|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
// nav_path.cpp
// Encapsulation of a path through space
// Author: Michael S. Booth ([email protected]), November 2003
#include "cbase.h"
#include "cs_gamerules.h"
#include "cs_player.h"
#include "nav_mesh.h"
#include "nav_path.h"
#include "bot_util.h"
#include "improv_locomotor.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#ifdef _WIN32
#pragma warning (disable:4701) // disable warning that variable *may* not be initialized
#endif
#define DrawLine( from, to, duration, red, green, blue ) NDebugOverlay::Line( from, to, red, green, blue, true, 0.1f )
//--------------------------------------------------------------------------------------------------------------
/**
* Determine actual path positions */ bool CNavPath::ComputePathPositions( void ) { if (m_segmentCount == 0) return false;
// start in first area's center
m_path[0].pos = m_path[0].area->GetCenter(); m_path[0].ladder = NULL; m_path[0].how = NUM_TRAVERSE_TYPES;
for( int i=1; i<m_segmentCount; ++i ) { const PathSegment *from = &m_path[ i-1 ]; PathSegment *to = &m_path[ i ];
if (to->how <= GO_WEST) // walk along the floor to the next area
{ to->ladder = NULL;
// compute next point, keeping path as straight as possible
from->area->ComputeClosestPointInPortal( to->area, (NavDirType)to->how, from->pos, &to->pos );
// move goal position into the goal area a bit
const float stepInDist = 5.0f; // how far to "step into" an area - must be less than min area size
AddDirectionVector( &to->pos, (NavDirType)to->how, stepInDist );
// we need to walk out of "from" area, so keep Z where we can reach it
to->pos.z = from->area->GetZ( to->pos );
// if this is a "jump down" connection, we must insert an additional point on the path
if (to->area->IsConnected( from->area, NUM_DIRECTIONS ) == false) { // this is a "jump down" link
// compute direction of path just prior to "jump down"
Vector2D dir; DirectionToVector2D( (NavDirType)to->how, &dir );
// shift top of "jump down" out a bit to "get over the ledge"
const float pushDist = 25.0f; to->pos.x += pushDist * dir.x; to->pos.y += pushDist * dir.y;
// insert a duplicate node to represent the bottom of the fall
if (m_segmentCount < MAX_PATH_SEGMENTS-1) { // copy nodes down
for( int j=m_segmentCount; j>i; --j ) m_path[j] = m_path[j-1];
// path is one node longer
++m_segmentCount;
// move index ahead into the new node we just duplicated
++i;
m_path[i].pos.x = to->pos.x + pushDist * dir.x; m_path[i].pos.y = to->pos.y + pushDist * dir.y;
// put this one at the bottom of the fall
m_path[i].pos.z = to->area->GetZ( m_path[i].pos ); } } } else if (to->how == GO_LADDER_UP) // to get to next area, must go up a ladder
{ // find our ladder
const NavLadderConnectList *list = from->area->GetLadderList( CSNavLadder::LADDER_UP ); int it; for( it = list->Head(); it != list->InvalidIndex(); it = list->Next(it)) { CSNavLadder *ladder = (*list)[ it ].ladder;
// can't use "behind" area when ascending...
