolate, int32_t value); static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value); int64_t Value() const; V8_INLINE static Integer* Cast(v8::Value* obj); private: Integer(); static void CheckCast(v8::Value* obj); };
/**
* A JavaScript value representing a 32-bit signed integer. */ class V8_EXPORT Int32 : public Integer { public: int32_t Value() const; private: Int32(); };
/**
* A JavaScript value representing a 32-bit unsigned integer. */ class V8_EXPORT Uint32 : public Integer { public: uint32_t Value() const; private: Uint32(); };
enum PropertyAttribute { None = 0, ReadOnly = 1 << 0, DontEnum = 1 << 1, DontDelete = 1 << 2 };
enum ExternalArrayType { kExternalInt8Array = 1, kExternalUint8Array, kExternalInt16Array, kExternalUint16Array, kExternalInt32Array, kExternalUint32Array, kExternalFloat32Array, kExternalFloat64Array, kExternalUint8ClampedArray,
// Legacy constant names
kExternalByteArray = kExternalInt8Array, kExternalUnsignedByteArray = kExternalUint8Array, kExternalShortArray = kExternalInt16Array, kExternalUnsignedShortArray = kExternalUint16Array, kExternalIntArray = kExternalInt32Array, kExternalUnsignedIntArray = kExternalUint32Array, kExternalFloatArray = kExternalFloat32Array, kExternalDoubleArray = kExternalFloat64Array, kExternalPixelArray = kExternalUint8ClampedArray };
/**
* Accessor[Getter|Setter] are used as callback functions when * setting|getting a particular property. See Object and ObjectTemplate's * method SetAccessor. */ typedef void (*AccessorGetterCallback)( Local<String> property, const PropertyCallbackInfo<Value>& info); typedef void (*AccessorNameGetterCallback)( Local<Name> property, const PropertyCallbackInfo<Value>& info);
typedef void (*AccessorSetterCallback)( Local<String> property, Local<Value> value, const PropertyCallbackInfo<void>& info); typedef void (*AccessorNameSetterCallback)( Local<Name> property, Local<Value> value, const PropertyCallbackInfo<void>& info);
/**
* Access control specifications. * * Some accessors should be accessible across contexts. These * accessors have an explicit access control parameter which specifies * the kind of cross-context access that should be allowed. * * TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused. */ enum AccessControl { DEFAULT = 0, ALL_CAN_READ = 1, ALL_CAN_WRITE = 1 << 1, PROHIBITS_OVERWRITING = 1 << 2 };
/**
* A JavaScript object (ECMA-262, 4.3.3) */ class V8_EXPORT Object : public Value { public: bool Set(Handle<Value> key, Handle<Value> value);
bool Set(uint32_t index, Handle<Value> value);
// Sets an own property on this object bypassing interceptors and
// overriding accessors or read-only properties.
//
// Note that if the object has an interceptor the property will be set
// locally, but since the interceptor takes precedence the local property
// will only be returned if the interceptor doesn't return a value.
//
// Note also that this only works for named properties.
bool ForceSet(Handle<Value> key, Handle<Value> value, PropertyAttribute attribs = None);
Local<Value> Get(Handle<Value> key);
Local<Value> Get(uint32_t index);
/**
* Gets the property attributes of a property which can be None or * any combination of ReadOnly, DontEnum and DontDelete. Returns * None when the property doesn't exist. */ PropertyAttribute GetPropertyAttributes(Handle<Value> key);
/**
* Returns Object.getOwnPropertyDescriptor as per ES5 section 15.2.3.3. */ Local<Value> GetOwnPropertyDescriptor(Local<String> key);
bool Has(Handle<Value> key);
bool Delete(Handle<Value> key);
// Delete a property on this object bypassing interceptors and
// ignoring dont-delete attributes.
bool ForceDelete(Handle<Value> key);
bool Has(uint32_t index);
bool Delete(uint32_t index);
bool SetAccessor(Handle<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter = 0, Handle<Value> data = Handle<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None); bool SetAccessor(Handle<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = 0, Handle<Value> data = Handle<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None);
// This function is not yet stable and should not be used at this time.
bool SetDeclaredAccessor(Local<Name> name, Local<DeclaredAccessorDescriptor> descriptor, PropertyAttribute attribute = None, AccessControl settings = DEFAULT);
void SetAccessorProperty(Local<Name> name, Local<Function> getter, Handle<Function> setter = Handle<Function>(), PropertyAttribute attribute = None, AccessControl settings = DEFAULT);
/**
* Functionality for private properties. * This is an experimental feature, use at your own risk. * Note: Private properties are inherited. Do not rely on this, since it may * change. */ bool HasPrivate(Handle<Private> key); bool SetPrivate(Handle<Private> key, Handle<Value> value); bool DeletePrivate(Handle<Private> key); Local<Value> GetPrivate(Handle<Private> key);
/**
* Returns an array containing the names of the enumerable properties * of this object, including properties from prototype objects. The * array returned by this method contains the same values as would * be enumerated by a for-in statement over this object. */ Local<Array> GetPropertyNames();
/**
* This function has the same functionality as GetPropertyNames but * the returned array doesn't contain the names of properties from * prototype objects. */ Local<Array> GetOwnPropertyNames();
/**
* Get the prototype object. This does not skip objects marked to * be skipped by __proto__ and it does not consult the security * handler. */ Local<Value> GetPrototype();
/**
* Set the prototype object. This does not skip objects marked to * be skipped by __proto__ and it does not consult the security * handler. */ bool SetPrototype(Handle<Value> prototype);
/**
* Finds an instance of the given function template in the prototype * chain. */ Local<Object> FindInstanceInPrototypeChain(Handle<FunctionTemplate> tmpl);
/**
* Call builtin Object.prototype.toString on this object. * This is different from Value::ToString() that may call * user-defined toString function. This one does not. */ Local<String> ObjectProtoToString();
/**
* Returns the name of the function invoked as a constructor for this object. */ Local<String> GetConstructorName();
/** Gets the number of internal fields for this Object. */ int InternalFieldCount();
/** Same as above, but works for Persistents */ V8_INLINE static int InternalFieldCount( const PersistentBase<Object>& object) { return object.val_->InternalFieldCount(); }
/** Gets the value from an internal field. */ V8_INLINE Local<Value> GetInternalField(int index);
/** Sets the value in an internal field. */ void SetInternalField(int index, Handle<Value> value);
/**
* Gets a 2-byte-aligned native pointer from an internal field. This field * must have been set by SetAlignedPointerInInternalField, everything else * leads to undefined behavior. */ V8_INLINE void* GetAlignedPointerFromInternalField(int index);
/** Same as above, but works for Persistents */ V8_INLINE static void* GetAlignedPointerFromInternalField( const PersistentBase<Object>& object, int index) { return object.val_->GetAlignedPointerFromInternalField(index); }
/**
* Sets a 2-byte-aligned native pointer in an internal field. To retrieve such * a field, GetAlignedPointerFromInternalField must be used, everything else * leads to undefined behavior. */ void SetAlignedPointerInInternalField(int index, void* value);
// Testers for local properties.
bool HasOwnProperty(Handle<String> key); bool HasRealNamedProperty(Handle<String> key); bool HasRealIndexedProperty(uint32_t index); bool HasRealNamedCallbackProperty(Handle<String> key);
/**
* If result.IsEmpty() no real property was located in the prototype chain. * This means interceptors in the prototype chain are not called. */ Local<Value> GetRealNamedPropertyInPrototypeChain(Handle<String> key);
/**
* If result.IsEmpty() no real property was located on the object or * in the prototype chain. * This means interceptors in the prototype chain are not called. */ Local<Value> GetRealNamedProperty(Handle<String> key);
/** Tests for a named lookup interceptor.*/ bool HasNamedLookupInterceptor();
/** Tests for an index lookup interceptor.*/ bool HasIndexedLookupInterceptor();
/**
* Turns on access check on the object if the object is an instance of * a template that has access check callbacks. If an object has no * access check info, the object cannot be accessed by anyone. */ void TurnOnAccessCheck();
/**
* Returns the identity hash for this object. The current implementation * uses a hidden property on the object to store the identity hash. * * The return value will never be 0. Also, it is not guaranteed to be * unique. */ int GetIdentityHash();
/**
* Access hidden properties on JavaScript objects. These properties are * hidden from the executing JavaScript and only accessible through the V8 * C++ API. Hidden properties introduced by V8 internally (for example the * identity hash) are prefixed with "v8::". */ bool SetHiddenValue(Handle<String> key, Handle<Value> value); Local<Value> GetHiddenValue(Handle<String> key); bool DeleteHiddenValue(Handle<String> key);
/**
* Returns true if this is an instance of an api function (one * created from a function created from a function template) and has * been modified since it was created. Note that this method is * conservative and may return true for objects that haven't actually * been modified. */ bool IsDirty();
/**
* Clone this object with a fast but shallow copy. Values will point * to the same values as the original object. */ Local<Object> Clone();
/**
* Returns the context in which the object was created. */ Local<Context> CreationContext();
/**
* Set the backing store of the indexed properties to be managed by the * embedding layer. Access to the indexed properties will follow the rules * spelled out in CanvasPixelArray. * Note: The embedding program still owns the data and needs to ensure that * the backing store is preserved while V8 has a reference. */ void SetIndexedPropertiesToPixelData(uint8_t* data, int length); bool HasIndexedPropertiesInPixelData(); uint8_t* GetIndexedPropertiesPixelData(); int GetIndexedPropertiesPixelDataLength();
/**
* Set the backing store of the indexed properties to be managed by the * embedding layer. Access to the indexed properties will follow the rules * spelled out for the CanvasArray subtypes in the WebGL specification. * Note: The embedding program still owns the data and needs to ensure that * the backing store is preserved while V8 has a reference. */ void SetIndexedPropertiesToExternalArrayData(void* data, ExternalArrayType array_type, int number_of_elements); bool HasIndexedPropertiesInExternalArrayData(); void* GetIndexedPropertiesExternalArrayData(); ExternalArrayType GetIndexedPropertiesExternalArrayDataType(); int GetIndexedPropertiesExternalArrayDataLength();
/**
* Checks whether a callback is set by the * ObjectTemplate::SetCallAsFunctionHandler method. * When an Object is callable this method returns true. */ bool IsCallable();
/**
* Call an Object as a function if a callback is set by the * ObjectTemplate::SetCallAsFunctionHandler method. */ Local<Value> CallAsFunction(Handle<Value> recv, int argc, Handle<Value> argv[]);
/**
* Call an Object as a constructor if a callback is set by the * ObjectTemplate::SetCallAsFunctionHandler method. * Note: This method behaves like the Function::NewInstance method. */ Local<Value> CallAsConstructor(int argc, Handle<Value> argv[]);
/**
* Return the isolate to which the Object belongs to. */ Isolate* GetIsolate();
static Local<Object> New(Isolate* isolate);
V8_INLINE static Object* Cast(Value* obj);
private: Object(); static void CheckCast(Value* obj); Local<Value> SlowGetInternalField(int index); void* SlowGetAlignedPointerFromInternalField(int index); };
/**
* An instance of the built-in array constructor (ECMA-262, 15.4.2). */ class V8_EXPORT Array : public Object { public: uint32_t Length() const;
/**
* Clones an element at index |index|. Returns an empty * handle if cloning fails (for any reason). */ Local<Object> CloneElementAt(uint32_t index);
/**
* Creates a JavaScript array with the given length. If the length * is negative the returned array will have length 0. */ static Local<Array> New(Isolate* isolate, int length = 0);
V8_INLINE static Array* Cast(Value* obj); private: Array(); static void CheckCast(Value* obj); };
template<typename T> class ReturnValue { public: template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that) : value_(that.value_) { TYPE_CHECK(T, S); } // Handle setters
template <typename S> V8_INLINE void Set(const Persistent<S>& handle); template <typename S> V8_INLINE void Set(const Handle<S> handle); // Fast primitive setters
V8_INLINE void Set(bool value); V8_INLINE void Set(double i); V8_INLINE void Set(int32_t i); V8_INLINE void Set(uint32_t i); // Fast JS primitive setters
V8_INLINE void SetNull(); V8_INLINE void SetUndefined(); V8_INLINE void SetEmptyString(); // Convenience getter for Isolate
V8_INLINE Isolate* GetIsolate();
// Pointer setter: Uncompilable to prevent inadvertent misuse.
template <typename S> V8_INLINE void Set(S* whatever);
private: template<class F> friend class ReturnValue; template<class F> friend class FunctionCallbackInfo; template<class F> friend class PropertyCallbackInfo; template<class F, class G, class H> friend class PersistentValueMap; V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; } V8_INLINE internal::Object* GetDefaultValue(); V8_INLINE explicit ReturnValue(internal::Object** slot); internal::Object** value_; };
/**
* The argument information given to function call callbacks. This * class provides access to information about the context of the call, * including the receiver, the number and values of arguments, and * the holder of the function. */ template<typename T> class FunctionCallbackInfo { public: V8_INLINE int Length() const; V8_INLINE Local<Value> operator[](int i) const; V8_INLINE Local<Function> Callee() const; V8_INLINE Local<Object> This() const; V8_INLINE Local<Object> Holder() const; V8_INLINE bool IsConstructCall() const; V8_INLINE Local<Value> Data() const; V8_INLINE Isolate* GetIsolate() const; V8_INLINE ReturnValue<T> GetReturnValue() const; // This shouldn't be public, but the arm compiler needs it.
static const int kArgsLength = 7;
protected: friend class internal::FunctionCallbackArguments; friend class internal::CustomArguments<FunctionCallbackInfo>; static const int kHolderIndex = 0; static const int kIsolateIndex = 1; static const int kReturnValueDefaultValueIndex = 2; static const int kReturnValueIndex = 3; static const int kDataIndex = 4; static const int kCalleeIndex = 5; static const int kContextSaveIndex = 6;
V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args, internal::Object** values, int length, bool is_construct_call); internal::Object** implicit_args_; internal::Object** values_; int length_; bool is_construct_call_; };
/**
* The information passed to a property callback about the context * of the property access. */ template<typename T> class PropertyCallbackInfo { public: V8_INLINE Isolate* GetIsolate() const; V8_INLINE Local<Value> Data() const; V8_INLINE Local<Object> This() const; V8_INLINE Local<Object> Holder() const; V8_INLINE ReturnValue<T> GetReturnValue() const; // This shouldn't be public, but the arm compiler needs it.
