|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $Revision: $
// $NoKeywords: $
//=============================================================================//
#include "cmdlib.h"
#include "mathlib/mathlib.h"
#include "bsplib.h"
#include "zip_utils.h"
#include "scriplib.h"
#include "utllinkedlist.h"
#include "bsptreedata.h"
#include "cmodel.h"
#include "gamebspfile.h"
#include "materialsystem/imaterial.h"
#include "materialsystem/hardwareverts.h"
#include "utlbuffer.h"
#include "utlrbtree.h"
#include "utlsymbol.h"
#include "utlstring.h"
#include "checksum_crc.h"
#include "physdll.h"
#include "tier0/dbg.h"
#include "lumpfiles.h"
#include "vtf/vtf.h"
#include "lzma/lzma.h"
#include "tier1/lzmaDecoder.h"
#include "tier0/memdbgon.h"
//=============================================================================
// Boundary each lump should be aligned to
#define LUMP_ALIGNMENT 4
// Data descriptions for byte swapping - only needed
// for structures that are written to file for use by the game.
BEGIN_BYTESWAP_DATADESC( dheader_t ) DEFINE_FIELD( ident, FIELD_INTEGER ), DEFINE_FIELD( version, FIELD_INTEGER ), DEFINE_EMBEDDED_ARRAY( lumps, HEADER_LUMPS ), DEFINE_FIELD( mapRevision, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( lump_t ) DEFINE_FIELD( fileofs, FIELD_INTEGER ), DEFINE_FIELD( filelen, FIELD_INTEGER ), DEFINE_FIELD( version, FIELD_INTEGER ), DEFINE_FIELD( uncompressedSize, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dflagslump_t ) DEFINE_FIELD( m_LevelFlags, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dplane_t ) DEFINE_FIELD( normal, FIELD_VECTOR ), DEFINE_FIELD( dist, FIELD_FLOAT ), DEFINE_FIELD( type, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dleaf_version_0_t ) DEFINE_FIELD( contents, FIELD_INTEGER ), DEFINE_FIELD( cluster, FIELD_SHORT ), DEFINE_BITFIELD( bf, FIELD_SHORT, 16 ), DEFINE_ARRAY( mins, FIELD_SHORT, 3 ), DEFINE_ARRAY( maxs, FIELD_SHORT, 3 ), DEFINE_FIELD( firstleafface, FIELD_SHORT ), DEFINE_FIELD( numleaffaces, FIELD_SHORT ), DEFINE_FIELD( firstleafbrush, FIELD_SHORT ), DEFINE_FIELD( numleafbrushes, FIELD_SHORT ), DEFINE_FIELD( leafWaterDataID, FIELD_SHORT ), DEFINE_EMBEDDED( m_AmbientLighting ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dleaf_t ) DEFINE_FIELD( contents, FIELD_INTEGER ), DEFINE_FIELD( cluster, FIELD_SHORT ), DEFINE_BITFIELD( bf, FIELD_SHORT, 16 ), DEFINE_ARRAY( mins, FIELD_SHORT, 3 ), DEFINE_ARRAY( maxs, FIELD_SHORT, 3 ), DEFINE_FIELD( firstleafface, FIELD_SHORT ), DEFINE_FIELD( numleaffaces, FIELD_SHORT ), DEFINE_FIELD( firstleafbrush, FIELD_SHORT ), DEFINE_FIELD( numleafbrushes, FIELD_SHORT ), DEFINE_FIELD( leafWaterDataID, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CompressedLightCube ) // array of 6 ColorRGBExp32 (3 bytes and 1 char)
DEFINE_ARRAY( m_Color, FIELD_CHARACTER, 6 * sizeof(ColorRGBExp32) ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dleafambientindex_t ) DEFINE_FIELD( ambientSampleCount, FIELD_SHORT ), DEFINE_FIELD( firstAmbientSample, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dleafambientlighting_t ) // array of 6 ColorRGBExp32 (3 bytes and 1 char)
DEFINE_EMBEDDED( cube ), DEFINE_FIELD( x, FIELD_CHARACTER ), DEFINE_FIELD( y, FIELD_CHARACTER ), DEFINE_FIELD( z, FIELD_CHARACTER ), DEFINE_FIELD( pad, FIELD_CHARACTER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dvertex_t ) DEFINE_FIELD( point, FIELD_VECTOR ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dnode_t ) DEFINE_FIELD( planenum, FIELD_INTEGER ), DEFINE_ARRAY( children, FIELD_INTEGER, 2 ), DEFINE_ARRAY( mins, FIELD_SHORT, 3 ), DEFINE_ARRAY( maxs, FIELD_SHORT, 3 ), DEFINE_FIELD( firstface, FIELD_SHORT ), DEFINE_FIELD( numfaces, FIELD_SHORT ), DEFINE_FIELD( area, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( texinfo_t ) DEFINE_ARRAY( textureVecsTexelsPerWorldUnits, FIELD_FLOAT, 2 * 4 ), DEFINE_ARRAY( lightmapVecsLuxelsPerWorldUnits, FIELD_FLOAT, 2 * 4 ), DEFINE_FIELD( flags, FIELD_INTEGER ), DEFINE_FIELD( texdata, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dtexdata_t ) DEFINE_FIELD( reflectivity, FIELD_VECTOR ), DEFINE_FIELD( nameStringTableID, FIELD_INTEGER ), DEFINE_FIELD( width, FIELD_INTEGER ), DEFINE_FIELD( height, FIELD_INTEGER ), DEFINE_FIELD( view_width, FIELD_INTEGER ), DEFINE_FIELD( view_height, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( ddispinfo_t ) DEFINE_FIELD( startPosition, FIELD_VECTOR ), DEFINE_FIELD( m_iDispVertStart, FIELD_INTEGER ), DEFINE_FIELD( m_iDispTriStart, FIELD_INTEGER ), DEFINE_FIELD( power, FIELD_INTEGER ), DEFINE_FIELD( minTess, FIELD_INTEGER ), DEFINE_FIELD( smoothingAngle, FIELD_FLOAT ), DEFINE_FIELD( contents, FIELD_INTEGER ), DEFINE_FIELD( m_iMapFace, FIELD_SHORT ), DEFINE_FIELD( m_iLightmapAlphaStart, FIELD_INTEGER ), DEFINE_FIELD( m_iLightmapSamplePositionStart, FIELD_INTEGER ), DEFINE_EMBEDDED_ARRAY( m_EdgeNeighbors, 4 ), DEFINE_EMBEDDED_ARRAY( m_CornerNeighbors, 4 ), DEFINE_ARRAY( m_AllowedVerts, FIELD_INTEGER, ddispinfo_t::ALLOWEDVERTS_SIZE ), // unsigned long
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CDispNeighbor ) DEFINE_EMBEDDED_ARRAY( m_SubNeighbors, 2 ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CDispCornerNeighbors ) DEFINE_ARRAY( m_Neighbors, FIELD_SHORT, MAX_DISP_CORNER_NEIGHBORS ), DEFINE_FIELD( m_nNeighbors, FIELD_CHARACTER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CDispSubNeighbor ) DEFINE_FIELD( m_iNeighbor, FIELD_SHORT ), DEFINE_FIELD( m_NeighborOrientation, FIELD_CHARACTER ), DEFINE_FIELD( m_Span, FIELD_CHARACTER ), DEFINE_FIELD( m_NeighborSpan, FIELD_CHARACTER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CDispVert ) DEFINE_FIELD( m_vVector, FIELD_VECTOR ), DEFINE_FIELD( m_flDist, FIELD_FLOAT ), DEFINE_FIELD( m_flAlpha, FIELD_FLOAT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CDispTri ) DEFINE_FIELD( m_uiTags, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CFaceMacroTextureInfo ) DEFINE_FIELD( m_MacroTextureNameID, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dprimitive_t ) DEFINE_FIELD( type, FIELD_CHARACTER ), DEFINE_FIELD( firstIndex, FIELD_SHORT ), DEFINE_FIELD( indexCount, FIELD_SHORT ), DEFINE_FIELD( firstVert, FIELD_SHORT ), DEFINE_FIELD( vertCount, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dprimvert_t ) DEFINE_FIELD( pos, FIELD_VECTOR ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dface_t ) DEFINE_FIELD( planenum, FIELD_SHORT ), DEFINE_FIELD( side, FIELD_CHARACTER ), DEFINE_FIELD( onNode, FIELD_CHARACTER ), DEFINE_FIELD( firstedge, FIELD_INTEGER ), DEFINE_FIELD( numedges, FIELD_SHORT ), DEFINE_FIELD( texinfo, FIELD_SHORT ), DEFINE_FIELD( dispinfo, FIELD_SHORT ), DEFINE_FIELD( surfaceFogVolumeID, FIELD_SHORT ), DEFINE_ARRAY( styles, FIELD_CHARACTER, MAXLIGHTMAPS ), DEFINE_FIELD( lightofs, FIELD_INTEGER ), DEFINE_FIELD( area, FIELD_FLOAT ), DEFINE_ARRAY( m_LightmapTextureMinsInLuxels, FIELD_INTEGER, 2 ), DEFINE_ARRAY( m_LightmapTextureSizeInLuxels, FIELD_INTEGER, 2 ), DEFINE_FIELD( origFace, FIELD_INTEGER ), DEFINE_FIELD( m_NumPrims, FIELD_SHORT ), DEFINE_FIELD( firstPrimID, FIELD_SHORT ), DEFINE_FIELD( smoothingGroups, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dfaceid_t ) DEFINE_FIELD( hammerfaceid, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dbrush_t ) DEFINE_FIELD( firstside, FIELD_INTEGER ), DEFINE_FIELD( numsides, FIELD_INTEGER ), DEFINE_FIELD( contents, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dbrushside_t ) DEFINE_FIELD( planenum, FIELD_SHORT ), DEFINE_FIELD( texinfo, FIELD_SHORT ), DEFINE_FIELD( dispinfo, FIELD_SHORT ), DEFINE_FIELD( bevel, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dedge_t ) DEFINE_ARRAY( v, FIELD_SHORT, 2 ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dmodel_t ) DEFINE_FIELD( mins, FIELD_VECTOR ), DEFINE_FIELD( maxs, FIELD_VECTOR ), DEFINE_FIELD( origin, FIELD_VECTOR ), DEFINE_FIELD( headnode, FIELD_INTEGER ), DEFINE_FIELD( firstface, FIELD_INTEGER ), DEFINE_FIELD( numfaces, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dphysmodel_t ) DEFINE_FIELD( modelIndex, FIELD_INTEGER ), DEFINE_FIELD( dataSize, FIELD_INTEGER ), DEFINE_FIELD( keydataSize, FIELD_INTEGER ), DEFINE_FIELD( solidCount, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dphysdisp_t ) DEFINE_FIELD( numDisplacements, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( darea_t ) DEFINE_FIELD( numareaportals, FIELD_INTEGER ), DEFINE_FIELD( firstareaportal, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dareaportal_t ) DEFINE_FIELD( m_PortalKey, FIELD_SHORT ), DEFINE_FIELD( otherarea, FIELD_SHORT ), DEFINE_FIELD( m_FirstClipPortalVert, FIELD_SHORT ), DEFINE_FIELD( m_nClipPortalVerts, FIELD_SHORT ), DEFINE_FIELD( planenum, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dworldlight_t ) DEFINE_FIELD( origin, FIELD_VECTOR ), DEFINE_FIELD( intensity, FIELD_VECTOR ), DEFINE_FIELD( normal, FIELD_VECTOR ), DEFINE_FIELD( cluster, FIELD_INTEGER ), DEFINE_FIELD( type, FIELD_INTEGER ), // enumeration