if (ladder->m_topForwardArea == to->area || ladder->m_topLeftArea == to->area || ladder->m_topRightArea == to->area) { to->ladder = ladder; to->pos = ladder->m_bottom + ladder->GetNormal() * 2.0f * HalfHumanWidth; break; } }
if (it == list->InvalidIndex()) { //PrintIfWatched( "ERROR: Can't find ladder in path\n" );
return false; } } else if (to->how == GO_LADDER_DOWN) // to get to next area, must go down a ladder
{ // find our ladder
const NavLadderConnectList *list = from->area->GetLadderList( CSNavLadder::LADDER_DOWN ); int it; for( it = list->Head(); it != list->InvalidIndex(); it = list->Next(it)) { CSNavLadder *ladder = (*list)[ it ].ladder;
if (ladder->m_bottomArea == to->area) { to->ladder = ladder; to->pos = ladder->m_top; to->pos = ladder->m_top - ladder->GetNormal() * 2.0f * HalfHumanWidth; break; } }
if (it == list->InvalidIndex()) { //PrintIfWatched( "ERROR: Can't find ladder in path\n" );
return false; } } }
return true; }
//--------------------------------------------------------------------------------------------------------------
/**
* Return true if position is at the end of the path */ bool CNavPath::IsAtEnd( const Vector &pos ) const { if (!IsValid()) return false;
const float epsilon = 20.0f; return (pos - GetEndpoint()).IsLengthLessThan( epsilon ); }
//--------------------------------------------------------------------------------------------------------------
/**
* Return length of path from start to finish */ float CNavPath::GetLength( void ) const { float length = 0.0f; for( int i=1; i<GetSegmentCount(); ++i ) { length += (m_path[i].pos - m_path[i-1].pos).Length(); }
return length; }
//--------------------------------------------------------------------------------------------------------------
/**
* Return point a given distance along the path - if distance is out of path bounds, point is clamped to start/end * @todo Be careful of returning "positions" along one-way drops, ladders, etc. */ bool CNavPath::GetPointAlongPath( float distAlong, Vector *pointOnPath ) const { if (!IsValid() || pointOnPath == NULL) return false;
if (distAlong <= 0.0f) { *pointOnPath = m_path[0].pos; return true; }
float lengthSoFar = 0.0f; float segmentLength; Vector dir; for( int i=1; i<GetSegmentCount(); ++i ) { dir = m_path[i].pos - m_path[i-1].pos; segmentLength = dir.Length();
if (segmentLength + lengthSoFar >= distAlong) { // desired point is on this segment of the path
float delta = distAlong - lengthSoFar; float t = delta / segmentLength;
*pointOnPath = m_path[i].pos + t * dir;
return true; }
lengthSoFar += segmentLength; }
*pointOnPath = m_path[ GetSegmentCount()-1 ].pos; return true; }
//--------------------------------------------------------------------------------------------------------------
/**
* Return the node index closest to the given distance along the path without going over - returns (-1) if error */ int CNavPath::GetSegmentIndexAlongPath( float distAlong ) const { if (!IsValid()) return -1;
if (distAlong <= 0.0f) { return 0; }
float lengthSoFar = 0.0f; Vector dir; for( int i=1; i<GetSegmentCount(); ++i ) { lengthSoFar += (m_path[i].pos - m_path[i-1].pos).Length();
if (lengthSoFar > distAlong) { return i-1; } }
return GetSegmentCount()-1; }
//--------------------------------------------------------------------------------------------------------------
/**
* Compute closest point on path to given point * NOTE: This does not do line-of-sight tests, so closest point may be thru the floor, etc */ bool CNavPath::FindClosestPointOnPath( const Vector *worldPos, int startIndex, int endIndex, Vector *close ) const { if (!IsValid() || close == NULL) return false;
