|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: particle system code
//
//===========================================================================//
#include "tier0/platform.h"
#include "particles/particles.h"
#include "filesystem.h"
#include "tier2/tier2.h"
#include "tier2/fileutils.h"
#include "tier1/UtlStringMap.h"
#include "tier1/strtools.h"
#include "mathlib/halton.h"
#include "bspflags.h"
#include "const.h"
#include "particles_internal.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
class C_OP_ConstrainDistance : public CParticleOperatorInstance { DECLARE_PARTICLE_OPERATOR( C_OP_ConstrainDistance );
uint32 GetWrittenAttributes( void ) const { return PARTICLE_ATTRIBUTE_XYZ_MASK; }
uint32 GetReadAttributes( void ) const { return PARTICLE_ATTRIBUTE_XYZ_MASK; }
bool EnforceConstraint( int nStartBlock, int nEndBlock, CParticleCollection *pParticles, void *pContext, int nNumValidParticlesInLastChunk ) const;
float m_fMinDistance, m_fMaxDistance; int m_nControlPointNumber; Vector m_CenterOffset; bool m_bGlobalCenter;
};
#ifdef NDEBUG
#define CHECKSYSTEM( p ) 0
#else
static void CHECKSYSTEM( CParticleCollection *pParticles ) { // Assert( pParticles->m_nActiveParticles <= pParticles->m_pDef->m_nMaxParticles );
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i ) { const float *xyz = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_XYZ, i ); const float *xyz_prev = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_PREV_XYZ, i ); Assert( IsFinite( xyz[0] ) ); Assert( IsFinite( xyz[4] ) ); Assert( IsFinite( xyz[8] ) ); Assert( IsFinite( xyz_prev[0] ) ); Assert( IsFinite( xyz_prev[4] ) ); Assert( IsFinite( xyz_prev[8] ) ); } } #endif
bool C_OP_ConstrainDistance::EnforceConstraint( int nStartBlock, int nNumBlocks, CParticleCollection *pParticles, void *pContext, int nNumValidParticlesInLastChunk ) const { size_t nStride; FourVectors *pXYZ=pParticles->Get4VAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, &nStride ); pXYZ += nStride * nStartBlock; fltx4 SIMDMinDist=ReplicateX4( m_fMinDistance ); fltx4 SIMDMaxDist=ReplicateX4( m_fMaxDistance ); fltx4 SIMDMinDist2=ReplicateX4( m_fMinDistance*m_fMinDistance ); fltx4 SIMDMaxDist2=ReplicateX4( m_fMaxDistance*m_fMaxDistance );
Vector vecCenter; if ( m_bGlobalCenter ) vecCenter = m_CenterOffset; else { pParticles->GetControlPointAtTime( m_nControlPointNumber, pParticles->m_flCurTime, &vecCenter ); vecCenter += pParticles->TransformAxis( m_CenterOffset, true, m_nControlPointNumber ); } FourVectors Center; Center.DuplicateVector( vecCenter ); bool bChangedSomething = false; do { FourVectors pts = *(pXYZ); pts -= Center; fltx4 dist_squared= pts * pts; fltx4 TooFarMask = CmpGtSIMD( dist_squared, SIMDMaxDist2 ); fltx4 TooCloseMask = CmpLtSIMD( dist_squared, SIMDMinDist2 ); fltx4 NeedAdjust = OrSIMD( TooFarMask, TooCloseMask ); if ( IsAnyNegative( NeedAdjust ) ) // any out of bounds?
{ // change squared distance into approximate rsqr root
fltx4 guess = ReciprocalSqrtEstSaturateSIMD(dist_squared); // newton iteration for 1/sqrt(x) : y(n+1)=1/2 (y(n)*(3-x*y(n)^2));
guess=MulSIMD(guess,SubSIMD(Four_Threes,MulSIMD(dist_squared,MulSIMD(guess,guess)))); guess=MulSIMD(Four_PointFives,guess); pts *= guess;
FourVectors clamp_far=pts; clamp_far *= SIMDMaxDist; clamp_far += Center; FourVectors clamp_near=pts; clamp_near *= SIMDMinDist; clamp_near += Center; pts.x = MaskedAssign( TooCloseMask, clamp_near.x, MaskedAssign( TooFarMask, clamp_far.x, pXYZ->x )); pts.y = MaskedAssign( TooCloseMask, clamp_near.y, MaskedAssign( TooFarMask, clamp_far.y, pXYZ->y )); pts.z = MaskedAssign( TooCloseMask, clamp_near.z, MaskedAssign( TooFarMask, clamp_far.z, pXYZ->z )); *(pXYZ) = pts; bChangedSomething = true; } pXYZ += nStride; } while (--nNumBlocks); return bChangedSomething; }
DEFINE_PARTICLE_OPERATOR( C_OP_ConstrainDistance, "Constrain distance to control point", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_ConstrainDistance ) DMXELEMENT_UNPACK_FIELD( "minimum distance", "0", float, m_fMinDistance ) DMXELEMENT_UNPACK_FIELD( "maximum distance", "100", float, m_fMaxDistance ) DMXELEMENT_UNPACK_FIELD( "control point number", "0", int, m_nControlPointNumber ) DMXELEMENT_UNPACK_FIELD( "offset of center", "0 0 0", Vector, m_CenterOffset ) DMXELEMENT_UNPACK_FIELD( "global center point", "0", bool, m_bGlobalCenter ) END_PARTICLE_OPERATOR_UNPACK( C_OP_ConstrainDistance )
