|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
// A Fixed-allocation class for maintaining a 1d or 2d or 3d array of data in a structure-of-arrays
// (SOA) sse-friendly manner.
// =============================================================================//
#ifndef UTLSOACONTAINER_H
#define UTLSOACONTAINER_H
#ifdef _WIN32
#pragma once
#endif
#include "tier0/platform.h"
#include "tier0/dbg.h"
#include "tier0/threadtools.h"
#include "tier1/utlmemory.h"
#include "tier1/utlblockmemory.h"
#include "mathlib/ssemath.h"
// strided pointers. gives you a class that acts like a pointer, but the ++ and += operators do the
// right thing
template<class T> class CStridedPtr { protected: T *m_pData; size_t m_nStride; public: FORCEINLINE CStridedPtr<T>( void *pData, size_t nByteStride ) { m_pData = reinterpret_cast<T *>( pData ); m_nStride = nByteStride / sizeof( T ); }
FORCEINLINE CStridedPtr<T>( void ) {} T *operator->(void) const { return m_pData; } T & operator*(void) const { return *m_pData; } FORCEINLINE operator T *(void) { return m_pData; }
FORCEINLINE CStridedPtr<T> & operator++(void) { m_pData += m_nStride; return *this; }
FORCEINLINE void operator+=( size_t nNumElements ) { m_pData += nNumElements * m_nStride; }
};
template<class T> class CStridedConstPtr { protected: const T *m_pData; size_t m_nStride;
public: FORCEINLINE CStridedConstPtr<T>( void const *pData, size_t nByteStride ) { m_pData = reinterpret_cast<T const *>( pData ); m_nStride = nByteStride / sizeof( T ); }
FORCEINLINE CStridedConstPtr<T>( void ) {}
const T *operator->(void) const { return m_pData; }
const T & operator*(void) const { return *m_pData; }
FORCEINLINE operator const T *(void) const { return m_pData; }
FORCEINLINE CStridedConstPtr<T> &operator++(void) { m_pData += m_nStride; return *this; } FORCEINLINE void operator+=( size_t nNumElements ) { m_pData += nNumElements*m_nStride; } };
// allowed field data types. if you change these values, you need to change the tables in the .cpp file
enum EAttributeDataType { ATTRDATATYPE_FLOAT = 0, // a float attribute
ATTRDATATYPE_4V = 1, // vector data type, stored as class FourVectors
ATTRDATATYPE_INT = 2, // integer. not especially sse-able on
// all architectures.
ATTRDATATYPE_POINTER = 3, // a pointer.
ATTRDATATYPE_NONE = -1, // pad and varargs ender
};
#define MAX_SOA_FIELDS 32
class CSOAContainer {
protected: int m_nColumns; // # of rows and columns created with
int m_nRows; int m_nSlices;
int m_nPaddedColumns; // # of columns rounded up for sse
int m_nNumQuadsPerRow; // # of groups of 4 elements per row
uint8 *m_pDataMemory; // the actual data memory
uint8 *m_pAttributePtrs[MAX_SOA_FIELDS];
EAttributeDataType m_nDataType[MAX_SOA_FIELDS];
size_t m_nStrideInBytes[MAX_SOA_FIELDS]; // stride from one field datum to another
size_t m_nRowStrideInBytes[MAX_SOA_FIELDS]; // stride from one row datum to another per field
size_t m_nSliceStrideInBytes[MAX_SOA_FIELDS]; // stride from one slice datum to another per field
uint32 m_nFieldPresentMask;
FORCEINLINE void Init( void ) { memset( m_nDataType, 0xff, sizeof( m_nDataType ) ); m_pDataMemory = 0; m_nColumns = m_nPaddedColumns = m_nRows = m_nSlices = 0; m_nFieldPresentMask = 0; } public:
CSOAContainer( void ) // an empoty one with no attributes
{ Init(); }
void Purge( void ); // set back to un-initted state, freeing memory
~CSOAContainer( void );
// easy constructor for 2d using varargs. call like
// #define ATTR_RED 0
// #define ATTR_GREEN 1
// #define ATTR_BLUE 2
// CSOAContainer myimage( 256, 256, ATTR_RED, ATTRDATATYPE_FLOAT, ATTR_GREEN, ATTRDATATYPE_FLOAT,
// ATTR_BLUE, ATTRDATATYPE_FLOAT, -1 );
CSOAContainer( int nCols, int nRows, ... );
size_t ElementSize( void ) const; // total bytes per element. not super fast.
// set the data type for an attribute. If you set the data type, but tell it not to allocate,
// the data type will be set but writes will assert, and reads will give you back zeros.