static const int kArgsLength = 6;
protected: friend class MacroAssembler; friend class internal::PropertyCallbackArguments; friend class internal::CustomArguments<PropertyCallbackInfo>; static const int kHolderIndex = 0; static const int kIsolateIndex = 1; static const int kReturnValueDefaultValueIndex = 2; static const int kReturnValueIndex = 3; static const int kDataIndex = 4; static const int kThisIndex = 5;
V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {} internal::Object** args_; };
typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
/**
* A JavaScript function object (ECMA-262, 15.3). */ class V8_EXPORT Function : public Object { public: /**
* Create a function in the current execution context * for a given FunctionCallback. */ static Local<Function> New(Isolate* isolate, FunctionCallback callback, Local<Value> data = Local<Value>(), int length = 0);
Local<Object> NewInstance() const; Local<Object> NewInstance(int argc, Handle<Value> argv[]) const; Local<Value> Call(Handle<Value> recv, int argc, Handle<Value> argv[]); void SetName(Handle<String> name); Handle<Value> GetName() const;
/**
* Name inferred from variable or property assignment of this function. * Used to facilitate debugging and profiling of JavaScript code written * in an OO style, where many functions are anonymous but are assigned * to object properties. */ Handle<Value> GetInferredName() const;
/**
* User-defined name assigned to the "displayName" property of this function. * Used to facilitate debugging and profiling of JavaScript code. */ Handle<Value> GetDisplayName() const;
/**
* Returns zero based line number of function body and * kLineOffsetNotFound if no information available. */ int GetScriptLineNumber() const; /**
* Returns zero based column number of function body and * kLineOffsetNotFound if no information available. */ int GetScriptColumnNumber() const;
/**
* Tells whether this function is builtin. */ bool IsBuiltin() const;
/**
* Returns scriptId. */ int ScriptId() const;
/**
* Returns the original function if this function is bound, else returns * v8::Undefined. */ Local<Value> GetBoundFunction() const;
ScriptOrigin GetScriptOrigin() const; V8_INLINE static Function* Cast(Value* obj); static const int kLineOffsetNotFound;
private: Function(); static void CheckCast(Value* obj); };
/**
* An instance of the built-in Promise constructor (ES6 draft). * This API is experimental. Only works with --harmony flag. */ class V8_EXPORT Promise : public Object { public: class V8_EXPORT Resolver : public Object { public: /**
* Create a new resolver, along with an associated promise in pending state. */ static Local<Resolver> New(Isolate* isolate);
/**
* Extract the associated promise. */ Local<Promise> GetPromise();
/**
* Resolve/reject the associated promise with a given value. * Ignored if the promise is no longer pending. */ void Resolve(Handle<Value> value); void Reject(Handle<Value> value);
V8_INLINE static Resolver* Cast(Value* obj);
private: Resolver(); static void CheckCast(Value* obj); };
/**
* Register a resolution/rejection handler with a promise. * The handler is given the respective resolution/rejection value as * an argument. If the promise is already resolved/rejected, the handler is * invoked at the end of turn. */ Local<Promise> Chain(Handle<Function> handler); Local<Promise> Catch(Handle<Function> handler); Local<Promise> Then(Handle<Function> handler);
/**
* Returns true if the promise has at least one derived promise, and * therefore resolve/reject handlers (including default handler). */ bool HasHandler();
V8_INLINE static Promise* Cast(Value* obj);
private: Promise(); static void CheckCast(Value* obj); };
#ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
// The number of required internal fields can be defined by embedder.
#define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
#endif
/**
* An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5). * This API is experimental and may change significantly. */ class V8_EXPORT ArrayBuffer : public Object { public: /**
* Allocator that V8 uses to allocate |ArrayBuffer|'s memory. * The allocator is a global V8 setting. It should be set with * V8::SetArrayBufferAllocator prior to creation of a first ArrayBuffer. * * This API is experimental and may change significantly. */ class V8_EXPORT Allocator { // NOLINT
public: virtual ~Allocator() {}
/**
* Allocate |length| bytes. Return NULL if allocation is not successful. * Memory should be initialized to zeroes. */ virtual void* Allocate(size_t length) = 0;
/**
* Allocate |length| bytes. Return NULL if allocation is not successful. * Memory does not have to be initialized. */ virtual void* AllocateUninitialized(size_t length) = 0; /**
* Free the memory block of size |length|, pointed to by |data|. * That memory is guaranteed to be previously allocated by |Allocate|. */ virtual void Free(void* data, size_t length) = 0; };
/**
* The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer| * returns an instance of this class, populated, with a pointer to data * and byte length. * * The Data pointer of ArrayBuffer::Contents is always allocated with * Allocator::Allocate that is set with V8::SetArrayBufferAllocator. * * This API is experimental and may change significantly. */ class V8_EXPORT Contents { // NOLINT
public: Contents() : data_(NULL), byte_length_(0) {}
void* Data() const { return data_; } size_t ByteLength() const { return byte_length_; }
private: void* data_; size_t byte_length_;
friend class ArrayBuffer; };
/**
* Data length in bytes. */ size_t ByteLength() const;
/**
* Create a new ArrayBuffer. Allocate |byte_length| bytes. * Allocated memory will be owned by a created ArrayBuffer and * will be deallocated when it is garbage-collected, * unless the object is externalized. */ static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
/**
* Create a new ArrayBuffer over an existing memory block. * The created array buffer is immediately in externalized state. * The memory block will not be reclaimed when a created ArrayBuffer * is garbage-collected. */ static Local<ArrayBuffer> New(Isolate* isolate, void* data, size_t byte_length);
/**
* Returns true if ArrayBuffer is extrenalized, that is, does not * own its memory block. */ bool IsExternal() const;
/**
* Neuters this ArrayBuffer and all its views (typed arrays). * Neutering sets the byte length of the buffer and all typed arrays to zero, * preventing JavaScript from ever accessing underlying backing store. * ArrayBuffer should have been externalized. */ void Neuter();
/**
* Make this ArrayBuffer external. The pointer to underlying memory block * and byte length are returned as |Contents| structure. After ArrayBuffer * had been etxrenalized, it does no longer owns the memory block. The caller * should take steps to free memory when it is no longer needed. * * The memory block is guaranteed to be allocated with |Allocator::Allocate| * that has been set with V8::SetArrayBufferAllocator. */ Contents Externalize();
V8_INLINE static ArrayBuffer* Cast(Value* obj);
static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
private: ArrayBuffer(); static void CheckCast(Value* obj); };
#ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
// The number of required internal fields can be defined by embedder.
#define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
#endif
/**
* A base class for an instance of one of "views" over ArrayBuffer, * including TypedArrays and DataView (ES6 draft 15.13). * * This API is experimental and may change significantly. */ class V8_EXPORT ArrayBufferView : public Object { public: /**
* Returns underlying ArrayBuffer. */ Local<ArrayBuffer> Buffer(); /**
* Byte offset in |Buffer|. */ size_t ByteOffset(); /**
* Size of a view in bytes. */ size_t ByteLength();
V8_INLINE static ArrayBufferView* Cast(Value* obj);
static const int kInternalFieldCount = V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
private: ArrayBufferView(); static void CheckCast(Value* obj); };
/**
* A base class for an instance of TypedArray series of constructors * (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT TypedArray : public ArrayBufferView { public: /**
* Number of elements in this typed array * (e.g. for Int16Array, |ByteLength|/2). */ size_t Length();
V8_INLINE static TypedArray* Cast(Value* obj);
private: TypedArray(); static void CheckCast(Value* obj); };
/**
* An instance of Uint8Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Uint8Array : public TypedArray { public: static Local<Uint8Array> New(Handle<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint8Array* Cast(Value* obj);
private: Uint8Array(); static void CheckCast(Value* obj); };
/**
* An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Uint8ClampedArray : public TypedArray { public: static Local<Uint8ClampedArray> New(Handle<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
private: Uint8ClampedArray(); static void CheckCast(Value* obj); };
/**
* An instance of Int8Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Int8Array : public TypedArray { public: static Local<Int8Array> New(Handle<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); V8_INLINE static Int8Array* Cast(Value* obj);
private: Int8Array(); static void CheckCast(Value* obj); };
/**
* An instance of Uint16Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Uint16Array : public TypedArray { public: static Local<Uint16Array> New(Handle<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint16Array* Cast(Value* obj);
private: Uint16Array(); static void CheckCast(Value* obj); };
/**
* An instance of Int16Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Int16Array : public TypedArray { public: static Local<Int16Array> New(Handle<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); V8_INLINE static Int16Array* Cast(Value* obj);
private: Int16Array(); static void CheckCast(Value* obj); };
/**
* An instance of Uint32Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Uint32Array : public TypedArray { public: static Local<Uint32Array> New(Handle<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint32Array* Cast(Value* obj);
private: Uint32Array(); static void CheckCast(Value* obj); };
/**
* An instance of Int32Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Int32Array : public TypedArray { public: static Local<Int32Array> New(Handle<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); V8_INLINE static Int32Array* Cast(Value* obj);
private: Int32Array(); static void CheckCast(Value* obj); };
/**
* An instance of Float32Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Float32Array : public TypedArray { public: static Local<Float32Array> New(Handle<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); V8_INLINE static Float32Array* Cast(Value* obj);
private: Float32Array(); static void CheckCast(Value* obj); };
/**
* An instance of Float64Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Float64Array : public TypedArray { public: static Local<Float64Array> New(Handle<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); V8_INLINE static Float64Array* Cast(Value* obj);
private: Float64Array(); static void CheckCast(Value* obj); };
/**
* An instance of DataView constructor (ES6 draft 15.13.7). * This API is experimental and may change significantly. */ class V8_EXPORT DataView : public ArrayBufferView { public: static Local<DataView> New(Handle<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); V8_INLINE static DataView* Cast(Value* obj);
private: DataView(); static void CheckCast(Value* obj); };
/**
* An instance of the built-in Date constructor (ECMA-262, 15.9). */ class V8_EXPORT Date : public Object { public: static Local<Value> New(Isolate* isolate, double time);
/**
* A specialization of Value::NumberValue that is more efficient * because we know the structure of this object. */ double ValueOf() const;
V8_INLINE static Date* Cast(v8::Value* obj);
/**
* Notification that the embedder has changed the time zone, * daylight savings time, or other date / time configuration * parameters. V8 keeps a cache of various values used for * date / time computation. This notification will reset * those cached values for the current context so that date / * time configuration changes would be reflected in the Date * object. * * This API should not be called more than needed as it will * negatively impact the performance of date operations. */ static void DateTimeConfigurationChangeNotification(Isolate* isolate);
private: static void CheckCast(v8::Value* obj); };
/**
* A Number object (ECMA-262, 4.3.21). */ class V8_EXPORT NumberObject : public Object { public: static Local<Value> New(Isolate* isolate, double value);
double ValueOf() const;
V8_INLINE static NumberObject* Cast(v8::Value* obj);
private: static void CheckCast(v8::Value* obj); };
/**
* A Boolean object (ECMA-262, 4.3.15). */ class V8_EXPORT BooleanObject : public Object { public: static Local<Value> New(bool value);
bool ValueOf() const;
V8_INLINE static BooleanObject* Cast(v8::Value* obj);
private: static void CheckCast(v8::Value* obj); };
/**
* A String object (ECMA-262, 4.3.18). */ class V8_EXPORT StringObject : public Object { public: static Local<Value> New(Handle<String> value);
Local<String> ValueOf() const;
V8_INLINE static StringObject* Cast(v8::Value* obj);
private: static void CheckCast(v8::Value* obj); };
/**
* A Symbol object (ECMA-262 edition 6). * * This is an experimental feature. Use at your own risk. */ class V8_EXPORT SymbolObject : public Object { public: static Local<Value> New(Isolate* isolate, Handle<Symbol> value);
Local<Symbol> ValueOf() const;
V8_INLINE static SymbolObject* Cast(v8::Value* obj);
private: static void CheckCast(v8::Value* obj); };
/**
* An instance of the built-in RegExp constructor (ECMA-262, 15.10). */ class V8_EXPORT RegExp : public Object { public: /**
* Regular expression flag bits. They can be or'ed to enable a set * of flags. */ enum Flags { kNone = 0, kGlobal = 1, kIgnoreCase = 2, kMultiline = 4 };
/**
* Creates a regular expression from the given pattern string and * the flags bit field. May throw a JavaScript exception as * described in ECMA-262, 15.10.4.1. * * For example, * RegExp::New(v8::String::New("foo"), * static_cast<RegExp::Flags>(kGlobal | kMultiline)) * is equivalent to evaluating "/foo/gm". */ static Local<RegExp> New(Handle<String> pattern, Flags flags);
/**
* Returns the value of the source property: a string representing * the regular expression. */ Local<String> GetSource() const;
/**
* Returns the flags bit field. */ Flags GetFlags() const;
V8_INLINE static RegExp* Cast(v8::Value* obj);
private: static void CheckCast(v8::Value* obj); };
/**
* A JavaScript value that wraps a C++ void*. This type of value is mainly used * to associate C++ data structures with JavaScript objects. */ class V8_EXPORT External : public Value { public: static Local<External> New(Isolate* isolate, void* value); V8_INLINE static External* Cast(Value* obj); void* Value() const; private: static void CheckCast(v8::Value* obj); };
// --- Templates ---
/**
* The superclass of object and function templates. */ class V8_EXPORT Template : public Data { public: /** Adds a property to each instance created by this template.*/ void Set(Handle<Name> name, Handle<Data> value, PropertyAttribute attributes = None); V8_INLINE void Set(Isolate* isolate, const char* name, Handle<Data> value);
void SetAccessorProperty( Local<Name> name, Local<FunctionTemplate> getter = Local<FunctionTemplate>(), Local<FunctionTemplate> setter = Local<FunctionTemplate>(), PropertyAttribute attribute = None, AccessControl settings = DEFAULT);
/**
* Whenever the property with the given name is accessed on objects * created from this Template the getter and setter callbacks * are called instead of getting and setting the property directly * on the JavaScript object. * * \param name The name of the property for which an accessor is added. * \param getter The callback to invoke when getting the property. * \param setter The callback to invoke when setting the property. * \param data A piece of data that will be passed to the getter and setter * callbacks whenever they are invoked. * \param settings Access control settings for the accessor. This is a bit * field consisting of one of more of * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2. * The default is to not allow cross-context access. * ALL_CAN_READ means that all cross-context reads are allowed. * ALL_CAN_WRITE means that all cross-context writes are allowed. * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all * cross-context access. * \param attribute The attributes of the property for which an accessor * is added. * \param signature The signature describes valid receivers for the accessor * and is used to perform implicit instance checks against them. If the * receiver is incompatible (i.e. is not an instance of the constructor as * defined by FunctionTemplate::HasInstance()), an implicit TypeError is * thrown and no callback is invoked. */ void SetNativeDataProperty(Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter = 0, // TODO(dcarney): gcc can't handle Local below
Handle<Value> data = Handle<Value>(), PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>(), AccessControl settings = DEFAULT); void SetNativeDataProperty(Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = 0, // TODO(dcarney): gcc can't handle Local below
Handle<Value> data = Handle<Value>(), PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>(), AccessControl settings = DEFAULT);
// This function is not yet stable and should not be used at this time.