Vector along, toWorldPos; Vector pos; const Vector *from, *to; float length; float closeLength; float closeDistSq = 9999999999.9; float distSq;
for( int i=startIndex; i<=endIndex; ++i ) { from = &m_path[i-1].pos; to = &m_path[i].pos;
// compute ray along this path segment
along = *to - *from;
// make it a unit vector along the path
length = along.NormalizeInPlace();
// compute vector from start of segment to our point
toWorldPos = *worldPos - *from;
// find distance of closest point on ray
closeLength = DotProduct( toWorldPos, along );
// constrain point to be on path segment
if (closeLength <= 0.0f) pos = *from; else if (closeLength >= length) pos = *to; else pos = *from + closeLength * along;
distSq = (pos - *worldPos).LengthSqr();
// keep the closest point so far
if (distSq < closeDistSq) { closeDistSq = distSq; *close = pos; } }
return true; }
//--------------------------------------------------------------------------------------------------------------
/**
* Build trivial path when start and goal are in the same nav area */ bool CNavPath::BuildTrivialPath( const Vector &start, const Vector &goal ) { m_segmentCount = 0;
CNavArea *startArea = TheNavMesh->GetNearestNavArea( start ); if (startArea == NULL) return false;
CNavArea *goalArea = TheNavMesh->GetNearestNavArea( goal ); if (goalArea == NULL) return false;
m_segmentCount = 2;
m_path[0].area = startArea; m_path[0].pos.x = start.x; m_path[0].pos.y = start.y; m_path[0].pos.z = startArea->GetZ( start ); m_path[0].ladder = NULL; m_path[0].how = NUM_TRAVERSE_TYPES;
m_path[1].area = goalArea; m_path[1].pos.x = goal.x; m_path[1].pos.y = goal.y; m_path[1].pos.z = goalArea->GetZ( goal ); m_path[1].ladder = NULL; m_path[1].how = NUM_TRAVERSE_TYPES;
return true; }
//--------------------------------------------------------------------------------------------------------------
/**
* Draw the path for debugging. */ void CNavPath::Draw( const Vector &color ) { if (!IsValid()) return;
for( int i=1; i<m_segmentCount; ++i ) { DrawLine( m_path[i-1].pos + Vector( 0, 0, HalfHumanHeight ), m_path[i].pos + Vector( 0, 0, HalfHumanHeight ), 2, 255 * color.x, 255 * color.y, 255 * color.z ); } }
//--------------------------------------------------------------------------------------------------------------
/**
* Check line of sight from 'anchor' node on path to subsequent nodes until * we find a node that can't been seen from 'anchor'. */ int CNavPath::FindNextOccludedNode( int anchor ) { for( int i=anchor+1; i<m_segmentCount; ++i ) { // don't remove ladder nodes
if (m_path[i].ladder) return i;
if (!IsWalkableTraceLineClear( m_path[ anchor ].pos, m_path[ i ].pos )) { // cant see this node from anchor node
return i; }
Vector anchorPlusHalf = m_path[ anchor ].pos + Vector( 0, 0, HalfHumanHeight ); Vector iPlusHalf = m_path[ i ].pos +Vector( 0, 0, HalfHumanHeight ); if (!IsWalkableTraceLineClear( anchorPlusHalf, iPlusHalf) ) { // cant see this node from anchor node
return i; }
Vector anchorPlusFull = m_path[ anchor ].pos + Vector( 0, 0, HumanHeight ); Vector iPlusFull = m_path[ i ].pos + Vector( 0, 0, HumanHeight ); if (!IsWalkableTraceLineClear( anchorPlusFull, iPlusFull )) { // cant see this node from anchor node
return i; } }
return m_segmentCount; }
//--------------------------------------------------------------------------------------------------------------
/**
* Smooth out path, removing redundant nodes */ void CNavPath::Optimize( void ) { // DONT USE THIS: Optimizing the path results in cutting thru obstacles
return;
if (m_segmentCount < 3) return;
int anchor = 0;
while( anchor < m_segmentCount ) { int occluded = FindNextOccludedNode( anchor ); int nextAnchor = occluded-1;
if (nextAnchor > anchor) { // remove redundant nodes between anchor and nextAnchor
