|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: N-way tree container class
//
// $Revision: $
// $NoKeywords: $
//=============================================================================//
#ifndef UTLNTREE_H
#define UTLNTREE_H
#ifdef _WIN32
#pragma once
#endif
#include "basetypes.h"
#include "utlmemory.h"
#include "tier0/dbg.h"
#define INVALID_NTREE_IDX ((I)~0)
//-----------------------------------------------------------------------------
// class CUtlNTree:
// description:
// A lovely index-based linked list! T is the class type, I is the index
// type, which usually should be an unsigned short or smaller.
//-----------------------------------------------------------------------------
template <class T, class I = unsigned short> class CUtlNTree { public: typedef T ElemType_t; typedef I IndexType_t;
// constructor, destructor
CUtlNTree( int growSize = 0, int initSize = 0 ); CUtlNTree( void *pMemory, int memsize ); ~CUtlNTree( );
// gets particular elements
T& Element( I i ); const T& Element( I i ) const; T& operator[]( I i ); const T& operator[]( I i ) const;
// Make sure we have a particular amount of memory
void EnsureCapacity( int num );
// Clears the tree, doesn't deallocate memory
void RemoveAll();
// Memory deallocation
void Purge();
// Allocation/deallocation methods
I Alloc( ); void Free( I elem ); void FreeSubTree( I elem );
// list modification
void SetRoot( I root ); void LinkChildBefore( I parent, I before, I elem ); void LinkChildAfter( I parent, I after, I elem ); void Unlink( I elem );
// Alloc + link combined
I InsertChildBefore( I parent, I before ); I InsertChildAfter( I parent, I after ); I InsertChildBefore( I parent, I before, const T &elem ); I InsertChildAfter( I parent, I after, const T &elem );
// Unlink + free combined
void Remove( I elem ); void RemoveSubTree( I elem );
// invalid index
inline static I InvalidIndex() { return INVALID_NTREE_IDX; } inline static size_t ElementSize() { return sizeof(Node_t); }
// list statistics
int Count() const; I MaxElementIndex() const;
// Traversing the list
I Root() const; I FirstChild( I i ) const; I PrevSibling( I i ) const; I NextSibling( I i ) const; I Parent( I i ) const;
// Are nodes in the list or valid?
bool IsValidIndex( I i ) const; bool IsInTree( I i ) const; protected: // What the linked list element looks like
struct Node_t { T m_Element; I m_Parent; I m_FirstChild; I m_PrevSibling; I m_NextSibling;
private: // No copy constructor for these...
Node_t( const Node_t& ); }; // constructs the class
void ConstructList();
// Allocates the element, doesn't call the constructor
I AllocInternal();
// Gets at the node element....
Node_t& InternalNode( I i ) { return m_Memory[i]; } const Node_t& InternalNode( I i ) const { return m_Memory[i]; }
void ResetDbgInfo() { m_pElements = m_Memory.Base(); } // copy constructors not allowed
CUtlNTree( CUtlNTree<T, I> const& tree ) { Assert(0); } CUtlMemory<Node_t> m_Memory; I m_Root; I m_FirstFree; I m_ElementCount; // The number actually in the tree
I m_MaxElementIndex; // The max index we've ever assigned
// For debugging purposes;
// it's in release builds so this can be used in libraries correctly
Node_t *m_pElements; }; //-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
template <class T, class I> CUtlNTree<T,I>::CUtlNTree( int growSize, int initSize ) : m_Memory(growSize, initSize) { ConstructList(); ResetDbgInfo(); }
template <class T, class I> CUtlNTree<T,I>::CUtlNTree( void* pMemory, int memsize ) : m_Memory(pMemory, memsize/sizeof(T)) { ConstructList(); ResetDbgInfo(); }
template <class T, class I> CUtlNTree<T,I>::~CUtlNTree( ) { RemoveAll(); }