class C_OP_ConstrainDistanceToPath : public CParticleOperatorInstance { DECLARE_PARTICLE_OPERATOR( C_OP_ConstrainDistanceToPath );
uint32 GetWrittenAttributes( void ) const { return PARTICLE_ATTRIBUTE_XYZ_MASK; }
uint32 GetReadAttributes( void ) const { return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_CREATION_TIME_MASK; }
virtual uint64 GetReadControlPointMask() const { return ( 1ULL << m_PathParameters.m_nStartControlPointNumber ) | ( 1ULL << m_PathParameters.m_nEndControlPointNumber ); }
bool EnforceConstraint( int nStartBlock, int nEndBlock, CParticleCollection *pParticles, void *pContext, int nNumValidParticlesInLastChunk ) const;
float m_fMinDistance;
float m_flMaxDistance0, m_flMaxDistanceMid, m_flMaxDistance1; CPathParameters m_PathParameters;
float m_flTravelTime;
};
bool C_OP_ConstrainDistanceToPath::EnforceConstraint( int nStartBlock, int nNumBlocks, CParticleCollection *pParticles, void *pContext, int nNumValidParticlesInLastChunk ) const { C4VAttributeWriteIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles ); pXYZ += nStartBlock;
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles ); pCreationTime += nStartBlock;
Vector StartPnt, EndPnt, MidP;
pParticles->CalculatePathValues( m_PathParameters, pParticles->m_flCurTime, &StartPnt, &MidP, &EndPnt );
fltx4 CurTime = ReplicateX4( pParticles->m_flCurTime ); fltx4 TimeScale= ReplicateX4( 1.0/(max(0.001f, m_flTravelTime ) ) );
// calculate radius spline
bool bConstantRadius = true; fltx4 Rad0=ReplicateX4(m_flMaxDistance0); fltx4 Radm=Rad0;
if ( m_flMaxDistanceMid >= 0.0 ) { bConstantRadius = ( m_flMaxDistanceMid == m_flMaxDistance0 ); Radm=ReplicateX4( m_flMaxDistanceMid); } fltx4 Rad1=Radm; if ( m_flMaxDistance1 >= 0.0 ) { bConstantRadius &= ( m_flMaxDistance1 == m_flMaxDistance0 ); Rad1=ReplicateX4( m_flMaxDistance1 ); } fltx4 RadmMinusRad0=SubSIMD( Radm, Rad0); fltx4 Rad1MinusRadm=SubSIMD( Rad1, Radm); fltx4 SIMDMinDist=ReplicateX4( m_fMinDistance ); fltx4 SIMDMinDist2=ReplicateX4( m_fMinDistance*m_fMinDistance );
fltx4 SIMDMaxDist=MaxSIMD( Rad0, MaxSIMD( Radm, Rad1 ) ); fltx4 SIMDMaxDist2=MulSIMD( SIMDMaxDist, SIMDMaxDist);
bool bChangedSomething = false; FourVectors StartP; StartP.DuplicateVector( StartPnt ); FourVectors MiddleP; MiddleP.DuplicateVector( MidP );
// form delta terms needed for quadratic bezier
FourVectors Delta0; Delta0.DuplicateVector( MidP-StartPnt );
FourVectors Delta1; Delta1.DuplicateVector( EndPnt-MidP ); do { fltx4 TScale=MinSIMD( Four_Ones, MulSIMD( TimeScale, SubSIMD( CurTime, *pCreationTime ) ) );
// bezier(a,b,c,t)=lerp( lerp(a,b,t),lerp(b,c,t),t)
FourVectors L0 = Delta0; L0 *= TScale; L0 += StartP;
FourVectors L1= Delta1; L1 *= TScale; L1 += MiddleP;
FourVectors Center = L1; Center -= L0; Center *= TScale; Center += L0;
FourVectors pts = *(pXYZ); pts -= Center;
// calculate radius at the point. !!speed!! - use speical case for constant radius
fltx4 dist_squared= pts * pts; fltx4 TooFarMask = CmpGtSIMD( dist_squared, SIMDMaxDist2 ); if ( ( !bConstantRadius) && ( ! IsAnyNegative( TooFarMask ) ) ) { // need to calculate and adjust for true radius =- we've only trivilally rejected note
// voodoo here - we update simdmaxdist for true radius, but not max dist^2, since
// that's used only for the trivial reject case, which we've already done
fltx4 R0=AddSIMD( Rad0, MulSIMD( RadmMinusRad0, TScale ) ); fltx4 R1=AddSIMD( Radm, MulSIMD( Rad1MinusRadm, TScale ) ); SIMDMaxDist = AddSIMD( R0, MulSIMD( SubSIMD( R1, R0 ), TScale) ); // now that we know the true radius, update our mask
TooFarMask = CmpGtSIMD( dist_squared, MulSIMD( SIMDMaxDist, SIMDMaxDist ) ); }
fltx4 TooCloseMask = CmpLtSIMD( dist_squared, SIMDMinDist2 ); fltx4 NeedAdjust = OrSIMD( TooFarMask, TooCloseMask ); if ( IsAnyNegative( NeedAdjust ) ) // any out of bounds?