int removeCount = nextAnchor - anchor - 1; if (removeCount > 0) { for( int i=nextAnchor; i<m_segmentCount; ++i ) { m_path[i-removeCount] = m_path[i]; } m_segmentCount -= removeCount; } }
++anchor; } }
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
/**
* Constructor */ CNavPathFollower::CNavPathFollower( void ) { m_improv = NULL; m_path = NULL;
m_segmentIndex = 0; m_isLadderStarted = false;
m_isDebug = false; }
void CNavPathFollower::Reset( void ) { m_segmentIndex = 1; m_isLadderStarted = false;
m_stuckMonitor.Reset(); }
//--------------------------------------------------------------------------------------------------------------
/**
* Move improv along path */ void CNavPathFollower::Update( float deltaT, bool avoidObstacles ) { if (m_path == NULL || m_path->IsValid() == false) return;
const CNavPath::PathSegment *node = (*m_path)[ m_segmentIndex ];
if (node == NULL) { m_improv->OnMoveToFailure( m_path->GetEndpoint(), CImprovLocomotor::FAIL_INVALID_PATH ); m_path->Invalidate(); return; }
// handle ladders
/*
if (node->ladder) { const Vector *approachPos = NULL; const Vector *departPos = NULL;
if (m_segmentIndex) approachPos = &(*m_path)[ m_segmentIndex-1 ]->pos;
if (m_segmentIndex < m_path->GetSegmentCount()-1) departPos = &(*m_path)[ m_segmentIndex+1 ]->pos;
if (!m_isLadderStarted) { // set up ladder movement
m_improv->StartLadder( node->ladder, node->how, approachPos, departPos ); m_isLadderStarted = true; }
// move improv along ladder
if (m_improv->TraverseLadder( node->ladder, node->how, approachPos, departPos, deltaT )) { // completed ladder
++m_segmentIndex; } return; } */
// reset ladder init flag
m_isLadderStarted = false;
//
// Check if we reached the end of the path
//
const float closeRange = 20.0f; if ((m_improv->GetFeet() - node->pos).IsLengthLessThan( closeRange )) { ++m_segmentIndex;
if (m_segmentIndex >= m_path->GetSegmentCount()) { m_improv->OnMoveToSuccess( m_path->GetEndpoint() ); m_path->Invalidate(); return; } }
m_goal = node->pos;
const float aheadRange = 300.0f; m_segmentIndex = FindPathPoint( aheadRange, &m_goal, &m_behindIndex ); if (m_segmentIndex >= m_path->GetSegmentCount()) m_segmentIndex = m_path->GetSegmentCount()-1;
bool isApproachingJumpArea = false;
//
// Crouching
//
if (!m_improv->IsUsingLadder()) { // because hostage crouching is not really supported by the engine,
// if we are standing in a crouch area, we must crouch to avoid collisions
if (m_improv->GetLastKnownArea() && m_improv->GetLastKnownArea()->GetAttributes() & NAV_MESH_CROUCH && !(m_improv->GetLastKnownArea()->GetAttributes() & NAV_MESH_JUMP)) { m_improv->Crouch(); }
// if we are approaching a crouch area, crouch
// if there are no crouch areas coming up, stand
const float crouchRange = 50.0f; bool didCrouch = false; for( int i=m_segmentIndex; i<m_path->GetSegmentCount(); ++i ) { const CNavArea *to = (*m_path)[i]->area;
// if there is a jump area on the way to the crouch area, don't crouch as it messes up the jump
if (to->GetAttributes() & NAV_MESH_JUMP) { isApproachingJumpArea = true; break; }
Vector close; to->GetClosestPointOnArea( m_improv->GetCentroid(), &close );
if ((close - m_improv->GetFeet()).AsVector2D().IsLengthGreaterThan( crouchRange )) break;
if (to->GetAttributes() & NAV_MESH_CROUCH) { m_improv->Crouch(); didCrouch = true; break; }
}
if (!didCrouch && !m_improv->IsJumping()) { // no crouch areas coming up
m_improv->StandUp(); }
} // end crouching logic
if (m_isDebug) { m_path->Draw(); UTIL_DrawBeamPoints( m_improv->GetCentroid(), m_goal + Vector( 0, 0, StepHeight ), 1, 255, 0, 255 ); UTIL_DrawBeamPoints( m_goal + Vector( 0, 0, StepHeight ), m_improv->GetCentroid(), 1, 255, 0, 255 ); }
// check if improv becomes stuck