bool SetDeclaredAccessor(Local<Name> name, Local<DeclaredAccessorDescriptor> descriptor, PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>(), AccessControl settings = DEFAULT);
private: Template();
friend class ObjectTemplate; friend class FunctionTemplate; };
/**
* NamedProperty[Getter|Setter] are used as interceptors on object. * See ObjectTemplate::SetNamedPropertyHandler. */ typedef void (*NamedPropertyGetterCallback)( Local<String> property, const PropertyCallbackInfo<Value>& info);
/**
* Returns the value if the setter intercepts the request. * Otherwise, returns an empty handle. */ typedef void (*NamedPropertySetterCallback)( Local<String> property, Local<Value> value, const PropertyCallbackInfo<Value>& info);
/**
* Returns a non-empty handle if the interceptor intercepts the request. * The result is an integer encoding property attributes (like v8::None, * v8::DontEnum, etc.) */ typedef void (*NamedPropertyQueryCallback)( Local<String> property, const PropertyCallbackInfo<Integer>& info);
/**
* Returns a non-empty handle if the deleter intercepts the request. * The return value is true if the property could be deleted and false * otherwise. */ typedef void (*NamedPropertyDeleterCallback)( Local<String> property, const PropertyCallbackInfo<Boolean>& info);
/**
* Returns an array containing the names of the properties the named * property getter intercepts. */ typedef void (*NamedPropertyEnumeratorCallback)( const PropertyCallbackInfo<Array>& info);
/**
* Returns the value of the property if the getter intercepts the * request. Otherwise, returns an empty handle. */ typedef void (*IndexedPropertyGetterCallback)( uint32_t index, const PropertyCallbackInfo<Value>& info);
/**
* Returns the value if the setter intercepts the request. * Otherwise, returns an empty handle. */ typedef void (*IndexedPropertySetterCallback)( uint32_t index, Local<Value> value, const PropertyCallbackInfo<Value>& info);
/**
* Returns a non-empty handle if the interceptor intercepts the request. * The result is an integer encoding property attributes. */ typedef void (*IndexedPropertyQueryCallback)( uint32_t index, const PropertyCallbackInfo<Integer>& info);
/**
* Returns a non-empty handle if the deleter intercepts the request. * The return value is true if the property could be deleted and false * otherwise. */ typedef void (*IndexedPropertyDeleterCallback)( uint32_t index, const PropertyCallbackInfo<Boolean>& info);
/**
* Returns an array containing the indices of the properties the * indexed property getter intercepts. */ typedef void (*IndexedPropertyEnumeratorCallback)( const PropertyCallbackInfo<Array>& info);
/**
* Access type specification. */ enum AccessType { ACCESS_GET, ACCESS_SET, ACCESS_HAS, ACCESS_DELETE, ACCESS_KEYS };
/**
* Returns true if cross-context access should be allowed to the named * property with the given key on the host object. */ typedef bool (*NamedSecurityCallback)(Local<Object> host, Local<Value> key, AccessType type, Local<Value> data);
/**
* Returns true if cross-context access should be allowed to the indexed * property with the given index on the host object. */ typedef bool (*IndexedSecurityCallback)(Local<Object> host, uint32_t index, AccessType type, Local<Value> data);
/**
* A FunctionTemplate is used to create functions at runtime. There * can only be one function created from a FunctionTemplate in a * context. The lifetime of the created function is equal to the * lifetime of the context. So in case the embedder needs to create * temporary functions that can be collected using Scripts is * preferred. * * A FunctionTemplate can have properties, these properties are added to the * function object when it is created. * * A FunctionTemplate has a corresponding instance template which is * used to create object instances when the function is used as a * constructor. Properties added to the instance template are added to * each object instance. * * A FunctionTemplate can have a prototype template. The prototype template * is used to create the prototype object of the function. * * The following example shows how to use a FunctionTemplate: * * \code * v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New(); * t->Set("func_property", v8::Number::New(1)); * * v8::Local<v8::Template> proto_t = t->PrototypeTemplate(); * proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback)); * proto_t->Set("proto_const", v8::Number::New(2)); * * v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate(); * instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback); * instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...); * instance_t->Set("instance_property", Number::New(3)); * * v8::Local<v8::Function> function = t->GetFunction(); * v8::Local<v8::Object> instance = function->NewInstance(); * \endcode * * Let's use "function" as the JS variable name of the function object * and "instance" for the instance object created above. The function * and the instance will have the following properties: * * \code * func_property in function == true; * function.func_property == 1; * * function.prototype.proto_method() invokes 'InvokeCallback' * function.prototype.proto_const == 2; * * instance instanceof function == true; * instance.instance_accessor calls 'InstanceAccessorCallback' * instance.instance_property == 3; * \endcode * * A FunctionTemplate can inherit from another one by calling the * FunctionTemplate::Inherit method. The following graph illustrates * the semantics of inheritance: * * \code * FunctionTemplate Parent -> Parent() . prototype -> { } * ^ ^ * | Inherit(Parent) | .__proto__ * | | * FunctionTemplate Child -> Child() . prototype -> { } * \endcode * * A FunctionTemplate 'Child' inherits from 'Parent', the prototype * object of the Child() function has __proto__ pointing to the * Parent() function's prototype object. An instance of the Child * function has all properties on Parent's instance templates. * * Let Parent be the FunctionTemplate initialized in the previous * section and create a Child FunctionTemplate by: * * \code * Local<FunctionTemplate> parent = t; * Local<FunctionTemplate> child = FunctionTemplate::New(); * child->Inherit(parent); * * Local<Function> child_function = child->GetFunction(); * Local<Object> child_instance = child_function->NewInstance(); * \endcode * * The Child function and Child instance will have the following * properties: * * \code * child_func.prototype.__proto__ == function.prototype; * child_instance.instance_accessor calls 'InstanceAccessorCallback' * child_instance.instance_property == 3; * \endcode */ class V8_EXPORT FunctionTemplate : public Template { public: /** Creates a function template.*/ static Local<FunctionTemplate> New( Isolate* isolate, FunctionCallback callback = 0, Handle<Value> data = Handle<Value>(), Handle<Signature> signature = Handle<Signature>(), int length = 0);
/** Returns the unique function instance in the current execution context.*/ Local<Function> GetFunction();
/**
* Set the call-handler callback for a FunctionTemplate. This * callback is called whenever the function created from this * FunctionTemplate is called. */ void SetCallHandler(FunctionCallback callback, Handle<Value> data = Handle<Value>());
/** Set the predefined length property for the FunctionTemplate. */ void SetLength(int length);
/** Get the InstanceTemplate. */ Local<ObjectTemplate> InstanceTemplate();
/** Causes the function template to inherit from a parent function template.*/ void Inherit(Handle<FunctionTemplate> parent);
/**
* A PrototypeTemplate is the template used to create the prototype object * of the function created by this template. */ Local<ObjectTemplate> PrototypeTemplate();
/**
* Set the class name of the FunctionTemplate. This is used for * printing objects created with the function created from the * FunctionTemplate as its constructor. */ void SetClassName(Handle<String> name);
/**
* Determines whether the __proto__ accessor ignores instances of * the function template. If instances of the function template are * ignored, __proto__ skips all instances and instead returns the * next object in the prototype chain. * * Call with a value of true to make the __proto__ accessor ignore * instances of the function template. Call with a value of false * to make the __proto__ accessor not ignore instances of the * function template. By default, instances of a function template * are not ignored. */ void SetHiddenPrototype(bool value);
/**
* Sets the ReadOnly flag in the attributes of the 'prototype' property * of functions created from this FunctionTemplate to true. */ void ReadOnlyPrototype();
/**
* Removes the prototype property from functions created from this * FunctionTemplate. */ void RemovePrototype();
/**
* Returns true if the given object is an instance of this function * template. */ bool HasInstance(Handle<Value> object);
private: FunctionTemplate(); friend class Context; friend class ObjectTemplate; };
/**
* An ObjectTemplate is used to create objects at runtime. * * Properties added to an ObjectTemplate are added to each object * created from the ObjectTemplate. */ class V8_EXPORT ObjectTemplate : public Template { public: /** Creates an ObjectTemplate. */ static Local<ObjectTemplate> New(Isolate* isolate); // Will be deprecated soon.
static Local<ObjectTemplate> New();
/** Creates a new instance of this template.*/ Local<Object> NewInstance();
/**
* Sets an accessor on the object template. * * Whenever the property with the given name is accessed on objects * created from this ObjectTemplate the getter and setter callbacks * are called instead of getting and setting the property directly * on the JavaScript object. * * \param name The name of the property for which an accessor is added. * \param getter The callback to invoke when getting the property. * \param setter The callback to invoke when setting the property. * \param data A piece of data that will be passed to the getter and setter * callbacks whenever they are invoked. * \param settings Access control settings for the accessor. This is a bit * field consisting of one of more of * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2. * The default is to not allow cross-context access. * ALL_CAN_READ means that all cross-context reads are allowed. * ALL_CAN_WRITE means that all cross-context writes are allowed. * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all * cross-context access. * \param attribute The attributes of the property for which an accessor * is added. * \param signature The signature describes valid receivers for the accessor * and is used to perform implicit instance checks against them. If the * receiver is incompatible (i.e. is not an instance of the constructor as * defined by FunctionTemplate::HasInstance()), an implicit TypeError is * thrown and no callback is invoked. */ void SetAccessor(Handle<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter = 0, Handle<Value> data = Handle<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None, Handle<AccessorSignature> signature = Handle<AccessorSignature>()); void SetAccessor(Handle<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = 0, Handle<Value> data = Handle<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None, Handle<AccessorSignature> signature = Handle<AccessorSignature>());
/**
* Sets a named property handler on the object template. * * Whenever a property whose name is a string is accessed on objects created * from this object template, the provided callback is invoked instead of * accessing the property directly on the JavaScript object. * * \param getter The callback to invoke when getting a property. * \param setter The callback to invoke when setting a property. * \param query The callback to invoke to check if a property is present, * and if present, get its attributes. * \param deleter The callback to invoke when deleting a property. * \param enumerator The callback to invoke to enumerate all the named * properties of an object. * \param data A piece of data that will be passed to the callbacks * whenever they are invoked. */ void SetNamedPropertyHandler( NamedPropertyGetterCallback getter, NamedPropertySetterCallback setter = 0, NamedPropertyQueryCallback query = 0, NamedPropertyDeleterCallback deleter = 0, NamedPropertyEnumeratorCallback enumerator = 0, Handle<Value> data = Handle<Value>());
/**
* Sets an indexed property handler on the object template. * * Whenever an indexed property is accessed on objects created from * this object template, the provided callback is invoked instead of * accessing the property directly on the JavaScript object. * * \param getter The callback to invoke when getting a property. * \param setter The callback to invoke when setting a property. * \param query The callback to invoke to check if an object has a property. * \param deleter The callback to invoke when deleting a property. * \param enumerator The callback to invoke to enumerate all the indexed * properties of an object. * \param data A piece of data that will be passed to the callbacks * whenever they are invoked. */ void SetIndexedPropertyHandler( IndexedPropertyGetterCallback getter, IndexedPropertySetterCallback setter = 0, IndexedPropertyQueryCallback query = 0, IndexedPropertyDeleterCallback deleter = 0, IndexedPropertyEnumeratorCallback enumerator = 0, Handle<Value> data = Handle<Value>());
/**
* Sets the callback to be used when calling instances created from * this template as a function. If no callback is set, instances * behave like normal JavaScript objects that cannot be called as a * function. */ void SetCallAsFunctionHandler(FunctionCallback callback, Handle<Value> data = Handle<Value>());
/**
* Mark object instances of the template as undetectable. * * In many ways, undetectable objects behave as though they are not * there. They behave like 'undefined' in conditionals and when * printed. However, properties can be accessed and called as on * normal objects. */ void MarkAsUndetectable();
/**
* Sets access check callbacks on the object template. * * When accessing properties on instances of this object template, * the access check callback will be called to determine whether or * not to allow cross-context access to the properties. * The last parameter specifies whether access checks are turned * on by default on instances. If access checks are off by default, * they can be turned on on individual instances by calling * Object::TurnOnAccessCheck(). */ void SetAccessCheckCallbacks(NamedSecurityCallback named_handler, IndexedSecurityCallback indexed_handler, Handle<Value> data = Handle<Value>(), bool turned_on_by_default = true);
/**
* Gets the number of internal fields for objects generated from * this template. */ int InternalFieldCount();
/**
* Sets the number of internal fields for objects generated from * this template. */ void SetInternalFieldCount(int value);
private: ObjectTemplate(); static Local<ObjectTemplate> New(internal::Isolate* isolate, Handle<FunctionTemplate> constructor); friend class FunctionTemplate; };
/**
* A Signature specifies which receivers and arguments are valid * parameters to a function. */ class V8_EXPORT Signature : public Data { public: static Local<Signature> New(Isolate* isolate, Handle<FunctionTemplate> receiver = Handle<FunctionTemplate>(), int argc = 0, Handle<FunctionTemplate> argv[] = 0);
private: Signature(); };
/**
* An AccessorSignature specifies which receivers are valid parameters * to an accessor callback. */ class V8_EXPORT AccessorSignature : public Data { public: static Local<AccessorSignature> New(Isolate* isolate, Handle<FunctionTemplate> receiver = Handle<FunctionTemplate>());
private: AccessorSignature(); };
class V8_EXPORT DeclaredAccessorDescriptor : public Data { private: DeclaredAccessorDescriptor(); };
class V8_EXPORT ObjectOperationDescriptor : public Data { public: // This function is not yet stable and should not be used at this time.
static Local<RawOperationDescriptor> NewInternalFieldDereference( Isolate* isolate, int internal_field); private: ObjectOperationDescriptor(); };
enum DeclaredAccessorDescriptorDataType { kDescriptorBoolType, kDescriptorInt8Type, kDescriptorUint8Type, kDescriptorInt16Type, kDescriptorUint16Type, kDescriptorInt32Type, kDescriptorUint32Type, kDescriptorFloatType, kDescriptorDoubleType };
class V8_EXPORT RawOperationDescriptor : public Data { public: Local<DeclaredAccessorDescriptor> NewHandleDereference(Isolate* isolate); Local<RawOperationDescriptor> NewRawDereference(Isolate* isolate); Local<RawOperationDescriptor> NewRawShift(Isolate* isolate, int16_t byte_offset); Local<DeclaredAccessorDescriptor> NewPointerCompare(Isolate* isolate, void* compare_value); Local<DeclaredAccessorDescriptor> NewPrimitiveValue( Isolate* isolate, DeclaredAccessorDescriptorDataType data_type, uint8_t bool_offset = 0); Local<DeclaredAccessorDescriptor> NewBitmaskCompare8(Isolate* isolate, uint8_t bitmask, uint8_t compare_value); Local<DeclaredAccessorDescriptor> NewBitmaskCompare16( Isolate* isolate, uint16_t bitmask, uint16_t compare_value); Local<DeclaredAccessorDescriptor> NewBitmaskCompare32( Isolate* isolate, uint32_t bitmask, uint32_t compare_value);
private: RawOperationDescriptor(); };
/**
* A utility for determining the type of objects based on the template * they were constructed from. */ class V8_EXPORT TypeSwitch : public Data { public: static Local<TypeSwitch> New(Handle<FunctionTemplate> type); static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]); int match(Handle<Value> value); private: TypeSwitch(); };
// --- Extensions ---
class V8_EXPORT ExternalOneByteStringResourceImpl : public String::ExternalOneByteStringResource { public: ExternalOneByteStringResourceImpl() : data_(0), length_(0) {} ExternalOneByteStringResourceImpl(const char* data, size_t length) : data_(data), length_(length) {} const char* data() const { return data_; } size_t length() const { return length_; }
private: const char* data_; size_t length_; };
/**
* Ignore */ class V8_EXPORT Extension { // NOLINT
public: // Note that the strings passed into this constructor must live as long
// as the Extension itself.
