|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Implements many of the entities that control logic flow within a map.
//
//=============================================================================
#include "cbase.h"
#include "entityinput.h"
#include "entityoutput.h"
#include "eventqueue.h"
#include "mathlib/mathlib.h"
#include "globalstate.h"
#include "ndebugoverlay.h"
#include "saverestore_utlvector.h"
#include "vstdlib/random.h"
#include "gameinterface.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
extern CServerGameDLL g_ServerGameDLL;
//-----------------------------------------------------------------------------
// Purpose: Compares a set of integer inputs to the one main input
// Outputs true if they are all equivalant, false otherwise
//-----------------------------------------------------------------------------
class CLogicCompareInteger : public CLogicalEntity { public: DECLARE_CLASS( CLogicCompareInteger, CLogicalEntity );
// outputs
COutputEvent m_OnEqual; COutputEvent m_OnNotEqual;
// data
int m_iIntegerValue; int m_iShouldCompareToValue;
DECLARE_DATADESC();
CMultiInputVar m_AllIntCompares;
// Input handlers
void InputValue( inputdata_t &inputdata ); void InputCompareValues( inputdata_t &inputdata ); };
LINK_ENTITY_TO_CLASS( logic_multicompare, CLogicCompareInteger );
BEGIN_DATADESC( CLogicCompareInteger )
DEFINE_OUTPUT( m_OnEqual, "OnEqual" ), DEFINE_OUTPUT( m_OnNotEqual, "OnNotEqual" ),
DEFINE_KEYFIELD( m_iIntegerValue, FIELD_INTEGER, "IntegerValue" ), DEFINE_KEYFIELD( m_iShouldCompareToValue, FIELD_INTEGER, "ShouldComparetoValue" ),
DEFINE_FIELD( m_AllIntCompares, FIELD_INPUT ),
DEFINE_INPUTFUNC( FIELD_INPUT, "InputValue", InputValue ), DEFINE_INPUTFUNC( FIELD_INPUT, "CompareValues", InputCompareValues ),
END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose: Adds to the list of compared values
//-----------------------------------------------------------------------------
void CLogicCompareInteger::InputValue( inputdata_t &inputdata ) { // make sure it's an int, if it can't be converted just throw it away
if ( !inputdata.value.Convert(FIELD_INTEGER) ) return;
// update the value list with the new value
m_AllIntCompares.AddValue( inputdata.value, inputdata.nOutputID );
// if we haven't already this frame, send a message to ourself to update and fire
if ( !m_AllIntCompares.m_bUpdatedThisFrame ) { // TODO: need to add this event with a lower priority, so it gets called after all inputs have arrived
g_EventQueue.AddEvent( this, "CompareValues", 0, inputdata.pActivator, this, inputdata.nOutputID ); m_AllIntCompares.m_bUpdatedThisFrame = TRUE; } }
//-----------------------------------------------------------------------------
// Purpose: Forces a recompare
//-----------------------------------------------------------------------------
void CLogicCompareInteger::InputCompareValues( inputdata_t &inputdata ) { m_AllIntCompares.m_bUpdatedThisFrame = FALSE;
// loop through all the values comparing them
int value = m_iIntegerValue; CMultiInputVar::inputitem_t *input = m_AllIntCompares.m_InputList;
if ( !m_iShouldCompareToValue && input ) { value = input->value.Int(); }
while ( input ) { if ( input->value.Int() != value ) { // false
m_OnNotEqual.FireOutput( inputdata.pActivator, this ); return; }
input = input->next; }
// true! all values equal
m_OnEqual.FireOutput( inputdata.pActivator, this ); }
//-----------------------------------------------------------------------------
// Purpose: Timer entity. Fires an output at regular or random intervals.
//-----------------------------------------------------------------------------
//
// Spawnflags and others constants.
//
const int SF_TIMER_UPDOWN = 1; const float LOGIC_TIMER_MIN_INTERVAL = 0.01;
class CTimerEntity : public CLogicalEntity { public: DECLARE_CLASS( CTimerEntity, CLogicalEntity );
void Spawn( void ); void Think( void );
void Toggle( void ); void Enable( void ); void Disable( void ); void FireTimer( void );
int DrawDebugTextOverlays(void);
// outputs
COutputEvent m_OnTimer; COutputEvent m_OnTimerHigh; COutputEvent m_OnTimerLow;
// inputs
void InputToggle( inputdata_t &inputdata ); void InputEnable( inputdata_t &inputdata ); void InputDisable( inputdata_t &inputdata ); void InputFireTimer( inputdata_t &inputdata ); void InputRefireTime( inputdata_t &inputdata ); void InputResetTimer( inputdata_t &inputdata ); void InputAddToTimer( inputdata_t &inputdata ); void InputSubtractFromTimer( inputdata_t &inputdata );
int m_iDisabled; float m_flRefireTime; bool m_bUpDownState; int m_iUseRandomTime; float m_flLowerRandomBound; float m_flUpperRandomBound;
// methods
void ResetTimer( void ); DECLARE_DATADESC(); };
LINK_ENTITY_TO_CLASS( logic_timer, CTimerEntity );
BEGIN_DATADESC( CTimerEntity )
// Keys
DEFINE_KEYFIELD( m_iDisabled, FIELD_INTEGER, "StartDisabled" ), DEFINE_KEYFIELD( m_flRefireTime, FIELD_FLOAT, "RefireTime" ),
DEFINE_FIELD( m_bUpDownState, FIELD_BOOLEAN ),
// Inputs
DEFINE_INPUTFUNC( FIELD_FLOAT, "RefireTime", InputRefireTime ), DEFINE_INPUTFUNC( FIELD_VOID, "FireTimer", InputFireTimer ), DEFINE_INPUTFUNC( FIELD_VOID, "Enable", InputEnable ), DEFINE_INPUTFUNC( FIELD_VOID, "Disable", InputDisable ), DEFINE_INPUTFUNC( FIELD_VOID, "Toggle", InputToggle ), DEFINE_INPUTFUNC( FIELD_FLOAT, "AddToTimer", InputAddToTimer ), DEFINE_INPUTFUNC( FIELD_VOID, "ResetTimer", InputResetTimer ), DEFINE_INPUTFUNC( FIELD_FLOAT, "SubtractFromTimer", InputSubtractFromTimer ),
DEFINE_INPUT( m_iUseRandomTime, FIELD_INTEGER, "UseRandomTime" ), DEFINE_INPUT( m_flLowerRandomBound, FIELD_FLOAT, "LowerRandomBound" ), DEFINE_INPUT( m_flUpperRandomBound, FIELD_FLOAT, "UpperRandomBound" ),
// Outputs
DEFINE_OUTPUT( m_OnTimer, "OnTimer" ), DEFINE_OUTPUT( m_OnTimerHigh, "OnTimerHigh" ), DEFINE_OUTPUT( m_OnTimerLow, "OnTimerLow" ),
END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CTimerEntity::Spawn( void ) { if (!m_iUseRandomTime && (m_flRefireTime < LOGIC_TIMER_MIN_INTERVAL)) { m_flRefireTime = LOGIC_TIMER_MIN_INTERVAL; }
if ( !m_iDisabled && (m_flRefireTime > 0 || m_iUseRandomTime) ) { Enable(); } else { Disable(); } }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CTimerEntity::Think( void ) { FireTimer(); }
//-----------------------------------------------------------------------------
// Purpose: Sets the time the timerentity will next fire
//-----------------------------------------------------------------------------
void CTimerEntity::ResetTimer( void ) { if ( m_iDisabled ) return;
if ( m_iUseRandomTime ) { m_flRefireTime = random->RandomFloat( m_flLowerRandomBound, m_flUpperRandomBound ); }
SetNextThink( gpGlobals->curtime + m_flRefireTime ); }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CTimerEntity::Enable( void ) { m_iDisabled = FALSE; ResetTimer(); }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CTimerEntity::Disable( void ) { m_iDisabled = TRUE; SetNextThink( TICK_NEVER_THINK ); }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CTimerEntity::Toggle( void ) { if ( m_iDisabled ) { Enable(); } else { Disable(); } }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CTimerEntity::FireTimer( void ) { if ( !m_iDisabled ) { //
// Up/down timers alternate between two outputs.
//
if (m_spawnflags & SF_TIMER_UPDOWN) { if (m_bUpDownState) { m_OnTimerHigh.FireOutput( this, this ); } else { m_OnTimerLow.FireOutput( this, this ); }
m_bUpDownState = !m_bUpDownState; } //
// Regular timers only fire a single output.
//
else { m_OnTimer.FireOutput( this, this ); }
ResetTimer(); } }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CTimerEntity::InputEnable( inputdata_t &inputdata ) { Enable(); }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CTimerEntity::InputDisable( inputdata_t &inputdata ) { Disable(); }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CTimerEntity::InputToggle( inputdata_t &inputdata ) { Toggle(); }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CTimerEntity::InputFireTimer( inputdata_t &inputdata ) { FireTimer(); }
//-----------------------------------------------------------------------------
// Purpose: Changes the time interval between timer fires
// Resets the next firing to be time + newRefireTime
// Input : Float refire frequency in seconds.