m_stuckMonitor.Update( m_improv );
// if improv has been stuck for too long, give up
const float giveUpTime = 2.0f; if (m_stuckMonitor.GetDuration() > giveUpTime) { m_improv->OnMoveToFailure( m_path->GetEndpoint(), CImprovLocomotor::FAIL_STUCK ); m_path->Invalidate(); return; }
// if our goal is high above us, we must have fallen
if (m_goal.z - m_improv->GetFeet().z > JumpCrouchHeight) { const float closeRange = 75.0f; Vector2D to( m_improv->GetFeet().x - m_goal.x, m_improv->GetFeet().y - m_goal.y ); if (to.IsLengthLessThan( closeRange )) { // we can't reach the goal position
// check if we can reach the next node, in case this was a "jump down" situation
const CNavPath::PathSegment *nextNode = (*m_path)[ m_behindIndex+1 ]; if (m_behindIndex >=0 && nextNode) { if (nextNode->pos.z - m_improv->GetFeet().z > JumpCrouchHeight) { // the next node is too high, too - we really did fall of the path
m_improv->OnMoveToFailure( m_path->GetEndpoint(), CImprovLocomotor::FAIL_FELL_OFF ); m_path->Invalidate(); return; } } else { // fell trying to get to the last node in the path
m_improv->OnMoveToFailure( m_path->GetEndpoint(), CImprovLocomotor::FAIL_FELL_OFF ); m_path->Invalidate(); return; } } }
// avoid small obstacles
if (avoidObstacles && !isApproachingJumpArea && !m_improv->IsJumping() && m_segmentIndex < m_path->GetSegmentCount()-1) { FeelerReflexAdjustment( &m_goal );
// currently, this is only used for hostages, and their collision physics stinks
// do more feeler checks to avoid short obstacles
/*
const float inc = 0.25f; for( float t = 0.5f; t < 1.0f; t += inc ) { FeelerReflexAdjustment( &m_goal, t * StepHeight ); } */
}
// move improv along path
m_improv->TrackPath( m_goal, deltaT ); }
//--------------------------------------------------------------------------------------------------------------
/**
* Return the closest point to our current position on our current path * If "local" is true, only check the portion of the path surrounding m_pathIndex. */ int CNavPathFollower::FindOurPositionOnPath( Vector *close, bool local ) const { if (!m_path->IsValid()) return -1;
Vector along, toFeet; Vector feet = m_improv->GetFeet(); Vector eyes = m_improv->GetEyes(); Vector pos; const Vector *from, *to; float length; float closeLength; float closeDistSq = 9999999999.9; int closeIndex = -1; float distSq;
int start, end;
if (local) { start = m_segmentIndex - 3; if (start < 1) start = 1;
end = m_segmentIndex + 3; if (end > m_path->GetSegmentCount()) end = m_path->GetSegmentCount(); } else { start = 1; end = m_path->GetSegmentCount(); }
for( int i=start; i<end; ++i ) { from = &(*m_path)[i-1]->pos; to = &(*m_path)[i]->pos;
// compute ray along this path segment
along = *to - *from;
// make it a unit vector along the path
length = along.NormalizeInPlace();
// compute vector from start of segment to our point
toFeet = feet - *from;
// find distance of closest point on ray
closeLength = DotProduct( toFeet, along );
// constrain point to be on path segment
if (closeLength <= 0.0f) pos = *from; else if (closeLength >= length) pos = *to; else pos = *from + closeLength * along;
distSq = (pos - feet).LengthSqr();
// keep the closest point so far
if (distSq < closeDistSq) { // don't use points we cant see
Vector probe = pos + Vector( 0, 0, HalfHumanHeight ); if (!IsWalkableTraceLineClear( eyes, probe, WALK_THRU_DOORS | WALK_THRU_BREAKABLES )) continue;
// don't use points we cant reach
//if (!IsStraightLinePathWalkable( &pos ))
// continue;
closeDistSq = distSq; if (close) *close = pos; closeIndex = i-1; } }
return closeIndex; }
//--------------------------------------------------------------------------------------------------------------
/**