DEFINE_FIELD( style, FIELD_INTEGER ), DEFINE_FIELD( stopdot, FIELD_FLOAT ), DEFINE_FIELD( stopdot2, FIELD_FLOAT ), DEFINE_FIELD( exponent, FIELD_FLOAT ), DEFINE_FIELD( radius, FIELD_FLOAT ), DEFINE_FIELD( constant_attn, FIELD_FLOAT ), DEFINE_FIELD( linear_attn, FIELD_FLOAT ), DEFINE_FIELD( quadratic_attn, FIELD_FLOAT ), DEFINE_FIELD( flags, FIELD_INTEGER ), DEFINE_FIELD( texinfo, FIELD_INTEGER ), DEFINE_FIELD( owner, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dleafwaterdata_t ) DEFINE_FIELD( surfaceZ, FIELD_FLOAT ), DEFINE_FIELD( minZ, FIELD_FLOAT ), DEFINE_FIELD( surfaceTexInfoID, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( doccluderdata_t ) DEFINE_FIELD( flags, FIELD_INTEGER ), DEFINE_FIELD( firstpoly, FIELD_INTEGER ), DEFINE_FIELD( polycount, FIELD_INTEGER ), DEFINE_FIELD( mins, FIELD_VECTOR ), DEFINE_FIELD( maxs, FIELD_VECTOR ), DEFINE_FIELD( area, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( doccluderpolydata_t ) DEFINE_FIELD( firstvertexindex, FIELD_INTEGER ), DEFINE_FIELD( vertexcount, FIELD_INTEGER ), DEFINE_FIELD( planenum, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dcubemapsample_t ) DEFINE_ARRAY( origin, FIELD_INTEGER, 3 ), DEFINE_FIELD( size, FIELD_CHARACTER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( doverlay_t ) DEFINE_FIELD( nId, FIELD_INTEGER ), DEFINE_FIELD( nTexInfo, FIELD_SHORT ), DEFINE_FIELD( m_nFaceCountAndRenderOrder, FIELD_SHORT ), DEFINE_ARRAY( aFaces, FIELD_INTEGER, OVERLAY_BSP_FACE_COUNT ), DEFINE_ARRAY( flU, FIELD_FLOAT, 2 ), DEFINE_ARRAY( flV, FIELD_FLOAT, 2 ), DEFINE_ARRAY( vecUVPoints, FIELD_VECTOR, 4 ), DEFINE_FIELD( vecOrigin, FIELD_VECTOR ), DEFINE_FIELD( vecBasisNormal, FIELD_VECTOR ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dwateroverlay_t ) DEFINE_FIELD( nId, FIELD_INTEGER ), DEFINE_FIELD( nTexInfo, FIELD_SHORT ), DEFINE_FIELD( m_nFaceCountAndRenderOrder, FIELD_SHORT ), DEFINE_ARRAY( aFaces, FIELD_INTEGER, WATEROVERLAY_BSP_FACE_COUNT ), DEFINE_ARRAY( flU, FIELD_FLOAT, 2 ), DEFINE_ARRAY( flV, FIELD_FLOAT, 2 ), DEFINE_ARRAY( vecUVPoints, FIELD_VECTOR, 4 ), DEFINE_FIELD( vecOrigin, FIELD_VECTOR ), DEFINE_FIELD( vecBasisNormal, FIELD_VECTOR ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( doverlayfade_t ) DEFINE_FIELD( flFadeDistMinSq, FIELD_FLOAT ), DEFINE_FIELD( flFadeDistMaxSq, FIELD_FLOAT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dgamelumpheader_t ) DEFINE_FIELD( lumpCount, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dgamelump_t ) DEFINE_FIELD( id, FIELD_INTEGER ), // GameLumpId_t
DEFINE_FIELD( flags, FIELD_SHORT ), DEFINE_FIELD( version, FIELD_SHORT ), DEFINE_FIELD( fileofs, FIELD_INTEGER ), DEFINE_FIELD( filelen, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
// From gamebspfile.h
BEGIN_BYTESWAP_DATADESC( StaticPropDictLump_t ) DEFINE_ARRAY( m_Name, FIELD_CHARACTER, STATIC_PROP_NAME_LENGTH ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( StaticPropLump_t ) DEFINE_FIELD( m_Origin, FIELD_VECTOR ), DEFINE_FIELD( m_Angles, FIELD_VECTOR ), // QAngle
DEFINE_FIELD( m_PropType, FIELD_SHORT ), DEFINE_FIELD( m_FirstLeaf, FIELD_SHORT ), DEFINE_FIELD( m_LeafCount, FIELD_SHORT ), DEFINE_FIELD( m_Solid, FIELD_CHARACTER ), DEFINE_FIELD( m_Flags, FIELD_CHARACTER ), DEFINE_FIELD( m_Skin, FIELD_INTEGER ), DEFINE_FIELD( m_FadeMinDist, FIELD_FLOAT ), DEFINE_FIELD( m_FadeMaxDist, FIELD_FLOAT ), DEFINE_FIELD( m_LightingOrigin, FIELD_VECTOR ), DEFINE_FIELD( m_flForcedFadeScale, FIELD_FLOAT ), DEFINE_FIELD( m_nMinDXLevel, FIELD_SHORT ), DEFINE_FIELD( m_nMaxDXLevel, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( StaticPropLumpV4_t ) DEFINE_FIELD( m_Origin, FIELD_VECTOR ), DEFINE_FIELD( m_Angles, FIELD_VECTOR ), // QAngle
DEFINE_FIELD( m_PropType, FIELD_SHORT ), DEFINE_FIELD( m_FirstLeaf, FIELD_SHORT ), DEFINE_FIELD( m_LeafCount, FIELD_SHORT ), DEFINE_FIELD( m_Solid, FIELD_CHARACTER ), DEFINE_FIELD( m_Flags, FIELD_CHARACTER ), DEFINE_FIELD( m_Skin, FIELD_INTEGER ), DEFINE_FIELD( m_FadeMinDist, FIELD_FLOAT ), DEFINE_FIELD( m_FadeMaxDist, FIELD_FLOAT ), DEFINE_FIELD( m_LightingOrigin, FIELD_VECTOR ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( StaticPropLumpV5_t ) DEFINE_FIELD( m_Origin, FIELD_VECTOR ), DEFINE_FIELD( m_Angles, FIELD_VECTOR ), // QAngle
DEFINE_FIELD( m_PropType, FIELD_SHORT ), DEFINE_FIELD( m_FirstLeaf, FIELD_SHORT ), DEFINE_FIELD( m_LeafCount, FIELD_SHORT ), DEFINE_FIELD( m_Solid, FIELD_CHARACTER ), DEFINE_FIELD( m_Flags, FIELD_CHARACTER ), DEFINE_FIELD( m_Skin, FIELD_INTEGER ), DEFINE_FIELD( m_FadeMinDist, FIELD_FLOAT ), DEFINE_FIELD( m_FadeMaxDist, FIELD_FLOAT ), DEFINE_FIELD( m_LightingOrigin, FIELD_VECTOR ), DEFINE_FIELD( m_flForcedFadeScale, FIELD_FLOAT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( StaticPropLeafLump_t ) DEFINE_FIELD( m_Leaf, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( DetailObjectDictLump_t ) DEFINE_ARRAY( m_Name, FIELD_CHARACTER, DETAIL_NAME_LENGTH ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( DetailObjectLump_t ) DEFINE_FIELD( m_Origin, FIELD_VECTOR ), DEFINE_FIELD( m_Angles, FIELD_VECTOR ), // QAngle
DEFINE_FIELD( m_DetailModel, FIELD_SHORT ), DEFINE_FIELD( m_Leaf, FIELD_SHORT ), DEFINE_ARRAY( m_Lighting, FIELD_CHARACTER, 4 ), // ColorRGBExp32
DEFINE_FIELD( m_LightStyles, FIELD_INTEGER ), DEFINE_FIELD( m_LightStyleCount, FIELD_CHARACTER ), DEFINE_FIELD( m_SwayAmount, FIELD_CHARACTER ), DEFINE_FIELD( m_ShapeAngle, FIELD_CHARACTER ), DEFINE_FIELD( m_ShapeSize, FIELD_CHARACTER ), DEFINE_FIELD( m_Orientation, FIELD_CHARACTER ), DEFINE_ARRAY( m_Padding2, FIELD_CHARACTER, 3 ), DEFINE_FIELD( m_Type, FIELD_CHARACTER ), DEFINE_ARRAY( m_Padding3, FIELD_CHARACTER, 3 ), DEFINE_FIELD( m_flScale, FIELD_FLOAT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( DetailSpriteDictLump_t ) DEFINE_FIELD( m_UL, FIELD_VECTOR2D ), DEFINE_FIELD( m_LR, FIELD_VECTOR2D ), DEFINE_FIELD( m_TexUL, FIELD_VECTOR2D ), DEFINE_FIELD( m_TexLR, FIELD_VECTOR2D ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( DetailPropLightstylesLump_t ) DEFINE_ARRAY( m_Lighting, FIELD_CHARACTER, 4 ), // ColorRGBExp32
DEFINE_FIELD( m_Style, FIELD_CHARACTER ), END_BYTESWAP_DATADESC()
// From vradstaticprops.h
namespace HardwareVerts { BEGIN_BYTESWAP_DATADESC( MeshHeader_t ) DEFINE_FIELD( m_nLod, FIELD_INTEGER ), DEFINE_FIELD( m_nVertexes, FIELD_INTEGER ), DEFINE_FIELD( m_nOffset, FIELD_INTEGER ), DEFINE_ARRAY( m_nUnused, FIELD_INTEGER, 4 ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( FileHeader_t ) DEFINE_FIELD( m_nVersion, FIELD_INTEGER ), DEFINE_FIELD( m_nChecksum, FIELD_INTEGER ), DEFINE_FIELD( m_nVertexFlags, FIELD_INTEGER ), DEFINE_FIELD( m_nVertexSize, FIELD_INTEGER ), DEFINE_FIELD( m_nVertexes, FIELD_INTEGER ), DEFINE_FIELD( m_nMeshes, FIELD_INTEGER ), DEFINE_ARRAY( m_nUnused, FIELD_INTEGER, 4 ), END_BYTESWAP_DATADESC() } // end namespace
static const char *s_LumpNames[] = { "LUMP_ENTITIES", // 0
"LUMP_PLANES", // 1
"LUMP_TEXDATA", // 2
"LUMP_VERTEXES", // 3
"LUMP_VISIBILITY", // 4
"LUMP_NODES", // 5
"LUMP_TEXINFO", // 6
"LUMP_FACES", // 7
"LUMP_LIGHTING", // 8
"LUMP_OCCLUSION", // 9
"LUMP_LEAFS", // 10
"LUMP_FACEIDS", // 11
"LUMP_EDGES", // 12
"LUMP_SURFEDGES", // 13
"LUMP_MODELS", // 14
"LUMP_WORLDLIGHTS", // 15
"LUMP_LEAFFACES", // 16
"LUMP_LEAFBRUSHES", // 17
"LUMP_BRUSHES", // 18
"LUMP_BRUSHSIDES", // 19
"LUMP_AREAS", // 20
"LUMP_AREAPORTALS", // 21
"LUMP_UNUSED0", // 22
"LUMP_UNUSED1", // 23
"LUMP_UNUSED2", // 24
"LUMP_UNUSED3", // 25
"LUMP_DISPINFO", // 26
"LUMP_ORIGINALFACES", // 27
"LUMP_PHYSDISP", // 28
"LUMP_PHYSCOLLIDE", // 29
"LUMP_VERTNORMALS", // 30
"LUMP_VERTNORMALINDICES", // 31
"LUMP_DISP_LIGHTMAP_ALPHAS", // 32
"LUMP_DISP_VERTS", // 33
"LUMP_DISP_LIGHTMAP_SAMPLE_POSITIONS", // 34
"LUMP_GAME_LUMP", // 35
"LUMP_LEAFWATERDATA", // 36
"LUMP_PRIMITIVES", // 37
"LUMP_PRIMVERTS", // 38
"LUMP_PRIMINDICES", // 39
"LUMP_PAKFILE", // 40
"LUMP_CLIPPORTALVERTS", // 41
"LUMP_CUBEMAPS", // 42
"LUMP_TEXDATA_STRING_DATA", // 43
"LUMP_TEXDATA_STRING_TABLE", // 44
"LUMP_OVERLAYS", // 45
"LUMP_LEAFMINDISTTOWATER", // 46
"LUMP_FACE_MACRO_TEXTURE_INFO", // 47
"LUMP_DISP_TRIS", // 48
"LUMP_PHYSCOLLIDESURFACE", // 49
"LUMP_WATEROVERLAYS", // 50
"LUMP_LEAF_AMBIENT_INDEX_HDR", // 51
"LUMP_LEAF_AMBIENT_INDEX", // 52
"LUMP_LIGHTING_HDR", // 53
"LUMP_WORLDLIGHTS_HDR", // 54
"LUMP_LEAF_AMBIENT_LIGHTING_HDR", // 55
"LUMP_LEAF_AMBIENT_LIGHTING", // 56
"LUMP_XZIPPAKFILE", // 57
"LUMP_FACES_HDR", // 58
"LUMP_MAP_FLAGS", // 59
"LUMP_OVERLAY_FADES", // 60
};
const char *GetLumpName( unsigned int lumpnum ) { if ( lumpnum >= ARRAYSIZE( s_LumpNames ) ) { return "UNKNOWN"; } return s_LumpNames[lumpnum]; }
// "-hdr" tells us to use the HDR fields (if present) on the light sources. Also, tells us to write
// out the HDR lumps for lightmaps, ambient leaves, and lights sources.