{ if ( ! bConstantRadius ) { // need to calculate and adjust for true radius =- we've only trivilally rejected
} // change squared distance into approximate rsqr root
fltx4 guess=ReciprocalSqrtEstSIMD(dist_squared); // newton iteration for 1/sqrt(x) : y(n+1)=1/2 (y(n)*(3-x*y(n)^2));
guess=MulSIMD(guess,SubSIMD(Four_Threes,MulSIMD(dist_squared,MulSIMD(guess,guess)))); guess=MulSIMD(Four_PointFives,guess); pts *= guess; FourVectors clamp_far=pts; clamp_far *= SIMDMaxDist; clamp_far += Center; FourVectors clamp_near=pts; clamp_near *= SIMDMinDist; clamp_near += Center; pts.x = MaskedAssign( TooCloseMask, clamp_near.x, MaskedAssign( TooFarMask, clamp_far.x, pXYZ->x )); pts.y = MaskedAssign( TooCloseMask, clamp_near.y, MaskedAssign( TooFarMask, clamp_far.y, pXYZ->y )); pts.z = MaskedAssign( TooCloseMask, clamp_near.z, MaskedAssign( TooFarMask, clamp_far.z, pXYZ->z )); *(pXYZ) = pts; bChangedSomething = true; } ++pXYZ; ++pCreationTime; } while (--nNumBlocks); return bChangedSomething; }
DEFINE_PARTICLE_OPERATOR( C_OP_ConstrainDistanceToPath, "Constrain distance to path between two control points", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_ConstrainDistanceToPath ) DMXELEMENT_UNPACK_FIELD( "minimum distance", "0", float, m_fMinDistance ) DMXELEMENT_UNPACK_FIELD( "maximum distance", "100", float, m_flMaxDistance0 ) DMXELEMENT_UNPACK_FIELD( "maximum distance middle", "-1", float, m_flMaxDistanceMid ) DMXELEMENT_UNPACK_FIELD( "maximum distance end", "-1", float, m_flMaxDistance1 ) DMXELEMENT_UNPACK_FIELD( "travel time", "10", float, m_flTravelTime ) DMXELEMENT_UNPACK_FIELD( "random bulge", "0", float, m_PathParameters.m_flBulge ) DMXELEMENT_UNPACK_FIELD( "start control point number", "0", int, m_PathParameters.m_nStartControlPointNumber ) DMXELEMENT_UNPACK_FIELD( "end control point number", "0", int, m_PathParameters.m_nEndControlPointNumber ) DMXELEMENT_UNPACK_FIELD( "bulge control 0=random 1=orientation of start pnt 2=orientation of end point", "0", int, m_PathParameters.m_nBulgeControl ) DMXELEMENT_UNPACK_FIELD( "mid point position", "0.5", float, m_PathParameters.m_flMidPoint ) END_PARTICLE_OPERATOR_UNPACK( C_OP_ConstrainDistanceToPath )
class C_OP_PlanarConstraint : public CParticleOperatorInstance { DECLARE_PARTICLE_OPERATOR( C_OP_PlanarConstraint );
uint32 GetWrittenAttributes( void ) const { return PARTICLE_ATTRIBUTE_XYZ_MASK; }
uint32 GetReadAttributes( void ) const { return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_RADIUS_MASK; }
virtual uint64 GetReadControlPointMask() const { return 1ULL << m_nControlPointNumber; }
bool EnforceConstraint( int nStartBlock, int nEndBlock, CParticleCollection *pParticles, void *pContext, int nNumValidParticlesInLastChunk ) const;
Vector m_PointOnPlane; Vector m_PlaneNormal; int m_nControlPointNumber; bool m_bGlobalOrigin; bool m_bGlobalNormal;
};
bool C_OP_PlanarConstraint::EnforceConstraint( int nStartBlock, int nNumBlocks, CParticleCollection *pParticles, void *pContext, int nNumValidParticlesInLastChunk ) const { C4VAttributeWriteIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles ); pXYZ += nStartBlock;
CM128AttributeIterator pRadius( PARTICLE_ATTRIBUTE_RADIUS, pParticles ); pRadius += nStartBlock;
// now, transform and offset parameters
FourVectors PlaneNormal; PlaneNormal.DuplicateVector( pParticles->TransformAxis( m_PlaneNormal, ! m_bGlobalNormal, m_nControlPointNumber ) ); PlaneNormal.VectorNormalize();
FourVectors PlanePoint; if ( m_bGlobalOrigin ) { PlanePoint.DuplicateVector( m_PointOnPlane ); } else { Vector ofs=pParticles->TransformAxis( m_PointOnPlane, true, m_nControlPointNumber ); Vector vecCenter; pParticles->GetControlPointAtTime( m_nControlPointNumber, pParticles->m_flCurTime, &vecCenter ); PlanePoint.DuplicateVector( ofs + vecCenter ); }
bool bChangedSomething = false; do { FourVectors pts = *pXYZ; pts -= PlanePoint; fltx4 PlaneEq=pts * PlaneNormal; // where planeeq<0, inside
PlaneEq = SubSIMD( PlaneEq, *pRadius ); fltx4 BadPts=CmpLtSIMD( PlaneEq, Four_Zeros ); if ( IsAnyNegative( BadPts ) ) { bChangedSomething = true; // project points to plane surface
fltx4 PenetrationDistance=MinSIMD( Four_Zeros, PlaneEq ); FourVectors PenetrationVector = PlaneNormal; PenetrationVector *= PenetrationDistance; (*pXYZ) -= PenetrationVector; } ++pXYZ; ++pRadius; } while (--nNumBlocks); return bChangedSomething; }