* Compute a point a fixed distance ahead along our path. * Returns path index just after point. */ int CNavPathFollower::FindPathPoint( float aheadRange, Vector *point, int *prevIndex ) { // find path index just past aheadRange
int afterIndex;
// finds the closest point on local area of path, and returns the path index just prior to it
Vector close; int startIndex = FindOurPositionOnPath( &close, true );
if (prevIndex) *prevIndex = startIndex;
if (startIndex <= 0) { // went off the end of the path
// or next point in path is unwalkable (ie: jump-down)
// keep same point
return m_segmentIndex; }
// if we are crouching, just follow the path exactly
if (m_improv->IsCrouching()) { // we want to move to the immediately next point along the path from where we are now
int index = startIndex+1; if (index >= m_path->GetSegmentCount()) index = m_path->GetSegmentCount()-1;
*point = (*m_path)[ index ]->pos;
// if we are very close to the next point in the path, skip ahead to the next one to avoid wiggling
// we must do a 2D check here, in case the goal point is floating in space due to jump down, etc
const float closeEpsilon = 20.0f; // 10
while ((*point - close).AsVector2D().IsLengthLessThan( closeEpsilon )) { ++index;
if (index >= m_path->GetSegmentCount()) { index = m_path->GetSegmentCount()-1; break; }
*point = (*m_path)[ index ]->pos; }
return index; }
// make sure we use a node a minimum distance ahead of us, to avoid wiggling
while (startIndex < m_path->GetSegmentCount()-1) { Vector pos = (*m_path)[ startIndex+1 ]->pos;
// we must do a 2D check here, in case the goal point is floating in space due to jump down, etc
const float closeEpsilon = 20.0f; if ((pos - close).AsVector2D().IsLengthLessThan( closeEpsilon )) { ++startIndex; } else { break; } }
// if we hit a ladder or jump area, must stop (dont use ladder behind us)
if (startIndex > m_segmentIndex && startIndex < m_path->GetSegmentCount() && ((*m_path)[ startIndex ]->ladder || (*m_path)[ startIndex ]->area->GetAttributes() & NAV_MESH_JUMP)) { *point = (*m_path)[ startIndex ]->pos; return startIndex; }
// we need the point just *ahead* of us
++startIndex; if (startIndex >= m_path->GetSegmentCount()) startIndex = m_path->GetSegmentCount()-1;
// if we hit a ladder or jump area, must stop
if (startIndex < m_path->GetSegmentCount() && ((*m_path)[ startIndex ]->ladder || (*m_path)[ startIndex ]->area->GetAttributes() & NAV_MESH_JUMP)) { *point = (*m_path)[ startIndex ]->pos; return startIndex; }
// note direction of path segment we are standing on
Vector initDir = (*m_path)[ startIndex ]->pos - (*m_path)[ startIndex-1 ]->pos; initDir.NormalizeInPlace();
Vector feet = m_improv->GetFeet(); Vector eyes = m_improv->GetEyes(); float rangeSoFar = 0;
// this flag is true if our ahead point is visible
bool visible = true;
Vector prevDir = initDir;
// step along the path until we pass aheadRange
bool isCorner = false; int i; for( i=startIndex; i<m_path->GetSegmentCount(); ++i ) { Vector pos = (*m_path)[i]->pos; Vector to = pos - (*m_path)[i-1]->pos; Vector dir = to; dir.NormalizeInPlace();
// don't allow path to double-back from our starting direction (going upstairs, down curved passages, etc)
if (DotProduct( dir, initDir ) < 0.0f) // -0.25f
{ --i; break; }
// if the path turns a corner, we want to move towards the corner, not into the wall/stairs/etc
if (DotProduct( dir, prevDir ) < 0.5f) { isCorner = true; --i; break; } prevDir = dir;
// don't use points we cant see
Vector probe = pos + Vector( 0, 0, HalfHumanHeight ); if (!IsWalkableTraceLineClear( eyes, probe, WALK_THRU_BREAKABLES )) { // presumably, the previous point is visible, so we will interpolate
visible = false; break; }
// if we encounter a ladder or jump area, we must stop