Extension(const char* name, const char* source = 0, int dep_count = 0, const char** deps = 0, int source_length = -1); virtual ~Extension() { } virtual v8::Handle<v8::FunctionTemplate> GetNativeFunctionTemplate( v8::Isolate* isolate, v8::Handle<v8::String> name) { return v8::Handle<v8::FunctionTemplate>(); }
const char* name() const { return name_; } size_t source_length() const { return source_length_; } const String::ExternalOneByteStringResource* source() const { return &source_; } int dependency_count() { return dep_count_; } const char** dependencies() { return deps_; } void set_auto_enable(bool value) { auto_enable_ = value; } bool auto_enable() { return auto_enable_; }
private: const char* name_; size_t source_length_; // expected to initialize before source_
ExternalOneByteStringResourceImpl source_; int dep_count_; const char** deps_; bool auto_enable_;
// Disallow copying and assigning.
Extension(const Extension&); void operator=(const Extension&); };
void V8_EXPORT RegisterExtension(Extension* extension);
// --- Statics ---
V8_INLINE Handle<Primitive> Undefined(Isolate* isolate); V8_INLINE Handle<Primitive> Null(Isolate* isolate); V8_INLINE Handle<Boolean> True(Isolate* isolate); V8_INLINE Handle<Boolean> False(Isolate* isolate);
/**
* A set of constraints that specifies the limits of the runtime's memory use. * You must set the heap size before initializing the VM - the size cannot be * adjusted after the VM is initialized. * * If you are using threads then you should hold the V8::Locker lock while * setting the stack limit and you must set a non-default stack limit separately * for each thread. */ class V8_EXPORT ResourceConstraints { public: ResourceConstraints();
/**
* Configures the constraints with reasonable default values based on the * capabilities of the current device the VM is running on. * * \param physical_memory The total amount of physical memory on the current * device, in bytes. * \param virtual_memory_limit The amount of virtual memory on the current * device, in bytes, or zero, if there is no limit. * \param number_of_processors The number of CPUs available on the current * device. */ void ConfigureDefaults(uint64_t physical_memory, uint64_t virtual_memory_limit, uint32_t number_of_processors);
int max_semi_space_size() const { return max_semi_space_size_; } void set_max_semi_space_size(int value) { max_semi_space_size_ = value; } int max_old_space_size() const { return max_old_space_size_; } void set_max_old_space_size(int value) { max_old_space_size_ = value; } int max_executable_size() const { return max_executable_size_; } void set_max_executable_size(int value) { max_executable_size_ = value; } uint32_t* stack_limit() const { return stack_limit_; } // Sets an address beyond which the VM's stack may not grow.
void set_stack_limit(uint32_t* value) { stack_limit_ = value; } int max_available_threads() const { return max_available_threads_; } // Set the number of threads available to V8, assuming at least 1.
void set_max_available_threads(int value) { max_available_threads_ = value; } size_t code_range_size() const { return code_range_size_; } void set_code_range_size(size_t value) { code_range_size_ = value; }
private: int max_semi_space_size_; int max_old_space_size_; int max_executable_size_; uint32_t* stack_limit_; int max_available_threads_; size_t code_range_size_; };
// --- Exceptions ---
typedef void (*FatalErrorCallback)(const char* location, const char* message);
typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> error);
// --- Tracing ---
typedef void (*LogEventCallback)(const char* name, int event);
/**
* Create new error objects by calling the corresponding error object * constructor with the message. */ class V8_EXPORT Exception { public: static Local<Value> RangeError(Handle<String> message); static Local<Value> ReferenceError(Handle<String> message); static Local<Value> SyntaxError(Handle<String> message); static Local<Value> TypeError(Handle<String> message); static Local<Value> Error(Handle<String> message); };
// --- Counters Callbacks ---
typedef int* (*CounterLookupCallback)(const char* name);
typedef void* (*CreateHistogramCallback)(const char* name, int min, int max, size_t buckets);
typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
// --- Memory Allocation Callback ---
enum ObjectSpace { kObjectSpaceNewSpace = 1 << 0, kObjectSpaceOldPointerSpace = 1 << 1, kObjectSpaceOldDataSpace = 1 << 2, kObjectSpaceCodeSpace = 1 << 3, kObjectSpaceMapSpace = 1 << 4, kObjectSpaceLoSpace = 1 << 5,
kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldPointerSpace | kObjectSpaceOldDataSpace | kObjectSpaceCodeSpace | kObjectSpaceMapSpace | kObjectSpaceLoSpace };
enum AllocationAction { kAllocationActionAllocate = 1 << 0, kAllocationActionFree = 1 << 1, kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree };
typedef void (*MemoryAllocationCallback)(ObjectSpace space, AllocationAction action, int size);
// --- Leave Script Callback ---
typedef void (*CallCompletedCallback)();
// --- Promise Reject Callback ---
enum PromiseRejectEvent { kPromiseRejectWithNoHandler = 0, kPromiseHandlerAddedAfterReject = 1 };
class PromiseRejectMessage { public: PromiseRejectMessage(Handle<Promise> promise, PromiseRejectEvent event, Handle<Value> value, Handle<StackTrace> stack_trace) : promise_(promise), event_(event), value_(value), stack_trace_(stack_trace) {}
V8_INLINE Handle<Promise> GetPromise() const { return promise_; } V8_INLINE PromiseRejectEvent GetEvent() const { return event_; } V8_INLINE Handle<Value> GetValue() const { return value_; } V8_INLINE Handle<StackTrace> GetStackTrace() const { return stack_trace_; }
private: Handle<Promise> promise_; PromiseRejectEvent event_; Handle<Value> value_; Handle<StackTrace> stack_trace_; };
typedef void (*PromiseRejectCallback)(PromiseRejectMessage message);
// --- Microtask Callback ---
typedef void (*MicrotaskCallback)(void* data);
// --- Failed Access Check Callback ---
typedef void (*FailedAccessCheckCallback)(Local<Object> target, AccessType type, Local<Value> data);
// --- AllowCodeGenerationFromStrings callbacks ---
/**
* Callback to check if code generation from strings is allowed. See * Context::AllowCodeGenerationFromStrings. */ typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
// --- Garbage Collection Callbacks ---
/**
* Applications can register callback functions which will be called * before and after a garbage collection. Allocations are not * allowed in the callback functions, you therefore cannot manipulate * objects (set or delete properties for example) since it is possible * such operations will result in the allocation of objects. */ enum GCType { kGCTypeScavenge = 1 << 0, kGCTypeMarkSweepCompact = 1 << 1, kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact };
enum GCCallbackFlags { kNoGCCallbackFlags = 0, kGCCallbackFlagCompacted = 1 << 0, kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1, kGCCallbackFlagForced = 1 << 2 };
typedef void (*GCPrologueCallback)(GCType type, GCCallbackFlags flags); typedef void (*GCEpilogueCallback)(GCType type, GCCallbackFlags flags);
typedef void (*InterruptCallback)(Isolate* isolate, void* data);
/**
* Collection of V8 heap information. * * Instances of this class can be passed to v8::V8::HeapStatistics to * get heap statistics from V8. */ class V8_EXPORT HeapStatistics { public: HeapStatistics(); size_t total_heap_size() { return total_heap_size_; } size_t total_heap_size_executable() { return total_heap_size_executable_; } size_t total_physical_size() { return total_physical_size_; } size_t used_heap_size() { return used_heap_size_; } size_t heap_size_limit() { return heap_size_limit_; }
private: size_t total_heap_size_; size_t total_heap_size_executable_; size_t total_physical_size_; size_t used_heap_size_; size_t heap_size_limit_;
friend class V8; friend class Isolate; };
class RetainedObjectInfo;
/**
* FunctionEntryHook is the type of the profile entry hook called at entry to * any generated function when function-level profiling is enabled. * * \param function the address of the function that's being entered. * \param return_addr_location points to a location on stack where the machine * return address resides. This can be used to identify the caller of * \p function, and/or modified to divert execution when \p function exits. * * \note the entry hook must not cause garbage collection. */ typedef void (*FunctionEntryHook)(uintptr_t function, uintptr_t return_addr_location);
/**
* A JIT code event is issued each time code is added, moved or removed. * * \note removal events are not currently issued. */ struct JitCodeEvent { enum EventType { CODE_ADDED, CODE_MOVED, CODE_REMOVED, CODE_ADD_LINE_POS_INFO, CODE_START_LINE_INFO_RECORDING, CODE_END_LINE_INFO_RECORDING }; // Definition of the code position type. The "POSITION" type means the place
// in the source code which are of interest when making stack traces to
// pin-point the source location of a stack frame as close as possible.
// The "STATEMENT_POSITION" means the place at the beginning of each
// statement, and is used to indicate possible break locations.
enum PositionType { POSITION, STATEMENT_POSITION };
// Type of event.
EventType type; // Start of the instructions.
void* code_start; // Size of the instructions.
size_t code_len; // Script info for CODE_ADDED event.
Handle<UnboundScript> script; // User-defined data for *_LINE_INFO_* event. It's used to hold the source
// code line information which is returned from the
// CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
// CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
void* user_data;
struct name_t { // Name of the object associated with the code, note that the string is not
// zero-terminated.
const char* str; // Number of chars in str.
size_t len; };
struct line_info_t { // PC offset
size_t offset; // Code postion
size_t pos; // The position type.
PositionType position_type; };
union { // Only valid for CODE_ADDED.
struct name_t name;
// Only valid for CODE_ADD_LINE_POS_INFO
struct line_info_t line_info;
// New location of instructions. Only valid for CODE_MOVED.
void* new_code_start; }; };
/**
* Option flags passed to the SetJitCodeEventHandler function. */ enum JitCodeEventOptions { kJitCodeEventDefault = 0, // Generate callbacks for already existent code.
kJitCodeEventEnumExisting = 1 };
/**
* Callback function passed to SetJitCodeEventHandler. * * \param event code add, move or removal event. */ typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
/**
* Isolate represents an isolated instance of the V8 engine. V8 isolates have * completely separate states. Objects from one isolate must not be used in * other isolates. The embedder can create multiple isolates and use them in * parallel in multiple threads. An isolate can be entered by at most one * thread at any given time. The Locker/Unlocker API must be used to * synchronize. */ class V8_EXPORT Isolate { public: /**
* Initial configuration parameters for a new Isolate. */ struct CreateParams { CreateParams() : entry_hook(NULL), code_event_handler(NULL), enable_serializer(false) {}
/**
* The optional entry_hook allows the host application to provide the * address of a function that's invoked on entry to every V8-generated * function. Note that entry_hook is invoked at the very start of each * generated function. Furthermore, if an entry_hook is given, V8 will * always run without a context snapshot. */ FunctionEntryHook entry_hook;
/**
* Allows the host application to provide the address of a function that is * notified each time code is added, moved or removed. */ JitCodeEventHandler code_event_handler;
/**
* ResourceConstraints to use for the new Isolate. */ ResourceConstraints constraints;
/**
* This flag currently renders the Isolate unusable. */ bool enable_serializer; };
/**
* Stack-allocated class which sets the isolate for all operations * executed within a local scope. */ class V8_EXPORT Scope { public: explicit Scope(Isolate* isolate) : isolate_(isolate) { isolate->Enter(); }
~Scope() { isolate_->Exit(); }
private: Isolate* const isolate_;
// Prevent copying of Scope objects.
Scope(const Scope&); Scope& operator=(const Scope&); };
/**
* Assert that no Javascript code is invoked. */ class V8_EXPORT DisallowJavascriptExecutionScope { public: enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE };
DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure); ~DisallowJavascriptExecutionScope();
private: bool on_failure_; void* internal_;
// Prevent copying of Scope objects.
DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&); DisallowJavascriptExecutionScope& operator=( const DisallowJavascriptExecutionScope&); };
/**
* Introduce exception to DisallowJavascriptExecutionScope. */ class V8_EXPORT AllowJavascriptExecutionScope { public: explicit AllowJavascriptExecutionScope(Isolate* isolate); ~AllowJavascriptExecutionScope();
private: void* internal_throws_; void* internal_assert_;
// Prevent copying of Scope objects.
AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&); AllowJavascriptExecutionScope& operator=( const AllowJavascriptExecutionScope&); };
/**
* Do not run microtasks while this scope is active, even if microtasks are * automatically executed otherwise. */ class V8_EXPORT SuppressMicrotaskExecutionScope { public: explicit SuppressMicrotaskExecutionScope(Isolate* isolate); ~SuppressMicrotaskExecutionScope();
private: internal::Isolate* isolate_;
// Prevent copying of Scope objects.
SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&); SuppressMicrotaskExecutionScope& operator=( const SuppressMicrotaskExecutionScope&); };
/**
* Types of garbage collections that can be requested via * RequestGarbageCollectionForTesting. */ enum GarbageCollectionType { kFullGarbageCollection, kMinorGarbageCollection };
/**
* Features reported via the SetUseCounterCallback callback. Do not chang * assigned numbers of existing items; add new features to the end of this * list. */ enum UseCounterFeature { kUseAsm = 0, kBreakIterator = 1, kUseCounterFeatureCount // This enum value must be last.