//-----------------------------------------------------------------------------
void CTimerEntity::InputRefireTime( inputdata_t &inputdata ) { float flRefireInterval = inputdata.value.Float();
if ( flRefireInterval < LOGIC_TIMER_MIN_INTERVAL) { flRefireInterval = LOGIC_TIMER_MIN_INTERVAL; }
if (m_flRefireTime != flRefireInterval ) { m_flRefireTime = flRefireInterval; ResetTimer(); } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CTimerEntity::InputResetTimer( inputdata_t &inputdata ) { // don't reset the timer if it isn't enabled
if ( m_iDisabled ) return;
ResetTimer(); }
//-----------------------------------------------------------------------------
// Purpose: Adds to the time interval if the timer is enabled
// Input : Float time to add in seconds
//-----------------------------------------------------------------------------
void CTimerEntity::InputAddToTimer( inputdata_t &inputdata ) { // don't add time if the timer isn't enabled
if ( m_iDisabled ) return; // Add time to timer
float flNextThink = GetNextThink(); SetNextThink( flNextThink += inputdata.value.Float() ); }
//-----------------------------------------------------------------------------
// Purpose: Subtract from the time interval if the timer is enabled
// Input : Float time to subtract in seconds
//-----------------------------------------------------------------------------
void CTimerEntity::InputSubtractFromTimer( inputdata_t &inputdata ) { // don't add time if the timer isn't enabled
if ( m_iDisabled ) return;
// Subtract time from the timer but don't let the timer go negative
float flNextThink = GetNextThink(); if ( ( flNextThink - gpGlobals->curtime ) <= inputdata.value.Float() ) { SetNextThink( gpGlobals->curtime ); } else { SetNextThink( flNextThink -= inputdata.value.Float() ); } }
//-----------------------------------------------------------------------------
// Purpose: Draw any debug text overlays
// Output : Current text offset from the top
//-----------------------------------------------------------------------------
int CTimerEntity::DrawDebugTextOverlays( void ) { int text_offset = BaseClass::DrawDebugTextOverlays();
if (m_debugOverlays & OVERLAY_TEXT_BIT) { char tempstr[512];
// print refire time
Q_snprintf(tempstr,sizeof(tempstr),"refire interval: %.2f sec", m_flRefireTime); EntityText(text_offset,tempstr,0); text_offset++;
// print seconds to next fire
if ( !m_iDisabled ) { float flNextThink = GetNextThink(); Q_snprintf( tempstr, sizeof( tempstr ), " firing in: %.2f sec", flNextThink - gpGlobals->curtime ); EntityText( text_offset, tempstr, 0); text_offset++; } } return text_offset; }
//-----------------------------------------------------------------------------
// Purpose: Computes a line between two entities
//-----------------------------------------------------------------------------
class CLogicLineToEntity : public CLogicalEntity { public: DECLARE_CLASS( CLogicLineToEntity, CLogicalEntity );
void Activate(void); void Spawn( void ); void Think( void );
// outputs
COutputVector m_Line;
DECLARE_DATADESC();
private: string_t m_SourceName; EHANDLE m_StartEntity; EHANDLE m_EndEntity; };
LINK_ENTITY_TO_CLASS( logic_lineto, CLogicLineToEntity );
BEGIN_DATADESC( CLogicLineToEntity )
// Keys
// target is handled in the base class, stored in field m_target
DEFINE_KEYFIELD( m_SourceName, FIELD_STRING, "source" ), DEFINE_FIELD( m_StartEntity, FIELD_EHANDLE ), DEFINE_FIELD( m_EndEntity, FIELD_EHANDLE ),
// Outputs
DEFINE_OUTPUT( m_Line, "Line" ),
END_DATADESC()
//-----------------------------------------------------------------------------
// Find the entities
//-----------------------------------------------------------------------------
void CLogicLineToEntity::Activate(void) { BaseClass::Activate();
if (m_target != NULL_STRING) { m_EndEntity = gEntList.FindEntityByName( NULL, m_target );
//
// If we were given a bad measure target, just measure sound where we are.
//
if ((m_EndEntity == NULL) || (m_EndEntity->edict() == NULL)) { Warning( "logic_lineto - Target not found or target with no origin!\n"); m_EndEntity = this; } } else { m_EndEntity = this; }
if (m_SourceName != NULL_STRING) { m_StartEntity = gEntList.FindEntityByName( NULL, m_SourceName );
//
// If we were given a bad measure target, just measure sound where we are.
//
if ((m_StartEntity == NULL) || (m_StartEntity->edict() == NULL)) { Warning( "logic_lineto - Source not found or source with no origin!\n"); m_StartEntity = this; } } else { m_StartEntity = this; } }
//-----------------------------------------------------------------------------
// Find the entities
//-----------------------------------------------------------------------------
void CLogicLineToEntity::Spawn(void) { SetNextThink( gpGlobals->curtime + 0.01f ); }
//-----------------------------------------------------------------------------
// Find the entities
//-----------------------------------------------------------------------------
void CLogicLineToEntity::Think(void) { CBaseEntity* pDest = m_EndEntity.Get(); CBaseEntity* pSrc = m_StartEntity.Get(); if (!pDest || !pSrc || !pDest->edict() || !pSrc->edict()) { // Can sleep for a long time, no more lines.
m_Line.Set( vec3_origin, this, this ); SetNextThink( gpGlobals->curtime + 10 ); return; }
Vector delta; VectorSubtract( pDest->GetAbsOrigin(), pSrc->GetAbsOrigin(), delta ); m_Line.Set(delta, this, this);
SetNextThink( gpGlobals->curtime + 0.01f ); }
//-----------------------------------------------------------------------------
// Purpose: Remaps a given input range to an output range.
//-----------------------------------------------------------------------------
const int SF_MATH_REMAP_IGNORE_OUT_OF_RANGE = 1; const int SF_MATH_REMAP_CLAMP_OUTPUT_TO_RANGE = 2;
class CMathRemap : public CLogicalEntity { public:
DECLARE_CLASS( CMathRemap, CLogicalEntity );
void Spawn(void);
// Keys
float m_flInMin; float m_flInMax; float m_flOut1; // Output value when input is m_fInMin
float m_flOut2; // Output value when input is m_fInMax
bool m_bEnabled;
// Inputs
void InputValue( inputdata_t &inputdata ); void InputEnable( inputdata_t &inputdata ); void InputDisable( inputdata_t &inputdata );
// Outputs
COutputFloat m_OutValue;
DECLARE_DATADESC(); };
LINK_ENTITY_TO_CLASS(math_remap, CMathRemap);
BEGIN_DATADESC( CMathRemap )
DEFINE_INPUTFUNC(FIELD_FLOAT, "InValue", InputValue ),
DEFINE_OUTPUT(m_OutValue, "OutValue"),
DEFINE_KEYFIELD(m_flInMin, FIELD_FLOAT, "in1"), DEFINE_KEYFIELD(m_flInMax, FIELD_FLOAT, "in2"), DEFINE_KEYFIELD(m_flOut1, FIELD_FLOAT, "out1"), DEFINE_KEYFIELD(m_flOut2, FIELD_FLOAT, "out2"),
DEFINE_FIELD( m_bEnabled, FIELD_BOOLEAN ),
DEFINE_INPUTFUNC( FIELD_VOID, "Enable", InputEnable ), DEFINE_INPUTFUNC( FIELD_VOID, "Disable", InputDisable ),
END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CMathRemap::Spawn(void) { //
// Avoid a divide by zero in ValueChanged.
//
if (m_flInMin == m_flInMax) { m_flInMin = 0; m_flInMax = 1; }
//
// Make sure min and max are set properly relative to one another.
//
if (m_flInMin > m_flInMax) { float flTemp = m_flInMin; m_flInMin = m_flInMax; m_flInMax = flTemp; }
m_bEnabled = true; }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CMathRemap::InputEnable( inputdata_t &inputdata ) { m_bEnabled = true; }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CMathRemap::InputDisable( inputdata_t &inputdata ) { m_bEnabled = false; }
//-----------------------------------------------------------------------------
// Purpose: Input handler that is called when the input value changes.
//-----------------------------------------------------------------------------
void CMathRemap::InputValue( inputdata_t &inputdata ) { float flValue = inputdata.value.Float();
//
// Disallow out-of-range input values to avoid out-of-range output values.
//
float flClampValue = clamp(flValue, m_flInMin, m_flInMax);
if ((flClampValue == flValue) || !FBitSet(m_spawnflags, SF_MATH_REMAP_IGNORE_OUT_OF_RANGE)) { //
// Remap the input value to the desired output range and update the output.
//
float flRemappedValue = m_flOut1 + (((flValue - m_flInMin) * (m_flOut2 - m_flOut1)) / (m_flInMax - m_flInMin));
if ( FBitSet( m_spawnflags, SF_MATH_REMAP_CLAMP_OUTPUT_TO_RANGE ) ) { flRemappedValue = clamp( flRemappedValue, m_flOut1, m_flOut2 ); }
if ( m_bEnabled == true ) { m_OutValue.Set(flRemappedValue, inputdata.pActivator, this); } } }
//-----------------------------------------------------------------------------
// Purpose: Remaps a given input range to an output range.
//-----------------------------------------------------------------------------
const int SF_COLOR_BLEND_IGNORE_OUT_OF_RANGE = 1;
class CMathColorBlend : public CLogicalEntity { public:
DECLARE_CLASS( CMathColorBlend, CLogicalEntity );
void Spawn(void);
// Keys
float m_flInMin; float m_flInMax; color32 m_OutColor1; // Output color when input is m_fInMin
color32 m_OutColor2; // Output color when input is m_fInMax
// Inputs
void InputValue( inputdata_t &inputdata );
// Outputs
COutputColor32 m_OutValue;
DECLARE_DATADESC(); };
LINK_ENTITY_TO_CLASS(math_colorblend, CMathColorBlend);
BEGIN_DATADESC( CMathColorBlend )
DEFINE_INPUTFUNC(FIELD_FLOAT, "InValue", InputValue ),
DEFINE_OUTPUT(m_OutValue, "OutColor"),
DEFINE_KEYFIELD(m_flInMin, FIELD_FLOAT, "inmin"), DEFINE_KEYFIELD(m_flInMax, FIELD_FLOAT, "inmax"), DEFINE_KEYFIELD(m_OutColor1, FIELD_COLOR32, "colormin"), DEFINE_KEYFIELD(m_OutColor2, FIELD_COLOR32, "colormax"),
END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CMathColorBlend::Spawn(void) { //
// Avoid a divide by zero in ValueChanged.
//
if (m_flInMin == m_flInMax) { m_flInMin = 0; m_flInMax = 1; }
//
// Make sure min and max are set properly relative to one another.
//
if (m_flInMin > m_flInMax) { float flTemp = m_flInMin; m_flInMin = m_flInMax; m_flInMax = flTemp; } }
//-----------------------------------------------------------------------------
// Purpose: Input handler that is called when the input value changes.
//-----------------------------------------------------------------------------
void CMathColorBlend::InputValue( inputdata_t &inputdata ) { float flValue = inputdata.value.Float();
//
// Disallow out-of-range input values to avoid out-of-range output values.
//
float flClampValue = clamp(flValue, m_flInMin, m_flInMax); if ((flClampValue == flValue) || !FBitSet(m_spawnflags, SF_COLOR_BLEND_IGNORE_OUT_OF_RANGE)) { //
// Remap the input value to the desired output color and update the output.