bool g_bHDR = false;
// Set to true to generate Xbox360 native output files
static bool g_bSwapOnLoad = false; static bool g_bSwapOnWrite = false;
VTFConvertFunc_t g_pVTFConvertFunc; VHVFixupFunc_t g_pVHVFixupFunc; CompressFunc_t g_pCompressFunc;
CUtlVector< CUtlString > g_StaticPropNames; CUtlVector< int > g_StaticPropInstances;
CByteswap g_Swap;
uint32 g_LevelFlags = 0;
int nummodels; dmodel_t dmodels[MAX_MAP_MODELS];
int visdatasize; byte dvisdata[MAX_MAP_VISIBILITY]; dvis_t *dvis = (dvis_t *)dvisdata;
CUtlVector<byte> dlightdataHDR; CUtlVector<byte> dlightdataLDR; CUtlVector<byte> *pdlightdata = &dlightdataLDR;
CUtlVector<char> dentdata;
int numleafs; #if !defined( BSP_USE_LESS_MEMORY )
dleaf_t dleafs[MAX_MAP_LEAFS]; #else
dleaf_t *dleafs; #endif
CUtlVector<dleafambientindex_t> g_LeafAmbientIndexLDR; CUtlVector<dleafambientindex_t> g_LeafAmbientIndexHDR; CUtlVector<dleafambientindex_t> *g_pLeafAmbientIndex = NULL; CUtlVector<dleafambientlighting_t> g_LeafAmbientLightingLDR; CUtlVector<dleafambientlighting_t> g_LeafAmbientLightingHDR; CUtlVector<dleafambientlighting_t> *g_pLeafAmbientLighting = NULL;
unsigned short g_LeafMinDistToWater[MAX_MAP_LEAFS];
int numplanes; dplane_t dplanes[MAX_MAP_PLANES];
int numvertexes; dvertex_t dvertexes[MAX_MAP_VERTS];
int g_numvertnormalindices; // dfaces reference these. These index g_vertnormals.
unsigned short g_vertnormalindices[MAX_MAP_VERTNORMALS];
int g_numvertnormals; Vector g_vertnormals[MAX_MAP_VERTNORMALS];
int numnodes; dnode_t dnodes[MAX_MAP_NODES];
CUtlVector<texinfo_t> texinfo( MAX_MAP_TEXINFO );
int numtexdata; dtexdata_t dtexdata[MAX_MAP_TEXDATA];
//
// displacement map bsp file info: dispinfo
//
CUtlVector<ddispinfo_t> g_dispinfo; CUtlVector<CDispVert> g_DispVerts; CUtlVector<CDispTri> g_DispTris; CUtlVector<unsigned char> g_DispLightmapSamplePositions; // LUMP_DISP_LIGHTMAP_SAMPLE_POSITIONS
int numorigfaces; dface_t dorigfaces[MAX_MAP_FACES];
int g_numprimitives = 0; dprimitive_t g_primitives[MAX_MAP_PRIMITIVES];
int g_numprimverts = 0; dprimvert_t g_primverts[MAX_MAP_PRIMVERTS];
int g_numprimindices = 0; unsigned short g_primindices[MAX_MAP_PRIMINDICES];
int numfaces; dface_t dfaces[MAX_MAP_FACES];
int numfaceids; CUtlVector<dfaceid_t> dfaceids;
int numfaces_hdr; dface_t dfaces_hdr[MAX_MAP_FACES];
int numedges; dedge_t dedges[MAX_MAP_EDGES];
int numleaffaces; unsigned short dleaffaces[MAX_MAP_LEAFFACES];
int numleafbrushes; unsigned short dleafbrushes[MAX_MAP_LEAFBRUSHES];
int numsurfedges; int dsurfedges[MAX_MAP_SURFEDGES];
int numbrushes; dbrush_t dbrushes[MAX_MAP_BRUSHES];
int numbrushsides; dbrushside_t dbrushsides[MAX_MAP_BRUSHSIDES];
int numareas; darea_t dareas[MAX_MAP_AREAS];
int numareaportals; dareaportal_t dareaportals[MAX_MAP_AREAPORTALS];
int numworldlightsLDR; dworldlight_t dworldlightsLDR[MAX_MAP_WORLDLIGHTS];
int numworldlightsHDR; dworldlight_t dworldlightsHDR[MAX_MAP_WORLDLIGHTS];
int *pNumworldlights = &numworldlightsLDR; dworldlight_t *dworldlights = dworldlightsLDR;
int numleafwaterdata = 0; dleafwaterdata_t dleafwaterdata[MAX_MAP_LEAFWATERDATA];
CUtlVector<CFaceMacroTextureInfo> g_FaceMacroTextureInfos;
Vector g_ClipPortalVerts[MAX_MAP_PORTALVERTS]; int g_nClipPortalVerts;
dcubemapsample_t g_CubemapSamples[MAX_MAP_CUBEMAPSAMPLES]; int g_nCubemapSamples = 0;
int g_nOverlayCount; doverlay_t g_Overlays[MAX_MAP_OVERLAYS]; doverlayfade_t g_OverlayFades[MAX_MAP_OVERLAYS];
int g_nWaterOverlayCount; dwateroverlay_t g_WaterOverlays[MAX_MAP_WATEROVERLAYS];
CUtlVector<char> g_TexDataStringData; CUtlVector<int> g_TexDataStringTable;
byte *g_pPhysCollide = NULL; int g_PhysCollideSize = 0; int g_MapRevision = 0;
byte *g_pPhysDisp = NULL; int g_PhysDispSize = 0;
CUtlVector<doccluderdata_t> g_OccluderData( 256, 256 ); CUtlVector<doccluderpolydata_t> g_OccluderPolyData( 1024, 1024 ); CUtlVector<int> g_OccluderVertexIndices( 2048, 2048 ); template <class T> static void WriteData( T *pData, int count = 1 ); template <class T> static void WriteData( int fieldType, T *pData, int count = 1 ); template< class T > static void AddLump( int lumpnum, T *pData, int count, int version = 0 ); template< class T > static void AddLump( int lumpnum, CUtlVector<T> &data, int version = 0 );
dheader_t *g_pBSPHeader; FileHandle_t g_hBSPFile;
struct Lump_t { void *pLumps[HEADER_LUMPS]; int size[HEADER_LUMPS]; bool bLumpParsed[HEADER_LUMPS]; } g_Lumps;
CGameLump g_GameLumps;
static IZip *s_pakFile = 0;
//-----------------------------------------------------------------------------
// Keep the file position aligned to an arbitrary boundary.
// Returns updated file position.
//-----------------------------------------------------------------------------
static unsigned int AlignFilePosition( FileHandle_t hFile, int alignment ) { unsigned int currPosition = g_pFileSystem->Tell( hFile );
if ( alignment >= 2 ) { unsigned int newPosition = AlignValue( currPosition, alignment ); unsigned int count = newPosition - currPosition; if ( count ) { char *pBuffer; char smallBuffer[4096]; if ( count > sizeof( smallBuffer ) ) { pBuffer = (char *)malloc( count ); } else { pBuffer = smallBuffer; }
memset( pBuffer, 0, count ); SafeWrite( hFile, pBuffer, count );
if ( pBuffer != smallBuffer ) { free( pBuffer ); }
currPosition = newPosition; } }
return currPosition; }
//-----------------------------------------------------------------------------
// Purpose: // Get a pakfile instance
// Output : IZip*
//-----------------------------------------------------------------------------
IZip* GetPakFile( void ) { if ( !s_pakFile ) { s_pakFile = IZip::CreateZip(); } return s_pakFile; }
//-----------------------------------------------------------------------------
// Purpose: Free the pak files
//-----------------------------------------------------------------------------
void ReleasePakFileLumps( void ) { // Release the pak files
IZip::ReleaseZip( s_pakFile ); s_pakFile = NULL; }
//-----------------------------------------------------------------------------
// Purpose: Set the sector alignment for all subsequent zip operations
//-----------------------------------------------------------------------------
void ForceAlignment( IZip *pak, bool bAlign, bool bCompatibleFormat, unsigned int alignmentSize ) { pak->ForceAlignment( bAlign, bCompatibleFormat, alignmentSize ); }
//-----------------------------------------------------------------------------
// Purpose: Store data back out to .bsp file
//-----------------------------------------------------------------------------
static void WritePakFileLump( void ) { CUtlBuffer buf( 0, 0 ); GetPakFile()->ActivateByteSwapping( IsX360() ); GetPakFile()->SaveToBuffer( buf );
// must respect pak file alignment
// pad up and ensure lump starts on same aligned boundary
AlignFilePosition( g_hBSPFile, GetPakFile()->GetAlignment() ); // Now store final buffers out to file
AddLump( LUMP_PAKFILE, (byte*)buf.Base(), buf.TellPut() ); }
//-----------------------------------------------------------------------------
// Purpose: Remove all entries
//-----------------------------------------------------------------------------
void ClearPakFile( IZip *pak ) { pak->Reset(); }
//-----------------------------------------------------------------------------
// Purpose: Add file from disk to .bsp PAK lump
// Input : *relativename -
// *fullpath -
//-----------------------------------------------------------------------------
void AddFileToPak( IZip *pak, const char *relativename, const char *fullpath, IZip::eCompressionType compressionType ) { DevMsg( "Adding file to pakfile [ %s ]\n", fullpath ); pak->AddFileToZip( relativename, fullpath, compressionType ); }
//-----------------------------------------------------------------------------
// Purpose: Add buffer to .bsp PAK lump as named file
// Input : *relativename -
// *data -
// length -
//-----------------------------------------------------------------------------
void AddBufferToPak( IZip *pak, const char *pRelativeName, void *data, int length, bool bTextMode, IZip::eCompressionType compressionType ) { pak->AddBufferToZip( pRelativeName, data, length, bTextMode, compressionType ); }
//-----------------------------------------------------------------------------
// Purpose: Add entire directory to .bsp PAK lump as named file
// Input : *relativename -
// *data -
// length -
//-----------------------------------------------------------------------------
void AddDirToPak( IZip *pak, const char *pDirPath, const char *pPakPrefix ) { if ( !g_pFullFileSystem->IsDirectory( pDirPath ) ) { Warning( "Passed non-directory to AddDirToPak [ %s ]\n", pDirPath ); return; }
DevMsg( "Adding directory to pakfile [ %s ]\n", pDirPath );
// Enumerate dir
char szEnumerateDir[MAX_PATH] = { 0 }; V_snprintf( szEnumerateDir, sizeof( szEnumerateDir ), "%s/*.*", pDirPath ); V_FixSlashes( szEnumerateDir );
FileFindHandle_t handle; const char *szFindResult = g_pFullFileSystem->FindFirst( szEnumerateDir, &handle ); do { if ( szFindResult[0] != '.' ) { char szPakName[MAX_PATH] = { 0 }; char szFullPath[MAX_PATH] = { 0 }; if ( pPakPrefix ) { V_snprintf( szPakName, sizeof( szPakName ), "%s/%s", pPakPrefix, szFindResult ); } else { V_strncpy( szPakName, szFindResult, sizeof( szPakName ) ); } V_snprintf( szFullPath, sizeof( szFullPath ), "%s/%s", pDirPath, szFindResult ); V_FixDoubleSlashes( szFullPath ); V_FixDoubleSlashes( szPakName );
if ( g_pFullFileSystem->FindIsDirectory( handle ) ) { // Recurse
AddDirToPak( pak, szFullPath, szPakName ); } else { // Just add this file
AddFileToPak( pak, szPakName, szFullPath ); } } szFindResult = g_pFullFileSystem->FindNext( handle ); } while ( szFindResult); }
//-----------------------------------------------------------------------------
// Purpose: Check if a file already exists in the pack file.