};
typedef void (*UseCounterCallback)(Isolate* isolate, UseCounterFeature feature);
/**
* Creates a new isolate. Does not change the currently entered * isolate. * * When an isolate is no longer used its resources should be freed * by calling Dispose(). Using the delete operator is not allowed. * * V8::Initialize() must have run prior to this. */ static Isolate* New(const CreateParams& params = CreateParams());
/**
* Returns the entered isolate for the current thread or NULL in * case there is no current isolate. */ static Isolate* GetCurrent();
/**
* Methods below this point require holding a lock (using Locker) in * a multi-threaded environment. */
/**
* Sets this isolate as the entered one for the current thread. * Saves the previously entered one (if any), so that it can be * restored when exiting. Re-entering an isolate is allowed. */ void Enter();
/**
* Exits this isolate by restoring the previously entered one in the * current thread. The isolate may still stay the same, if it was * entered more than once. * * Requires: this == Isolate::GetCurrent(). */ void Exit();
/**
* Disposes the isolate. The isolate must not be entered by any * thread to be disposable. */ void Dispose();
/**
* Associate embedder-specific data with the isolate. |slot| has to be * between 0 and GetNumberOfDataSlots() - 1. */ V8_INLINE void SetData(uint32_t slot, void* data);
/**
* Retrieve embedder-specific data from the isolate. * Returns NULL if SetData has never been called for the given |slot|. */ V8_INLINE void* GetData(uint32_t slot);
/**
* Returns the maximum number of available embedder data slots. Valid slots * are in the range of 0 - GetNumberOfDataSlots() - 1. */ V8_INLINE static uint32_t GetNumberOfDataSlots();
/**
* Get statistics about the heap memory usage. */ void GetHeapStatistics(HeapStatistics* heap_statistics);
/**
* Get a call stack sample from the isolate. * \param state Execution state. * \param frames Caller allocated buffer to store stack frames. * \param frames_limit Maximum number of frames to capture. The buffer must * be large enough to hold the number of frames. * \param sample_info The sample info is filled up by the function * provides number of actual captured stack frames and * the current VM state. * \note GetStackSample should only be called when the JS thread is paused or * interrupted. Otherwise the behavior is undefined. */ void GetStackSample(const RegisterState& state, void** frames, size_t frames_limit, SampleInfo* sample_info);
/**
* Adjusts the amount of registered external memory. Used to give V8 an * indication of the amount of externally allocated memory that is kept alive * by JavaScript objects. V8 uses this to decide when to perform global * garbage collections. Registering externally allocated memory will trigger * global garbage collections more often than it would otherwise in an attempt * to garbage collect the JavaScript objects that keep the externally * allocated memory alive. * * \param change_in_bytes the change in externally allocated memory that is * kept alive by JavaScript objects. * \returns the adjusted value. */ V8_INLINE int64_t AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
/**
* Returns heap profiler for this isolate. Will return NULL until the isolate * is initialized. */ HeapProfiler* GetHeapProfiler();
/**
* Returns CPU profiler for this isolate. Will return NULL unless the isolate * is initialized. It is the embedder's responsibility to stop all CPU * profiling activities if it has started any. */ CpuProfiler* GetCpuProfiler();
/** Returns true if this isolate has a current context. */ bool InContext();
/** Returns the context that is on the top of the stack. */ Local<Context> GetCurrentContext();
/**
* Returns the context of the calling JavaScript code. That is the * context of the top-most JavaScript frame. If there are no * JavaScript frames an empty handle is returned. */ Local<Context> GetCallingContext();
/** Returns the last entered context. */ Local<Context> GetEnteredContext();
/**
* Schedules an exception to be thrown when returning to JavaScript. When an * exception has been scheduled it is illegal to invoke any JavaScript * operation; the caller must return immediately and only after the exception * has been handled does it become legal to invoke JavaScript operations. */ Local<Value> ThrowException(Local<Value> exception);
/**
* Allows the host application to group objects together. If one * object in the group is alive, all objects in the group are alive. * After each garbage collection, object groups are removed. It is * intended to be used in the before-garbage-collection callback * function, for instance to simulate DOM tree connections among JS * wrapper objects. Object groups for all dependent handles need to * be provided for kGCTypeMarkSweepCompact collections, for all other * garbage collection types it is sufficient to provide object groups * for partially dependent handles only. */ template<typename T> void SetObjectGroupId(const Persistent<T>& object, UniqueId id);
/**
* Allows the host application to declare implicit references from an object * group to an object. If the objects of the object group are alive, the child * object is alive too. After each garbage collection, all implicit references * are removed. It is intended to be used in the before-garbage-collection * callback function. */ template<typename T> void SetReferenceFromGroup(UniqueId id, const Persistent<T>& child);
/**
* Allows the host application to declare implicit references from an object * to another object. If the parent object is alive, the child object is alive * too. After each garbage collection, all implicit references are removed. It * is intended to be used in the before-garbage-collection callback function. */ template<typename T, typename S> void SetReference(const Persistent<T>& parent, const Persistent<S>& child);
typedef void (*GCPrologueCallback)(Isolate* isolate, GCType type, GCCallbackFlags flags); typedef void (*GCEpilogueCallback)(Isolate* isolate, GCType type, GCCallbackFlags flags);
/**
* Enables the host application to receive a notification before a * garbage collection. Allocations are allowed in the callback function, * but the callback is not re-entrant: if the allocation inside it will * trigger the garbage collection, the callback won't be called again. * It is possible to specify the GCType filter for your callback. But it is * not possible to register the same callback function two times with * different GCType filters. */ void AddGCPrologueCallback( GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
/**
* This function removes callback which was installed by * AddGCPrologueCallback function. */ void RemoveGCPrologueCallback(GCPrologueCallback callback);
/**
* Enables the host application to receive a notification after a * garbage collection. Allocations are allowed in the callback function, * but the callback is not re-entrant: if the allocation inside it will * trigger the garbage collection, the callback won't be called again. * It is possible to specify the GCType filter for your callback. But it is * not possible to register the same callback function two times with * different GCType filters. */ void AddGCEpilogueCallback( GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
/**
* This function removes callback which was installed by * AddGCEpilogueCallback function. */ void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
/**
* Request V8 to interrupt long running JavaScript code and invoke * the given |callback| passing the given |data| to it. After |callback| * returns control will be returned to the JavaScript code. * At any given moment V8 can remember only a single callback for the very * last interrupt request. * Can be called from another thread without acquiring a |Locker|. * Registered |callback| must not reenter interrupted Isolate. */ void RequestInterrupt(InterruptCallback callback, void* data);
/**
* Clear interrupt request created by |RequestInterrupt|. * Can be called from another thread without acquiring a |Locker|. */ void ClearInterrupt();
/**
* Request garbage collection in this Isolate. It is only valid to call this * function if --expose_gc was specified. * * This should only be used for testing purposes and not to enforce a garbage * collection schedule. It has strong negative impact on the garbage * collection performance. Use IdleNotification() or LowMemoryNotification() * instead to influence the garbage collection schedule. */ void RequestGarbageCollectionForTesting(GarbageCollectionType type);
/**
* Set the callback to invoke for logging event. */ void SetEventLogger(LogEventCallback that);
/**
* Adds a callback to notify the host application when a script finished * running. If a script re-enters the runtime during executing, the * CallCompletedCallback is only invoked when the outer-most script * execution ends. Executing scripts inside the callback do not trigger * further callbacks. */ void AddCallCompletedCallback(CallCompletedCallback callback);
/**
* Removes callback that was installed by AddCallCompletedCallback. */ void RemoveCallCompletedCallback(CallCompletedCallback callback);
/**
* Set callback to notify about promise reject with no handler, or * revocation of such a previous notification once the handler is added. */ void SetPromiseRejectCallback(PromiseRejectCallback callback);
/**
* Experimental: Runs the Microtask Work Queue until empty * Any exceptions thrown by microtask callbacks are swallowed. */ void RunMicrotasks();
/**
* Experimental: Enqueues the callback to the Microtask Work Queue */ void EnqueueMicrotask(Handle<Function> microtask);
/**
* Experimental: Enqueues the callback to the Microtask Work Queue */ void EnqueueMicrotask(MicrotaskCallback microtask, void* data = NULL);
/**
* Experimental: Controls whether the Microtask Work Queue is automatically * run when the script call depth decrements to zero. */ void SetAutorunMicrotasks(bool autorun);
/**
* Experimental: Returns whether the Microtask Work Queue is automatically * run when the script call depth decrements to zero. */ bool WillAutorunMicrotasks() const;
/**
* Sets a callback for counting the number of times a feature of V8 is used. */ void SetUseCounterCallback(UseCounterCallback callback);
/**
* Enables the host application to provide a mechanism for recording * statistics counters. */ void SetCounterFunction(CounterLookupCallback);
/**
* Enables the host application to provide a mechanism for recording * histograms. The CreateHistogram function returns a * histogram which will later be passed to the AddHistogramSample * function. */ void SetCreateHistogramFunction(CreateHistogramCallback); void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
/**
* Optional notification that the embedder is idle. * V8 uses the notification to reduce memory footprint. * This call can be used repeatedly if the embedder remains idle. * Returns true if the embedder should stop calling IdleNotification * until real work has been done. This indicates that V8 has done * as much cleanup as it will be able to do. * * The idle_time_in_ms argument specifies the time V8 has to do reduce * the memory footprint. There is no guarantee that the actual work will be * done within the time limit. */ bool IdleNotification(int idle_time_in_ms);
/**
* Optional notification that the system is running low on memory. * V8 uses these notifications to attempt to free memory. */ void LowMemoryNotification();
/**
* Optional notification that a context has been disposed. V8 uses * these notifications to guide the GC heuristic. Returns the number * of context disposals - including this one - since the last time * V8 had a chance to clean up. */ int ContextDisposedNotification();
/**
* Allows the host application to provide the address of a function that is * notified each time code is added, moved or removed. * * \param options options for the JIT code event handler. * \param event_handler the JIT code event handler, which will be invoked * each time code is added, moved or removed. * \note \p event_handler won't get notified of existent code. * \note since code removal notifications are not currently issued, the * \p event_handler may get notifications of code that overlaps earlier * code notifications. This happens when code areas are reused, and the * earlier overlapping code areas should therefore be discarded. * \note the events passed to \p event_handler and the strings they point to * are not guaranteed to live past each call. The \p event_handler must * copy strings and other parameters it needs to keep around. * \note the set of events declared in JitCodeEvent::EventType is expected to * grow over time, and the JitCodeEvent structure is expected to accrue * new members. The \p event_handler function must ignore event codes * it does not recognize to maintain future compatibility. * \note Use Isolate::CreateParams to get events for code executed during * Isolate setup. */ void SetJitCodeEventHandler(JitCodeEventOptions options, JitCodeEventHandler event_handler);
/**
* Modifies the stack limit for this Isolate. * * \param stack_limit An address beyond which the Vm's stack may not grow. * * \note If you are using threads then you should hold the V8::Locker lock * while setting the stack limit and you must set a non-default stack * limit separately for each thread. */ void SetStackLimit(uintptr_t stack_limit);
/**
* Returns a memory range that can potentially contain jitted code. * * On Win64, embedders are advised to install function table callbacks for * these ranges, as default SEH won't be able to unwind through jitted code. * * The first page of the code range is reserved for the embedder and is * committed, writable, and executable. * * Might be empty on other platforms. * * https://code.google.com/p/v8/issues/detail?id=3598
*/ void GetCodeRange(void** start, size_t* length_in_bytes);
private: template<class K, class V, class Traits> friend class PersistentValueMap;
Isolate(); Isolate(const Isolate&); ~Isolate(); Isolate& operator=(const Isolate&); void* operator new(size_t size); void operator delete(void*, size_t);
void SetObjectGroupId(internal::Object** object, UniqueId id); void SetReferenceFromGroup(UniqueId id, internal::Object** object); void SetReference(internal::Object** parent, internal::Object** child); void CollectAllGarbage(const char* gc_reason); };
class V8_EXPORT StartupData { public: enum CompressionAlgorithm { kUncompressed, kBZip2 };
const char* data; int compressed_size; int raw_size; };
/**
* A helper class for driving V8 startup data decompression. It is based on * "CompressedStartupData" API functions from the V8 class. It isn't mandatory * for an embedder to use this class, instead, API functions can be used * directly. * * For an example of the class usage, see the "shell.cc" sample application. */ class V8_EXPORT StartupDataDecompressor { // NOLINT
public: StartupDataDecompressor(); virtual ~StartupDataDecompressor(); int Decompress();
protected: virtual int DecompressData(char* raw_data, int* raw_data_size, const char* compressed_data, int compressed_data_size) = 0;
private: char** raw_data; };
/**
* EntropySource is used as a callback function when v8 needs a source * of entropy. */ typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
/**
* ReturnAddressLocationResolver is used as a callback function when v8 is * resolving the location of a return address on the stack. Profilers that * change the return address on the stack can use this to resolve the stack * location to whereever the profiler stashed the original return address. * * \param return_addr_location points to a location on stack where a machine * return address resides. * \returns either return_addr_location, or else a pointer to the profiler's * copy of the original return address. * * \note the resolver function must not cause garbage collection. */ typedef uintptr_t (*ReturnAddressLocationResolver)( uintptr_t return_addr_location);
/**
* Interface for iterating through all external resources in the heap. */ class V8_EXPORT ExternalResourceVisitor { // NOLINT
public: virtual ~ExternalResourceVisitor() {} virtual void VisitExternalString(Handle<String> string) {} };
/**
* Interface for iterating through all the persistent handles in the heap. */ class V8_EXPORT PersistentHandleVisitor { // NOLINT
public: virtual ~PersistentHandleVisitor() {} virtual void VisitPersistentHandle(Persistent<Value>* value, uint16_t class_id) {} };
/**
* Container class for static utility functions. */ class V8_EXPORT V8 { public: /** Set the callback to invoke in case of fatal errors. */ static void SetFatalErrorHandler(FatalErrorCallback that);
/**
* Set the callback to invoke to check if code generation from * strings should be allowed. */ static void SetAllowCodeGenerationFromStringsCallback( AllowCodeGenerationFromStringsCallback that);
/**
* Set allocator to use for ArrayBuffer memory. * The allocator should be set only once. The allocator should be set * before any code tha uses ArrayBuffers is executed. * This allocator is used in all isolates. */ static void SetArrayBufferAllocator(ArrayBuffer::Allocator* allocator);
/**
* Check if V8 is dead and therefore unusable. This is the case after * fatal errors such as out-of-memory situations. */ static bool IsDead();
/**
* The following 4 functions are to be used when V8 is built with * the 'compress_startup_data' flag enabled. In this case, the * embedder must decompress startup data prior to initializing V8. * * This is how interaction with V8 should look like: * int compressed_data_count = v8::V8::GetCompressedStartupDataCount(); * v8::StartupData* compressed_data = * new v8::StartupData[compressed_data_count]; * v8::V8::GetCompressedStartupData(compressed_data); * ... decompress data (compressed_data can be updated in-place) ... * v8::V8::SetDecompressedStartupData(compressed_data); * ... now V8 can be initialized * ... make sure the decompressed data stays valid until V8 shutdown * * A helper class StartupDataDecompressor is provided. It implements * the protocol of the interaction described above, and can be used in * most cases instead of calling these API functions directly. */ static StartupData::CompressionAlgorithm GetCompressedStartupDataAlgorithm(); static int GetCompressedStartupDataCount(); static void GetCompressedStartupData(StartupData* compressed_data); static void SetDecompressedStartupData(StartupData* decompressed_data);
/**
* Hand startup data to V8, in case the embedder has chosen to build * V8 with external startup data. * * Note: * - By default the startup data is linked into the V8 library, in which * case this function is not meaningful. * - If this needs to be called, it needs to be called before V8 * tries to make use of its built-ins. * - To avoid unnecessary copies of data, V8 will point directly into the * given data blob, so pretty please keep it around until V8 exit. * - Compression of the startup blob might be useful, but needs to * handled entirely on the embedders' side. * - The call will abort if the data is invalid. */ static void SetNativesDataBlob(StartupData* startup_blob); static void SetSnapshotDataBlob(StartupData* startup_blob);