//
color32 Color; Color.r = m_OutColor1.r + (((flClampValue - m_flInMin) * (m_OutColor2.r - m_OutColor1.r)) / (m_flInMax - m_flInMin)); Color.g = m_OutColor1.g + (((flClampValue - m_flInMin) * (m_OutColor2.g - m_OutColor1.g)) / (m_flInMax - m_flInMin)); Color.b = m_OutColor1.b + (((flClampValue - m_flInMin) * (m_OutColor2.b - m_OutColor1.b)) / (m_flInMax - m_flInMin)); Color.a = m_OutColor1.a + (((flClampValue - m_flInMin) * (m_OutColor2.a - m_OutColor1.a)) / (m_flInMax - m_flInMin));
m_OutValue.Set(Color, inputdata.pActivator, this); } }
//-----------------------------------------------------------------------------
// Console command to set the state of a global
//-----------------------------------------------------------------------------
void CC_Global_Set( const CCommand &args ) { const char *szGlobal = args[1]; const char *szState = args[2];
if ( szGlobal == NULL || szState == NULL ) { Msg( "Usage: global_set <globalname> <state>: Sets the state of the given env_global (0 = OFF, 1 = ON, 2 = DEAD).\n" ); return; }
int nState = atoi( szState );
int nIndex = GlobalEntity_GetIndex( szGlobal );
if ( nIndex >= 0 ) { GlobalEntity_SetState( nIndex, ( GLOBALESTATE )nState ); } else { GlobalEntity_Add( szGlobal, STRING( gpGlobals->mapname ), ( GLOBALESTATE )nState ); } }
static ConCommand global_set( "global_set", CC_Global_Set, "global_set <globalname> <state>: Sets the state of the given env_global (0 = OFF, 1 = ON, 2 = DEAD).", FCVAR_CHEAT );
//-----------------------------------------------------------------------------
// Purpose: Holds a global state that can be queried by other entities to change
// their behavior, such as "predistaster".
//-----------------------------------------------------------------------------
const int SF_GLOBAL_SET = 1; // Set global state to initial state on spawn
class CEnvGlobal : public CLogicalEntity { public: DECLARE_CLASS( CEnvGlobal, CLogicalEntity );
void Spawn( void );
// Input handlers
void InputTurnOn( inputdata_t &inputdata ); void InputTurnOff( inputdata_t &inputdata ); void InputRemove( inputdata_t &inputdata ); void InputToggle( inputdata_t &inputdata ); void InputSetCounter( inputdata_t &inputdata ); void InputAddToCounter( inputdata_t &inputdata ); void InputGetCounter( inputdata_t &inputdata );
int DrawDebugTextOverlays(void);
DECLARE_DATADESC();
COutputInt m_outCounter; string_t m_globalstate; int m_triggermode; int m_initialstate; int m_counter; // A counter value associated with this global.
};
BEGIN_DATADESC( CEnvGlobal )
DEFINE_KEYFIELD( m_globalstate, FIELD_STRING, "globalstate" ), DEFINE_FIELD( m_triggermode, FIELD_INTEGER ), DEFINE_KEYFIELD( m_initialstate, FIELD_INTEGER, "initialstate" ), DEFINE_KEYFIELD( m_counter, FIELD_INTEGER, "counter" ),
// Inputs
DEFINE_INPUTFUNC( FIELD_VOID, "TurnOn", InputTurnOn ), DEFINE_INPUTFUNC( FIELD_VOID, "TurnOff", InputTurnOff ), DEFINE_INPUTFUNC( FIELD_VOID, "Remove", InputRemove ), DEFINE_INPUTFUNC( FIELD_VOID, "Toggle", InputToggle ),
DEFINE_INPUTFUNC( FIELD_INTEGER, "SetCounter", InputSetCounter ), DEFINE_INPUTFUNC( FIELD_INTEGER, "AddToCounter", InputAddToCounter ), DEFINE_INPUTFUNC( FIELD_VOID, "GetCounter", InputGetCounter ), DEFINE_OUTPUT( m_outCounter, "Counter" ),
END_DATADESC()
LINK_ENTITY_TO_CLASS( env_global, CEnvGlobal );
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CEnvGlobal::Spawn( void ) { if ( !m_globalstate ) { UTIL_Remove( this ); return; }
#ifdef HL2_EPISODIC
// if we modify the state of the physics cannon, make sure we precache the ragdoll boogie zap sound
if ( ( m_globalstate != NULL_STRING ) && ( stricmp( STRING( m_globalstate ), "super_phys_gun" ) == 0 ) ) { PrecacheScriptSound( "RagdollBoogie.Zap" ); } #endif
if ( FBitSet( m_spawnflags, SF_GLOBAL_SET ) ) { if ( !GlobalEntity_IsInTable( m_globalstate ) ) { GlobalEntity_Add( m_globalstate, gpGlobals->mapname, (GLOBALESTATE)m_initialstate ); } if ( m_counter != 0 ) { GlobalEntity_SetCounter( m_globalstate, m_counter ); } } }
//------------------------------------------------------------------------------
// Purpose:
//------------------------------------------------------------------------------
void CEnvGlobal::InputTurnOn( inputdata_t &inputdata ) { if ( GlobalEntity_IsInTable( m_globalstate ) ) { GlobalEntity_SetState( m_globalstate, GLOBAL_ON ); } else { GlobalEntity_Add( m_globalstate, gpGlobals->mapname, GLOBAL_ON ); } }
//------------------------------------------------------------------------------
// Purpose:
//------------------------------------------------------------------------------
void CEnvGlobal::InputTurnOff( inputdata_t &inputdata ) { if ( GlobalEntity_IsInTable( m_globalstate ) ) { GlobalEntity_SetState( m_globalstate, GLOBAL_OFF ); } else { GlobalEntity_Add( m_globalstate, gpGlobals->mapname, GLOBAL_OFF ); } }
//------------------------------------------------------------------------------
// Purpose:
//------------------------------------------------------------------------------
void CEnvGlobal::InputRemove( inputdata_t &inputdata ) { if ( GlobalEntity_IsInTable( m_globalstate ) ) { GlobalEntity_SetState( m_globalstate, GLOBAL_DEAD ); } else { GlobalEntity_Add( m_globalstate, gpGlobals->mapname, GLOBAL_DEAD ); } }
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
void CEnvGlobal::InputSetCounter( inputdata_t &inputdata ) { if ( !GlobalEntity_IsInTable( m_globalstate ) ) { GlobalEntity_Add( m_globalstate, gpGlobals->mapname, GLOBAL_ON ); }
GlobalEntity_SetCounter( m_globalstate, inputdata.value.Int() ); }
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
void CEnvGlobal::InputAddToCounter( inputdata_t &inputdata ) { if ( !GlobalEntity_IsInTable( m_globalstate ) ) { GlobalEntity_Add( m_globalstate, gpGlobals->mapname, GLOBAL_ON ); }
GlobalEntity_AddToCounter( m_globalstate, inputdata.value.Int() ); }
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
void CEnvGlobal::InputGetCounter( inputdata_t &inputdata ) { if ( !GlobalEntity_IsInTable( m_globalstate ) ) { GlobalEntity_Add( m_globalstate, gpGlobals->mapname, GLOBAL_ON ); }
m_outCounter.Set( GlobalEntity_GetCounter( m_globalstate ), inputdata.pActivator, this ); }
//------------------------------------------------------------------------------
// Purpose:
//------------------------------------------------------------------------------
void CEnvGlobal::InputToggle( inputdata_t &inputdata ) { GLOBALESTATE oldState = GlobalEntity_GetState( m_globalstate ); GLOBALESTATE newState;
if ( oldState == GLOBAL_ON ) { newState = GLOBAL_OFF; } else if ( oldState == GLOBAL_OFF ) { newState = GLOBAL_ON; } else { return; }
if ( GlobalEntity_IsInTable( m_globalstate ) ) { GlobalEntity_SetState( m_globalstate, newState ); } else { GlobalEntity_Add( m_globalstate, gpGlobals->mapname, newState ); } }
//-----------------------------------------------------------------------------
// Purpose: Draw any debug text overlays
// Input :
// Output : Current text offset from the top
//-----------------------------------------------------------------------------
int CEnvGlobal::DrawDebugTextOverlays(void) { // Skip AIClass debug overlays
int text_offset = CBaseEntity::DrawDebugTextOverlays();
if (m_debugOverlays & OVERLAY_TEXT_BIT) { char tempstr[512]; Q_snprintf(tempstr,sizeof(tempstr),"State: %s",STRING(m_globalstate)); EntityText(text_offset,tempstr,0); text_offset++;
GLOBALESTATE nState = GlobalEntity_GetState( m_globalstate );
switch( nState ) { case GLOBAL_OFF: Q_strncpy(tempstr,"Value: OFF",sizeof(tempstr)); break;
case GLOBAL_ON: Q_strncpy(tempstr,"Value: ON",sizeof(tempstr)); break;
case GLOBAL_DEAD: Q_strncpy(tempstr,"Value: DEAD",sizeof(tempstr)); break; } EntityText(text_offset,tempstr,0); text_offset++; } return text_offset; }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
#define MS_MAX_TARGETS 32
const int SF_MULTI_INIT = 1;
class CMultiSource : public CLogicalEntity { public: DECLARE_CLASS( CMultiSource, CLogicalEntity );
void Spawn( ); bool KeyValue( const char *szKeyName, const char *szValue ); void Use( ::CBaseEntity *pActivator, ::CBaseEntity *pCaller, USE_TYPE useType, float value ); int ObjectCaps( void ) { return(BaseClass::ObjectCaps() | FCAP_MASTER); } bool IsTriggered( ::CBaseEntity *pActivator ); void Register( void );
DECLARE_DATADESC();
EHANDLE m_rgEntities[MS_MAX_TARGETS]; int m_rgTriggered[MS_MAX_TARGETS];
COutputEvent m_OnTrigger; // Fired when all connections are triggered.
int m_iTotal; string_t m_globalstate; };
BEGIN_DATADESC( CMultiSource )
//!!!BUGBUG FIX
DEFINE_ARRAY( m_rgEntities, FIELD_EHANDLE, MS_MAX_TARGETS ), DEFINE_ARRAY( m_rgTriggered, FIELD_INTEGER, MS_MAX_TARGETS ), DEFINE_FIELD( m_iTotal, FIELD_INTEGER ),
DEFINE_KEYFIELD( m_globalstate, FIELD_STRING, "globalstate" ),
// Function pointers
DEFINE_FUNCTION( Register ),
// Outputs
DEFINE_OUTPUT(m_OnTrigger, "OnTrigger"),
END_DATADESC()
LINK_ENTITY_TO_CLASS( multisource, CMultiSource );
//-----------------------------------------------------------------------------
// Purpose: Cache user entity field values until spawn is called.