DEFINE_PARTICLE_OPERATOR( C_OP_PlanarConstraint, "Prevent passing through a plane", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_PlanarConstraint ) DMXELEMENT_UNPACK_FIELD( "control point number", "0", int, m_nControlPointNumber ) DMXELEMENT_UNPACK_FIELD( "plane point", "0 0 0", Vector, m_PointOnPlane ) DMXELEMENT_UNPACK_FIELD( "plane normal", "0 0 1", Vector, m_PlaneNormal ) DMXELEMENT_UNPACK_FIELD( "global origin", "0", bool, m_bGlobalOrigin ) DMXELEMENT_UNPACK_FIELD( "global normal", "0", bool, m_bGlobalNormal ) END_PARTICLE_OPERATOR_UNPACK( C_OP_PlanarConstraint )
static Vector s_OrientationRelativeTraceVectors[] = { Vector( 0, .1962, .784929 ), Vector( -.1962, 0, .784929 ), Vector( .1962, 0, .784929 ), Vector( 0, -.1962, .78929 ), };
void CWorldCollideContextData::SetBaseTrace( int nIndex, Vector const &rayStart, Vector const &traceDir, int nCollisionGroup, bool bKeepMisses ) { CBaseTrace tr; Vector rayEnd = rayStart + traceDir; g_pParticleSystemMgr->Query()->TraceLine( rayStart, rayEnd, MASK_SOLID, NULL, nCollisionGroup, &tr ); if ( tr.fraction < 1.0 ) { m_bPlaneActive[nIndex] = true; m_PointOnPlane[nIndex].DuplicateVector( rayStart + tr.fraction * traceDir ); m_PlaneNormal[nIndex].DuplicateVector( tr.plane.normal ); m_TraceStartPnt[nIndex].DuplicateVector( rayStart ); m_TraceEndPnt[nIndex].DuplicateVector( rayEnd ); } else { if ( bKeepMisses ) { m_PlaneNormal[nIndex].x = Four_Zeros; m_PlaneNormal[nIndex].y = Four_Zeros; m_PlaneNormal[nIndex].z = Four_Zeros; m_TraceStartPnt[nIndex].DuplicateVector( rayStart ); m_TraceEndPnt[nIndex].DuplicateVector( rayEnd ); m_bPlaneActive[nIndex] = true; } else m_bPlaneActive[nIndex] = false; } }
void CWorldCollideContextData::CalculatePlanes( CParticleCollection *pParticles, int nCollisionMode, int nCollisionGroup, Vector const *pCPOffset, float flDistanceTolerance ) { // fire some rays to find the convex around the control point
if ( m_nActivePlanes && ( nCollisionMode == COLLISION_MODE_INITIAL_TRACE_DOWN ) ) return; Vector rayStart = pParticles->GetControlPointAtCurrentTime( 0 ); // allow config + offset
if ( pCPOffset ) rayStart += *pCPOffset;
if ( ( m_flLastUpdateTime > 0. ) && ( ( rayStart - m_vecLastUpdateOrigin ).LengthSqr() < Square( flDistanceTolerance ) ) ) return;
m_vecLastUpdateOrigin = rayStart; m_nActivePlanes = 0; switch( nCollisionMode ) { case COLLISION_MODE_INITIAL_TRACE_DOWN: { SetBaseTrace( 0, rayStart, 1000.0 * Vector( -1, 0, 0 ), nCollisionGroup, false ); m_nActivePlanes = 1; m_nNumFixedPlanes = 1; break; } case COLLISION_MODE_PER_FRAME_PLANESET: { int nIndexOut = 0; for( int i = -1; i <= 1; i++ ) for( int j = -1; j <= 1; j++ ) for( int k = -1; k <= 1; k++ ) { if ( i || j || k ) { SetBaseTrace( nIndexOut++, rayStart, 1000.0 * Vector( i, j, k ), nCollisionGroup, false ); } } m_nNumFixedPlanes = nIndexOut; m_nActivePlanes = nIndexOut; } // Long missing break. Added to Source2 in change 700053.
// It's a bug, but changing it now could cause regressions, so
// leaving it for now until someone decides it's worth fixing.
#ifdef FP_EXCEPTIONS_ENABLED
// This break is necessary when exceptions are enabled because otherwise
// m_bPlaneActive[21] is set even though that plane is filled with
// NaNs. We should perhaps put this break in, but we need to do
// careful particle testing.
break; #endif
case COLLISION_MODE_USE_NEAREST_TRACE: { int nIndexOut = 0; for( int i = -1; i <= 1; i++ ) for( int j = -1; j <= 1; j++ ) for( int k = -1; k <= 1; k++ ) { if ( i || j || k ) { SetBaseTrace( nIndexOut++, rayStart, 1000.0 * Vector( i, j, k ), nCollisionGroup, true ); } } m_nNumFixedPlanes = nIndexOut; m_nActivePlanes = nIndexOut; } } }
class C_OP_WorldCollideConstraint : public CParticleOperatorInstance { DECLARE_PARTICLE_OPERATOR( C_OP_WorldCollideConstraint );
uint32 GetWrittenAttributes( void ) const { return PARTICLE_ATTRIBUTE_XYZ_MASK; }
uint32 GetReadAttributes( void ) const { return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_RADIUS_MASK; }
virtual uint64 GetReadControlPointMask() const { return 1ULL << 0; }
size_t GetRequiredContextBytes( ) const { return sizeof( CWorldCollideContextData ); }
bool EnforceConstraint( int nStartBlock, int nEndBlock, CParticleCollection *pParticles, void *pContext, int nNumValidParticlesInLastChunk ) const;
void SetupConstraintPerFrameData( CParticleCollection *pParticles, void *pContext ) const; };