/**
* Adds a message listener. * * The same message listener can be added more than once and in that * case it will be called more than once for each message. * * If data is specified, it will be passed to the callback when it is called. * Otherwise, the exception object will be passed to the callback instead. */ static bool AddMessageListener(MessageCallback that, Handle<Value> data = Handle<Value>());
/**
* Remove all message listeners from the specified callback function. */ static void RemoveMessageListeners(MessageCallback that);
/**
* Tells V8 to capture current stack trace when uncaught exception occurs * and report it to the message listeners. The option is off by default. */ static void SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit = 10, StackTrace::StackTraceOptions options = StackTrace::kOverview);
/**
* Sets V8 flags from a string. */ static void SetFlagsFromString(const char* str, int length);
/**
* Sets V8 flags from the command line. */ static void SetFlagsFromCommandLine(int* argc, char** argv, bool remove_flags);
/** Get the version string. */ static const char* GetVersion();
/** Callback function for reporting failed access checks.*/ static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
/**
* Enables the host application to receive a notification before a * garbage collection. Allocations are not allowed in the * callback function, you therefore cannot manipulate objects (set * or delete properties for example) since it is possible such * operations will result in the allocation of objects. It is possible * to specify the GCType filter for your callback. But it is not possible to * register the same callback function two times with different * GCType filters. */ static void AddGCPrologueCallback( GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
/**
* This function removes callback which was installed by * AddGCPrologueCallback function. */ static void RemoveGCPrologueCallback(GCPrologueCallback callback);
/**
* Enables the host application to receive a notification after a * garbage collection. Allocations are not allowed in the * callback function, you therefore cannot manipulate objects (set * or delete properties for example) since it is possible such * operations will result in the allocation of objects. It is possible * to specify the GCType filter for your callback. But it is not possible to * register the same callback function two times with different * GCType filters. */ static void AddGCEpilogueCallback( GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
/**
* This function removes callback which was installed by * AddGCEpilogueCallback function. */ static void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
/**
* Enables the host application to provide a mechanism to be notified * and perform custom logging when V8 Allocates Executable Memory. */ static void AddMemoryAllocationCallback(MemoryAllocationCallback callback, ObjectSpace space, AllocationAction action);
/**
* Removes callback that was installed by AddMemoryAllocationCallback. */ static void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback);
/**
* Initializes V8. This function needs to be called before the first Isolate * is created. It always returns true. */ static bool Initialize();
/**
* Allows the host application to provide a callback which can be used * as a source of entropy for random number generators. */ static void SetEntropySource(EntropySource source);
/**
* Allows the host application to provide a callback that allows v8 to * cooperate with a profiler that rewrites return addresses on stack. */ static void SetReturnAddressLocationResolver( ReturnAddressLocationResolver return_address_resolver);
/**
* Forcefully terminate the current thread of JavaScript execution * in the given isolate. * * This method can be used by any thread even if that thread has not * acquired the V8 lock with a Locker object. * * \param isolate The isolate in which to terminate the current JS execution. */ static void TerminateExecution(Isolate* isolate);
/**
* Is V8 terminating JavaScript execution. * * Returns true if JavaScript execution is currently terminating * because of a call to TerminateExecution. In that case there are * still JavaScript frames on the stack and the termination * exception is still active. * * \param isolate The isolate in which to check. */ static bool IsExecutionTerminating(Isolate* isolate = NULL);
/**
* Resume execution capability in the given isolate, whose execution * was previously forcefully terminated using TerminateExecution(). * * When execution is forcefully terminated using TerminateExecution(), * the isolate can not resume execution until all JavaScript frames * have propagated the uncatchable exception which is generated. This * method allows the program embedding the engine to handle the * termination event and resume execution capability, even if * JavaScript frames remain on the stack. * * This method can be used by any thread even if that thread has not * acquired the V8 lock with a Locker object. * * \param isolate The isolate in which to resume execution capability. */ static void CancelTerminateExecution(Isolate* isolate);
/**
* Releases any resources used by v8 and stops any utility threads * that may be running. Note that disposing v8 is permanent, it * cannot be reinitialized. * * It should generally not be necessary to dispose v8 before exiting * a process, this should happen automatically. It is only necessary * to use if the process needs the resources taken up by v8. */ static bool Dispose();
/**
* Iterates through all external resources referenced from current isolate * heap. GC is not invoked prior to iterating, therefore there is no * guarantee that visited objects are still alive. */ static void VisitExternalResources(ExternalResourceVisitor* visitor);
/**
* Iterates through all the persistent handles in the current isolate's heap * that have class_ids. */ static void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
/**
* Iterates through all the persistent handles in the current isolate's heap * that have class_ids and are candidates to be marked as partially dependent * handles. This will visit handles to young objects created since the last * garbage collection but is free to visit an arbitrary superset of these * objects. */ static void VisitHandlesForPartialDependence( Isolate* isolate, PersistentHandleVisitor* visitor);
/**
* Initialize the ICU library bundled with V8. The embedder should only * invoke this method when using the bundled ICU. Returns true on success. * * If V8 was compiled with the ICU data in an external file, the location * of the data file has to be provided. */ static bool InitializeICU(const char* icu_data_file = NULL);
/**
* Sets the v8::Platform to use. This should be invoked before V8 is * initialized. */ static void InitializePlatform(Platform* platform);
/**
* Clears all references to the v8::Platform. This should be invoked after * V8 was disposed. */ static void ShutdownPlatform();
private: V8();
static internal::Object** GlobalizeReference(internal::Isolate* isolate, internal::Object** handle); static internal::Object** CopyPersistent(internal::Object** handle); static void DisposeGlobal(internal::Object** global_handle); typedef WeakCallbackData<Value, void>::Callback WeakCallback; static void MakeWeak(internal::Object** global_handle, void* data, WeakCallback weak_callback); static void* ClearWeak(internal::Object** global_handle); static void Eternalize(Isolate* isolate, Value* handle, int* index); static Local<Value> GetEternal(Isolate* isolate, int index);
template <class T> friend class Handle; template <class T> friend class Local; template <class T> friend class Eternal; template <class T> friend class PersistentBase; template <class T, class M> friend class Persistent; friend class Context; };
/**
* An external exception handler. */ class V8_EXPORT TryCatch { public: /**
* Creates a new try/catch block and registers it with v8. Note that * all TryCatch blocks should be stack allocated because the memory * location itself is compared against JavaScript try/catch blocks. */ TryCatch();
/**
* Unregisters and deletes this try/catch block. */ ~TryCatch();
/**
* Returns true if an exception has been caught by this try/catch block. */ bool HasCaught() const;
/**
* For certain types of exceptions, it makes no sense to continue execution. * * If CanContinue returns false, the correct action is to perform any C++ * cleanup needed and then return. If CanContinue returns false and * HasTerminated returns true, it is possible to call * CancelTerminateExecution in order to continue calling into the engine. */ bool CanContinue() const;
/**
* Returns true if an exception has been caught due to script execution * being terminated. * * There is no JavaScript representation of an execution termination * exception. Such exceptions are thrown when the TerminateExecution * methods are called to terminate a long-running script. * * If such an exception has been thrown, HasTerminated will return true, * indicating that it is possible to call CancelTerminateExecution in order * to continue calling into the engine. */ bool HasTerminated() const;
/**
* Throws the exception caught by this TryCatch in a way that avoids * it being caught again by this same TryCatch. As with ThrowException * it is illegal to execute any JavaScript operations after calling * ReThrow; the caller must return immediately to where the exception * is caught. */ Handle<Value> ReThrow();
/**
* Returns the exception caught by this try/catch block. If no exception has * been caught an empty handle is returned. * * The returned handle is valid until this TryCatch block has been destroyed. */ Local<Value> Exception() const;
/**
* Returns the .stack property of the thrown object. If no .stack * property is present an empty handle is returned. */ Local<Value> StackTrace() const;
/**
* Returns the message associated with this exception. If there is * no message associated an empty handle is returned. * * The returned handle is valid until this TryCatch block has been * destroyed. */ Local<v8::Message> Message() const;
/**
* Clears any exceptions that may have been caught by this try/catch block. * After this method has been called, HasCaught() will return false. Cancels * the scheduled exception if it is caught and ReThrow() is not called before. * * It is not necessary to clear a try/catch block before using it again; if * another exception is thrown the previously caught exception will just be * overwritten. However, it is often a good idea since it makes it easier * to determine which operation threw a given exception. */ void Reset();
/**
* Set verbosity of the external exception handler. * * By default, exceptions that are caught by an external exception * handler are not reported. Call SetVerbose with true on an * external exception handler to have exceptions caught by the * handler reported as if they were not caught. */ void SetVerbose(bool value);
/**
* Set whether or not this TryCatch should capture a Message object * which holds source information about where the exception * occurred. True by default. */ void SetCaptureMessage(bool value);
/**
* There are cases when the raw address of C++ TryCatch object cannot be * used for comparisons with addresses into the JS stack. The cases are: * 1) ARM, ARM64 and MIPS simulators which have separate JS stack. * 2) Address sanitizer allocates local C++ object in the heap when * UseAfterReturn mode is enabled. * This method returns address that can be used for comparisons with * addresses into the JS stack. When neither simulator nor ASAN's * UseAfterReturn is enabled, then the address returned will be the address * of the C++ try catch handler itself. */ static void* JSStackComparableAddress(v8::TryCatch* handler) { if (handler == NULL) return NULL; return handler->js_stack_comparable_address_; }
private: void ResetInternal();
// Make it hard to create heap-allocated TryCatch blocks.
TryCatch(const TryCatch&); void operator=(const TryCatch&); void* operator new(size_t size); void operator delete(void*, size_t);
v8::internal::Isolate* isolate_; v8::TryCatch* next_; void* exception_; void* message_obj_; void* message_script_; void* js_stack_comparable_address_; int message_start_pos_; int message_end_pos_; bool is_verbose_ : 1; bool can_continue_ : 1; bool capture_message_ : 1; bool rethrow_ : 1; bool has_terminated_ : 1;
friend class v8::internal::Isolate; };
// --- Context ---
/**
* A container for extension names. */ class V8_EXPORT ExtensionConfiguration { public: ExtensionConfiguration() : name_count_(0), names_(NULL) { } ExtensionConfiguration(int name_count, const char* names[]) : name_count_(name_count), names_(names) { }
const char** begin() const { return &names_[0]; } const char** end() const { return &names_[name_count_]; }
private: const int name_count_; const char** names_; };
/**
* A sandboxed execution context with its own set of built-in objects * and functions. */ class V8_EXPORT Context { public: /**
* Returns the global proxy object. * * Global proxy object is a thin wrapper whose prototype points to actual * context's global object with the properties like Object, etc. This is done * that way for security reasons (for more details see * https://wiki.mozilla.org/Gecko:SplitWindow).
* * Please note that changes to global proxy object prototype most probably * would break VM---v8 expects only global object as a prototype of global * proxy object. */ Local<Object> Global();
/**
* Detaches the global object from its context before * the global object can be reused to create a new context. */ void DetachGlobal();
/**
* Creates a new context and returns a handle to the newly allocated * context. * * \param isolate The isolate in which to create the context. * * \param extensions An optional extension configuration containing * the extensions to be installed in the newly created context. * * \param global_template An optional object template from which the * global object for the newly created context will be created. * * \param global_object An optional global object to be reused for * the newly created context. This global object must have been * created by a previous call to Context::New with the same global * template. The state of the global object will be completely reset * and only object identify will remain. */ static Local<Context> New( Isolate* isolate, ExtensionConfiguration* extensions = NULL, Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(), Handle<Value> global_object = Handle<Value>());
/**
* Sets the security token for the context. To access an object in * another context, the security tokens must match. */ void SetSecurityToken(Handle<Value> token);
/** Restores the security token to the default value. */ void UseDefaultSecurityToken();
/** Returns the security token of this context.*/ Handle<Value> GetSecurityToken();
/**
* Enter this context. After entering a context, all code compiled * and run is compiled and run in this context. If another context * is already entered, this old context is saved so it can be * restored when the new context is exited. */ void Enter();
/**
* Exit this context. Exiting the current context restores the * context that was in place when entering the current context. */ void Exit();
/** Returns an isolate associated with a current context. */ v8::Isolate* GetIsolate();
/**
* Gets the embedder data with the given index, which must have been set by a * previous call to SetEmbedderData with the same index. Note that index 0 * currently has a special meaning for Chrome's debugger. */ V8_INLINE Local<Value> GetEmbedderData(int index);
/**
* Sets the embedder data with the given index, growing the data as * needed. Note that index 0 currently has a special meaning for Chrome's * debugger. */ void SetEmbedderData(int index, Handle<Value> value);
/**
* Gets a 2-byte-aligned native pointer from the embedder data with the given * index, which must have bees set by a previous call to * SetAlignedPointerInEmbedderData with the same index. Note that index 0 * currently has a special meaning for Chrome's debugger. */ V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
/**
* Sets a 2-byte-aligned native pointer in the embedder data with the given * index, growing the data as needed. Note that index 0 currently has a * special meaning for Chrome's debugger. */ void SetAlignedPointerInEmbedderData(int index, void* value);
/**
* Control whether code generation from strings is allowed. Calling * this method with false will disable 'eval' and the 'Function' * constructor for code running in this context. If 'eval' or the * 'Function' constructor are used an exception will be thrown. * * If code generation from strings is not allowed the * V8::AllowCodeGenerationFromStrings callback will be invoked if * set before blocking the call to 'eval' or the 'Function' * constructor. If that callback returns true, the call will be * allowed, otherwise an exception will be thrown. If no callback is * set an exception will be thrown. */ void AllowCodeGenerationFromStrings(bool allow);
/**
* Returns true if code generation from strings is allowed for the context. * For more details see AllowCodeGenerationFromStrings(bool) documentation. */ bool IsCodeGenerationFromStringsAllowed();
/**
* Sets the error description for the exception that is thrown when * code generation from strings is not allowed and 'eval' or the 'Function' * constructor are called. */ void SetErrorMessageForCodeGenerationFromStrings(Handle<String> message);
/**
* Stack-allocated class which sets the execution context for all * operations executed within a local scope. */ class Scope { public: explicit V8_INLINE Scope(Handle<Context> context) : context_(context) { context_->Enter(); } V8_INLINE ~Scope() { context_->Exit(); }
private: Handle<Context> context_; };
private: friend class Value; friend class Script; friend class Object; friend class Function;
Local<Value> SlowGetEmbedderData(int index); void* SlowGetAlignedPointerFromEmbedderData(int index); };
/**
* Multiple threads in V8 are allowed, but only one thread at a time is allowed * to use any given V8 isolate, see the comments in the Isolate class. The * definition of 'using a V8 isolate' includes accessing handles or holding onto * object pointers obtained from V8 handles while in the particular V8 isolate. * It is up to the user of V8 to ensure, perhaps with locking, that this * constraint is not violated. In addition to any other synchronization * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be * used to signal thead switches to V8. * * v8::Locker is a scoped lock object. While it's active, i.e. between its * construction and destruction, the current thread is allowed to use the locked * isolate. V8 guarantees that an isolate can be locked by at most one thread at * any time. In other words, the scope of a v8::Locker is a critical section. * * Sample usage: * \code * ... * { * v8::Locker locker(isolate); * v8::Isolate::Scope isolate_scope(isolate); * ... * // Code using V8 and isolate goes here.