template <class T, class I> void CUtlNTree<T,I>::ConstructList() { m_Root = InvalidIndex(); m_FirstFree = InvalidIndex(); m_ElementCount = m_MaxElementIndex = 0; }
//-----------------------------------------------------------------------------
// gets particular elements
//-----------------------------------------------------------------------------
template <class T, class I> inline T& CUtlNTree<T,I>::Element( I i ) { return m_Memory[i].m_Element; }
template <class T, class I> inline const T& CUtlNTree<T,I>::Element( I i ) const { return m_Memory[i].m_Element; }
template <class T, class I> inline T& CUtlNTree<T,I>::operator[]( I i ) { return m_Memory[i].m_Element; }
template <class T, class I> inline const T& CUtlNTree<T,I>::operator[]( I i ) const { return m_Memory[i].m_Element; }
//-----------------------------------------------------------------------------
// list statistics
//-----------------------------------------------------------------------------
template <class T, class I> inline int CUtlNTree<T,I>::Count() const { return m_ElementCount; }
template <class T, class I> inline I CUtlNTree<T,I>::MaxElementIndex() const { return m_MaxElementIndex; }
//-----------------------------------------------------------------------------
// Traversing the list
//-----------------------------------------------------------------------------
template <class T, class I> inline I CUtlNTree<T,I>::Root() const { return m_Root; }
template <class T, class I> inline I CUtlNTree<T,I>::FirstChild( I i ) const { Assert( IsInTree(i) ); return InternalNode(i).m_FirstChild; }
template <class T, class I> inline I CUtlNTree<T,I>::PrevSibling( I i ) const { Assert( IsInTree(i) ); return InternalNode(i).m_PrevSibling; }
template <class T, class I> inline I CUtlNTree<T,I>::NextSibling( I i ) const { Assert( IsInTree(i) ); return InternalNode(i).m_NextSibling; }
template <class T, class I> inline I CUtlNTree<T,I>::Parent( I i ) const { Assert( IsInTree(i) ); return InternalNode(i).m_Parent; }
//-----------------------------------------------------------------------------
// Are nodes in the list or valid?
//-----------------------------------------------------------------------------
template <class T, class I> inline bool CUtlNTree<T,I>::IsValidIndex( I i ) const { return (i < m_MaxElementIndex) && (i >= 0); }
template <class T, class I> inline bool CUtlNTree<T,I>::IsInTree( I i ) const { return (i < m_MaxElementIndex) && (i >= 0) && (InternalNode(i).m_PrevSibling != i); }
//-----------------------------------------------------------------------------
// Makes sure we have enough memory allocated to store a requested # of elements
//-----------------------------------------------------------------------------
template< class T, class I > void CUtlNTree<T, I>::EnsureCapacity( int num ) { MEM_ALLOC_CREDIT_CLASS(); m_Memory.EnsureCapacity(num); ResetDbgInfo(); }
//-----------------------------------------------------------------------------
// Deallocate memory
//-----------------------------------------------------------------------------
template <class T, class I> void CUtlNTree<T,I>::Purge() { RemoveAll(); m_Memory.Purge( ); m_FirstFree = InvalidIndex(); m_MaxElementIndex = 0; ResetDbgInfo(); }
//-----------------------------------------------------------------------------
// Node allocation/deallocation
//-----------------------------------------------------------------------------
template <class T, class I> I CUtlNTree<T,I>::AllocInternal( ) { I elem; if ( m_FirstFree == INVALID_NTREE_IDX ) { // Nothing in the free list; add.