// Input : szKeyName - Key to handle.
// szValue - Value for key.
// Output : Returns true if the key was handled, false if not.
//-----------------------------------------------------------------------------
bool CMultiSource::KeyValue( const char *szKeyName, const char *szValue ) { if ( FStrEq(szKeyName, "style") || FStrEq(szKeyName, "height") || FStrEq(szKeyName, "killtarget") || FStrEq(szKeyName, "value1") || FStrEq(szKeyName, "value2") || FStrEq(szKeyName, "value3")) { } else { return BaseClass::KeyValue( szKeyName, szValue ); }
return true; }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CMultiSource::Spawn() { SetNextThink( gpGlobals->curtime + 0.1f ); m_spawnflags |= SF_MULTI_INIT; // Until it's initialized
SetThink(&CMultiSource::Register); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : pActivator -
// pCaller -
// useType -
// value -
//-----------------------------------------------------------------------------
void CMultiSource::Use( CBaseEntity *pActivator, CBaseEntity *pCaller, USE_TYPE useType, float value ) { int i = 0;
// Find the entity in our list
while (i < m_iTotal) if ( m_rgEntities[i++] == pCaller ) break;
// if we didn't find it, report error and leave
if (i > m_iTotal) { Warning("MultiSrc: Used by non member %s.\n", pCaller->edict() ? pCaller->GetClassname() : "<logical entity>"); return; }
// CONSIDER: a Use input to the multisource always toggles. Could check useType for ON/OFF/TOGGLE
m_rgTriggered[i-1] ^= 1;
//
if ( IsTriggered( pActivator ) ) { DevMsg( 2, "Multisource %s enabled (%d inputs)\n", GetDebugName(), m_iTotal ); USE_TYPE useType = USE_TOGGLE; if ( m_globalstate != NULL_STRING ) useType = USE_ON;
m_OnTrigger.FireOutput(pActivator, this); } }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CMultiSource::IsTriggered( CBaseEntity * ) { // Is everything triggered?
int i = 0;
// Still initializing?
if ( m_spawnflags & SF_MULTI_INIT ) return 0;
while (i < m_iTotal) { if (m_rgTriggered[i] == 0) break; i++; }
if (i == m_iTotal) { if ( !m_globalstate || GlobalEntity_GetState( m_globalstate ) == GLOBAL_ON ) return 1; } return 0; }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CMultiSource::Register(void) { CBaseEntity *pTarget = NULL;
m_iTotal = 0; memset( m_rgEntities, 0, MS_MAX_TARGETS * sizeof(EHANDLE) );
SetThink(&CMultiSource::SUB_DoNothing);
// search for all entities which target this multisource (m_iName)
// dvsents2: port multisource to entity I/O!
pTarget = gEntList.FindEntityByTarget( NULL, STRING(GetEntityName()) );
while ( pTarget && (m_iTotal < MS_MAX_TARGETS) ) { if ( pTarget ) m_rgEntities[m_iTotal++] = pTarget;
pTarget = gEntList.FindEntityByTarget( pTarget, STRING(GetEntityName()) ); }
pTarget = gEntList.FindEntityByClassname( NULL, "multi_manager" ); while (pTarget && (m_iTotal < MS_MAX_TARGETS)) { if ( pTarget && pTarget->HasTarget(GetEntityName()) ) m_rgEntities[m_iTotal++] = pTarget;
pTarget = gEntList.FindEntityByClassname( pTarget, "multi_manager" ); }
m_spawnflags &= ~SF_MULTI_INIT; }
//-----------------------------------------------------------------------------
// Purpose: Holds a value that can be added to and subtracted from.
//-----------------------------------------------------------------------------
class CMathCounter : public CLogicalEntity { DECLARE_CLASS( CMathCounter, CLogicalEntity ); private: float m_flMin; // Minimum clamp value. If min and max are BOTH zero, no clamping is done.
float m_flMax; // Maximum clamp value.
bool m_bHitMin; // Set when we reach or go below our minimum value, cleared if we go above it again.
bool m_bHitMax; // Set when we reach or exceed our maximum value, cleared if we fall below it again.
bool m_bDisabled;
bool KeyValue(const char *szKeyName, const char *szValue); void Spawn(void);
int DrawDebugTextOverlays(void);
void UpdateOutValue(CBaseEntity *pActivator, float fNewValue);
// Inputs
void InputAdd( inputdata_t &inputdata ); void InputDivide( inputdata_t &inputdata ); void InputMultiply( inputdata_t &inputdata ); void InputSetValue( inputdata_t &inputdata ); void InputSetValueNoFire( inputdata_t &inputdata ); void InputSubtract( inputdata_t &inputdata ); void InputSetHitMax( inputdata_t &inputdata ); void InputSetHitMin( inputdata_t &inputdata ); void InputGetValue( inputdata_t &inputdata ); void InputEnable( inputdata_t &inputdata ); void InputDisable( inputdata_t &inputdata );
// Outputs
COutputFloat m_OutValue; COutputFloat m_OnGetValue; // Used for polling the counter value.
COutputEvent m_OnHitMin; COutputEvent m_OnHitMax;
DECLARE_DATADESC(); };
LINK_ENTITY_TO_CLASS(math_counter, CMathCounter);
BEGIN_DATADESC( CMathCounter )
DEFINE_FIELD(m_bHitMax, FIELD_BOOLEAN), DEFINE_FIELD(m_bHitMin, FIELD_BOOLEAN),
// Keys
DEFINE_KEYFIELD(m_flMin, FIELD_FLOAT, "min"), DEFINE_KEYFIELD(m_flMax, FIELD_FLOAT, "max"),
DEFINE_KEYFIELD(m_bDisabled, FIELD_BOOLEAN, "StartDisabled" ),
// Inputs
DEFINE_INPUTFUNC(FIELD_FLOAT, "Add", InputAdd), DEFINE_INPUTFUNC(FIELD_FLOAT, "Divide", InputDivide), DEFINE_INPUTFUNC(FIELD_FLOAT, "Multiply", InputMultiply), DEFINE_INPUTFUNC(FIELD_FLOAT, "SetValue", InputSetValue), DEFINE_INPUTFUNC(FIELD_FLOAT, "SetValueNoFire", InputSetValueNoFire), DEFINE_INPUTFUNC(FIELD_FLOAT, "Subtract", InputSubtract), DEFINE_INPUTFUNC(FIELD_FLOAT, "SetHitMax", InputSetHitMax), DEFINE_INPUTFUNC(FIELD_FLOAT, "SetHitMin", InputSetHitMin), DEFINE_INPUTFUNC(FIELD_VOID, "GetValue", InputGetValue), DEFINE_INPUTFUNC( FIELD_VOID, "Enable", InputEnable ), DEFINE_INPUTFUNC( FIELD_VOID, "Disable", InputDisable ),
// Outputs
DEFINE_OUTPUT(m_OutValue, "OutValue"), DEFINE_OUTPUT(m_OnHitMin, "OnHitMin"), DEFINE_OUTPUT(m_OnHitMax, "OnHitMax"), DEFINE_OUTPUT(m_OnGetValue, "OnGetValue"),
END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose: Handles key values from the BSP before spawn is called.
//-----------------------------------------------------------------------------
bool CMathCounter::KeyValue(const char *szKeyName, const char *szValue) { //
// Set the initial value of the counter.
//
if (!stricmp(szKeyName, "startvalue")) { m_OutValue.Init(atoi(szValue)); return(true); }
return(BaseClass::KeyValue(szKeyName, szValue)); }
//-----------------------------------------------------------------------------
// Purpose: Called before spawning, after key values have been set.
//-----------------------------------------------------------------------------
void CMathCounter::Spawn( void ) { //
// Make sure max and min are ordered properly or clamp won't work.
//
if (m_flMin > m_flMax) { float flTemp = m_flMax; m_flMax = m_flMin; m_flMin = flTemp; }
//
// Clamp initial value to within the valid range.
//
if ((m_flMin != 0) || (m_flMax != 0)) { float flStartValue = clamp(m_OutValue.Get(), m_flMin, m_flMax); m_OutValue.Init(flStartValue); } }
//-----------------------------------------------------------------------------
// Purpose: Draw any debug text overlays
// Input :
// Output : Current text offset from the top
//-----------------------------------------------------------------------------
int CMathCounter::DrawDebugTextOverlays( void ) { int text_offset = BaseClass::DrawDebugTextOverlays();
if (m_debugOverlays & OVERLAY_TEXT_BIT) { char tempstr[512];
Q_snprintf(tempstr,sizeof(tempstr)," min value: %f", m_flMin); EntityText(text_offset,tempstr,0); text_offset++;
Q_snprintf(tempstr,sizeof(tempstr)," max value: %f", m_flMax); EntityText(text_offset,tempstr,0); text_offset++;
Q_snprintf(tempstr,sizeof(tempstr),"current value: %f", m_OutValue.Get()); EntityText(text_offset,tempstr,0); text_offset++;
if( m_bDisabled ) { Q_snprintf(tempstr,sizeof(tempstr),"*DISABLED*"); } else { Q_snprintf(tempstr,sizeof(tempstr),"Enabled."); } EntityText(text_offset,tempstr,0); text_offset++;
} return text_offset; }
//-----------------------------------------------------------------------------
// Change min/max
//-----------------------------------------------------------------------------
void CMathCounter::InputSetHitMax( inputdata_t &inputdata ) { m_flMax = inputdata.value.Float(); if ( m_flMax < m_flMin ) { m_flMin = m_flMax; } UpdateOutValue( inputdata.pActivator, m_OutValue.Get() ); }
void CMathCounter::InputSetHitMin( inputdata_t &inputdata ) { m_flMin = inputdata.value.Float(); if ( m_flMax < m_flMin ) { m_flMax = m_flMin; } UpdateOutValue( inputdata.pActivator, m_OutValue.Get() ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler for adding to the accumulator value.
// Input : Float value to add.