* ... * } // Destructor called here
* \endcode * * If you wish to stop using V8 in a thread A you can do this either by * destroying the v8::Locker object as above or by constructing a v8::Unlocker * object: * * \code * { * isolate->Exit(); * v8::Unlocker unlocker(isolate); * ... * // Code not using V8 goes here while V8 can run in another thread.
* ... * } // Destructor called here.
* isolate->Enter(); * \endcode * * The Unlocker object is intended for use in a long-running callback from V8, * where you want to release the V8 lock for other threads to use. * * The v8::Locker is a recursive lock, i.e. you can lock more than once in a * given thread. This can be useful if you have code that can be called either * from code that holds the lock or from code that does not. The Unlocker is * not recursive so you can not have several Unlockers on the stack at once, and * you can not use an Unlocker in a thread that is not inside a Locker's scope. * * An unlocker will unlock several lockers if it has to and reinstate the * correct depth of locking on its destruction, e.g.: * * \code * // V8 not locked.
* { * v8::Locker locker(isolate); * Isolate::Scope isolate_scope(isolate); * // V8 locked.
* { * v8::Locker another_locker(isolate); * // V8 still locked (2 levels).
* { * isolate->Exit(); * v8::Unlocker unlocker(isolate); * // V8 not locked.
* } * isolate->Enter(); * // V8 locked again (2 levels).
* } * // V8 still locked (1 level).
* } * // V8 Now no longer locked.
* \endcode */ class V8_EXPORT Unlocker { public: /**
* Initialize Unlocker for a given Isolate. */ V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
~Unlocker(); private: void Initialize(Isolate* isolate);
internal::Isolate* isolate_; };
class V8_EXPORT Locker { public: /**
* Initialize Locker for a given Isolate. */ V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
~Locker();
/**
* Returns whether or not the locker for a given isolate, is locked by the * current thread. */ static bool IsLocked(Isolate* isolate);
/**
* Returns whether v8::Locker is being used by this V8 instance. */ static bool IsActive();
private: void Initialize(Isolate* isolate);
bool has_lock_; bool top_level_; internal::Isolate* isolate_;
// Disallow copying and assigning.
Locker(const Locker&); void operator=(const Locker&); };
// --- Implementation ---
namespace internal {
const int kApiPointerSize = sizeof(void*); // NOLINT
const int kApiIntSize = sizeof(int); // NOLINT
const int kApiInt64Size = sizeof(int64_t); // NOLINT
// Tag information for HeapObject.
const int kHeapObjectTag = 1; const int kHeapObjectTagSize = 2; const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
// Tag information for Smi.
const int kSmiTag = 0; const int kSmiTagSize = 1; const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
template <size_t ptr_size> struct SmiTagging;
template<int kSmiShiftSize> V8_INLINE internal::Object* IntToSmi(int value) { int smi_shift_bits = kSmiTagSize + kSmiShiftSize; uintptr_t tagged_value = (static_cast<uintptr_t>(value) << smi_shift_bits) | kSmiTag; return reinterpret_cast<internal::Object*>(tagged_value); }
// Smi constants for 32-bit systems.
template <> struct SmiTagging<4> { enum { kSmiShiftSize = 0, kSmiValueSize = 31 }; static int SmiShiftSize() { return kSmiShiftSize; } static int SmiValueSize() { return kSmiValueSize; } V8_INLINE static int SmiToInt(const internal::Object* value) { int shift_bits = kSmiTagSize + kSmiShiftSize; // Throw away top 32 bits and shift down (requires >> to be sign extending).
return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits; } V8_INLINE static internal::Object* IntToSmi(int value) { return internal::IntToSmi<kSmiShiftSize>(value); } V8_INLINE static bool IsValidSmi(intptr_t value) { // To be representable as an tagged small integer, the two
// most-significant bits of 'value' must be either 00 or 11 due to
// sign-extension. To check this we add 01 to the two
// most-significant bits, and check if the most-significant bit is 0
//
// CAUTION: The original code below:
// bool result = ((value + 0x40000000) & 0x80000000) == 0;
// may lead to incorrect results according to the C language spec, and
// in fact doesn't work correctly with gcc4.1.1 in some cases: The
// compiler may produce undefined results in case of signed integer
// overflow. The computation must be done w/ unsigned ints.
return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U; } };
// Smi constants for 64-bit systems.
template <> struct SmiTagging<8> { enum { kSmiShiftSize = 31, kSmiValueSize = 32 }; static int SmiShiftSize() { return kSmiShiftSize; } static int SmiValueSize() { return kSmiValueSize; } V8_INLINE static int SmiToInt(const internal::Object* value) { int shift_bits = kSmiTagSize + kSmiShiftSize; // Shift down and throw away top 32 bits.
return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits); } V8_INLINE static internal::Object* IntToSmi(int value) { return internal::IntToSmi<kSmiShiftSize>(value); } V8_INLINE static bool IsValidSmi(intptr_t value) { // To be representable as a long smi, the value must be a 32-bit integer.
return (value == static_cast<int32_t>(value)); } };
typedef SmiTagging<kApiPointerSize> PlatformSmiTagging; const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize; const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize; V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; } V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
/**
* This class exports constants and functionality from within v8 that * is necessary to implement inline functions in the v8 api. Don't * depend on functions and constants defined here. */ class Internals { public: // These values match non-compiler-dependent values defined within
// the implementation of v8.
static const int kHeapObjectMapOffset = 0; static const int kMapInstanceTypeAndBitFieldOffset = 1 * kApiPointerSize + kApiIntSize; static const int kStringResourceOffset = 3 * kApiPointerSize;
static const int kOddballKindOffset = 3 * kApiPointerSize; static const int kForeignAddressOffset = kApiPointerSize; static const int kJSObjectHeaderSize = 3 * kApiPointerSize; static const int kFixedArrayHeaderSize = 2 * kApiPointerSize; static const int kContextHeaderSize = 2 * kApiPointerSize; static const int kContextEmbedderDataIndex = 76; static const int kFullStringRepresentationMask = 0x07; static const int kStringEncodingMask = 0x4; static const int kExternalTwoByteRepresentationTag = 0x02; static const int kExternalOneByteRepresentationTag = 0x06;
static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize; static const int kAmountOfExternalAllocatedMemoryOffset = 4 * kApiPointerSize; static const int kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset = kAmountOfExternalAllocatedMemoryOffset + kApiInt64Size; static const int kIsolateRootsOffset = kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset + kApiInt64Size + kApiPointerSize; static const int kUndefinedValueRootIndex = 5; static const int kNullValueRootIndex = 7; static const int kTrueValueRootIndex = 8; static const int kFalseValueRootIndex = 9; static const int kEmptyStringRootIndex = 154;
// The external allocation limit should be below 256 MB on all architectures
// to avoid that resource-constrained embedders run low on memory.
static const int kExternalAllocationLimit = 192 * 1024 * 1024;
static const int kNodeClassIdOffset = 1 * kApiPointerSize; static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3; static const int kNodeStateMask = 0xf; static const int kNodeStateIsWeakValue = 2; static const int kNodeStateIsPendingValue = 3; static const int kNodeStateIsNearDeathValue = 4; static const int kNodeIsIndependentShift = 4; static const int kNodeIsPartiallyDependentShift = 5;
static const int kJSObjectType = 0xbd; static const int kFirstNonstringType = 0x80; static const int kOddballType = 0x83; static const int kForeignType = 0x88;
static const int kUndefinedOddballKind = 5; static const int kNullOddballKind = 3;
static const uint32_t kNumIsolateDataSlots = 4;
V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate); V8_INLINE static void CheckInitialized(v8::Isolate* isolate) { #ifdef V8_ENABLE_CHECKS
CheckInitializedImpl(isolate); #endif
}
V8_INLINE static bool HasHeapObjectTag(const internal::Object* value) { return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) == kHeapObjectTag); }
V8_INLINE static int SmiValue(const internal::Object* value) { return PlatformSmiTagging::SmiToInt(value); }
V8_INLINE static internal::Object* IntToSmi(int value) { return PlatformSmiTagging::IntToSmi(value); }
V8_INLINE static bool IsValidSmi(intptr_t value) { return PlatformSmiTagging::IsValidSmi(value); }
V8_INLINE static int GetInstanceType(const internal::Object* obj) { typedef internal::Object O; O* map = ReadField<O*>(obj, kHeapObjectMapOffset); // Map::InstanceType is defined so that it will always be loaded into
// the LS 8 bits of one 16-bit word, regardless of endianess.
return ReadField<uint16_t>(map, kMapInstanceTypeAndBitFieldOffset) & 0xff; }
V8_INLINE static int GetOddballKind(const internal::Object* obj) { typedef internal::Object O; return SmiValue(ReadField<O*>(obj, kOddballKindOffset)); }
V8_INLINE static bool IsExternalTwoByteString(int instance_type) { int representation = (instance_type & kFullStringRepresentationMask); return representation == kExternalTwoByteRepresentationTag; }
V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; return *addr & static_cast<uint8_t>(1U << shift); }
V8_INLINE static void UpdateNodeFlag(internal::Object** obj, bool value, int shift) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; uint8_t mask = static_cast<uint8_t>(1U << shift); *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift)); }
V8_INLINE static uint8_t GetNodeState(internal::Object** obj) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; return *addr & kNodeStateMask; }
V8_INLINE static void UpdateNodeState(internal::Object** obj, uint8_t value) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value); }
V8_INLINE static void SetEmbedderData(v8::Isolate* isolate, uint32_t slot, void* data) { uint8_t *addr = reinterpret_cast<uint8_t *>(isolate) + kIsolateEmbedderDataOffset + slot * kApiPointerSize; *reinterpret_cast<void**>(addr) = data; }
V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate, uint32_t slot) { const uint8_t* addr = reinterpret_cast<const uint8_t*>(isolate) + kIsolateEmbedderDataOffset + slot * kApiPointerSize; return *reinterpret_cast<void* const*>(addr); }
V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate, int index) { uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset; return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize); }
template <typename T> V8_INLINE static T ReadField(const internal::Object* ptr, int offset) { const uint8_t* addr = reinterpret_cast<const uint8_t*>(ptr) + offset - kHeapObjectTag; return *reinterpret_cast<const T*>(addr); }
template <typename T> V8_INLINE static T ReadEmbedderData(const v8::Context* context, int index) { typedef internal::Object O; typedef internal::Internals I; O* ctx = *reinterpret_cast<O* const*>(context); int embedder_data_offset = I::kContextHeaderSize + (internal::kApiPointerSize * I::kContextEmbedderDataIndex); O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset); int value_offset = I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index); return I::ReadField<T>(embedder_data, value_offset); } };
} // namespace internal
template <class T> Local<T>::Local() : Handle<T>() { }
template <class T> Local<T> Local<T>::New(Isolate* isolate, Handle<T> that) { return New(isolate, that.val_); }
template <class T> Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) { return New(isolate, that.val_); }
template <class T> Handle<T> Handle<T>::New(Isolate* isolate, T* that) { if (that == NULL) return Handle<T>(); T* that_ptr = that; internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr); return Handle<T>(reinterpret_cast<T*>(HandleScope::CreateHandle( reinterpret_cast<internal::Isolate*>(isolate), *p))); }
template <class T> Local<T> Local<T>::New(Isolate* isolate, T* that) { if (that == NULL) return Local<T>(); T* that_ptr = that; internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr); return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle( reinterpret_cast<internal::Isolate*>(isolate), *p))); }
template<class T> template<class S> void Eternal<T>::Set(Isolate* isolate, Local<S> handle) { TYPE_CHECK(T, S); V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_); }
template<class T> Local<T> Eternal<T>::Get(Isolate* isolate) { return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_))); }
template <class T> T* PersistentBase<T>::New(Isolate* isolate, T* that) { if (that == NULL) return NULL; internal::Object** p = reinterpret_cast<internal::Object**>(that); return reinterpret_cast<T*>( V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate), p)); }
template <class T, class M> template <class S, class M2> void Persistent<T, M>::Copy(const Persistent<S, M2>& that) { TYPE_CHECK(T, S); this->Reset(); if (that.IsEmpty()) return; internal::Object** p = reinterpret_cast<internal::Object**>(that.val_); this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p)); M::Copy(that, this); }
template <class T> bool PersistentBase<T>::IsIndependent() const { typedef internal::Internals I; if (this->IsEmpty()) return false; return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_), I::kNodeIsIndependentShift); }
template <class T> bool PersistentBase<T>::IsNearDeath() const { typedef internal::Internals I; if (this->IsEmpty()) return false; uint8_t node_state = I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)); return node_state == I::kNodeStateIsNearDeathValue || node_state == I::kNodeStateIsPendingValue; }
template <class T> bool PersistentBase<T>::IsWeak() const { typedef internal::Internals I; if (this->IsEmpty()) return false; return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) == I::kNodeStateIsWeakValue; }
template <class T> void PersistentBase<T>::Reset() { if (this->IsEmpty()) return; V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_)); val_ = 0; }
template <class T> template <class S> void PersistentBase<T>::Reset(Isolate* isolate, const Handle<S>& other) { TYPE_CHECK(T, S); Reset(); if (other.IsEmpty()) return; this->val_ = New(isolate, other.val_); }
template <class T> template <class S> void PersistentBase<T>::Reset(Isolate* isolate, const PersistentBase<S>& other) { TYPE_CHECK(T, S); Reset(); if (other.IsEmpty()) return; this->val_ = New(isolate, other.val_); }
template <class T> template <typename S, typename P> void PersistentBase<T>::SetWeak( P* parameter, typename WeakCallbackData<S, P>::Callback callback) { TYPE_CHECK(S, T); typedef typename WeakCallbackData<Value, void>::Callback Callback; V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_), parameter, reinterpret_cast<Callback>(callback)); }
template <class T> template <typename P> void PersistentBase<T>::SetWeak( P* parameter, typename WeakCallbackData<T, P>::Callback callback) { SetWeak<T, P>(parameter, callback); }
template <class T> template<typename P> P* PersistentBase<T>::ClearWeak() { return reinterpret_cast<P*>( V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_))); }
template <class T> void PersistentBase<T>::MarkIndependent() { typedef internal::Internals I; if (this->IsEmpty()) return; I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true, I::kNodeIsIndependentShift); }
template <class T> void PersistentBase<T>::MarkPartiallyDependent() { typedef internal::Internals I; if (this->IsEmpty()) return; I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true, I::kNodeIsPartiallyDependentShift); }
template <class T> void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) { typedef internal::Internals I; if (this->IsEmpty()) return; internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_); uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset; *reinterpret_cast<uint16_t*>(addr) = class_id; }
template <class T> uint16_t PersistentBase<T>::WrapperClassId() const { typedef internal::Internals I; if (this->IsEmpty()) return 0; internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_); uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset; return *reinterpret_cast<uint16_t*>(addr); }
template<typename T> ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
template<typename T> template<typename S> void ReturnValue<T>::Set(const Persistent<S>& handle) { TYPE_CHECK(T, S); if (V8_UNLIKELY(handle.IsEmpty())) { *value_ = GetDefaultValue(); } else { *value_ = *reinterpret_cast<internal::Object**>(*handle); } }
template<typename T> template<typename S> void ReturnValue<T>::Set(const Handle<S> handle) { TYPE_CHECK(T, S); if (V8_UNLIKELY(handle.IsEmpty())) { *value_ = GetDefaultValue(); } else { *value_ = *reinterpret_cast<internal::Object**>(*handle); } }
template<typename T> void ReturnValue<T>::Set(double i) { TYPE_CHECK(T, Number); Set(Number::New(GetIsolate(), i)); }
template<typename T> void ReturnValue<T>::Set(int32_t i) { TYPE_CHECK(T, Integer); typedef internal::Internals I; if (V8_LIKELY(I::IsValidSmi(i))) { *value_ = I::IntToSmi(i); return; } Set(Integer::New(GetIsolate(), i)); }
template<typename T> void ReturnValue<T>::Set(uint32_t i) { TYPE_CHECK(T, Integer); // Can't simply use INT32_MAX here for whatever reason.