// Since nothing is in the free list, m_MaxElementIndex == total # of elements
// the list knows about.
if ((int)m_MaxElementIndex == m_Memory.NumAllocated()) { MEM_ALLOC_CREDIT_CLASS(); m_Memory.Grow(); }
Assert( m_MaxElementIndex != INVALID_NTREE_IDX );
elem = (I)m_MaxElementIndex; ++m_MaxElementIndex;
if ( elem == InvalidIndex() ) { Error("CUtlNTree overflow!\n"); } } else { elem = m_FirstFree; m_FirstFree = InternalNode( m_FirstFree ).m_NextSibling; } Node_t &node = InternalNode( elem ); node.m_NextSibling = node.m_PrevSibling = node.m_Parent = node.m_FirstChild = INVALID_NTREE_IDX; ResetDbgInfo();
// one more element baby
++m_ElementCount;
return elem; }
template <class T, class I> I CUtlNTree<T,I>::Alloc( ) { I elem = AllocInternal(); Construct( &Element(elem) ); return elem; }
template <class T, class I> void CUtlNTree<T,I>::Free( I elem ) { Assert( IsInTree( elem ) ); Unlink( elem );
// If there's children, this will result in leaks. Use FreeSubTree instead.
Assert( FirstChild( elem ) == INVALID_NTREE_IDX );
Node_t &node = InternalNode( elem ); Destruct( &node.m_Element ); node.m_NextSibling = m_FirstFree; node.m_PrevSibling = elem; // Marks it as being in the free list
node.m_Parent = node.m_FirstChild = INVALID_NTREE_IDX; m_FirstFree = elem;
// one less element baby
--m_ElementCount; }
template <class T, class I> void CUtlNTree<T,I>::FreeSubTree( I elem ) { Assert( IsValidIndex( elem ) );
I child = FirstChild( elem ); while ( child != INVALID_NTREE_IDX ) { I next = NextSibling( child ); FreeSubTree( child ); child = next; }
Free( elem ); }
//-----------------------------------------------------------------------------
// Clears the tree
//-----------------------------------------------------------------------------
template <class T, class I> void CUtlNTree<T,I>::RemoveAll() { if ( m_MaxElementIndex == 0 ) return;
// Put everything into the free list (even unlinked things )
I prev = InvalidIndex(); for (int i = (int)m_MaxElementIndex; --i >= 0; prev = (I)i ) { Node_t &node = InternalNode( i ); if ( IsInTree( i ) ) { Destruct( &node.m_Element ); }
node.m_NextSibling = prev; node.m_PrevSibling = (I)i; // Marks it as being in the free list
node.m_Parent = node.m_FirstChild = INVALID_NTREE_IDX; } // First free points to the first element
m_FirstFree = 0; // Clear everything else out
m_Root = INVALID_NTREE_IDX; m_ElementCount = 0; }
//-----------------------------------------------------------------------------
// list modification
//-----------------------------------------------------------------------------
template <class T, class I> void CUtlNTree<T,I>::SetRoot( I root ) { // Resetting the root while it's got stuff in it is bad...
Assert( m_Root == InvalidIndex() ); m_Root = root; }
//-----------------------------------------------------------------------------
// Links a node after a particular node
//-----------------------------------------------------------------------------
template <class T, class I> void CUtlNTree<T,I>::LinkChildAfter( I parent, I after, I elem ) { Assert( IsInTree(elem) ); // Unlink it if it's in the list at the moment
Unlink(elem); Node_t& newElem = InternalNode(elem); newElem.m_Parent = parent; newElem.m_PrevSibling = after; if ( after != INVALID_NTREE_IDX ) { Node_t& prevSiblingNode = InternalNode( after ); newElem.m_NextSibling = prevSiblingNode.m_NextSibling; prevSiblingNode.m_NextSibling = elem; } else { if ( parent != INVALID_NTREE_IDX ) { Node_t& parentNode = InternalNode( parent ); newElem.m_NextSibling = parentNode.m_FirstChild; parentNode.m_FirstChild = elem; } else { newElem.m_NextSibling = m_Root; if ( m_Root != INVALID_NTREE_IDX ) { Node_t& rootNode = InternalNode( m_Root ); rootNode.m_PrevSibling = elem; } m_Root = elem; } }
if ( newElem.m_NextSibling != INVALID_NTREE_IDX ) { Node_t& nextSiblingNode = InternalNode( newElem.m_NextSibling ); nextSiblingNode.m_PrevSibling = elem; } }
//-----------------------------------------------------------------------------
// Links a node before a particular node
//-----------------------------------------------------------------------------
template <class T, class I> void CUtlNTree<T,I>::LinkChildBefore( I parent, I before, I elem ) { Assert( IsValidIndex(elem) ); if ( before != INVALID_NTREE_IDX ) { LinkChildAfter( parent, InternalNode( before ).m_PrevSibling, elem ); return; }
// NOTE: I made the choice to do an O(n) operation here
// instead of store more data per node (LastChild).