//-----------------------------------------------------------------------------
void CMathCounter::InputAdd( inputdata_t &inputdata ) { if( m_bDisabled ) { DevMsg("Math Counter %s ignoring ADD because it is disabled\n", GetDebugName() ); return; }
float fNewValue = m_OutValue.Get() + inputdata.value.Float(); UpdateOutValue( inputdata.pActivator, fNewValue ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler for multiplying the current value.
// Input : Float value to multiply the value by.
//-----------------------------------------------------------------------------
void CMathCounter::InputDivide( inputdata_t &inputdata ) { if( m_bDisabled ) { DevMsg("Math Counter %s ignoring DIVIDE because it is disabled\n", GetDebugName() ); return; }
if (inputdata.value.Float() != 0) { float fNewValue = m_OutValue.Get() / inputdata.value.Float(); UpdateOutValue( inputdata.pActivator, fNewValue ); } else { DevMsg( 1, "LEVEL DESIGN ERROR: Divide by zero in math_value\n" ); UpdateOutValue( inputdata.pActivator, m_OutValue.Get() ); } }
//-----------------------------------------------------------------------------
// Purpose: Input handler for multiplying the current value.
// Input : Float value to multiply the value by.
//-----------------------------------------------------------------------------
void CMathCounter::InputMultiply( inputdata_t &inputdata ) { if( m_bDisabled ) { DevMsg("Math Counter %s ignoring MULTIPLY because it is disabled\n", GetDebugName() ); return; }
float fNewValue = m_OutValue.Get() * inputdata.value.Float(); UpdateOutValue( inputdata.pActivator, fNewValue ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler for updating the value.
// Input : Float value to set.
//-----------------------------------------------------------------------------
void CMathCounter::InputSetValue( inputdata_t &inputdata ) { if( m_bDisabled ) { DevMsg("Math Counter %s ignoring SETVALUE because it is disabled\n", GetDebugName() ); return; }
UpdateOutValue( inputdata.pActivator, inputdata.value.Float() ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler for updating the value.
// Input : Float value to set.
//-----------------------------------------------------------------------------
void CMathCounter::InputSetValueNoFire( inputdata_t &inputdata ) { if( m_bDisabled ) { DevMsg("Math Counter %s ignoring SETVALUENOFIRE because it is disabled\n", GetDebugName() ); return; }
float flNewValue = inputdata.value.Float(); if (( m_flMin != 0 ) || (m_flMax != 0 )) { flNewValue = clamp(flNewValue, m_flMin, m_flMax); }
m_OutValue.Init( flNewValue ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler for subtracting from the current value.
// Input : Float value to subtract.
//-----------------------------------------------------------------------------
void CMathCounter::InputSubtract( inputdata_t &inputdata ) { if( m_bDisabled ) { DevMsg("Math Counter %s ignoring SUBTRACT because it is disabled\n", GetDebugName() ); return; }
float fNewValue = m_OutValue.Get() - inputdata.value.Float(); UpdateOutValue( inputdata.pActivator, fNewValue ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMathCounter::InputGetValue( inputdata_t &inputdata ) { float flOutValue = m_OutValue.Get(); m_OnGetValue.Set( flOutValue, inputdata.pActivator, inputdata.pCaller ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMathCounter::InputEnable( inputdata_t &inputdata ) { m_bDisabled = false; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMathCounter::InputDisable( inputdata_t &inputdata ) { m_bDisabled = true; }
//-----------------------------------------------------------------------------
// Purpose: Sets the value to the new value, clamping and firing the output value.
// Input : fNewValue - Value to set.
//-----------------------------------------------------------------------------
void CMathCounter::UpdateOutValue(CBaseEntity *pActivator, float fNewValue) { if ((m_flMin != 0) || (m_flMax != 0)) { //
// Fire an output any time we reach or exceed our maximum value.
//
if ( fNewValue >= m_flMax ) { if ( !m_bHitMax ) { m_bHitMax = true; m_OnHitMax.FireOutput( pActivator, this ); } } else { m_bHitMax = false; }
//
// Fire an output any time we reach or go below our minimum value.
//
if ( fNewValue <= m_flMin ) { if ( !m_bHitMin ) { m_bHitMin = true; m_OnHitMin.FireOutput( pActivator, this ); } } else { m_bHitMin = false; }
fNewValue = clamp(fNewValue, m_flMin, m_flMax); }
m_OutValue.Set(fNewValue, pActivator, this); }
//-----------------------------------------------------------------------------
// Purpose: Compares a single string input to up to 16 case values, firing an
// output corresponding to the case value that matched, or a default
// output if the input value didn't match any of the case values.
//
// This can also be used to fire a random output from a set of outputs.
//-----------------------------------------------------------------------------
#define MAX_LOGIC_CASES 16
class CLogicCase : public CLogicalEntity { DECLARE_CLASS( CLogicCase, CLogicalEntity ); private: string_t m_nCase[MAX_LOGIC_CASES];
int m_nShuffleCases; int m_nLastShuffleCase; unsigned char m_uchShuffleCaseMap[MAX_LOGIC_CASES];
void Spawn(void);
int BuildCaseMap(unsigned char *puchMap);
// Inputs
void InputValue( inputdata_t &inputdata ); void InputPickRandom( inputdata_t &inputdata ); void InputPickRandomShuffle( inputdata_t &inputdata );
// Outputs
COutputEvent m_OnCase[MAX_LOGIC_CASES]; // Fired when the input value matches one of the case values.
COutputVariant m_OnDefault; // Fired when no match was found.
DECLARE_DATADESC(); };
LINK_ENTITY_TO_CLASS(logic_case, CLogicCase);
BEGIN_DATADESC( CLogicCase )
// Silence, Classcheck!
// DEFINE_ARRAY( m_nCase, FIELD_STRING, MAX_LOGIC_CASES ),
// Keys
DEFINE_KEYFIELD(m_nCase[0], FIELD_STRING, "Case01"), DEFINE_KEYFIELD(m_nCase[1], FIELD_STRING, "Case02"), DEFINE_KEYFIELD(m_nCase[2], FIELD_STRING, "Case03"), DEFINE_KEYFIELD(m_nCase[3], FIELD_STRING, "Case04"), DEFINE_KEYFIELD(m_nCase[4], FIELD_STRING, "Case05"), DEFINE_KEYFIELD(m_nCase[5], FIELD_STRING, "Case06"), DEFINE_KEYFIELD(m_nCase[6], FIELD_STRING, "Case07"), DEFINE_KEYFIELD(m_nCase[7], FIELD_STRING, "Case08"), DEFINE_KEYFIELD(m_nCase[8], FIELD_STRING, "Case09"), DEFINE_KEYFIELD(m_nCase[9], FIELD_STRING, "Case10"), DEFINE_KEYFIELD(m_nCase[10], FIELD_STRING, "Case11"), DEFINE_KEYFIELD(m_nCase[11], FIELD_STRING, "Case12"), DEFINE_KEYFIELD(m_nCase[12], FIELD_STRING, "Case13"), DEFINE_KEYFIELD(m_nCase[13], FIELD_STRING, "Case14"), DEFINE_KEYFIELD(m_nCase[14], FIELD_STRING, "Case15"), DEFINE_KEYFIELD(m_nCase[15], FIELD_STRING, "Case16"), DEFINE_FIELD( m_nShuffleCases, FIELD_INTEGER ), DEFINE_FIELD( m_nLastShuffleCase, FIELD_INTEGER ), DEFINE_ARRAY( m_uchShuffleCaseMap, FIELD_CHARACTER, MAX_LOGIC_CASES ),
// Inputs
DEFINE_INPUTFUNC(FIELD_INPUT, "InValue", InputValue), DEFINE_INPUTFUNC(FIELD_VOID, "PickRandom", InputPickRandom), DEFINE_INPUTFUNC(FIELD_VOID, "PickRandomShuffle", InputPickRandomShuffle),
// Outputs
DEFINE_OUTPUT(m_OnCase[0], "OnCase01"), DEFINE_OUTPUT(m_OnCase[1], "OnCase02"), DEFINE_OUTPUT(m_OnCase[2], "OnCase03"), DEFINE_OUTPUT(m_OnCase[3], "OnCase04"), DEFINE_OUTPUT(m_OnCase[4], "OnCase05"), DEFINE_OUTPUT(m_OnCase[5], "OnCase06"), DEFINE_OUTPUT(m_OnCase[6], "OnCase07"), DEFINE_OUTPUT(m_OnCase[7], "OnCase08"), DEFINE_OUTPUT(m_OnCase[8], "OnCase09"), DEFINE_OUTPUT(m_OnCase[9], "OnCase10"), DEFINE_OUTPUT(m_OnCase[10], "OnCase11"), DEFINE_OUTPUT(m_OnCase[11], "OnCase12"), DEFINE_OUTPUT(m_OnCase[12], "OnCase13"), DEFINE_OUTPUT(m_OnCase[13], "OnCase14"), DEFINE_OUTPUT(m_OnCase[14], "OnCase15"), DEFINE_OUTPUT(m_OnCase[15], "OnCase16"),
DEFINE_OUTPUT(m_OnDefault, "OnDefault"),
END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose: Called before spawning, after key values have been set.
//-----------------------------------------------------------------------------
void CLogicCase::Spawn( void ) { m_nLastShuffleCase = -1; }
//-----------------------------------------------------------------------------
// Purpose: Evaluates the new input value, firing the appropriate OnCaseX output
// if the input value matches one of the "CaseX" keys.
// Input : Value - Variant value to compare against the values of the case fields.
// We use a variant so that we can convert any input type to a string.
//-----------------------------------------------------------------------------
void CLogicCase::InputValue( inputdata_t &inputdata ) { const char *pszValue = inputdata.value.String(); for (int i = 0; i < MAX_LOGIC_CASES; i++) { if ((m_nCase[i] != NULL_STRING) && !stricmp(STRING(m_nCase[i]), pszValue)) { m_OnCase[i].FireOutput( inputdata.pActivator, this ); return; } } m_OnDefault.Set( inputdata.value, inputdata.pActivator, this ); }
//-----------------------------------------------------------------------------
// Count the number of valid cases, building a packed array
// that maps 0..NumCases to the actual CaseX values.
//
// This allows our zany mappers to set up cases sparsely if they desire.