void C_OP_WorldCollideConstraint::SetupConstraintPerFrameData( CParticleCollection *pParticles, void *pContext ) const { CWorldCollideContextData *pCtx = reinterpret_cast<CWorldCollideContextData *>( pContext ); pCtx->CalculatePlanes( pParticles, COLLISION_MODE_PER_FRAME_PLANESET, COLLISION_GROUP_NONE ); }
bool C_OP_WorldCollideConstraint::EnforceConstraint( int nStartBlock, int nNumBlocks, CParticleCollection *pParticles, void *pContext, int nNumValidParticlesInLastChunk ) const { C4VAttributeWriteIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles ); pXYZ += nStartBlock;
CM128AttributeIterator pRadius( PARTICLE_ATTRIBUTE_RADIUS, pParticles ); pRadius += nStartBlock;
CWorldCollideContextData *pCtx = reinterpret_cast<CWorldCollideContextData *>( pContext );
bool bChangedSomething = false; do { for( int i=0; i < pCtx->m_nActivePlanes; i++ ) { if ( pCtx->m_bPlaneActive[ i ] ) { FourVectors pts = *pXYZ; pts -= pCtx->m_PointOnPlane[i]; fltx4 PlaneEq=pts * pCtx->m_PlaneNormal[i]; // where planeeq<0, inside
PlaneEq = SubSIMD( PlaneEq, *pRadius ); fltx4 BadPts=CmpLtSIMD( PlaneEq, Four_Zeros ); if ( IsAnyNegative( BadPts ) ) { bChangedSomething = true; // project points to plane surface
fltx4 PenetrationDistance=MinSIMD( Four_Zeros, PlaneEq ); FourVectors PenetrationVector = pCtx->m_PlaneNormal[i]; PenetrationVector *= PenetrationDistance; (*pXYZ) -= PenetrationVector; } } } ++pXYZ; ++pRadius; } while (--nNumBlocks); return bChangedSomething; }
DEFINE_PARTICLE_OPERATOR( C_OP_WorldCollideConstraint, "Prevent passing through static part of world", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_WorldCollideConstraint ) END_PARTICLE_OPERATOR_UNPACK( C_OP_WorldCollideConstraint )
class C_OP_WorldTraceConstraint : public CParticleOperatorInstance { DECLARE_PARTICLE_OPERATOR( C_OP_WorldTraceConstraint );
uint32 GetWrittenAttributes( void ) const { int nRet = PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ; if ( m_bKillonContact ) nRet |= PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK; return nRet; }
uint32 GetReadAttributes( void ) const { return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_RADIUS_MASK; }
virtual uint64 GetReadControlPointMask() const { return 1ULL << 0; }
Vector m_vecCpOffset; int m_nCollisionMode; float m_flBounceAmount; float m_flSlideAmount; float m_flRadiusScale; float m_flCpMovementTolerance; float m_flTraceTolerance;
bool m_bKillonContact;
virtual bool IsFinalConstraint( void ) const { return ( m_flBounceAmount != 0. ) || ( m_flSlideAmount != 0. ); }
void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const { }
char m_CollisionGroupName[128]; int m_nCollisionGroupNumber; bool m_bBrushOnly;
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement );
bool EnforceConstraint( int nStartBlock, int nEndBlock, CParticleCollection *pParticles, void *pContext, int nNumValidParticlesInLastChunk ) const; template<bool bKillOnContact, bool bCached> bool EnforceConstraintInternal( int nStartBlock, int nEndBlock, CParticleCollection *pParticles, void *pContext, int nNumValidParticlesInLastChunk ) const; };
void C_OP_WorldTraceConstraint::InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement ) { m_nCollisionGroupNumber = g_pParticleSystemMgr->Query()->GetCollisionGroupFromName( m_CollisionGroupName ); }
struct ISectData_t { fltx4 m_ISectT; // "t" of intersection
fltx4 m_LeftOverT; // "left-over" amount
FourVectors m_ISectNormal; // normal at intersection if any
};
static void WorldIntersectTNew( FourVectors const *pStartPnt, FourVectors const *pEndPnt, int nCollisionGroup, int nMask, ISectData_t *pISectData, int nCollisionMode, CWorldCollideContextData *pCtx, fltx4 const &fl4ParticleValidMask, float flTolerance = 0.0 ) { pISectData->m_ISectT = Four_Zeros; pISectData->m_LeftOverT = Four_Zeros; pISectData->m_ISectNormal.x = Four_Zeros; pISectData->m_ISectNormal.y = Four_Zeros; pISectData->m_ISectNormal.z = Four_Zeros;
if ( pCtx ) { pISectData->m_ISectT = Four_Twos; // do simd interseciton against planes
if ( nCollisionMode == COLLISION_MODE_USE_NEAREST_TRACE ) { // find which of our traces is closest to our start / end points
pISectData->m_ISectT = Four_Twos; // no hit