bool fits_into_int32_t = (i & (1U << 31)) == 0; if (V8_LIKELY(fits_into_int32_t)) { Set(static_cast<int32_t>(i)); return; } Set(Integer::NewFromUnsigned(GetIsolate(), i)); }
template<typename T> void ReturnValue<T>::Set(bool value) { TYPE_CHECK(T, Boolean); typedef internal::Internals I; int root_index; if (value) { root_index = I::kTrueValueRootIndex; } else { root_index = I::kFalseValueRootIndex; } *value_ = *I::GetRoot(GetIsolate(), root_index); }
template<typename T> void ReturnValue<T>::SetNull() { TYPE_CHECK(T, Primitive); typedef internal::Internals I; *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex); }
template<typename T> void ReturnValue<T>::SetUndefined() { TYPE_CHECK(T, Primitive); typedef internal::Internals I; *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex); }
template<typename T> void ReturnValue<T>::SetEmptyString() { TYPE_CHECK(T, String); typedef internal::Internals I; *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex); }
template<typename T> Isolate* ReturnValue<T>::GetIsolate() { // Isolate is always the pointer below the default value on the stack.
return *reinterpret_cast<Isolate**>(&value_[-2]); }
template<typename T> template<typename S> void ReturnValue<T>::Set(S* whatever) { // Uncompilable to prevent inadvertent misuse.
TYPE_CHECK(S*, Primitive); }
template<typename T> internal::Object* ReturnValue<T>::GetDefaultValue() { // Default value is always the pointer below value_ on the stack.
return value_[-1]; }
template<typename T> FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args, internal::Object** values, int length, bool is_construct_call) : implicit_args_(implicit_args), values_(values), length_(length), is_construct_call_(is_construct_call) { }
template<typename T> Local<Value> FunctionCallbackInfo<T>::operator[](int i) const { if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate())); return Local<Value>(reinterpret_cast<Value*>(values_ - i)); }
template<typename T> Local<Function> FunctionCallbackInfo<T>::Callee() const { return Local<Function>(reinterpret_cast<Function*>( &implicit_args_[kCalleeIndex])); }
template<typename T> Local<Object> FunctionCallbackInfo<T>::This() const { return Local<Object>(reinterpret_cast<Object*>(values_ + 1)); }
template<typename T> Local<Object> FunctionCallbackInfo<T>::Holder() const { return Local<Object>(reinterpret_cast<Object*>( &implicit_args_[kHolderIndex])); }
template<typename T> Local<Value> FunctionCallbackInfo<T>::Data() const { return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex])); }
template<typename T> Isolate* FunctionCallbackInfo<T>::GetIsolate() const { return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]); }
template<typename T> ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const { return ReturnValue<T>(&implicit_args_[kReturnValueIndex]); }
template<typename T> bool FunctionCallbackInfo<T>::IsConstructCall() const { return is_construct_call_; }
template<typename T> int FunctionCallbackInfo<T>::Length() const { return length_; }
Handle<Value> ScriptOrigin::ResourceName() const { return resource_name_; }
Handle<Integer> ScriptOrigin::ResourceLineOffset() const { return resource_line_offset_; }
Handle<Integer> ScriptOrigin::ResourceColumnOffset() const { return resource_column_offset_; }
Handle<Boolean> ScriptOrigin::ResourceIsSharedCrossOrigin() const { return resource_is_shared_cross_origin_; }
Handle<Integer> ScriptOrigin::ScriptID() const { return script_id_; }
ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin, CachedData* data) : source_string(string), resource_name(origin.ResourceName()), resource_line_offset(origin.ResourceLineOffset()), resource_column_offset(origin.ResourceColumnOffset()), resource_is_shared_cross_origin(origin.ResourceIsSharedCrossOrigin()), cached_data(data) {}
ScriptCompiler::Source::Source(Local<String> string, CachedData* data) : source_string(string), cached_data(data) {}
ScriptCompiler::Source::~Source() { delete cached_data; }
const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData() const { return cached_data; }
Handle<Boolean> Boolean::New(Isolate* isolate, bool value) { return value ? True(isolate) : False(isolate); }
void Template::Set(Isolate* isolate, const char* name, v8::Handle<Data> value) { Set(v8::String::NewFromUtf8(isolate, name), value); }
Local<Value> Object::GetInternalField(int index) { #ifndef V8_ENABLE_CHECKS
typedef internal::Object O; typedef internal::HeapObject HO; typedef internal::Internals I; O* obj = *reinterpret_cast<O**>(this); // Fast path: If the object is a plain JSObject, which is the common case, we
// know where to find the internal fields and can return the value directly.
if (I::GetInstanceType(obj) == I::kJSObjectType) { int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index); O* value = I::ReadField<O*>(obj, offset); O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value); return Local<Value>(reinterpret_cast<Value*>(result)); } #endif
return SlowGetInternalField(index); }
void* Object::GetAlignedPointerFromInternalField(int index) { #ifndef V8_ENABLE_CHECKS
typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O**>(this); // Fast path: If the object is a plain JSObject, which is the common case, we
// know where to find the internal fields and can return the value directly.
if (V8_LIKELY(I::GetInstanceType(obj) == I::kJSObjectType)) { int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index); return I::ReadField<void*>(obj, offset); } #endif
return SlowGetAlignedPointerFromInternalField(index); }
String* String::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<String*>(value); }
Local<String> String::Empty(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex); return Local<String>(reinterpret_cast<String*>(slot)); }
String::ExternalStringResource* String::GetExternalStringResource() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); String::ExternalStringResource* result; if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) { void* value = I::ReadField<void*>(obj, I::kStringResourceOffset); result = reinterpret_cast<String::ExternalStringResource*>(value); } else { result = NULL; } #ifdef V8_ENABLE_CHECKS
VerifyExternalStringResource(result); #endif
return result; }
String::ExternalStringResourceBase* String::GetExternalStringResourceBase( String::Encoding* encoding_out) const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask; *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask); ExternalStringResourceBase* resource = NULL; if (type == I::kExternalOneByteRepresentationTag || type == I::kExternalTwoByteRepresentationTag) { void* value = I::ReadField<void*>(obj, I::kStringResourceOffset); resource = static_cast<ExternalStringResourceBase*>(value); } #ifdef V8_ENABLE_CHECKS
VerifyExternalStringResourceBase(resource, *encoding_out); #endif
return resource; }
bool Value::IsUndefined() const { #ifdef V8_ENABLE_CHECKS
return FullIsUndefined(); #else
return QuickIsUndefined(); #endif
}
bool Value::QuickIsUndefined() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); if (!I::HasHeapObjectTag(obj)) return false; if (I::GetInstanceType(obj) != I::kOddballType) return false; return (I::GetOddballKind(obj) == I::kUndefinedOddballKind); }
bool Value::IsNull() const { #ifdef V8_ENABLE_CHECKS
return FullIsNull(); #else
return QuickIsNull(); #endif
}
bool Value::QuickIsNull() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); if (!I::HasHeapObjectTag(obj)) return false; if (I::GetInstanceType(obj) != I::kOddballType) return false; return (I::GetOddballKind(obj) == I::kNullOddballKind); }
bool Value::IsString() const { #ifdef V8_ENABLE_CHECKS
return FullIsString(); #else
return QuickIsString(); #endif
}
bool Value::QuickIsString() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); if (!I::HasHeapObjectTag(obj)) return false; return (I::GetInstanceType(obj) < I::kFirstNonstringType); }
template <class T> Value* Value::Cast(T* value) { return static_cast<Value*>(value); }
Name* Name::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Name*>(value); }
Symbol* Symbol::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Symbol*>(value); }
Number* Number::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Number*>(value); }
Integer* Integer::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Integer*>(value); }
Date* Date::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Date*>(value); }
StringObject* StringObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<StringObject*>(value); }
SymbolObject* SymbolObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<SymbolObject*>(value); }
NumberObject* NumberObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<NumberObject*>(value); }
BooleanObject* BooleanObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<BooleanObject*>(value); }
RegExp* RegExp::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<RegExp*>(value); }
Object* Object::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Object*>(value); }
Array* Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Array*>(value); }
Promise* Promise::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Promise*>(value); }
Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Promise::Resolver*>(value); }
ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<ArrayBuffer*>(value); }
ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<ArrayBufferView*>(value); }
TypedArray* TypedArray::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<TypedArray*>(value); }
Uint8Array* Uint8Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Uint8Array*>(value); }
Int8Array* Int8Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Int8Array*>(value); }
Uint16Array* Uint16Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Uint16Array*>(value); }
Int16Array* Int16Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Int16Array*>(value); }
Uint32Array* Uint32Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Uint32Array*>(value); }
Int32Array* Int32Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Int32Array*>(value); }
Float32Array* Float32Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Float32Array*>(value); }
Float64Array* Float64Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Float64Array*>(value); }
Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Uint8ClampedArray*>(value); }
DataView* DataView::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<DataView*>(value); }
Function* Function::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<Function*>(value); }
External* External::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS
CheckCast(value); #endif
return static_cast<External*>(value); }
template<typename T> Isolate* PropertyCallbackInfo<T>::GetIsolate() const { return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]); }
template<typename T> Local<Value> PropertyCallbackInfo<T>::Data() const { return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex])); }
template<typename T> Local<Object> PropertyCallbackInfo<T>::This() const { return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex])); }
template<typename T> Local<Object> PropertyCallbackInfo<T>::Holder() const { return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex])); }
template<typename T> ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const { return ReturnValue<T>(&args_[kReturnValueIndex]); }
Handle<Primitive> Undefined(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex); return Handle<Primitive>(reinterpret_cast<Primitive*>(slot)); }
Handle<Primitive> Null(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kNullValueRootIndex); return Handle<Primitive>(reinterpret_cast<Primitive*>(slot)); }
Handle<Boolean> True(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex); return Handle<Boolean>(reinterpret_cast<Boolean*>(slot)); }
Handle<Boolean> False(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex); return Handle<Boolean>(reinterpret_cast<Boolean*>(slot)); }
void Isolate::SetData(uint32_t slot, void* data) { typedef internal::Internals I; I::SetEmbedderData(this, slot, data); }
void* Isolate::GetData(uint32_t slot) { typedef internal::Internals I; return I::GetEmbedderData(this, slot); }
uint32_t Isolate::GetNumberOfDataSlots() { typedef internal::Internals I; return I::kNumIsolateDataSlots; }
int64_t Isolate::AdjustAmountOfExternalAllocatedMemory( int64_t change_in_bytes) { typedef internal::Internals I; int64_t* amount_of_external_allocated_memory = reinterpret_cast<int64_t*>(reinterpret_cast<uint8_t*>(this) + I::kAmountOfExternalAllocatedMemoryOffset); int64_t* amount_of_external_allocated_memory_at_last_global_gc = reinterpret_cast<int64_t*>( reinterpret_cast<uint8_t*>(this) + I::kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset); int64_t amount = *amount_of_external_allocated_memory + change_in_bytes; if (change_in_bytes > 0 && amount - *amount_of_external_allocated_memory_at_last_global_gc > I::kExternalAllocationLimit) { CollectAllGarbage("external memory allocation limit reached."); } else { *amount_of_external_allocated_memory = amount; } return *amount_of_external_allocated_memory; }
template<typename T> void Isolate::SetObjectGroupId(const Persistent<T>& object, UniqueId id) { TYPE_CHECK(Value, T); SetObjectGroupId(reinterpret_cast<v8::internal::Object**>(object.val_), id); }
template<typename T> void Isolate::SetReferenceFromGroup(UniqueId id, const Persistent<T>& object) { TYPE_CHECK(Value, T); SetReferenceFromGroup(id, reinterpret_cast<v8::internal::Object**>(object.val_)); }
template<typename T, typename S> void Isolate::SetReference(const Persistent<T>& parent, const Persistent<S>& child) { TYPE_CHECK(Object, T); TYPE_CHECK(Value, S); SetReference(reinterpret_cast<v8::internal::Object**>(parent.val_), reinterpret_cast<v8::internal::Object**>(child.val_)); }
Local<Value> Context::GetEmbedderData(int index) { #ifndef V8_ENABLE_CHECKS
typedef internal::Object O; typedef internal::HeapObject HO; typedef internal::Internals I; HO* context = *reinterpret_cast<HO**>(this); O** result = HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index)); return Local<Value>(reinterpret_cast<Value*>(result)); #else
return SlowGetEmbedderData(index); #endif
}
void* Context::GetAlignedPointerFromEmbedderData(int index) { #ifndef V8_ENABLE_CHECKS
typedef internal::Internals I; return I::ReadEmbedderData<void*>(this, index); #else
return SlowGetAlignedPointerFromEmbedderData(index); #endif
}
/**
* \example shell.cc * A simple shell that takes a list of expressions on the * command-line and executes them. */
/**
* \example process.cc */
} // namespace v8
#undef TYPE_CHECK
#endif // V8_H_
|