// NOTE: assumes pnMap points to an array of MAX_LOGIC_CASES
//-----------------------------------------------------------------------------
int CLogicCase::BuildCaseMap(unsigned char *puchCaseMap) { memset(puchCaseMap, 0, sizeof(unsigned char) * MAX_LOGIC_CASES);
int nNumCases = 0; for (int i = 0; i < MAX_LOGIC_CASES; i++) { if (m_OnCase[i].NumberOfElements() > 0) { puchCaseMap[nNumCases] = (unsigned char)i; nNumCases++; } } return nNumCases; }
//-----------------------------------------------------------------------------
// Purpose: Makes the case statement choose a case at random.
//-----------------------------------------------------------------------------
void CLogicCase::InputPickRandom( inputdata_t &inputdata ) { unsigned char uchCaseMap[MAX_LOGIC_CASES]; int nNumCases = BuildCaseMap( uchCaseMap );
//
// Choose a random case from the ones that were set up by the level designer.
//
if ( nNumCases > 0 ) { int nRandom = random->RandomInt(0, nNumCases - 1); int nCase = (unsigned char)uchCaseMap[nRandom];
Assert(nCase < MAX_LOGIC_CASES);
if (nCase < MAX_LOGIC_CASES) { m_OnCase[nCase].FireOutput( inputdata.pActivator, this ); } } else { DevMsg( 1, "Firing PickRandom input on logic_case %s with no cases set up\n", GetDebugName() ); } }
//-----------------------------------------------------------------------------
// Purpose: Makes the case statement choose a case at random.
//-----------------------------------------------------------------------------
void CLogicCase::InputPickRandomShuffle( inputdata_t &inputdata ) { int nAvoidCase = -1; int nCaseCount = m_nShuffleCases; if ( nCaseCount == 0 ) { // Starting a new shuffle batch.
nCaseCount = m_nShuffleCases = BuildCaseMap( m_uchShuffleCaseMap ); if ( ( m_nShuffleCases > 1 ) && ( m_nLastShuffleCase != -1 ) ) { // Remove the previously picked case from the case map for this pick only.
// This avoids repeats across shuffle batch boundaries.
nAvoidCase = m_nLastShuffleCase; for (int i = 0; i < m_nShuffleCases; i++ ) { if ( m_uchShuffleCaseMap[i] == nAvoidCase ) { unsigned char uchSwap = m_uchShuffleCaseMap[i]; m_uchShuffleCaseMap[i] = m_uchShuffleCaseMap[nCaseCount - 1]; m_uchShuffleCaseMap[nCaseCount - 1] = uchSwap; nCaseCount--; break; } } } } //
// Choose a random case from the ones that were set up by the level designer.
// Never repeat a case within a shuffle batch, nor consecutively across batches.
//
if ( nCaseCount > 0 ) { int nRandom = random->RandomInt( 0, nCaseCount - 1 );
int nCase = m_uchShuffleCaseMap[nRandom]; Assert(nCase < MAX_LOGIC_CASES);
if (nCase < MAX_LOGIC_CASES) { m_OnCase[nCase].FireOutput( inputdata.pActivator, this ); } m_uchShuffleCaseMap[nRandom] = m_uchShuffleCaseMap[m_nShuffleCases - 1]; m_nShuffleCases--;
m_nLastShuffleCase = nCase; } else { DevMsg( 1, "Firing PickRandom input on logic_case %s with no cases set up\n", GetDebugName() ); } }
//-----------------------------------------------------------------------------
// Purpose: Compares a floating point input to a predefined value, firing an
// output to indicate the result of the comparison.
//-----------------------------------------------------------------------------
class CLogicCompare : public CLogicalEntity { DECLARE_CLASS( CLogicCompare, CLogicalEntity );
public: int DrawDebugTextOverlays(void);
private: // Inputs
void InputSetValue( inputdata_t &inputdata ); void InputSetValueCompare( inputdata_t &inputdata ); void InputSetCompareValue( inputdata_t &inputdata ); void InputCompare( inputdata_t &inputdata );
void DoCompare(CBaseEntity *pActivator, float flInValue);
float m_flInValue; // Place to hold the last input value for a recomparison.
float m_flCompareValue; // The value to compare the input value against.
// Outputs
COutputFloat m_OnLessThan; // Fired when the input value is less than the compare value.
COutputFloat m_OnEqualTo; // Fired when the input value is equal to the compare value.
COutputFloat m_OnNotEqualTo; // Fired when the input value is not equal to the compare value.
COutputFloat m_OnGreaterThan; // Fired when the input value is greater than the compare value.
DECLARE_DATADESC(); };
LINK_ENTITY_TO_CLASS(logic_compare, CLogicCompare);
BEGIN_DATADESC( CLogicCompare )
// Keys
DEFINE_KEYFIELD(m_flCompareValue, FIELD_FLOAT, "CompareValue"), DEFINE_KEYFIELD(m_flInValue, FIELD_FLOAT, "InitialValue"),
// Inputs
DEFINE_INPUTFUNC(FIELD_FLOAT, "SetValue", InputSetValue), DEFINE_INPUTFUNC(FIELD_FLOAT, "SetValueCompare", InputSetValueCompare), DEFINE_INPUTFUNC(FIELD_FLOAT, "SetCompareValue", InputSetCompareValue), DEFINE_INPUTFUNC(FIELD_VOID, "Compare", InputCompare),
// Outputs
DEFINE_OUTPUT(m_OnEqualTo, "OnEqualTo"), DEFINE_OUTPUT(m_OnNotEqualTo, "OnNotEqualTo"), DEFINE_OUTPUT(m_OnGreaterThan, "OnGreaterThan"), DEFINE_OUTPUT(m_OnLessThan, "OnLessThan"),
END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose: Input handler for a new input value without performing a comparison.
//-----------------------------------------------------------------------------
void CLogicCompare::InputSetValue( inputdata_t &inputdata ) { m_flInValue = inputdata.value.Float(); }
//-----------------------------------------------------------------------------
// Purpose: Input handler for a setting a new value and doing the comparison.
//-----------------------------------------------------------------------------
void CLogicCompare::InputSetValueCompare( inputdata_t &inputdata ) { m_flInValue = inputdata.value.Float(); DoCompare( inputdata.pActivator, m_flInValue ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler for a new input value without performing a comparison.
//-----------------------------------------------------------------------------
void CLogicCompare::InputSetCompareValue( inputdata_t &inputdata ) { m_flCompareValue = inputdata.value.Float(); }
//-----------------------------------------------------------------------------
// Purpose: Input handler for forcing a recompare of the last input value.
//-----------------------------------------------------------------------------
void CLogicCompare::InputCompare( inputdata_t &inputdata ) { DoCompare( inputdata.pActivator, m_flInValue ); }
//-----------------------------------------------------------------------------
// Purpose: Compares the input value to the compare value, firing the appropriate
// output(s) based on the comparison result.
// Input : flInValue - Value to compare against the comparison value.
//-----------------------------------------------------------------------------
void CLogicCompare::DoCompare(CBaseEntity *pActivator, float flInValue) { if (flInValue == m_flCompareValue) { m_OnEqualTo.Set(flInValue, pActivator, this); } else { m_OnNotEqualTo.Set(flInValue, pActivator, this);
if (flInValue > m_flCompareValue) { m_OnGreaterThan.Set(flInValue, pActivator, this); } else { m_OnLessThan.Set(flInValue, pActivator, this); } } }
//-----------------------------------------------------------------------------
// Purpose: Draw any debug text overlays
// Output : Current text offset from the top
//-----------------------------------------------------------------------------
int CLogicCompare::DrawDebugTextOverlays( void ) { int text_offset = BaseClass::DrawDebugTextOverlays();
if (m_debugOverlays & OVERLAY_TEXT_BIT) { char tempstr[512];
// print duration
Q_snprintf(tempstr,sizeof(tempstr)," Initial Value: %f", m_flInValue); EntityText(text_offset,tempstr,0); text_offset++;
// print hold time
Q_snprintf(tempstr,sizeof(tempstr)," Compare Value: %f", m_flCompareValue); EntityText(text_offset,tempstr,0); text_offset++; } return text_offset; }
//-----------------------------------------------------------------------------
// Purpose: Tests a boolean value, firing an output to indicate whether the
// value was true or false.
//-----------------------------------------------------------------------------
class CLogicBranch : public CLogicalEntity { DECLARE_CLASS( CLogicBranch, CLogicalEntity ); public:
void UpdateOnRemove();
void AddLogicBranchListener( CBaseEntity *pEntity ); inline bool GetLogicBranchState(); virtual int DrawDebugTextOverlays( void );
private:
enum LogicBranchFire_t { LOGIC_BRANCH_FIRE, LOGIC_BRANCH_NO_FIRE, };
// Inputs
void InputSetValue( inputdata_t &inputdata ); void InputSetValueTest( inputdata_t &inputdata ); void InputToggle( inputdata_t &inputdata ); void InputToggleTest( inputdata_t &inputdata ); void InputTest( inputdata_t &inputdata );
void UpdateValue(bool bNewValue, CBaseEntity *pActivator, LogicBranchFire_t eFire);
bool m_bInValue; // Place to hold the last input value for a future test.
CUtlVector<EHANDLE> m_Listeners; // A list of logic_branch_listeners that are monitoring us.
// Outputs
COutputEvent m_OnTrue; // Fired when the value is true.
COutputEvent m_OnFalse; // Fired when the value is false.
DECLARE_DATADESC(); };
LINK_ENTITY_TO_CLASS(logic_branch, CLogicBranch);
BEGIN_DATADESC( CLogicBranch )
// Keys
DEFINE_KEYFIELD(m_bInValue, FIELD_BOOLEAN, "InitialValue"),
DEFINE_UTLVECTOR( m_Listeners, FIELD_EHANDLE ),
// Inputs
DEFINE_INPUTFUNC(FIELD_BOOLEAN, "SetValue", InputSetValue), DEFINE_INPUTFUNC(FIELD_BOOLEAN, "SetValueTest", InputSetValueTest), DEFINE_INPUTFUNC(FIELD_VOID, "Toggle", InputToggle), DEFINE_INPUTFUNC(FIELD_VOID, "ToggleTest", InputToggleTest), DEFINE_INPUTFUNC(FIELD_VOID, "Test", InputTest),
// Outputs
DEFINE_OUTPUT(m_OnTrue, "OnTrue"), DEFINE_OUTPUT(m_OnFalse, "OnFalse"),
END_DATADESC()
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CLogicBranch::UpdateOnRemove() { for ( int i = 0; i < m_Listeners.Count(); i++ ) { CBaseEntity *pEntity = m_Listeners.Element( i ).Get(); if ( pEntity ) { g_EventQueue.AddEvent( this, "_OnLogicBranchRemoved", 0, this, this ); } } BaseClass::UpdateOnRemove(); }
//-----------------------------------------------------------------------------
// Purpose: Input handler to set a new input value without firing outputs.