// Input : *relativename -
//-----------------------------------------------------------------------------
bool FileExistsInPak( IZip *pak, const char *pRelativeName ) { return pak->FileExistsInZip( pRelativeName ); }
//-----------------------------------------------------------------------------
// Read a file from the pack file
//-----------------------------------------------------------------------------
bool ReadFileFromPak( IZip *pak, const char *pRelativeName, bool bTextMode, CUtlBuffer &buf ) { return pak->ReadFileFromZip( pRelativeName, bTextMode, buf ); }
//-----------------------------------------------------------------------------
// Purpose: Remove file from .bsp PAK lump
// Input : *relativename -
//-----------------------------------------------------------------------------
void RemoveFileFromPak( IZip *pak, const char *relativename ) { pak->RemoveFileFromZip( relativename ); }
//-----------------------------------------------------------------------------
// Purpose: Get next filename in directory
// Input : id, -1 to start, returns next id, or -1 at list conclusion
//-----------------------------------------------------------------------------
int GetNextFilename( IZip *pak, int id, char *pBuffer, int bufferSize, int &fileSize ) { return pak->GetNextFilename( id, pBuffer, bufferSize, fileSize ); }
//-----------------------------------------------------------------------------
// Convert four-CC code to a handle + back
//-----------------------------------------------------------------------------
GameLumpHandle_t CGameLump::GetGameLumpHandle( GameLumpId_t id ) { // NOTE: I'm also expecting game lump id's to be four-CC codes
Assert( id > HEADER_LUMPS );
FOR_EACH_LL(m_GameLumps, i) { if (m_GameLumps[i].m_Id == id) return i; }
return InvalidGameLump(); }
GameLumpId_t CGameLump::GetGameLumpId( GameLumpHandle_t handle ) { return m_GameLumps[handle].m_Id; }
int CGameLump::GetGameLumpFlags( GameLumpHandle_t handle ) { return m_GameLumps[handle].m_Flags; }
int CGameLump::GetGameLumpVersion( GameLumpHandle_t handle ) { return m_GameLumps[handle].m_Version; }
//-----------------------------------------------------------------------------
// Game lump accessor methods
//-----------------------------------------------------------------------------
void* CGameLump::GetGameLump( GameLumpHandle_t id ) { return m_GameLumps[id].m_Memory.Base(); }
int CGameLump::GameLumpSize( GameLumpHandle_t id ) { return m_GameLumps[id].m_Memory.NumAllocated(); }
//-----------------------------------------------------------------------------
// Game lump iteration methods
//-----------------------------------------------------------------------------
GameLumpHandle_t CGameLump::FirstGameLump() { return (m_GameLumps.Count()) ? m_GameLumps.Head() : InvalidGameLump(); }
GameLumpHandle_t CGameLump::NextGameLump( GameLumpHandle_t handle ) {
return (m_GameLumps.IsValidIndex(handle)) ? m_GameLumps.Next(handle) : InvalidGameLump(); }
GameLumpHandle_t CGameLump::InvalidGameLump() { return 0xFFFF; }
//-----------------------------------------------------------------------------
// Game lump creation/destruction method
//-----------------------------------------------------------------------------
GameLumpHandle_t CGameLump::CreateGameLump( GameLumpId_t id, int size, int flags, int version ) { Assert( GetGameLumpHandle(id) == InvalidGameLump() ); GameLumpHandle_t handle = m_GameLumps.AddToTail(); m_GameLumps[handle].m_Id = id; m_GameLumps[handle].m_Flags = flags; m_GameLumps[handle].m_Version = version; m_GameLumps[handle].m_Memory.EnsureCapacity( size ); return handle; }
void CGameLump::DestroyGameLump( GameLumpHandle_t handle ) { m_GameLumps.Remove( handle ); }
void CGameLump::DestroyAllGameLumps() { m_GameLumps.RemoveAll(); }
//-----------------------------------------------------------------------------
// Compute file size and clump count
//-----------------------------------------------------------------------------
void CGameLump::ComputeGameLumpSizeAndCount( int& size, int& clumpCount ) { // Figure out total size of the client lumps
size = 0; clumpCount = 0; GameLumpHandle_t h; for( h = FirstGameLump(); h != InvalidGameLump(); h = NextGameLump( h ) ) { ++clumpCount; size += GameLumpSize( h ); }
// Add on headers
size += sizeof( dgamelumpheader_t ) + clumpCount * sizeof( dgamelump_t ); }
void CGameLump::SwapGameLump( GameLumpId_t id, int version, byte *dest, byte *src, int length ) { int count = 0; switch( id ) { case GAMELUMP_STATIC_PROPS: // Swap the static prop model dict
count = *(int*)src; g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src ); count = g_bSwapOnLoad ? *(int*)dest : count; src += sizeof(int); dest += sizeof(int);
g_Swap.SwapFieldsToTargetEndian( (StaticPropDictLump_t*)dest, (StaticPropDictLump_t*)src, count ); src += sizeof(StaticPropDictLump_t) * count; dest += sizeof(StaticPropDictLump_t) * count;
// Swap the leaf list
count = *(int*)src; g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src ); count = g_bSwapOnLoad ? *(int*)dest : count; src += sizeof(int); dest += sizeof(int);
g_Swap.SwapFieldsToTargetEndian( (StaticPropLeafLump_t*)dest, (StaticPropLeafLump_t*)src, count ); src += sizeof(StaticPropLeafLump_t) * count; dest += sizeof(StaticPropLeafLump_t) * count;
// Swap the models
count = *(int*)src; g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src ); count = g_bSwapOnLoad ? *(int*)dest : count; src += sizeof(int); dest += sizeof(int);
// The one-at-a-time swap is to compensate for these structures
// possibly being misaligned, which crashes the Xbox 360.
if ( version == 4 ) { StaticPropLumpV4_t lump; for ( int i = 0; i < count; ++i ) { Q_memcpy( &lump, src, sizeof(StaticPropLumpV4_t) ); g_Swap.SwapFieldsToTargetEndian( &lump, &lump ); Q_memcpy( dest, &lump, sizeof(StaticPropLumpV4_t) ); src += sizeof( StaticPropLumpV4_t ); dest += sizeof( StaticPropLumpV4_t ); } } else if ( version == 5 ) { StaticPropLumpV5_t lump; for ( int i = 0; i < count; ++i ) { Q_memcpy( &lump, src, sizeof(StaticPropLumpV5_t) ); g_Swap.SwapFieldsToTargetEndian( &lump, &lump ); Q_memcpy( dest, &lump, sizeof(StaticPropLumpV5_t) ); src += sizeof( StaticPropLumpV5_t ); dest += sizeof( StaticPropLumpV5_t ); } } else { if ( version != 6 ) { Error( "Unknown Static Prop Lump version %d didn't get swapped!\n", version ); }
StaticPropLump_t lump; for ( int i = 0; i < count; ++i ) { Q_memcpy( &lump, src, sizeof(StaticPropLump_t) ); g_Swap.SwapFieldsToTargetEndian( &lump, &lump ); Q_memcpy( dest, &lump, sizeof(StaticPropLump_t) ); src += sizeof( StaticPropLump_t ); dest += sizeof( StaticPropLump_t ); } } break;
case GAMELUMP_DETAIL_PROPS: // Swap the detail prop model dict
count = *(int*)src; g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src ); count = g_bSwapOnLoad ? *(int*)dest : count; src += sizeof(int); dest += sizeof(int);
g_Swap.SwapFieldsToTargetEndian( (DetailObjectDictLump_t*)dest, (DetailObjectDictLump_t*)src, count ); src += sizeof(DetailObjectDictLump_t) * count; dest += sizeof(DetailObjectDictLump_t) * count;
if ( version == 4 ) { // Swap the detail sprite dict
count = *(int*)src; g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src ); count = g_bSwapOnLoad ? *(int*)dest : count; src += sizeof(int); dest += sizeof(int);
DetailSpriteDictLump_t spritelump; for ( int i = 0; i < count; ++i ) { Q_memcpy( &spritelump, src, sizeof(DetailSpriteDictLump_t) ); g_Swap.SwapFieldsToTargetEndian( &spritelump, &spritelump ); Q_memcpy( dest, &spritelump, sizeof(DetailSpriteDictLump_t) ); src += sizeof(DetailSpriteDictLump_t); dest += sizeof(DetailSpriteDictLump_t); }
// Swap the models
count = *(int*)src; g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src ); count = g_bSwapOnLoad ? *(int*)dest : count; src += sizeof(int); dest += sizeof(int);
DetailObjectLump_t objectlump; for ( int i = 0; i < count; ++i ) { Q_memcpy( &objectlump, src, sizeof(DetailObjectLump_t) ); g_Swap.SwapFieldsToTargetEndian( &objectlump, &objectlump ); Q_memcpy( dest, &objectlump, sizeof(DetailObjectLump_t) ); src += sizeof(DetailObjectLump_t); dest += sizeof(DetailObjectLump_t); } } break;
case GAMELUMP_DETAIL_PROP_LIGHTING: // Swap the LDR light styles
count = *(int*)src; g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src ); count = g_bSwapOnLoad ? *(int*)dest : count; src += sizeof(int); dest += sizeof(int);
g_Swap.SwapFieldsToTargetEndian( (DetailPropLightstylesLump_t*)dest, (DetailPropLightstylesLump_t*)src, count ); src += sizeof(DetailObjectDictLump_t) * count; dest += sizeof(DetailObjectDictLump_t) * count; break;
case GAMELUMP_DETAIL_PROP_LIGHTING_HDR: // Swap the HDR light styles
count = *(int*)src; g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src ); count = g_bSwapOnLoad ? *(int*)dest : count; src += sizeof(int); dest += sizeof(int);
g_Swap.SwapFieldsToTargetEndian( (DetailPropLightstylesLump_t*)dest, (DetailPropLightstylesLump_t*)src, count ); src += sizeof(DetailObjectDictLump_t) * count; dest += sizeof(DetailObjectDictLump_t) * count; break;
default: char idchars[5] = {0}; Q_memcpy( idchars, &id, 4 ); Warning( "Unknown game lump '%s' didn't get swapped!\n", idchars ); memcpy ( dest, src, length); break; } }
//-----------------------------------------------------------------------------
// Game lump file I/O
//-----------------------------------------------------------------------------
void CGameLump::ParseGameLump( dheader_t* pHeader ) { g_GameLumps.DestroyAllGameLumps();
g_Lumps.bLumpParsed[LUMP_GAME_LUMP] = true;
int length = pHeader->lumps[LUMP_GAME_LUMP].filelen; int ofs = pHeader->lumps[LUMP_GAME_LUMP].fileofs; if (length > 0) { // Read dictionary...
dgamelumpheader_t* pGameLumpHeader = (dgamelumpheader_t*)((byte *)pHeader + ofs); if ( g_bSwapOnLoad ) { g_Swap.SwapFieldsToTargetEndian( pGameLumpHeader ); } dgamelump_t* pGameLump = (dgamelump_t*)(pGameLumpHeader + 1); for (int i = 0; i < pGameLumpHeader->lumpCount; ++i ) { if ( g_bSwapOnLoad ) { g_Swap.SwapFieldsToTargetEndian( &pGameLump[i] ); }
int length = pGameLump[i].filelen; GameLumpHandle_t lump = g_GameLumps.CreateGameLump( pGameLump[i].id, length, pGameLump[i].flags, pGameLump[i].version ); if ( g_bSwapOnLoad ) { SwapGameLump( pGameLump[i].id, pGameLump[i].version, (byte*)g_GameLumps.GetGameLump(lump), (byte *)pHeader + pGameLump[i].fileofs, length ); } else { memcpy( g_GameLumps.GetGameLump(lump), (byte *)pHeader + pGameLump[i].fileofs, length ); } } } }
//-----------------------------------------------------------------------------
// String table methods
//-----------------------------------------------------------------------------
const char *TexDataStringTable_GetString( int stringID ) { return &g_TexDataStringData[g_TexDataStringTable[stringID]]; }
int TexDataStringTable_AddOrFindString( const char *pString ) { int i; // garymcthack: Make this use an RBTree!
for( i = 0; i < g_TexDataStringTable.Count(); i++ ) { if( stricmp( pString, &g_TexDataStringData[g_TexDataStringTable[i]] ) == 0 ) { return i; } }
int len = strlen( pString ); int outOffset = g_TexDataStringData.AddMultipleToTail( len+1, pString ); int outIndex = g_TexDataStringTable.AddToTail( outOffset ); return outIndex; }
//-----------------------------------------------------------------------------
// Adds all game lumps into one big block
//-----------------------------------------------------------------------------
static void AddGameLumps( ) { // Figure out total size of the client lumps
int size, clumpCount; g_GameLumps.ComputeGameLumpSizeAndCount( size, clumpCount );
// Set up the main lump dictionary entry
g_Lumps.size[LUMP_GAME_LUMP] = 0; // mark it written
lump_t* lump = &g_pBSPHeader->lumps[LUMP_GAME_LUMP]; lump->fileofs = g_pFileSystem->Tell( g_hBSPFile ); lump->filelen = size;
// write header
dgamelumpheader_t header; header.lumpCount = clumpCount; WriteData( &header );
// write dictionary
dgamelump_t dict; int offset = lump->fileofs + sizeof(header) + clumpCount * sizeof(dgamelump_t); GameLumpHandle_t h; for( h = g_GameLumps.FirstGameLump(); h != g_GameLumps.InvalidGameLump(); h = g_GameLumps.NextGameLump( h ) ) { dict.id = g_GameLumps.GetGameLumpId(h); dict.version = g_GameLumps.GetGameLumpVersion(h); dict.flags = g_GameLumps.GetGameLumpFlags(h); dict.fileofs = offset; dict.filelen = g_GameLumps.GameLumpSize( h ); offset += dict.filelen;
WriteData( &dict ); }
// write lumps..
for( h = g_GameLumps.FirstGameLump(); h != g_GameLumps.InvalidGameLump(); h = g_GameLumps.NextGameLump( h ) ) { unsigned int lumpsize = g_GameLumps.GameLumpSize(h); if ( g_bSwapOnWrite ) { g_GameLumps.SwapGameLump( g_GameLumps.GetGameLumpId(h), g_GameLumps.GetGameLumpVersion(h), (byte*)g_GameLumps.GetGameLump(h), (byte*)g_GameLumps.GetGameLump(h), lumpsize ); } SafeWrite( g_hBSPFile, g_GameLumps.GetGameLump(h), lumpsize ); }
// align to doubleword
AlignFilePosition( g_hBSPFile, 4 ); }
//-----------------------------------------------------------------------------
// Adds the occluder lump...