if (i < m_path->GetSegmentCount() && ((*m_path)[ i ]->ladder || (*m_path)[ i ]->area->GetAttributes() & NAV_MESH_JUMP)) break;
// Check straight-line path from our current position to this position
// Test for un-jumpable height change, or unrecoverable fall
//if (!IsStraightLinePathWalkable( &pos ))
//{
// --i;
// break;
//}
Vector along = (i == startIndex) ? (pos - feet) : (pos - (*m_path)[i-1]->pos); rangeSoFar += along.Length2D();
// stop if we have gone farther than aheadRange
if (rangeSoFar >= aheadRange) break; }
if (i < startIndex) afterIndex = startIndex; else if (i < m_path->GetSegmentCount()) afterIndex = i; else afterIndex = m_path->GetSegmentCount()-1;
// compute point on the path at aheadRange
if (afterIndex == 0) { *point = (*m_path)[0]->pos; } else { // interpolate point along path segment
const Vector *afterPoint = &(*m_path)[ afterIndex ]->pos; const Vector *beforePoint = &(*m_path)[ afterIndex-1 ]->pos;
Vector to = *afterPoint - *beforePoint; float length = to.Length2D();
float t = 1.0f - ((rangeSoFar - aheadRange) / length);
if (t < 0.0f) t = 0.0f; else if (t > 1.0f) t = 1.0f;
*point = *beforePoint + t * to;
// if afterPoint wasn't visible, slide point backwards towards beforePoint until it is
if (!visible) { const float sightStepSize = 25.0f; float dt = sightStepSize / length;
Vector probe = *point + Vector( 0, 0, HalfHumanHeight ); while( t > 0.0f && !IsWalkableTraceLineClear( eyes, probe, WALK_THRU_BREAKABLES ) ) { t -= dt; *point = *beforePoint + t * to; }
if (t <= 0.0f) *point = *beforePoint; } }
// if position found is too close to us, or behind us, force it farther down the path so we don't stop and wiggle
if (!isCorner) { const float epsilon = 50.0f; Vector2D toPoint; Vector2D centroid( m_improv->GetCentroid().x, m_improv->GetCentroid().y ); toPoint.x = point->x - centroid.x; toPoint.y = point->y - centroid.y;
if (DotProduct2D( toPoint, initDir.AsVector2D() ) < 0.0f || toPoint.IsLengthLessThan( epsilon )) { int i; for( i=startIndex; i<m_path->GetSegmentCount(); ++i ) { toPoint.x = (*m_path)[i]->pos.x - centroid.x; toPoint.y = (*m_path)[i]->pos.y - centroid.y; if ((*m_path)[i]->ladder || (*m_path)[i]->area->GetAttributes() & NAV_MESH_JUMP || toPoint.IsLengthGreaterThan( epsilon )) { *point = (*m_path)[i]->pos; startIndex = i; break; } }
if (i == m_path->GetSegmentCount()) { *point = m_path->GetEndpoint(); startIndex = m_path->GetSegmentCount()-1; } } }
// m_pathIndex should always be the next point on the path, even if we're not moving directly towards it
if (startIndex < m_path->GetSegmentCount()) return startIndex;
return m_path->GetSegmentCount()-1; }
//--------------------------------------------------------------------------------------------------------------
/**
* Do reflex avoidance movements if our "feelers" are touched * @todo Parameterize feeler spacing */ void CNavPathFollower::FeelerReflexAdjustment( Vector *goalPosition, float height ) { // if we are in a "precise" area, do not do feeler adjustments
if (m_improv->GetLastKnownArea() && m_improv->GetLastKnownArea()->GetAttributes() & NAV_MESH_PRECISE) return;
// use the direction towards the goal
Vector dir = *goalPosition - m_improv->GetFeet(); dir.z = 0.0f; dir.NormalizeInPlace();
Vector lat( -dir.y, dir.x, 0.0f );
const float feelerOffset = (m_improv->IsCrouching()) ? 15.0f : 20.0f; // 15, 20
const float feelerLengthRun = 50.0f; // 100 - too long for tight hallways (cs_747)
const float feelerLengthWalk = 30.0f;
const float feelerHeight = (height > 0.0f) ? height : StepHeight + 0.1f; // if obstacle is lower than StepHeight, we'll walk right over it
float feelerLength = (m_improv->IsRunning()) ? feelerLengthRun : feelerLengthWalk;