// Input : Boolean value to set.
//-----------------------------------------------------------------------------
void CLogicBranch::InputSetValue( inputdata_t &inputdata ) { UpdateValue( inputdata.value.Bool(), inputdata.pActivator, LOGIC_BRANCH_NO_FIRE ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler to set a new input value and fire appropriate outputs.
// Input : Boolean value to set.
//-----------------------------------------------------------------------------
void CLogicBranch::InputSetValueTest( inputdata_t &inputdata ) { UpdateValue( inputdata.value.Bool(), inputdata.pActivator, LOGIC_BRANCH_FIRE ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler for toggling the boolean value without firing outputs.
//-----------------------------------------------------------------------------
void CLogicBranch::InputToggle( inputdata_t &inputdata ) { UpdateValue( !m_bInValue, inputdata.pActivator, LOGIC_BRANCH_NO_FIRE ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler for toggling the boolean value and then firing the
// appropriate output based on the new value.
//-----------------------------------------------------------------------------
void CLogicBranch::InputToggleTest( inputdata_t &inputdata ) { UpdateValue( !m_bInValue, inputdata.pActivator, LOGIC_BRANCH_FIRE ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler for forcing a test of the last input value.
//-----------------------------------------------------------------------------
void CLogicBranch::InputTest( inputdata_t &inputdata ) { UpdateValue( m_bInValue, inputdata.pActivator, LOGIC_BRANCH_FIRE ); }
//-----------------------------------------------------------------------------
// Purpose: Tests the last input value, firing the appropriate output based on
// the test result.
// Input : bInValue -
//-----------------------------------------------------------------------------
void CLogicBranch::UpdateValue( bool bNewValue, CBaseEntity *pActivator, LogicBranchFire_t eFire ) { if ( m_bInValue != bNewValue ) { m_bInValue = bNewValue;
for ( int i = 0; i < m_Listeners.Count(); i++ ) { CBaseEntity *pEntity = m_Listeners.Element( i ).Get(); if ( pEntity ) { g_EventQueue.AddEvent( pEntity, "_OnLogicBranchChanged", 0, this, this ); } } }
if ( eFire == LOGIC_BRANCH_FIRE ) { if ( m_bInValue ) { m_OnTrue.FireOutput( pActivator, this ); } else { m_OnFalse.FireOutput( pActivator, this ); } } }
//-----------------------------------------------------------------------------
// Purpose: Accessor for logic_branchlist to test the value of the branch on demand.
//-----------------------------------------------------------------------------
bool CLogicBranch::GetLogicBranchState() { return m_bInValue; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CLogicBranch::AddLogicBranchListener( CBaseEntity *pEntity ) { if ( m_Listeners.Find( pEntity ) == -1 ) { m_Listeners.AddToTail( pEntity ); } }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
int CLogicBranch::DrawDebugTextOverlays( void ) { int text_offset = BaseClass::DrawDebugTextOverlays();
if (m_debugOverlays & OVERLAY_TEXT_BIT) { char tempstr[512];
// print refire time
Q_snprintf( tempstr, sizeof(tempstr), "Branch value: %s", (m_bInValue) ? "TRUE" : "FALSE" ); EntityText( text_offset, tempstr, 0 ); text_offset++; }
return text_offset; }
//-----------------------------------------------------------------------------
// Purpose: Autosaves when triggered
//-----------------------------------------------------------------------------
class CLogicAutosave : public CLogicalEntity { DECLARE_CLASS( CLogicAutosave, CLogicalEntity );
protected: // Inputs
void InputSave( inputdata_t &inputdata ); void InputSaveDangerous( inputdata_t &inputdata ); void InputSetMinHitpointsThreshold( inputdata_t &inputdata );
DECLARE_DATADESC(); bool m_bForceNewLevelUnit; int m_minHitPoints; int m_minHitPointsToCommit; };
LINK_ENTITY_TO_CLASS(logic_autosave, CLogicAutosave);
BEGIN_DATADESC( CLogicAutosave ) DEFINE_KEYFIELD( m_bForceNewLevelUnit, FIELD_BOOLEAN, "NewLevelUnit" ), DEFINE_KEYFIELD( m_minHitPoints, FIELD_INTEGER, "MinimumHitPoints" ), DEFINE_KEYFIELD( m_minHitPointsToCommit, FIELD_INTEGER, "MinHitPointsToCommit" ), // Inputs
DEFINE_INPUTFUNC( FIELD_VOID, "Save", InputSave ), DEFINE_INPUTFUNC( FIELD_FLOAT, "SaveDangerous", InputSaveDangerous ), DEFINE_INPUTFUNC( FIELD_INTEGER, "SetMinHitpointsThreshold", InputSetMinHitpointsThreshold ), END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose: Save!
//-----------------------------------------------------------------------------
void CLogicAutosave::InputSave( inputdata_t &inputdata ) { if ( m_bForceNewLevelUnit ) { engine->ClearSaveDir(); }
engine->ServerCommand( "autosave\n" ); }
//-----------------------------------------------------------------------------
// Purpose: Save safely!
//-----------------------------------------------------------------------------
void CLogicAutosave::InputSaveDangerous( inputdata_t &inputdata ) { CBasePlayer *pPlayer = UTIL_PlayerByIndex( 1 );
if ( g_ServerGameDLL.m_fAutoSaveDangerousTime != 0.0f && g_ServerGameDLL.m_fAutoSaveDangerousTime >= gpGlobals->curtime ) { // A previous dangerous auto save was waiting to become safe
if ( pPlayer->GetDeathTime() == 0.0f || pPlayer->GetDeathTime() > gpGlobals->curtime ) { // The player isn't dead, so make the dangerous auto save safe
engine->ServerCommand( "autosavedangerousissafe\n" ); } }
if ( m_bForceNewLevelUnit ) { engine->ClearSaveDir(); }
if ( pPlayer->GetHealth() >= m_minHitPoints ) { engine->ServerCommand( "autosavedangerous\n" ); g_ServerGameDLL.m_fAutoSaveDangerousTime = gpGlobals->curtime + inputdata.value.Float();
// Player must have this much health when we go to commit, or we don't commit.
g_ServerGameDLL.m_fAutoSaveDangerousMinHealthToCommit = m_minHitPointsToCommit; } }
//-----------------------------------------------------------------------------
// Purpose: Autosaves when triggered
//-----------------------------------------------------------------------------
class CLogicActiveAutosave : public CLogicAutosave { DECLARE_CLASS( CLogicActiveAutosave, CLogicAutosave );
void InputEnable( inputdata_t &inputdata ) { m_flStartTime = -1; SetThink( &CLogicActiveAutosave::SaveThink ); SetNextThink( gpGlobals->curtime ); }
void InputDisable( inputdata_t &inputdata ) { SetThink( NULL ); }
void SaveThink() { CBasePlayer *pPlayer = UTIL_GetLocalPlayer(); if ( pPlayer ) { if ( m_flStartTime < 0 ) { if ( pPlayer->GetHealth() <= m_minHitPoints ) { m_flStartTime = gpGlobals->curtime; } } else { if ( pPlayer->GetHealth() >= m_TriggerHitPoints ) { inputdata_t inputdata; DevMsg( 2, "logic_active_autosave (%s, %d) triggered\n", STRING( GetEntityName() ), entindex() ); if ( !m_flDangerousTime ) { InputSave( inputdata ); } else { inputdata.value.SetFloat( m_flDangerousTime ); InputSaveDangerous( inputdata ); } m_flStartTime = -1; } else if ( m_flTimeToTrigger > 0 && gpGlobals->curtime - m_flStartTime > m_flTimeToTrigger ) { m_flStartTime = -1; } } }
float thinkInterval = ( m_flStartTime < 0 ) ? 1.0 : 0.5; SetNextThink( gpGlobals->curtime + thinkInterval ); }
DECLARE_DATADESC();
int m_TriggerHitPoints; float m_flTimeToTrigger; float m_flStartTime; float m_flDangerousTime; };
LINK_ENTITY_TO_CLASS(logic_active_autosave, CLogicActiveAutosave);
BEGIN_DATADESC( CLogicActiveAutosave ) DEFINE_KEYFIELD( m_TriggerHitPoints, FIELD_INTEGER, "TriggerHitPoints" ), DEFINE_KEYFIELD( m_flTimeToTrigger, FIELD_FLOAT, "TimeToTrigger" ), DEFINE_KEYFIELD( m_flDangerousTime, FIELD_FLOAT, "DangerousTime" ), DEFINE_FIELD( m_flStartTime, FIELD_TIME ), DEFINE_THINKFUNC( SaveThink ), DEFINE_INPUTFUNC( FIELD_VOID, "Enable", InputEnable ), DEFINE_INPUTFUNC( FIELD_VOID, "Disable", InputDisable ), END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose: Keyfield set func
//-----------------------------------------------------------------------------
void CLogicAutosave::InputSetMinHitpointsThreshold( inputdata_t &inputdata ) { int setTo = inputdata.value.Int(); AssertMsg1(setTo >= 0 && setTo <= 100, "Tried to set autosave MinHitpointsThreshold to %d!\n", setTo); m_minHitPoints = setTo; }
// Finds the named physics object. If no name, returns the world
// If a name is specified and an object not found - errors are reported
IPhysicsObject *FindPhysicsObjectByNameOrWorld( string_t name, CBaseEntity *pErrorEntity ) { if ( !name ) return g_PhysWorldObject;
IPhysicsObject *pPhysics = FindPhysicsObjectByName( name.ToCStr(), pErrorEntity ); if ( !pPhysics ) { DevWarning("%s: can't find %s\n", pErrorEntity->GetClassname(), name.ToCStr()); } return pPhysics; }
class CLogicCollisionPair : public CLogicalEntity { DECLARE_CLASS( CLogicCollisionPair, CLogicalEntity ); public:
void EnableCollisions( bool bEnable ) { IPhysicsObject *pPhysics0 = FindPhysicsObjectByNameOrWorld( m_nameAttach1, this ); IPhysicsObject *pPhysics1 = FindPhysicsObjectByNameOrWorld( m_nameAttach2, this );
// need two different objects to do anything
if ( pPhysics0 && pPhysics1 && pPhysics0 != pPhysics1 ) { m_disabled = !bEnable; m_succeeded = true; if ( bEnable ) { PhysEnableEntityCollisions( pPhysics0, pPhysics1 ); } else { PhysDisableEntityCollisions( pPhysics0, pPhysics1 ); } } else { m_succeeded = false; } }
void Activate( void ) { if ( m_disabled ) { EnableCollisions( false ); } BaseClass::Activate(); }
void InputDisableCollisions( inputdata_t &inputdata ) { if ( m_succeeded && m_disabled ) return; EnableCollisions( false ); }
void InputEnableCollisions( inputdata_t &inputdata ) { if ( m_succeeded && !m_disabled ) return; EnableCollisions( true ); } // If Activate() becomes PostSpawn()
//void OnRestore() { Activate(); }
DECLARE_DATADESC();
private: string_t m_nameAttach1; string_t m_nameAttach2; bool m_disabled; bool m_succeeded; };
BEGIN_DATADESC( CLogicCollisionPair ) DEFINE_KEYFIELD( m_nameAttach1, FIELD_STRING, "attach1" ), DEFINE_KEYFIELD( m_nameAttach2, FIELD_STRING, "attach2" ), DEFINE_KEYFIELD( m_disabled, FIELD_BOOLEAN, "startdisabled" ), DEFINE_FIELD( m_succeeded, FIELD_BOOLEAN ),
// Inputs
DEFINE_INPUTFUNC( FIELD_VOID, "DisableCollisions", InputDisableCollisions ), DEFINE_INPUTFUNC( FIELD_VOID, "EnableCollisions", InputEnableCollisions ), END_DATADESC()
LINK_ENTITY_TO_CLASS( logic_collision_pair, CLogicCollisionPair );
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
#define MAX_LOGIC_BRANCH_NAMES 16
class CLogicBranchList : public CLogicalEntity { DECLARE_CLASS( CLogicBranchList, CLogicalEntity );
virtual void Spawn(); virtual void Activate(); virtual int DrawDebugTextOverlays( void );
private:
enum LogicBranchListenerLastState_t { LOGIC_BRANCH_LISTENER_NOT_INIT = 0, LOGIC_BRANCH_LISTENER_ALL_TRUE, LOGIC_BRANCH_LISTENER_ALL_FALSE, LOGIC_BRANCH_LISTENER_MIXED, };
void DoTest( CBaseEntity *pActivator );
string_t m_nLogicBranchNames[MAX_LOGIC_BRANCH_NAMES]; CUtlVector<EHANDLE> m_LogicBranchList; LogicBranchListenerLastState_t m_eLastState;
// Inputs
void Input_OnLogicBranchRemoved( inputdata_t &inputdata ); void Input_OnLogicBranchChanged( inputdata_t &inputdata ); void InputTest( inputdata_t &inputdata );
// Outputs
COutputEvent m_OnAllTrue; // Fired when all the registered logic_branches become true.