// This might not be the right choice. Revisit if we get perf problems.
I after; if ( parent != INVALID_NTREE_IDX ) { after = InternalNode( parent ).m_FirstChild; } else { after = m_Root; }
if ( after == INVALID_NTREE_IDX ) { LinkChildAfter( parent, after, elem ); return; }
I next = InternalNode( after ).m_NextSibling; while ( next != InvalidIndex() ) { after = next; next = InternalNode( next ).m_NextSibling; }
LinkChildAfter( parent, after, elem ); }
//-----------------------------------------------------------------------------
// Unlinks a node from the tree
//-----------------------------------------------------------------------------
template <class T, class I> void CUtlNTree<T,I>::Unlink( I elem ) { Assert( IsInTree(elem) );
Node_t *pOldNode = &InternalNode( elem ); // If we're the first guy, reset the head
// otherwise, make our previous node's next pointer = our next
if ( pOldNode->m_PrevSibling != INVALID_NTREE_IDX ) { InternalNode( pOldNode->m_PrevSibling ).m_NextSibling = pOldNode->m_NextSibling; } else { if ( pOldNode->m_Parent != INVALID_NTREE_IDX ) { InternalNode( pOldNode->m_Parent ).m_FirstChild = pOldNode->m_NextSibling; } else if ( m_Root == elem ) { m_Root = pOldNode->m_NextSibling; } } // If we're the last guy, reset the tail
// otherwise, make our next node's prev pointer = our prev
if ( pOldNode->m_NextSibling != INVALID_NTREE_IDX ) { InternalNode( pOldNode->m_NextSibling ).m_PrevSibling = pOldNode->m_PrevSibling; } // Unlink everything except children
pOldNode->m_Parent = pOldNode->m_PrevSibling = pOldNode->m_NextSibling = INVALID_NTREE_IDX; }
//-----------------------------------------------------------------------------
// Alloc + link combined
//-----------------------------------------------------------------------------
template <class T, class I> I CUtlNTree<T,I>::InsertChildBefore( I parent, I before ) { I elem = AllocInternal(); Construct( &Element( elem ) ); LinkChildBefore( parent, before, elem ); return elem; }
template <class T, class I> I CUtlNTree<T,I>::InsertChildAfter( I parent, I after ) { I elem = AllocInternal(); Construct( &Element( elem ) ); LinkChildAfter( parent, after, elem ); return elem; }
template <class T, class I> I CUtlNTree<T,I>::InsertChildBefore( I parent, I before, const T &data ) { I elem = AllocInternal(); CopyConstruct( &Element( elem ), data ); LinkChildBefore( parent, before, elem ); return elem; }
template <class T, class I> I CUtlNTree<T,I>::InsertChildAfter( I parent, I after, const T &data ) { I elem = AllocInternal(); CopyConstruct( &Element( elem ), data ); LinkChildAfter( parent, after, elem ); return elem; }
//-----------------------------------------------------------------------------
// Unlink + free combined
//-----------------------------------------------------------------------------
template <class T, class I> void CUtlNTree<T,I>::Remove( I elem ) { Unlink( elem ); Free( elem ); }
template <class T, class I> void CUtlNTree<T,I>::RemoveSubTree( I elem ) { UnlinkSubTree( elem ); Free( elem ); }
#endif // UTLNTREE_H
|