//-----------------------------------------------------------------------------
static void AddOcclusionLump( ) { g_Lumps.size[LUMP_OCCLUSION] = 0; // mark it written
int nOccluderCount = g_OccluderData.Count(); int nOccluderPolyDataCount = g_OccluderPolyData.Count(); int nOccluderVertexIndices = g_OccluderVertexIndices.Count();
int nLumpLength = nOccluderCount * sizeof(doccluderdata_t) + nOccluderPolyDataCount * sizeof(doccluderpolydata_t) + nOccluderVertexIndices * sizeof(int) + 3 * sizeof(int);
lump_t *lump = &g_pBSPHeader->lumps[LUMP_OCCLUSION];
lump->fileofs = g_pFileSystem->Tell( g_hBSPFile ); lump->filelen = nLumpLength; lump->version = LUMP_OCCLUSION_VERSION; lump->uncompressedSize = 0;
// Data is swapped in place, so the 'Count' variables aren't safe to use after they're written
WriteData( FIELD_INTEGER, &nOccluderCount ); WriteData( (doccluderdata_t*)g_OccluderData.Base(), g_OccluderData.Count() ); WriteData( FIELD_INTEGER, &nOccluderPolyDataCount ); WriteData( (doccluderpolydata_t*)g_OccluderPolyData.Base(), g_OccluderPolyData.Count() ); WriteData( FIELD_INTEGER, &nOccluderVertexIndices ); WriteData( FIELD_INTEGER, (int*)g_OccluderVertexIndices.Base(), g_OccluderVertexIndices.Count() ); }
//-----------------------------------------------------------------------------
// Loads the occluder lump...
//-----------------------------------------------------------------------------
static void UnserializeOcclusionLumpV2( CUtlBuffer &buf ) { int nCount = buf.GetInt(); if ( nCount ) { g_OccluderData.SetCount( nCount ); buf.GetObjects( g_OccluderData.Base(), nCount ); }
nCount = buf.GetInt(); if ( nCount ) { g_OccluderPolyData.SetCount( nCount ); buf.GetObjects( g_OccluderPolyData.Base(), nCount ); }
nCount = buf.GetInt(); if ( nCount ) { if ( g_bSwapOnLoad ) { g_Swap.SwapBufferToTargetEndian( (int*)buf.PeekGet(), (int*)buf.PeekGet(), nCount ); } g_OccluderVertexIndices.SetCount( nCount ); buf.Get( g_OccluderVertexIndices.Base(), nCount * sizeof(g_OccluderVertexIndices[0]) ); } }
static void LoadOcclusionLump() { g_OccluderData.RemoveAll(); g_OccluderPolyData.RemoveAll(); g_OccluderVertexIndices.RemoveAll();
int length, ofs;
g_Lumps.bLumpParsed[LUMP_OCCLUSION] = true;
length = g_pBSPHeader->lumps[LUMP_OCCLUSION].filelen; ofs = g_pBSPHeader->lumps[LUMP_OCCLUSION].fileofs; CUtlBuffer buf( (byte *)g_pBSPHeader + ofs, length, CUtlBuffer::READ_ONLY ); buf.ActivateByteSwapping( g_bSwapOnLoad ); switch ( g_pBSPHeader->lumps[LUMP_OCCLUSION].version ) { case 2: UnserializeOcclusionLumpV2( buf ); break;
case 0: break;
default: Error("Unknown occlusion lump version!\n"); break; } }
/*
=============== CompressVis
=============== */ int CompressVis (byte *vis, byte *dest) { int j; int rep; int visrow; byte *dest_p; dest_p = dest; // visrow = (r_numvisleafs + 7)>>3;
visrow = (dvis->numclusters + 7)>>3; for (j=0 ; j<visrow ; j++) { *dest_p++ = vis[j]; if (vis[j]) continue;
rep = 1; for ( j++; j<visrow ; j++) if (vis[j] || rep == 255) break; else rep++; *dest_p++ = rep; j--; } return dest_p - dest; }
/*
=================== DecompressVis =================== */ void DecompressVis (byte *in, byte *decompressed) { int c; byte *out; int row;
// row = (r_numvisleafs+7)>>3;
row = (dvis->numclusters+7)>>3; out = decompressed;
do { if (*in) { *out++ = *in++; continue; } c = in[1]; if (!c) Error ("DecompressVis: 0 repeat"); in += 2; if ((out - decompressed) + c > row) { c = row - (out - decompressed); Warning( "warning: Vis decompression overrun\n" ); } while (c) { *out++ = 0; c--; } } while (out - decompressed < row); }
//-----------------------------------------------------------------------------
// Lump-specific swap functions
//-----------------------------------------------------------------------------
struct swapcollideheader_t { DECLARE_BYTESWAP_DATADESC(); int size; int vphysicsID; short version; short modelType; };
struct swapcompactsurfaceheader_t : swapcollideheader_t { DECLARE_BYTESWAP_DATADESC(); int surfaceSize; Vector dragAxisAreas; int axisMapSize; };
struct swapmoppsurfaceheader_t : swapcollideheader_t { DECLARE_BYTESWAP_DATADESC(); int moppSize; };
BEGIN_BYTESWAP_DATADESC( swapcollideheader_t ) DEFINE_FIELD( size, FIELD_INTEGER ), DEFINE_FIELD( vphysicsID, FIELD_INTEGER ), DEFINE_FIELD( version, FIELD_SHORT ), DEFINE_FIELD( modelType, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC_( swapcompactsurfaceheader_t, swapcollideheader_t ) DEFINE_FIELD( surfaceSize, FIELD_INTEGER ), DEFINE_FIELD( dragAxisAreas, FIELD_VECTOR ), DEFINE_FIELD( axisMapSize, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC_( swapmoppsurfaceheader_t, swapcollideheader_t ) DEFINE_FIELD( moppSize, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
static void SwapPhyscollideLump( byte *pDestBase, byte *pSrcBase, unsigned int &count ) { IPhysicsCollision *physcollision = NULL; CSysModule *pPhysicsModule = g_pFullFileSystem->LoadModule( "vphysics.dll" ); if ( pPhysicsModule ) { CreateInterfaceFn physicsFactory = Sys_GetFactory( pPhysicsModule ); if ( physicsFactory ) { physcollision = (IPhysicsCollision *)physicsFactory( VPHYSICS_COLLISION_INTERFACE_VERSION, NULL ); } }
if ( !physcollision ) { Warning("!!! WARNING: Can't swap the physcollide lump!\n" ); return; }
// physics data is variable length. The last physmodel is a NULL pointer
// with modelIndex -1, dataSize -1
dphysmodel_t *pPhysModel; byte *pSrc = pSrcBase;
// first the src chunks have to be aligned properly
// swap increases size, allocate enough expansion room
byte *pSrcAlignedBase = (byte*)malloc( 2*count ); byte *basePtr = pSrcAlignedBase; byte *pSrcAligned = pSrcAlignedBase;
do { if ( g_bSwapOnLoad ) { g_Swap.SwapFieldsToTargetEndian( (dphysmodel_t*)pSrcAligned, (dphysmodel_t*)pSrc ); } else { Q_memcpy( pSrcAligned, pSrc, sizeof(dphysmodel_t) ); } pPhysModel = (dphysmodel_t*)pSrcAligned;
pSrc += sizeof(dphysmodel_t); pSrcAligned += sizeof(dphysmodel_t);
if ( pPhysModel->dataSize > 0 ) { // Align the collide headers
for ( int i = 0; i < pPhysModel->solidCount; ++i ) { // Get data size
int size; Q_memcpy( &size, pSrc, sizeof(int) ); if ( g_bSwapOnLoad ) size = SwapLong( size );
// Fixup size
int padBytes = 0; if ( size % 4 != 0 ) { padBytes = ( 4 - size % 4 ); count += padBytes; pPhysModel->dataSize += padBytes; }
// Copy data and size into alligned buffer
int newsize = size + padBytes; if ( g_bSwapOnLoad ) newsize = SwapLong( newsize );
Q_memcpy( pSrcAligned, &newsize, sizeof(int) ); Q_memcpy( pSrcAligned + sizeof(int), pSrc + sizeof(int), size ); pSrcAligned += size + padBytes + sizeof(int); pSrc += size + sizeof(int); }
int padBytes = 0; int dataSize = pPhysModel->dataSize + pPhysModel->keydataSize; Q_memcpy( pSrcAligned, pSrc, pPhysModel->keydataSize ); pSrc += pPhysModel->keydataSize; pSrcAligned += pPhysModel->keydataSize; if ( dataSize % 4 != 0 ) { // Next chunk will be unaligned
padBytes = ( 4 - dataSize % 4 ); pPhysModel->keydataSize += padBytes; count += padBytes; Q_memset( pSrcAligned, 0, padBytes ); pSrcAligned += padBytes; } } } while ( pPhysModel->dataSize > 0 );
// Now the data can be swapped properly
pSrcBase = pSrcAlignedBase; pSrc = pSrcBase; byte *pDest = pDestBase;
do { // src headers are in native format
pPhysModel = (dphysmodel_t*)pSrc; if ( g_bSwapOnWrite ) { g_Swap.SwapFieldsToTargetEndian( (dphysmodel_t*)pDest, (dphysmodel_t*)pSrc ); } else { Q_memcpy( pDest, pSrc, sizeof(dphysmodel_t) ); }
pSrc += sizeof(dphysmodel_t); pDest += sizeof(dphysmodel_t);
pSrcBase = pSrc; pDestBase = pDest;
if ( pPhysModel->dataSize > 0 ) { vcollide_t collide = {0}; int dataSize = pPhysModel->dataSize + pPhysModel->keydataSize;
if ( g_bSwapOnWrite ) { // Load the collide data
physcollision->VCollideLoad( &collide, pPhysModel->solidCount, (const char *)pSrc, dataSize, false ); }
int *offsets = new int[ pPhysModel->solidCount ];
// Swap the collision data headers
for ( int i = 0; i < pPhysModel->solidCount; ++i ) { int headerSize = 0; swapcollideheader_t *baseHdr = (swapcollideheader_t*)pSrc; short modelType = baseHdr->modelType; if ( g_bSwapOnLoad ) { g_Swap.SwapBufferToTargetEndian( &modelType ); }
if ( modelType == 0 ) // COLLIDE_POLY
{ headerSize = sizeof(swapcompactsurfaceheader_t); swapcompactsurfaceheader_t swapHdr; Q_memcpy( &swapHdr, pSrc, headerSize ); g_Swap.SwapFieldsToTargetEndian( &swapHdr, &swapHdr ); Q_memcpy( pDest, &swapHdr, headerSize ); } else if ( modelType == 1 ) // COLLIDE_MOPP
{ // The PC still unserializes these, but we don't support them
if ( g_bSwapOnWrite ) { collide.solids[i] = NULL; }
headerSize = sizeof(swapmoppsurfaceheader_t); swapmoppsurfaceheader_t swapHdr; Q_memcpy( &swapHdr, pSrc, headerSize ); g_Swap.SwapFieldsToTargetEndian( &swapHdr, &swapHdr ); Q_memcpy( pDest, &swapHdr, headerSize );
} else { // Shouldn't happen
Assert( 0 ); }
if ( g_bSwapOnLoad ) { // src needs the native header data to load the vcollides
Q_memcpy( pSrc, pDest, headerSize ); } // HACK: Need either surfaceSize or moppSize - both sit at the same offset in the structure
swapmoppsurfaceheader_t *hdr = (swapmoppsurfaceheader_t*)pSrc; pSrc += hdr->size + sizeof(int); pDest += hdr->size + sizeof(int); offsets[i] = hdr->size; }
pSrc = pSrcBase; pDest = pDestBase; if ( g_bSwapOnLoad ) { physcollision->VCollideLoad( &collide, pPhysModel->solidCount, (const char *)pSrc, dataSize, true ); }
// Write out the ledge tree data
for ( int i = 0; i < pPhysModel->solidCount; ++i ) { if ( collide.solids[i] ) { // skip over the size member
pSrc += sizeof(int); pDest += sizeof(int); int offset = physcollision->CollideWrite( (char*)pDest, collide.solids[i], g_bSwapOnWrite ); pSrc += offset; pDest += offset; } else { pSrc += offsets[i] + sizeof(int); pDest += offsets[i] + sizeof(int); } }
// copy the keyvalues data
Q_memcpy( pDest, pSrc, pPhysModel->keydataSize ); pDest += pPhysModel->keydataSize; pSrc += pPhysModel->keydataSize;
// Free the memory
physcollision->VCollideUnload( &collide ); delete [] offsets; }
// avoid infinite loop on badly formed file
if ( (pSrc - basePtr) > count ) break;
} while ( pPhysModel->dataSize > 0 );
free( pSrcAlignedBase ); }
// UNDONE: This code is not yet tested.