COutputEvent m_OnAllFalse; // Fired when all the registered logic_branches become false.
COutputEvent m_OnMixed; // Fired when one of the registered logic branches changes, but not all are true or false.
DECLARE_DATADESC(); };
LINK_ENTITY_TO_CLASS(logic_branch_listener, CLogicBranchList);
BEGIN_DATADESC( CLogicBranchList )
// Silence, classcheck!
//DEFINE_ARRAY( m_nLogicBranchNames, FIELD_STRING, MAX_LOGIC_BRANCH_NAMES ),
// Keys
DEFINE_KEYFIELD( m_nLogicBranchNames[0], FIELD_STRING, "Branch01" ), DEFINE_KEYFIELD( m_nLogicBranchNames[1], FIELD_STRING, "Branch02" ), DEFINE_KEYFIELD( m_nLogicBranchNames[2], FIELD_STRING, "Branch03" ), DEFINE_KEYFIELD( m_nLogicBranchNames[3], FIELD_STRING, "Branch04" ), DEFINE_KEYFIELD( m_nLogicBranchNames[4], FIELD_STRING, "Branch05" ), DEFINE_KEYFIELD( m_nLogicBranchNames[5], FIELD_STRING, "Branch06" ), DEFINE_KEYFIELD( m_nLogicBranchNames[6], FIELD_STRING, "Branch07" ), DEFINE_KEYFIELD( m_nLogicBranchNames[7], FIELD_STRING, "Branch08" ), DEFINE_KEYFIELD( m_nLogicBranchNames[8], FIELD_STRING, "Branch09" ), DEFINE_KEYFIELD( m_nLogicBranchNames[9], FIELD_STRING, "Branch10" ), DEFINE_KEYFIELD( m_nLogicBranchNames[10], FIELD_STRING, "Branch11" ), DEFINE_KEYFIELD( m_nLogicBranchNames[11], FIELD_STRING, "Branch12" ), DEFINE_KEYFIELD( m_nLogicBranchNames[12], FIELD_STRING, "Branch13" ), DEFINE_KEYFIELD( m_nLogicBranchNames[13], FIELD_STRING, "Branch14" ), DEFINE_KEYFIELD( m_nLogicBranchNames[14], FIELD_STRING, "Branch15" ), DEFINE_KEYFIELD( m_nLogicBranchNames[15], FIELD_STRING, "Branch16" ), DEFINE_UTLVECTOR( m_LogicBranchList, FIELD_EHANDLE ), DEFINE_FIELD( m_eLastState, FIELD_INTEGER ),
// Inputs
DEFINE_INPUTFUNC( FIELD_INPUT, "Test", InputTest ), DEFINE_INPUTFUNC( FIELD_INPUT, "_OnLogicBranchChanged", Input_OnLogicBranchChanged ), DEFINE_INPUTFUNC( FIELD_INPUT, "_OnLogicBranchRemoved", Input_OnLogicBranchRemoved ),
// Outputs
DEFINE_OUTPUT( m_OnAllTrue, "OnAllTrue" ), DEFINE_OUTPUT( m_OnAllFalse, "OnAllFalse" ), DEFINE_OUTPUT( m_OnMixed, "OnMixed" ),
END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose: Called before spawning, after key values have been set.
//-----------------------------------------------------------------------------
void CLogicBranchList::Spawn( void ) { }
//-----------------------------------------------------------------------------
// Finds all the logic_branches that we are monitoring and register ourselves with them.
//-----------------------------------------------------------------------------
void CLogicBranchList::Activate( void ) { for ( int i = 0; i < MAX_LOGIC_BRANCH_NAMES; i++ ) { CBaseEntity *pEntity = NULL; while ( ( pEntity = gEntList.FindEntityGeneric( pEntity, STRING( m_nLogicBranchNames[i] ), this ) ) != NULL ) { if ( FClassnameIs( pEntity, "logic_branch" ) ) { CLogicBranch *pBranch = (CLogicBranch *)pEntity; pBranch->AddLogicBranchListener( this ); m_LogicBranchList.AddToTail( pBranch ); } else { DevWarning( "logic_branchlist %s refers to entity %s, which is not a logic_branch\n", GetDebugName(), pEntity->GetDebugName() ); } } } BaseClass::Activate(); }
//-----------------------------------------------------------------------------
// Called when a monitored logic branch is deleted from the world, since that
// might affect our final result.
//-----------------------------------------------------------------------------
void CLogicBranchList::Input_OnLogicBranchRemoved( inputdata_t &inputdata ) { int nIndex = m_LogicBranchList.Find( inputdata.pActivator ); if ( nIndex != -1 ) { m_LogicBranchList.FastRemove( nIndex ); }
// See if this logic_branch's deletion affects the final result.
DoTest( inputdata.pActivator ); }
//-----------------------------------------------------------------------------
// Called when the value of a monitored logic branch changes.
//-----------------------------------------------------------------------------
void CLogicBranchList::Input_OnLogicBranchChanged( inputdata_t &inputdata ) { DoTest( inputdata.pActivator ); }
//-----------------------------------------------------------------------------
// Input handler to manually test the monitored logic branches and fire the
// appropriate output.
//-----------------------------------------------------------------------------
void CLogicBranchList::InputTest( inputdata_t &inputdata ) { // Force an output.
m_eLastState = LOGIC_BRANCH_LISTENER_NOT_INIT;
DoTest( inputdata.pActivator ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CLogicBranchList::DoTest( CBaseEntity *pActivator ) { bool bOneTrue = false; bool bOneFalse = false; for ( int i = 0; i < m_LogicBranchList.Count(); i++ ) { CLogicBranch *pBranch = (CLogicBranch *)m_LogicBranchList.Element( i ).Get(); if ( pBranch && pBranch->GetLogicBranchState() ) { bOneTrue = true; } else { bOneFalse = true; } }
// Only fire the output if the new result differs from the last result.
if ( bOneTrue && !bOneFalse ) { if ( m_eLastState != LOGIC_BRANCH_LISTENER_ALL_TRUE ) { m_OnAllTrue.FireOutput( pActivator, this ); m_eLastState = LOGIC_BRANCH_LISTENER_ALL_TRUE; } } else if ( bOneFalse && !bOneTrue ) { if ( m_eLastState != LOGIC_BRANCH_LISTENER_ALL_FALSE ) { m_OnAllFalse.FireOutput( pActivator, this ); m_eLastState = LOGIC_BRANCH_LISTENER_ALL_FALSE; } } else { if ( m_eLastState != LOGIC_BRANCH_LISTENER_MIXED ) { m_OnMixed.FireOutput( pActivator, this ); m_eLastState = LOGIC_BRANCH_LISTENER_MIXED; } } }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
int CLogicBranchList::DrawDebugTextOverlays( void ) { int text_offset = BaseClass::DrawDebugTextOverlays();
if (m_debugOverlays & OVERLAY_TEXT_BIT) { char tempstr[512];
for ( int i = 0; i < m_LogicBranchList.Count(); i++ ) { CLogicBranch *pBranch = (CLogicBranch *)m_LogicBranchList.Element( i ).Get(); if ( pBranch ) { Q_snprintf( tempstr, sizeof(tempstr), "Branch (%s): %s", STRING(pBranch->GetEntityName()), (pBranch->GetLogicBranchState()) ? "TRUE" : "FALSE" ); EntityText( text_offset, tempstr, 0 ); text_offset++; } } }
return text_offset; }
|