feelerLength = (m_improv->IsCrouching()) ? 20.0f : feelerLength;
//
// Feelers must follow floor slope
//
float ground; Vector normal; if (m_improv->GetSimpleGroundHeightWithFloor( m_improv->GetEyes(), &ground, &normal ) == false) return;
// get forward vector along floor
dir = CrossProduct( lat, normal );
// correct the sideways vector
lat = CrossProduct( dir, normal );
Vector feet = m_improv->GetFeet(); feet.z += feelerHeight;
Vector from = feet + feelerOffset * lat; Vector to = from + feelerLength * dir;
bool leftClear = IsWalkableTraceLineClear( from, to, WALK_THRU_DOORS | WALK_THRU_BREAKABLES );
// draw debug beams
if (m_isDebug) { if (leftClear) UTIL_DrawBeamPoints( from, to, 1, 0, 255, 0 ); else UTIL_DrawBeamPoints( from, to, 1, 255, 0, 0 ); }
from = feet - feelerOffset * lat; to = from + feelerLength * dir;
bool rightClear = IsWalkableTraceLineClear( from, to, WALK_THRU_DOORS | WALK_THRU_BREAKABLES );
// draw debug beams
if (m_isDebug) { if (rightClear) UTIL_DrawBeamPoints( from, to, 1, 0, 255, 0 ); else UTIL_DrawBeamPoints( from, to, 1, 255, 0, 0 ); }
const float avoidRange = (m_improv->IsCrouching()) ? 150.0f : 300.0f;
if (!rightClear) { if (leftClear) { // right hit, left clear - veer left
*goalPosition = *goalPosition + avoidRange * lat; //*goalPosition = m_improv->GetFeet() + avoidRange * lat;
//m_improv->StrafeLeft();
} } else if (!leftClear) { // right clear, left hit - veer right
*goalPosition = *goalPosition - avoidRange * lat; //*goalPosition = m_improv->GetFeet() - avoidRange * lat;
//m_improv->StrafeRight();
}
}
//--------------------------------------------------------------------------------------------------------------
/**
* Reset the stuck-checker. */ CStuckMonitor::CStuckMonitor( void ) { m_isStuck = false; m_avgVelIndex = 0; m_avgVelCount = 0; }
/**
* Reset the stuck-checker. */ void CStuckMonitor::Reset( void ) { m_isStuck = false; m_avgVelIndex = 0; m_avgVelCount = 0; }
//--------------------------------------------------------------------------------------------------------------
/**
* Test if the improv has become stuck */ void CStuckMonitor::Update( CImprovLocomotor *improv ) { if (m_isStuck) { // improv is stuck - see if it has moved far enough to be considered unstuck
const float unstuckRange = 75.0f; if ((improv->GetCentroid() - m_stuckSpot).IsLengthGreaterThan( unstuckRange )) { // no longer stuck
Reset(); //PrintIfWatched( "UN-STUCK\n" );
} } else { // check if improv has become stuck
// compute average velocity over a short period (for stuck check)
Vector vel = improv->GetCentroid() - m_lastCentroid;
// if we are jumping, ignore Z
//if (improv->IsJumping())
// vel.z = 0.0f;
// ignore Z unless we are on a ladder (which is only Z)
if (!improv->IsUsingLadder()) vel.z = 0.0f;
// cannot be Length2D, or will break ladder movement (they are only Z)
float moveDist = vel.Length();
float deltaT = gpGlobals->curtime - m_lastTime; if (deltaT <= 0.0f) return;
m_lastTime = gpGlobals->curtime;
// compute current velocity
m_avgVel[ m_avgVelIndex++ ] = moveDist/deltaT;
if (m_avgVelIndex == MAX_VEL_SAMPLES) m_avgVelIndex = 0;
if (m_avgVelCount < MAX_VEL_SAMPLES) { ++m_avgVelCount; } else { // we have enough samples to know if we're stuck
float avgVel = 0.0f; for( int t=0; t<m_avgVelCount; ++t ) avgVel += m_avgVel[t];
avgVel /= m_avgVelCount;
// cannot make this velocity too high, or actors will get "stuck" when going down ladders
float stuckVel = (improv->IsUsingLadder()) ? 10.0f : 20.0f;
if (avgVel < stuckVel) { // note when and where we initially become stuck
m_stuckTimer.Start(); m_stuckSpot = improv->GetCentroid(); m_isStuck = true; } } }
// always need to track this
m_lastCentroid = improv->GetCentroid(); }
|