static void SwapPhysdispLump( byte *pDest, byte *pSrc, int count ) { // the format of this lump is one unsigned short dispCount, then dispCount unsigned shorts of sizes
// followed by an array of variable length (each element is the length of the corresponding entry in the
// previous table) byte-stream data structure of the displacement collision models
// these byte-stream structs are endian-neutral because each element is byte-sized
unsigned short dispCount = *(unsigned short*)pSrc; if ( g_bSwapOnLoad ) { g_Swap.SwapBufferToTargetEndian( &dispCount ); } g_Swap.SwapBufferToTargetEndian( (unsigned short*)pDest, (unsigned short*)pSrc, dispCount + 1 );
const int nBytes = (dispCount + 1) * sizeof( unsigned short ); pSrc += nBytes; pDest += nBytes; count -= nBytes;
g_Swap.SwapBufferToTargetEndian( pDest, pSrc, count ); }
static void SwapVisibilityLump( byte *pDest, byte *pSrc, int count ) { int firstInt = *(int*)pSrc; if ( g_bSwapOnLoad ) { g_Swap.SwapBufferToTargetEndian( &firstInt ); } int intCt = firstInt * 2 + 1; const int hdrSize = intCt * sizeof(int); g_Swap.SwapBufferToTargetEndian( (int*)pDest, (int*)pSrc, intCt ); g_Swap.SwapBufferToTargetEndian( pDest + hdrSize, pSrc + hdrSize, count - hdrSize ); }
//=============================================================================
void Lumps_Init( void ) { memset( &g_Lumps, 0, sizeof(g_Lumps) ); }
int LumpVersion( int lump ) { return g_pBSPHeader->lumps[lump].version; }
bool HasLump( int lump ) { return g_pBSPHeader->lumps[lump].filelen > 0; }
void ValidateLump( int lump, int length, int size, int forceVersion ) { if ( length % size ) { Error( "ValidateLump: odd size for lump %d", lump ); }
if ( forceVersion >= 0 && forceVersion != g_pBSPHeader->lumps[lump].version ) { Error( "ValidateLump: old version for lump %d in map!", lump ); } }
//-----------------------------------------------------------------------------
// Add Lumps of integral types without datadescs
//-----------------------------------------------------------------------------
template< class T > int CopyLumpInternal( int fieldType, int lump, T *dest, int forceVersion ) { g_Lumps.bLumpParsed[lump] = true;
// Vectors are passed in as floats
int fieldSize = ( fieldType == FIELD_VECTOR ) ? sizeof(Vector) : sizeof(T); unsigned int length = g_pBSPHeader->lumps[lump].filelen; unsigned int ofs = g_pBSPHeader->lumps[lump].fileofs;
// count must be of the integral type
unsigned int count = length / sizeof(T); ValidateLump( lump, length, fieldSize, forceVersion );
if ( g_bSwapOnLoad ) { switch( lump ) { case LUMP_VISIBILITY: SwapVisibilityLump( (byte*)dest, ((byte*)g_pBSPHeader + ofs), count ); break; case LUMP_PHYSCOLLIDE: // SwapPhyscollideLump may change size
SwapPhyscollideLump( (byte*)dest, ((byte*)g_pBSPHeader + ofs), count ); length = count; break;
case LUMP_PHYSDISP: SwapPhysdispLump( (byte*)dest, ((byte*)g_pBSPHeader + ofs), count ); break;
default: g_Swap.SwapBufferToTargetEndian( dest, (T*)((byte*)g_pBSPHeader + ofs), count ); break; } } else { memcpy( dest, (byte*)g_pBSPHeader + ofs, length ); }
// Return actual count of elements
return length / fieldSize; }
template< class T > int CopyLump( int fieldType, int lump, T *dest, int forceVersion = -1 ) { return CopyLumpInternal( fieldType, lump, dest, forceVersion ); }
template< class T > void CopyLump( int fieldType, int lump, CUtlVector<T> &dest, int forceVersion = -1 ) { Assert( fieldType != FIELD_VECTOR ); // TODO: Support this if necessary
dest.SetSize( g_pBSPHeader->lumps[lump].filelen / sizeof(T) ); CopyLumpInternal( fieldType, lump, dest.Base(), forceVersion ); }
template< class T > void CopyOptionalLump( int fieldType, int lump, CUtlVector<T> &dest, int forceVersion = -1 ) { // not fatal if not present
if ( !HasLump( lump ) ) return;
dest.SetSize( g_pBSPHeader->lumps[lump].filelen / sizeof(T) ); CopyLumpInternal( fieldType, lump, dest.Base(), forceVersion ); }
template< class T > int CopyVariableLump( int fieldType, int lump, void **dest, int forceVersion = -1 ) { int length = g_pBSPHeader->lumps[lump].filelen; *dest = malloc( length );
return CopyLumpInternal<T>( fieldType, lump, (T*)*dest, forceVersion ); }
//-----------------------------------------------------------------------------
// Add Lumps of object types with datadescs
//-----------------------------------------------------------------------------
template< class T > int CopyLumpInternal( int lump, T *dest, int forceVersion ) { g_Lumps.bLumpParsed[lump] = true;
unsigned int length = g_pBSPHeader->lumps[lump].filelen; unsigned int ofs = g_pBSPHeader->lumps[lump].fileofs; unsigned int count = length / sizeof(T); ValidateLump( lump, length, sizeof(T), forceVersion );
if ( g_bSwapOnLoad ) { g_Swap.SwapFieldsToTargetEndian( dest, (T*)((byte*)g_pBSPHeader + ofs), count ); } else { memcpy( dest, (byte*)g_pBSPHeader + ofs, length ); }
return count; }
template< class T > int CopyLump( int lump, T *dest, int forceVersion = -1 ) { return CopyLumpInternal( lump, dest, forceVersion ); }
template< class T > void CopyLump( int lump, CUtlVector<T> &dest, int forceVersion = -1 ) { dest.SetSize( g_pBSPHeader->lumps[lump].filelen / sizeof(T) ); CopyLumpInternal( lump, dest.Base(), forceVersion ); }
template< class T > void CopyOptionalLump( int lump, CUtlVector<T> &dest, int forceVersion = -1 ) { // not fatal if not present
if ( !HasLump( lump ) ) return;
dest.SetSize( g_pBSPHeader->lumps[lump].filelen / sizeof(T) ); CopyLumpInternal( lump, dest.Base(), forceVersion ); }
template< class T > int CopyVariableLump( int lump, void **dest, int forceVersion = -1 ) { int length = g_pBSPHeader->lumps[lump].filelen; *dest = malloc( length );
return CopyLumpInternal<T>( lump, (T*)*dest, forceVersion ); }
//-----------------------------------------------------------------------------
// Add/Write unknown lumps
//-----------------------------------------------------------------------------
void Lumps_Parse( void ) { int i;
for ( i = 0; i < HEADER_LUMPS; i++ ) { if ( !g_Lumps.bLumpParsed[i] && g_pBSPHeader->lumps[i].filelen ) { g_Lumps.size[i] = CopyVariableLump<byte>( FIELD_CHARACTER, i, &g_Lumps.pLumps[i], -1 ); Msg( "Reading unknown lump #%d (%d bytes)\n", i, g_Lumps.size[i] ); } } }
void Lumps_Write( void ) { int i;
for ( i = 0; i < HEADER_LUMPS; i++ ) { if ( g_Lumps.size[i] ) { Msg( "Writing unknown lump #%d (%d bytes)\n", i, g_Lumps.size[i] ); AddLump( i, (byte*)g_Lumps.pLumps[i], g_Lumps.size[i] ); } if ( g_Lumps.pLumps[i] ) { free( g_Lumps.pLumps[i] ); g_Lumps.pLumps[i] = NULL; } } }
int LoadLeafs( void ) { #if defined( BSP_USE_LESS_MEMORY )
dleafs = (dleaf_t*)malloc( g_pBSPHeader->lumps[LUMP_LEAFS].filelen ); #endif
switch ( LumpVersion( LUMP_LEAFS ) ) { case 0: { g_Lumps.bLumpParsed[LUMP_LEAFS] = true; int length = g_pBSPHeader->lumps[LUMP_LEAFS].filelen; int size = sizeof( dleaf_version_0_t ); if ( length % size ) { Error( "odd size for LUMP_LEAFS\n" ); } int count = length / size;
void *pSrcBase = ( ( byte * )g_pBSPHeader + g_pBSPHeader->lumps[LUMP_LEAFS].fileofs ); dleaf_version_0_t *pSrc = (dleaf_version_0_t *)pSrcBase; dleaf_t *pDst = dleafs;
// version 0 predates HDR, build the LDR
g_LeafAmbientLightingLDR.SetCount( count ); g_LeafAmbientIndexLDR.SetCount( count );
dleafambientlighting_t *pDstLeafAmbientLighting = &g_LeafAmbientLightingLDR[0]; for ( int i = 0; i < count; i++ ) { g_LeafAmbientIndexLDR[i].ambientSampleCount = 1; g_LeafAmbientIndexLDR[i].firstAmbientSample = i; if ( g_bSwapOnLoad ) { g_Swap.SwapFieldsToTargetEndian( pSrc ); } // pDst is a subset of pSrc;
*pDst = *( ( dleaf_t * )( void * )pSrc ); pDstLeafAmbientLighting->cube = pSrc->m_AmbientLighting; pDstLeafAmbientLighting->x = pDstLeafAmbientLighting->y = pDstLeafAmbientLighting->z = pDstLeafAmbientLighting->pad = 0; pDst++; pSrc++; pDstLeafAmbientLighting++; } return count; }
case 1: return CopyLump( LUMP_LEAFS, dleafs );
default: Assert( 0 ); Error( "Unknown LUMP_LEAFS version\n" ); return 0; } }
void LoadLeafAmbientLighting( int numLeafs ) { if ( LumpVersion( LUMP_LEAFS ) == 0 ) { // an older leaf version already built the LDR ambient lighting on load
return; }
// old BSP with ambient, or new BSP with no lighting, convert ambient light to new format or create dummy ambient
if ( !HasLump( LUMP_LEAF_AMBIENT_INDEX ) ) { // a bunch of legacy maps, have these lumps with garbage versions
// expect them to be NOT the current version
if ( HasLump(LUMP_LEAF_AMBIENT_LIGHTING) ) { Assert( LumpVersion( LUMP_LEAF_AMBIENT_LIGHTING ) != LUMP_LEAF_AMBIENT_LIGHTING_VERSION ); } if ( HasLump(LUMP_LEAF_AMBIENT_LIGHTING_HDR) ) { Assert( LumpVersion( LUMP_LEAF_AMBIENT_LIGHTING_HDR ) != LUMP_LEAF_AMBIENT_LIGHTING_VERSION ); }
void *pSrcBase = ( ( byte * )g_pBSPHeader + g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING].fileofs ); CompressedLightCube *pSrc = NULL; if ( HasLump( LUMP_LEAF_AMBIENT_LIGHTING ) ) { pSrc = (CompressedLightCube*)pSrcBase; } g_LeafAmbientIndexLDR.SetCount( numLeafs ); g_LeafAmbientLightingLDR.SetCount( numLeafs );
void *pSrcBaseHDR = ( ( byte * )g_pBSPHeader + g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING_HDR].fileofs ); CompressedLightCube *pSrcHDR = NULL; if ( HasLump( LUMP_LEAF_AMBIENT_LIGHTING_HDR ) ) { pSrcHDR = (CompressedLightCube*)pSrcBaseHDR; } g_LeafAmbientIndexHDR.SetCount( numLeafs ); g_LeafAmbientLightingHDR.SetCount( numLeafs );
for ( int i = 0; i < numLeafs; i++ ) { g_LeafAmbientIndexLDR[i].ambientSampleCount = 1; g_LeafAmbientIndexLDR[i].firstAmbientSample = i; g_LeafAmbientIndexHDR[i].ambientSampleCount = 1; g_LeafAmbientIndexHDR[i].firstAmbientSample = i;
Q_memset( &g_LeafAmbientLightingLDR[i], 0, sizeof(g_LeafAmbientLightingLDR[i]) ); Q_memset( &g_LeafAmbientLightingHDR[i], 0, sizeof(g_LeafAmbientLightingHDR[i]) );
if ( pSrc ) { if ( g_bSwapOnLoad ) { g_Swap.SwapFieldsToTargetEndian( &pSrc[i] ); } g_LeafAmbientLightingLDR[i].cube = pSrc[i]; } if ( pSrcHDR ) { if ( g_bSwapOnLoad ) { g_Swap.SwapFieldsToTargetEndian( &pSrcHDR[i] ); } g_LeafAmbientLightingHDR[i].cube = pSrcHDR[i]; } }
g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_LIGHTING] = true; g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_INDEX] = true; g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_LIGHTING_HDR] = true; g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_INDEX_HDR] = true; } else { CopyOptionalLump( LUMP_LEAF_AMBIENT_LIGHTING, g_LeafAmbientLightingLDR ); CopyOptionalLump( LUMP_LEAF_AMBIENT_INDEX, g_LeafAmbientIndexLDR ); CopyOptionalLump( LUMP_LEAF_AMBIENT_LIGHTING_HDR, g_LeafAmbientLightingHDR ); CopyOptionalLump( LUMP_LEAF_AMBIENT_INDEX_HDR, g_LeafAmbientIndexHDR ); } }
void ValidateHeader( const char *filename, const dheader_t *pHeader ) { if ( pHeader->ident != IDBSPHEADER ) { Error ("%s is not a IBSP file", filename); } if ( pHeader->version < MINBSPVERSION || pHeader->version > BSPVERSION ) { Error ("%s is version %i, not %i", filename, pHeader->version, BSPVERSION); } }
//-----------------------------------------------------------------------------
// Low level BSP opener for external parsing. Parses headers, but nothing else.