FourVectors v4PointOnPlane; FourVectors v4PlaneNormal; fltx4 fl4ClosestDist = Four_FLT_MAX; for( int i = 0 ; i < pCtx->m_nActivePlanes; i++ ) { if ( pCtx->m_bPlaneActive[i] ) { fltx4 fl4TrialDistance = MaxSIMD( pStartPnt->DistSqrToLineSegment( pCtx->m_TraceStartPnt[i], pCtx->m_TraceEndPnt[i] ), pEndPnt->DistSqrToLineSegment( pCtx->m_TraceStartPnt[i], pCtx->m_TraceEndPnt[i] ) ); fltx4 fl4Nearestmask = CmpLeSIMD( fl4TrialDistance, fl4ClosestDist ); fl4ClosestDist = MaskedAssign( fl4ClosestDist, fl4TrialDistance, fl4Nearestmask ); v4PointOnPlane.x = MaskedAssign( fl4Nearestmask, pCtx->m_PointOnPlane[i].x, v4PointOnPlane.x ); v4PointOnPlane.y = MaskedAssign( fl4Nearestmask, pCtx->m_PointOnPlane[i].y, v4PointOnPlane.y ); v4PointOnPlane.z = MaskedAssign( fl4Nearestmask, pCtx->m_PointOnPlane[i].z, v4PointOnPlane.z ); v4PlaneNormal.x = MaskedAssign( fl4Nearestmask, pCtx->m_PlaneNormal[i].x, v4PlaneNormal.x ); v4PlaneNormal.y = MaskedAssign( fl4Nearestmask, pCtx->m_PlaneNormal[i].y, v4PlaneNormal.y ); v4PlaneNormal.z = MaskedAssign( fl4Nearestmask, pCtx->m_PlaneNormal[i].z, v4PlaneNormal.z ); } } fltx4 fl4OutOfRange = AndSIMD( fl4ParticleValidMask, CmpGtSIMD( fl4ClosestDist, ReplicateX4( flTolerance ) ) ); if ( IsAnyNegative( fl4OutOfRange ) ) { nMask = TestSignSIMD( fl4OutOfRange ); for(int i=0; i < 4; i++ ) { if ( nMask & ( 1 << i ) ) { Vector start = pStartPnt->Vec( i ); Vector delta = pEndPnt->Vec( i ) - start; float ln = delta.Length();
float traceScale = max( 5.0, 300.0 / ( ln + .01 ) );
Vector end = start + delta * traceScale;
CBaseTrace tr; g_pParticleSystemMgr->Query()->TraceLine( start, end, nMask, NULL, nCollisionGroup, &tr ); if ( tr.fraction < 1.0 ) { SubFloat( v4PointOnPlane.x, i ) = start.x + ( tr.fraction * ( end.x - start.x ) ); SubFloat( v4PointOnPlane.y, i ) = start.y + ( tr.fraction * ( end.y - start.y ) ); SubFloat( v4PointOnPlane.z, i ) = start.z + ( tr.fraction * ( end.z - start.z ) ); SubFloat( v4PlaneNormal.x, i ) = tr.plane.normal.x; SubFloat( v4PlaneNormal.y, i ) = tr.plane.normal.y; SubFloat( v4PlaneNormal.z, i ) = tr.plane.normal.z; } else { // no hit. a normal of 0 will prevent the crossing check from ever
// finding a crossing, since it will check for (p - origin ) dot normal
// < 0
SubFloat( v4PlaneNormal.x, i ) = 0; SubFloat( v4PlaneNormal.y, i ) = 0; SubFloat( v4PlaneNormal.z, i ) = 0; } } } } FourVectors v4StartD = *pStartPnt; FourVectors v4EndD = *pEndPnt; v4StartD -= v4PointOnPlane; v4EndD -= v4PointOnPlane; fltx4 fl4StartDist = v4StartD * v4PlaneNormal; fltx4 fl4EndDist = v4EndD * v4PlaneNormal; fltx4 fl4CrossMask = AndSIMD( CmpGeSIMD( fl4StartDist, Four_Zeros ), CmpLtSIMD( fl4EndDist, Four_Zeros ) ); fl4CrossMask = AndSIMD( fl4CrossMask, fl4ParticleValidMask ); if ( IsAnyNegative( fl4CrossMask ) ) { // a hit!
fltx4 fl4T = DivSIMD( fl4StartDist, SubSIMD( fl4StartDist, fl4EndDist ) ); fl4CrossMask = AndSIMD( fl4CrossMask, CmpLtSIMD( fl4T, pISectData->m_ISectT ) ); if ( IsAnyNegative( fl4CrossMask ) ) { pISectData->m_ISectT = MaskedAssign( fl4CrossMask, fl4T, pISectData->m_ISectT ); pISectData->m_ISectNormal.x = MaskedAssign( fl4CrossMask, v4PlaneNormal.x, pISectData->m_ISectNormal.x ); pISectData->m_ISectNormal.y = MaskedAssign( fl4CrossMask, v4PlaneNormal.y, pISectData->m_ISectNormal.y ); pISectData->m_ISectNormal.z = MaskedAssign( fl4CrossMask, v4PlaneNormal.z, pISectData->m_ISectNormal.z ); } } } pISectData->m_LeftOverT = MaxSIMD( Four_Zeros, SubSIMD( Four_Ones, pISectData->m_ISectT ) ); } }
static void WorldIntersectT( FourVectors const *pStartPnt, FourVectors const *pEndPnt, int nCollisionGroup, int nMask, ISectData_t *pISectData, CWorldCollideContextData *pCtx ) { pISectData->m_ISectT = Four_Zeros; pISectData->m_LeftOverT = Four_Zeros; pISectData->m_ISectNormal.x = Four_Zeros; pISectData->m_ISectNormal.y = Four_Zeros; pISectData->m_ISectNormal.z = Four_Zeros;
if ( pCtx ) { pISectData->m_ISectT = Four_Twos; // do simd interseciton against planes
for( int i=0 ; i < pCtx->m_nActivePlanes; i++ ) { if ( pCtx->m_bPlaneActive[ i ] ) { FourVectors v4StartD = *pStartPnt; FourVectors v4EndD = *pEndPnt; v4StartD -= pCtx->m_PointOnPlane[i]; v4EndD -= pCtx->m_PointOnPlane[i]; fltx4 fl4StartDist = v4StartD * pCtx->m_PlaneNormal[i]; fltx4 fl4EndDist = v4EndD * pCtx->m_PlaneNormal[i]; fltx4 fl4CrossMask = AndSIMD( CmpGeSIMD( fl4StartDist, Four_Zeros ), CmpLtSIMD( fl4EndDist, Four_Zeros ) ); if ( IsAnyNegative( fl4CrossMask ) ) { #ifdef FP_EXCEPTIONS_ENABLED
// Wherever fl4CrossMask is zero we need to ensure that fl4StartDist does
// not equal fl4EndDist to avoid divide-by-zero.