FORCEINLINE void SetAttributeType( int nAttrIdx, EAttributeDataType nDataType, bool bAllocateMemory = true ) { Assert( !m_pDataMemory ); // can't change after memory allocated
Assert( nAttrIdx < MAX_SOA_FIELDS ); m_nDataType[nAttrIdx] = nDataType; if ( ( m_nDataType[nAttrIdx] != ATTRDATATYPE_NONE ) && bAllocateMemory ) m_nFieldPresentMask |= ( 1 << nAttrIdx ); else m_nFieldPresentMask &= ~( 1 << nAttrIdx ); }
FORCEINLINE int NumRows( void ) const { return m_nRows; }
FORCEINLINE int NumCols( void ) const { return m_nColumns; } FORCEINLINE int NumSlices( void ) const { return m_nSlices; }
FORCEINLINE void AssertDataType( int nAttrIdx, EAttributeDataType nDataType ) const { Assert( nAttrIdx >= 0 ); Assert( nAttrIdx < MAX_SOA_FIELDS ); Assert( m_nStrideInBytes[nAttrIdx] ); }
// # of groups of 4 elements per row
FORCEINLINE int NumQuadsPerRow( void ) const { return m_nNumQuadsPerRow; }
FORCEINLINE int Count( void ) const // for 1d data
{ return NumCols(); }
FORCEINLINE int NumElements( void ) const { return NumCols() * NumRows() * NumSlices(); }
// how much to step to go from the end of one row to the start of the next one. Basically, how
// many bytes to add at the end of a row when iterating over the whole 2d array with ++
FORCEINLINE size_t RowToRowStep( int nAttrIdx ) const { return 0; } FORCEINLINE void *RowPtr( int nAttributeIdx, int nRowNumber, int nSliceNumber = 0 ) const { Assert( nRowNumber < m_nRows ); Assert( nAttributeIdx < MAX_SOA_FIELDS ); Assert( m_nDataType[nAttributeIdx] != ATTRDATATYPE_NONE ); Assert( m_nFieldPresentMask & ( 1 << nAttributeIdx ) ); return m_pAttributePtrs[nAttributeIdx] + + nRowNumber * m_nRowStrideInBytes[nAttributeIdx] + nSliceNumber * m_nSliceStrideInBytes[nAttributeIdx]; }
FORCEINLINE void const *ConstRowPtr( int nAttributeIdx, int nRowNumber, int nSliceNumber = 0 ) const { Assert( nRowNumber < m_nRows ); Assert( nAttributeIdx < MAX_SOA_FIELDS ); Assert( m_nDataType[nAttributeIdx] != ATTRDATATYPE_NONE ); return m_pAttributePtrs[nAttributeIdx] + nRowNumber * m_nRowStrideInBytes[nAttributeIdx] + nSliceNumber * m_nSliceStrideInBytes[nAttributeIdx]; }
template<class T> FORCEINLINE T *ElementPointer( int nAttributeIdx, int nX = 0, int nY = 0, int nZ = 0 ) const { Assert( nAttributeIdx < MAX_SOA_FIELDS ); Assert( nX < m_nColumns ); Assert( nY < m_nRows ); Assert( nZ < m_nSlices ); Assert( m_nDataType[nAttributeIdx] != ATTRDATATYPE_NONE ); Assert( m_nDataType[nAttributeIdx] != ATTRDATATYPE_4V ); return reinterpret_cast<T *>( m_pAttributePtrs[nAttributeIdx] + nX * sizeof( float ) + nY * m_nRowStrideInBytes[nAttributeIdx] + nZ * m_nSliceStrideInBytes[nAttributeIdx] ); } FORCEINLINE size_t ItemByteStride( int nAttributeIdx ) const { Assert( nAttributeIdx < MAX_SOA_FIELDS ); Assert( m_nDataType[nAttributeIdx] != ATTRDATATYPE_NONE ); return m_nStrideInBytes[ nAttributeIdx ]; }
// copy the attribute data from another soacontainer. must be compatible geometry
void CopyAttrFrom( CSOAContainer const &other, int nAttributeIdx );
// copy the attribute data from another attribute. must be compatible data format
void CopyAttrToAttr( int nSrcAttributeIndex, int nDestAttributeIndex);
// move all the data from one csoacontainer to another, leaving the source empty.
// this is just a pointer copy.
FORCEINLINE void MoveDataFrom( CSOAContainer other ) { (*this) = other; other.Init(); }
void AllocateData( int nNCols, int nNRows, int nSlices = 1 ); // actually allocate the memory and set the pointers up
// arithmetic and data filling functions. All SIMD and hopefully fast
// set all elements of a float attribute to random #s
void RandomizeAttribute( int nAttr, float flMin, float flMax ) const ;
// fill 2d a rectangle with values interpolated from 4 corner values.
void FillAttrWithInterpolatedValues( int nAttr, float flValue00, float flValue10, float flValue01, float flValue11 ) const; void FillAttrWithInterpolatedValues( int nAttr, Vector flValue00, Vector flValue10, Vector const &flValue01, Vector const &flValue11 ) const;
};
class CFltX4AttributeIterator : public CStridedConstPtr<fltx4> { FORCEINLINE CFltX4AttributeIterator( CSOAContainer const *pContainer, int nAttribute, int nRowNumber = 0 ) : CStridedConstPtr<fltx4>( pContainer->ConstRowPtr( nAttribute, nRowNumber), pContainer->ItemByteStride( nAttribute ) ) { } };
class CFltX4AttributeWriteIterator : public CStridedPtr<fltx4> { FORCEINLINE CFltX4AttributeWriteIterator( CSOAContainer const *pContainer, int nAttribute, int nRowNumber = 0 ) : CStridedPtr<fltx4>( pContainer->RowPtr( nAttribute, nRowNumber), pContainer->ItemByteStride( nAttribute ) ) { } };
#endif
|