// You must close the BSP, via CloseBSPFile().
//-----------------------------------------------------------------------------
void OpenBSPFile( const char *filename ) { Lumps_Init();
// load the file header
LoadFile( filename, (void **)&g_pBSPHeader );
if ( g_bSwapOnLoad ) { g_Swap.ActivateByteSwapping( true ); g_Swap.SwapFieldsToTargetEndian( g_pBSPHeader ); }
ValidateHeader( filename, g_pBSPHeader );
g_MapRevision = g_pBSPHeader->mapRevision; }
//-----------------------------------------------------------------------------
// CloseBSPFile
//-----------------------------------------------------------------------------
void CloseBSPFile( void ) { free( g_pBSPHeader ); g_pBSPHeader = NULL; }
//-----------------------------------------------------------------------------
// LoadBSPFile
//-----------------------------------------------------------------------------
void LoadBSPFile( const char *filename ) { OpenBSPFile( filename );
nummodels = CopyLump( LUMP_MODELS, dmodels ); numvertexes = CopyLump( LUMP_VERTEXES, dvertexes ); numplanes = CopyLump( LUMP_PLANES, dplanes ); numleafs = LoadLeafs(); numnodes = CopyLump( LUMP_NODES, dnodes ); CopyLump( LUMP_TEXINFO, texinfo ); numtexdata = CopyLump( LUMP_TEXDATA, dtexdata ); CopyLump( LUMP_DISPINFO, g_dispinfo ); CopyLump( LUMP_DISP_VERTS, g_DispVerts ); CopyLump( LUMP_DISP_TRIS, g_DispTris ); CopyLump( FIELD_CHARACTER, LUMP_DISP_LIGHTMAP_SAMPLE_POSITIONS, g_DispLightmapSamplePositions ); CopyLump( LUMP_FACE_MACRO_TEXTURE_INFO, g_FaceMacroTextureInfos ); numfaces = CopyLump(LUMP_FACES, dfaces, LUMP_FACES_VERSION); if ( HasLump( LUMP_FACES_HDR ) ) numfaces_hdr = CopyLump( LUMP_FACES_HDR, dfaces_hdr, LUMP_FACES_VERSION ); else numfaces_hdr = 0;
CopyOptionalLump( LUMP_FACEIDS, dfaceids );
g_numprimitives = CopyLump( LUMP_PRIMITIVES, g_primitives ); g_numprimverts = CopyLump( LUMP_PRIMVERTS, g_primverts ); g_numprimindices = CopyLump( FIELD_SHORT, LUMP_PRIMINDICES, g_primindices ); numorigfaces = CopyLump( LUMP_ORIGINALFACES, dorigfaces ); // original faces
numleaffaces = CopyLump( FIELD_SHORT, LUMP_LEAFFACES, dleaffaces ); numleafbrushes = CopyLump( FIELD_SHORT, LUMP_LEAFBRUSHES, dleafbrushes ); numsurfedges = CopyLump( FIELD_INTEGER, LUMP_SURFEDGES, dsurfedges ); numedges = CopyLump( LUMP_EDGES, dedges ); numbrushes = CopyLump( LUMP_BRUSHES, dbrushes ); numbrushsides = CopyLump( LUMP_BRUSHSIDES, dbrushsides ); numareas = CopyLump( LUMP_AREAS, dareas ); numareaportals = CopyLump( LUMP_AREAPORTALS, dareaportals );
visdatasize = CopyLump ( FIELD_CHARACTER, LUMP_VISIBILITY, dvisdata ); CopyOptionalLump( FIELD_CHARACTER, LUMP_LIGHTING, dlightdataLDR, LUMP_LIGHTING_VERSION ); CopyOptionalLump( FIELD_CHARACTER, LUMP_LIGHTING_HDR, dlightdataHDR, LUMP_LIGHTING_VERSION );
LoadLeafAmbientLighting( numleafs );
CopyLump( FIELD_CHARACTER, LUMP_ENTITIES, dentdata ); numworldlightsLDR = CopyLump( LUMP_WORLDLIGHTS, dworldlightsLDR ); numworldlightsHDR = CopyLump( LUMP_WORLDLIGHTS_HDR, dworldlightsHDR ); numleafwaterdata = CopyLump( LUMP_LEAFWATERDATA, dleafwaterdata ); g_PhysCollideSize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PHYSCOLLIDE, (void**)&g_pPhysCollide ); g_PhysDispSize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PHYSDISP, (void**)&g_pPhysDisp );
g_numvertnormals = CopyLump( FIELD_VECTOR, LUMP_VERTNORMALS, (float*)g_vertnormals ); g_numvertnormalindices = CopyLump( FIELD_SHORT, LUMP_VERTNORMALINDICES, g_vertnormalindices );
g_nClipPortalVerts = CopyLump( FIELD_VECTOR, LUMP_CLIPPORTALVERTS, (float*)g_ClipPortalVerts ); g_nCubemapSamples = CopyLump( LUMP_CUBEMAPS, g_CubemapSamples );
CopyLump( FIELD_CHARACTER, LUMP_TEXDATA_STRING_DATA, g_TexDataStringData ); CopyLump( FIELD_INTEGER, LUMP_TEXDATA_STRING_TABLE, g_TexDataStringTable );
g_nOverlayCount = CopyLump( LUMP_OVERLAYS, g_Overlays ); g_nWaterOverlayCount = CopyLump( LUMP_WATEROVERLAYS, g_WaterOverlays ); CopyLump( LUMP_OVERLAY_FADES, g_OverlayFades ); dflagslump_t flags_lump; if ( HasLump( LUMP_MAP_FLAGS ) ) CopyLump ( LUMP_MAP_FLAGS, &flags_lump ); else memset( &flags_lump, 0, sizeof( flags_lump ) ); // default flags to 0
g_LevelFlags = flags_lump.m_LevelFlags;
LoadOcclusionLump();
CopyLump( FIELD_SHORT, LUMP_LEAFMINDISTTOWATER, g_LeafMinDistToWater );
/*
int crap; for( crap = 0; crap < g_nBSPStringTable; crap++ ) { Msg( "stringtable %d", ( int )crap ); Msg( " %d:", ( int )g_BSPStringTable[crap] ); puts( &g_BSPStringData[g_BSPStringTable[crap]] ); puts( "\n" ); } */ // Load PAK file lump into appropriate data structure
byte *pakbuffer = NULL; int paksize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PAKFILE, ( void ** )&pakbuffer ); if ( paksize > 0 ) { GetPakFile()->ActivateByteSwapping( IsX360() ); GetPakFile()->ParseFromBuffer( pakbuffer, paksize ); } else { GetPakFile()->Reset(); }
free( pakbuffer );
g_GameLumps.ParseGameLump( g_pBSPHeader );
// NOTE: Do NOT call CopyLump after Lumps_Parse() it parses all un-Copied lumps
// parse any additional lumps
Lumps_Parse();
// everything has been copied out
CloseBSPFile();
g_Swap.ActivateByteSwapping( false ); }
//-----------------------------------------------------------------------------
// Reset any state.