//fl4FadeWindow = OrSIMD( AndSIMD( fl4GoodMask, fl4EndTime ), AndNotSIMD( fl4GoodMask, fl4EndTime ) );
fl4EndDist = AddSIMD( fl4EndDist, AndNotSIMD( fl4CrossMask, Four_Ones ) ); #endif
// a hit!
fltx4 fl4T = DivSIMD( fl4StartDist, SubSIMD( fl4StartDist, fl4EndDist ) ); fl4CrossMask = AndSIMD( fl4CrossMask, CmpLtSIMD( fl4T, pISectData->m_ISectT ) ); if ( IsAnyNegative( fl4CrossMask ) ) { pISectData->m_ISectT = MaskedAssign( fl4CrossMask, fl4T, pISectData->m_ISectT ); pISectData->m_ISectNormal.x = MaskedAssign( fl4CrossMask, pCtx->m_PlaneNormal[i].x, pISectData->m_ISectNormal.x ); pISectData->m_ISectNormal.y = MaskedAssign( fl4CrossMask, pCtx->m_PlaneNormal[i].y, pISectData->m_ISectNormal.y ); pISectData->m_ISectNormal.z = MaskedAssign( fl4CrossMask, pCtx->m_PlaneNormal[i].z, pISectData->m_ISectNormal.z ); } } } } pISectData->m_LeftOverT = MaxSIMD( Four_Zeros, SubSIMD( Four_Ones, pISectData->m_ISectT ) ); } else { // assumes they don't start solid
for(int i=0; i < 4; i++ ) { Vector start=pStartPnt->Vec( i ); Vector end=pEndPnt->Vec( i ); Assert( start.IsValid() ); Assert( end.IsValid() );
CBaseTrace tr; g_pParticleSystemMgr->Query()->TraceLine( start, end, nMask, NULL, nCollisionGroup, &tr ); SubFloat( pISectData->m_ISectT, i ) = tr.fraction; if ( tr.startsolid ) { SubFloat( pISectData->m_LeftOverT, i ) = 0; // don't bounce if stuck
} else { SubFloat( pISectData->m_LeftOverT, i ) = 1.0 - tr.fraction; } SubFloat( pISectData->m_ISectNormal.x, i ) = tr.plane.normal.x; SubFloat( pISectData->m_ISectNormal.y, i ) = tr.plane.normal.y; SubFloat( pISectData->m_ISectNormal.z, i ) = tr.plane.normal.z; } } }
bool C_OP_WorldTraceConstraint::EnforceConstraint( int nStartBlock, int nNumBlocks, CParticleCollection *pParticles, void *pContext, int nNumValidParticlesInLastChunk ) const { if ( m_nCollisionMode == COLLISION_MODE_USE_NEAREST_TRACE ) { if ( m_bKillonContact ) return EnforceConstraintInternal<true, true>( nStartBlock, nNumBlocks, pParticles, pContext, nNumValidParticlesInLastChunk ); else return EnforceConstraintInternal<false, true>( nStartBlock, nNumBlocks, pParticles, pContext, nNumValidParticlesInLastChunk ); } else { if ( m_bKillonContact ) return EnforceConstraintInternal<true, false>( nStartBlock, nNumBlocks, pParticles, pContext, nNumValidParticlesInLastChunk ); else return EnforceConstraintInternal<false, false>( nStartBlock, nNumBlocks, pParticles, pContext, nNumValidParticlesInLastChunk ); } }
template<bool bKillonContact, bool bCached> bool C_OP_WorldTraceConstraint::EnforceConstraintInternal( int nStartBlock, int nNumBlocks, CParticleCollection *pParticles, void *pContext, int nNumValidParticlesInLastChunk ) const { C4VAttributeWriteIterator pPrevXYZ( PARTICLE_ATTRIBUTE_PREV_XYZ, pParticles ); pPrevXYZ += nStartBlock;
C4VAttributeWriteIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles ); pXYZ += nStartBlock;
CM128AttributeIterator pRadius( PARTICLE_ATTRIBUTE_RADIUS, pParticles ); pRadius += nStartBlock;
CM128AttributeWriteIterator pLifetime;
if ( bKillonContact ) { pLifetime.Init( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles ); pLifetime += nStartBlock; } fltx4 bounceScale = ReplicateX4( m_flBounceAmount );
fltx4 slideScale = ReplicateX4( m_flSlideAmount );
bool bBouncingOrSliding = ( m_flBounceAmount != 0.0 ) || ( m_flSlideAmount != 0.0 );
fltx4 radAdjustScale = ReplicateX4( m_flRadiusScale );
bool bChangedSomething = false;
int nMask = MASK_SOLID;
if ( m_bBrushOnly ) nMask = MASK_SOLID_BRUSHONLY;
CWorldCollideContextData **ppCtx; if ( pParticles->m_pParent ) ppCtx = &( pParticles->m_pParent->m_pCollisionCacheData[m_nCollisionMode] ); else ppCtx = &( pParticles->m_pCollisionCacheData[m_nCollisionMode] );
CWorldCollideContextData *pCtx = NULL; if ( ( m_nCollisionMode == COLLISION_MODE_PER_FRAME_PLANESET ) || ( m_nCollisionMode == COLLISION_MODE_USE_NEAREST_TRACE ) || ( m_nCollisionMode == COLLISION_MODE_INITIAL_TRACE_DOWN ) ) { if ( ! *ppCtx ) { *ppCtx = new CWorldCollideContextData; (*ppCtx)->m_nActivePlanes = 0; (*ppCtx)->m_flLastUpdateTime = -1.0; } pCtx = *ppCtx; if ( pCtx->m_flLastUpdateTime != pParticles->m_flCurTime ) { pCtx->CalculatePlanes( pParticles, m_nCollisionMode, m_nCollisionGroupNumber, &m_vecCpOffset, m_flCpMovementTolerance ); pCtx->m_flLastUpdateTime = pParticles->m_flCurTime; } } float flTol = m_flTraceTolerance * m_flTraceTolerance; do { // compute radius adjust factor for intersection
fltx4 radiusFactor = MulSIMD( *pRadius, radAdjustScale ); // compute movement delta
FourVectors delta = *pXYZ; delta -= *pPrevXYZ; // now, add two components - the non-intersecting movement vector, and the
// then the movement vector with the components normal to the plane removed.
FourVectors deltanormalized = delta; fltx4 len2 = delta * delta; fltx4 bBadDeltas = CmpLeSIMD( len2, Four_Zeros ); len2 = ReciprocalSqrtEstSIMD( len2 ); deltanormalized *= AndNotSIMD( bBadDeltas, len2 ); FourVectors endPnt = *pXYZ; FourVectors radadjust = deltanormalized; radadjust *= radiusFactor; endPnt += radadjust; ISectData_t iData; if ( bCached ) { fltx4 fl4TailMask; if ( nNumBlocks > 1 ) fl4TailMask = LoadAlignedIntSIMD( g_SIMD_AllOnesMask ); else fl4TailMask = LoadAlignedIntSIMD( g_SIMD_SkipTailMask[nNumValidParticlesInLastChunk] ); WorldIntersectTNew( pPrevXYZ, &endPnt, m_nCollisionGroupNumber, nMask, &iData, m_nCollisionMode, pCtx, fl4TailMask, flTol ); } else WorldIntersectT( pPrevXYZ, &endPnt, m_nCollisionGroupNumber, nMask, &iData, pCtx );
fltx4 didhit = CmpLtSIMD( iData.m_ISectT, Four_Ones ); // mask off zero-length deltas
didhit = AndNotSIMD( bBadDeltas, didhit ); if ( IsAnyNegative( didhit ) ) // any penetration?
{
bChangedSomething = true; if ( bKillonContact ) { *pLifetime = MaskedAssign( didhit, Four_Zeros, *pLifetime ); } else { FourVectors newPnt = delta; newPnt *= iData.m_ISectT; newPnt += *pPrevXYZ;
if ( bBouncingOrSliding ) { // need to compute movement due to sliding and bouncing, and add it to the point,
// and also compute the new velocity, adjust prev pnt to reflect that new velocity
FourVectors bouncePart = VectorReflect( deltanormalized, iData.m_ISectNormal ); bouncePart *= bounceScale; FourVectors newVel = bouncePart;
bouncePart *= iData.m_LeftOverT; newPnt += bouncePart;
FourVectors slidePart = VectorSlide( delta, iData.m_ISectNormal ); slidePart *= slideScale; newVel += slidePart;
slidePart *= iData.m_LeftOverT;
newPnt += slidePart;
FourVectors newPrev = newPnt; newPrev -= newVel; pPrevXYZ->x = MaskedAssign( didhit, newPrev.x, pPrevXYZ->x ); pPrevXYZ->y = MaskedAssign( didhit, newPrev.y, pPrevXYZ->y ); pPrevXYZ->z = MaskedAssign( didhit, newPrev.z, pPrevXYZ->z ); } pXYZ->x = MaskedAssign( didhit, newPnt.x, pXYZ->x ); pXYZ->y = MaskedAssign( didhit, newPnt.y, pXYZ->y ); pXYZ->z = MaskedAssign( didhit, newPnt.z, pXYZ->z ); }
CHECKSYSTEM( pParticles ); } ++pXYZ; ++pPrevXYZ; ++pRadius; if ( bKillonContact ) ++pLifetime; } while (--nNumBlocks); return bChangedSomething; }
DEFINE_PARTICLE_OPERATOR( C_OP_WorldTraceConstraint, "Collision via traces", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_WorldTraceConstraint ) DMXELEMENT_UNPACK_FIELD( "collision mode", "0", int, m_nCollisionMode ) DMXELEMENT_UNPACK_FIELD( "amount of bounce", "0", float, m_flBounceAmount ) DMXELEMENT_UNPACK_FIELD( "amount of slide", "0", float, m_flSlideAmount ) DMXELEMENT_UNPACK_FIELD( "radius scale", "1", float, m_flRadiusScale ) DMXELEMENT_UNPACK_FIELD( "brush only", "0", bool, m_bBrushOnly ) DMXELEMENT_UNPACK_FIELD_STRING( "collision group", "NONE", m_CollisionGroupName ) DMXELEMENT_UNPACK_FIELD( "control point offset for fast collisions", "0 0 0", Vector, m_vecCpOffset ) DMXELEMENT_UNPACK_FIELD( "control point movement distance tolerance", "5", float, m_flCpMovementTolerance ) DMXELEMENT_UNPACK_FIELD( "kill particle on collision", "0", bool, m_bKillonContact ) DMXELEMENT_UNPACK_FIELD( "trace accuracy tolerance", "24", float, m_flTraceTolerance ) END_PARTICLE_OPERATOR_UNPACK( C_OP_WorldTraceConstraint )
void AddBuiltInParticleConstraints( void ) { REGISTER_PARTICLE_OPERATOR( FUNCTION_CONSTRAINT, C_OP_ConstrainDistance ); REGISTER_PARTICLE_OPERATOR( FUNCTION_CONSTRAINT, C_OP_PlanarConstraint ); REGISTER_PARTICLE_OPERATOR( FUNCTION_CONSTRAINT, C_OP_WorldCollideConstraint ); REGISTER_PARTICLE_OPERATOR( FUNCTION_CONSTRAINT, C_OP_WorldTraceConstraint ); REGISTER_PARTICLE_OPERATOR( FUNCTION_CONSTRAINT, C_OP_ConstrainDistanceToPath ); }
|