//-----------------------------------------------------------------------------
void UnloadBSPFile() { nummodels = 0; numvertexes = 0; numplanes = 0;
numleafs = 0; #if defined( BSP_USE_LESS_MEMORY )
if ( dleafs ) { free( dleafs ); dleafs = NULL; } #endif
numnodes = 0; texinfo.Purge(); numtexdata = 0;
g_dispinfo.Purge(); g_DispVerts.Purge(); g_DispTris.Purge();
g_DispLightmapSamplePositions.Purge(); g_FaceMacroTextureInfos.Purge();
numfaces = 0; numfaces_hdr = 0;
dfaceids.Purge();
g_numprimitives = 0; g_numprimverts = 0; g_numprimindices = 0; numorigfaces = 0; numleaffaces = 0; numleafbrushes = 0; numsurfedges = 0; numedges = 0; numbrushes = 0; numbrushsides = 0; numareas = 0; numareaportals = 0;
visdatasize = 0; dlightdataLDR.Purge(); dlightdataHDR.Purge();
g_LeafAmbientLightingLDR.Purge(); g_LeafAmbientLightingHDR.Purge(); g_LeafAmbientIndexHDR.Purge(); g_LeafAmbientIndexLDR.Purge();
dentdata.Purge(); numworldlightsLDR = 0; numworldlightsHDR = 0;
numleafwaterdata = 0;
if ( g_pPhysCollide ) { free( g_pPhysCollide ); g_pPhysCollide = NULL; } g_PhysCollideSize = 0;
if ( g_pPhysDisp ) { free( g_pPhysDisp ); g_pPhysDisp = NULL; } g_PhysDispSize = 0;
g_numvertnormals = 0; g_numvertnormalindices = 0;
g_nClipPortalVerts = 0; g_nCubemapSamples = 0;
g_TexDataStringData.Purge(); g_TexDataStringTable.Purge();
g_nOverlayCount = 0; g_nWaterOverlayCount = 0;
g_LevelFlags = 0;
g_OccluderData.Purge(); g_OccluderPolyData.Purge(); g_OccluderVertexIndices.Purge();
g_GameLumps.DestroyAllGameLumps();
for ( int i = 0; i < HEADER_LUMPS; i++ ) { if ( g_Lumps.pLumps[i] ) { free( g_Lumps.pLumps[i] ); g_Lumps.pLumps[i] = NULL; } }
ReleasePakFileLumps(); }
//-----------------------------------------------------------------------------
// LoadBSPFileFilesystemOnly
//-----------------------------------------------------------------------------
void LoadBSPFile_FileSystemOnly( const char *filename ) { Lumps_Init();
//
// load the file header
//
LoadFile( filename, (void **)&g_pBSPHeader );
ValidateHeader( filename, g_pBSPHeader );
// Load PAK file lump into appropriate data structure
byte *pakbuffer = NULL; int paksize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PAKFILE, ( void ** )&pakbuffer, 1 ); if ( paksize > 0 ) { GetPakFile()->ParseFromBuffer( pakbuffer, paksize ); } else { GetPakFile()->Reset(); }
free( pakbuffer );
// everything has been copied out
free( g_pBSPHeader ); g_pBSPHeader = NULL; }
void ExtractZipFileFromBSP( char *pBSPFileName, char *pZipFileName ) { Lumps_Init();
//
// load the file header
//
LoadFile( pBSPFileName, (void **)&g_pBSPHeader);
ValidateHeader( pBSPFileName, g_pBSPHeader );
byte *pakbuffer = NULL; int paksize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PAKFILE, ( void ** )&pakbuffer ); if ( paksize > 0 ) { FILE *fp; fp = fopen( pZipFileName, "wb" ); if( !fp ) { fprintf( stderr, "can't open %s\n", pZipFileName ); return; }
fwrite( pakbuffer, paksize, 1, fp ); fclose( fp ); } else { fprintf( stderr, "zip file is zero length!\n" ); } }
/*
============= LoadBSPFileTexinfo
Only loads the texinfo lump, so qdata can scan for textures ============= */ void LoadBSPFileTexinfo( const char *filename ) { FILE *f; int length, ofs;
g_pBSPHeader = (dheader_t*)malloc( sizeof(dheader_t) );
f = fopen( filename, "rb" ); fread( g_pBSPHeader, sizeof(dheader_t), 1, f);
ValidateHeader( filename, g_pBSPHeader );
length = g_pBSPHeader->lumps[LUMP_TEXINFO].filelen; ofs = g_pBSPHeader->lumps[LUMP_TEXINFO].fileofs;
int nCount = length / sizeof(texinfo_t);
texinfo.Purge(); texinfo.AddMultipleToTail( nCount );
fseek( f, ofs, SEEK_SET ); fread( texinfo.Base(), length, 1, f ); fclose( f );
// everything has been copied out
free( g_pBSPHeader ); g_pBSPHeader = NULL; }
static void AddLumpInternal( int lumpnum, void *data, int len, int version ) { lump_t *lump;
g_Lumps.size[lumpnum] = 0; // mark it written
lump = &g_pBSPHeader->lumps[lumpnum];
lump->fileofs = g_pFileSystem->Tell( g_hBSPFile ); lump->filelen = len; lump->version = version; lump->uncompressedSize = 0;
SafeWrite( g_hBSPFile, data, len );
// pad out to the next dword
AlignFilePosition( g_hBSPFile, 4 ); }
template< class T > static void SwapInPlace( T *pData, int count ) { if ( !pData ) return;
// use the datadesc to swap the fields in place
g_Swap.SwapFieldsToTargetEndian<T>( (T*)pData, pData, count ); }
template< class T > static void SwapInPlace( int fieldType, T *pData, int count ) { if ( !pData ) return;
// swap the data in place
g_Swap.SwapBufferToTargetEndian<T>( (T*)pData, (T*)pData, count ); }
//-----------------------------------------------------------------------------
// Add raw data chunk to file (not a lump)
//-----------------------------------------------------------------------------
template< class T > static void WriteData( int fieldType, T *pData, int count ) { if ( g_bSwapOnWrite ) { SwapInPlace( fieldType, pData, count ); } SafeWrite( g_hBSPFile, pData, count * sizeof(T) ); }
template< class T > static void WriteData( T *pData, int count ) { if ( g_bSwapOnWrite ) { SwapInPlace( pData, count ); } SafeWrite( g_hBSPFile, pData, count * sizeof(T) ); }
//-----------------------------------------------------------------------------
// Add Lump of object types with datadescs
//-----------------------------------------------------------------------------
template< class T > static void AddLump( int lumpnum, T *pData, int count, int version ) { AddLumpInternal( lumpnum, pData, count * sizeof(T), version ); }
template< class T > static void AddLump( int lumpnum, CUtlVector<T> &data, int version ) { AddLumpInternal( lumpnum, data.Base(), data.Count() * sizeof(T), version ); }
/*
============= WriteBSPFile
Swaps the bsp file in place, so it should not be referenced again ============= */ void WriteBSPFile( const char *filename, char *pUnused ) { if ( texinfo.Count() > MAX_MAP_TEXINFO ) { Error( "Map has too many texinfos (has %d, can have at most %d)\n", texinfo.Count(), MAX_MAP_TEXINFO ); return; }
dheader_t outHeader; g_pBSPHeader = &outHeader; memset( g_pBSPHeader, 0, sizeof( dheader_t ) );
g_pBSPHeader->ident = IDBSPHEADER; g_pBSPHeader->version = BSPVERSION; g_pBSPHeader->mapRevision = g_MapRevision;
g_hBSPFile = SafeOpenWrite( filename ); WriteData( g_pBSPHeader ); // overwritten later
AddLump( LUMP_PLANES, dplanes, numplanes ); AddLump( LUMP_LEAFS, dleafs, numleafs, LUMP_LEAFS_VERSION ); AddLump( LUMP_LEAF_AMBIENT_LIGHTING, g_LeafAmbientLightingLDR, LUMP_LEAF_AMBIENT_LIGHTING_VERSION ); AddLump( LUMP_LEAF_AMBIENT_INDEX, g_LeafAmbientIndexLDR ); AddLump( LUMP_LEAF_AMBIENT_INDEX_HDR, g_LeafAmbientIndexHDR ); AddLump( LUMP_LEAF_AMBIENT_LIGHTING_HDR, g_LeafAmbientLightingHDR, LUMP_LEAF_AMBIENT_LIGHTING_VERSION );
AddLump( LUMP_VERTEXES, dvertexes, numvertexes ); AddLump( LUMP_NODES, dnodes, numnodes ); AddLump( LUMP_TEXINFO, texinfo ); AddLump( LUMP_TEXDATA, dtexdata, numtexdata );
AddLump( LUMP_DISPINFO, g_dispinfo ); AddLump( LUMP_DISP_VERTS, g_DispVerts ); AddLump( LUMP_DISP_TRIS, g_DispTris ); AddLump( LUMP_DISP_LIGHTMAP_SAMPLE_POSITIONS, g_DispLightmapSamplePositions ); AddLump( LUMP_FACE_MACRO_TEXTURE_INFO, g_FaceMacroTextureInfos ); AddLump( LUMP_PRIMITIVES, g_primitives, g_numprimitives ); AddLump( LUMP_PRIMVERTS, g_primverts, g_numprimverts ); AddLump( LUMP_PRIMINDICES, g_primindices, g_numprimindices ); AddLump( LUMP_FACES, dfaces, numfaces, LUMP_FACES_VERSION ); if (numfaces_hdr) AddLump( LUMP_FACES_HDR, dfaces_hdr, numfaces_hdr, LUMP_FACES_VERSION ); AddLump ( LUMP_FACEIDS, dfaceids, numfaceids );
AddLump( LUMP_ORIGINALFACES, dorigfaces, numorigfaces ); // original faces lump
AddLump( LUMP_BRUSHES, dbrushes, numbrushes ); AddLump( LUMP_BRUSHSIDES, dbrushsides, numbrushsides ); AddLump( LUMP_LEAFFACES, dleaffaces, numleaffaces ); AddLump( LUMP_LEAFBRUSHES, dleafbrushes, numleafbrushes ); AddLump( LUMP_SURFEDGES, dsurfedges, numsurfedges ); AddLump( LUMP_EDGES, dedges, numedges ); AddLump( LUMP_MODELS, dmodels, nummodels ); AddLump( LUMP_AREAS, dareas, numareas ); AddLump( LUMP_AREAPORTALS, dareaportals, numareaportals );
AddLump( LUMP_LIGHTING, dlightdataLDR, LUMP_LIGHTING_VERSION ); AddLump( LUMP_LIGHTING_HDR, dlightdataHDR, LUMP_LIGHTING_VERSION ); AddLump( LUMP_VISIBILITY, dvisdata, visdatasize ); AddLump( LUMP_ENTITIES, dentdata ); AddLump( LUMP_WORLDLIGHTS, dworldlightsLDR, numworldlightsLDR ); AddLump( LUMP_WORLDLIGHTS_HDR, dworldlightsHDR, numworldlightsHDR ); AddLump( LUMP_LEAFWATERDATA, dleafwaterdata, numleafwaterdata );
AddOcclusionLump();
dflagslump_t flags_lump; flags_lump.m_LevelFlags = g_LevelFlags; AddLump( LUMP_MAP_FLAGS, &flags_lump, 1 );
// NOTE: This is just for debugging, so it is disabled in release maps
#if 0
// add the vis portals to the BSP for visualization
AddLump( LUMP_PORTALS, dportals, numportals ); AddLump( LUMP_CLUSTERS, dclusters, numclusters ); AddLump( LUMP_PORTALVERTS, dportalverts, numportalverts ); AddLump( LUMP_CLUSTERPORTALS, dclusterportals, numclusterportals ); #endif
AddLump( LUMP_CLIPPORTALVERTS, (float*)g_ClipPortalVerts, g_nClipPortalVerts * 3 ); AddLump( LUMP_CUBEMAPS, g_CubemapSamples, g_nCubemapSamples ); AddLump( LUMP_TEXDATA_STRING_DATA, g_TexDataStringData ); AddLump( LUMP_TEXDATA_STRING_TABLE, g_TexDataStringTable ); AddLump( LUMP_OVERLAYS, g_Overlays, g_nOverlayCount ); AddLump( LUMP_WATEROVERLAYS, g_WaterOverlays, g_nWaterOverlayCount ); AddLump( LUMP_OVERLAY_FADES, g_OverlayFades, g_nOverlayCount );
if ( g_pPhysCollide ) { AddLump( LUMP_PHYSCOLLIDE, g_pPhysCollide, g_PhysCollideSize ); }
if ( g_pPhysDisp ) { AddLump ( LUMP_PHYSDISP, g_pPhysDisp, g_PhysDispSize ); }
AddLump( LUMP_VERTNORMALS, (float*)g_vertnormals, g_numvertnormals * 3 ); AddLump( LUMP_VERTNORMALINDICES, g_vertnormalindices, g_numvertnormalindices );
AddLump( LUMP_LEAFMINDISTTOWATER, g_LeafMinDistToWater, numleafs );
AddGameLumps();
// Write pakfile lump to disk
WritePakFileLump();
// NOTE: Do NOT call AddLump after Lumps_Write() it writes all un-Added lumps
// write any additional lumps
Lumps_Write();
g_pFileSystem->Seek( g_hBSPFile, 0, FILESYSTEM_SEEK_HEAD ); WriteData( g_pBSPHeader ); g_pFileSystem->Close( g_hBSPFile ); }
// Generate the next clear lump filename for the bsp file
bool GenerateNextLumpFileName( const char *bspfilename, char *lumpfilename, int buffsize ) { for (int i = 0; i < MAX_LUMPFILES; i++) { GenerateLumpFileName( bspfilename, lumpfilename, buffsize, i ); if ( !g_pFileSystem->FileExists( lumpfilename ) ) return true; }
return false; }
void WriteLumpToFile( char *filename, int lump ) { if ( !HasLump(lump) ) return;
char lumppre[MAX_PATH]; if ( !GenerateNextLumpFileName( filename, lumppre, MAX_PATH ) ) { Warning( "Failed to find valid lump filename for bsp %s.\n", filename ); return; }
// Open the file
FileHandle_t lumpfile = g_pFileSystem->Open(lumppre, "wb"); if ( !lumpfile ) { Error ("Error opening %s! (Check for write enable)\n",filename); return; }
int ofs = g_pBSPHeader->lumps[lump].fileofs; int length = g_pBSPHeader->lumps[lump].filelen;
// Write the header
lumpfileheader_t lumpHeader; lumpHeader.lumpID = lump; lumpHeader.lumpVersion = LumpVersion(lump); lumpHeader.lumpLength = length; lumpHeader.mapRevision = LittleLong( g_MapRevision ); lumpHeader.lumpOffset = sizeof(lumpfileheader_t); // Lump starts after the header
SafeWrite (lumpfile, &lumpHeader, sizeof(lumpfileheader_t));
// Write the lump
SafeWrite (lumpfile, (byte *)g_pBSPHeader + ofs, length); }
void WriteLumpToFile( char *filename, int lump, int nLumpVersion, void *pBuffer, size_t nBufLen ) { char lumppre[MAX_PATH]; if ( !GenerateNextLumpFileName( filename, lumppre, MAX_PATH ) ) { Warning( "Failed to find valid lump filename for bsp %s.\n", filename ); return; }
// Open the file
FileHandle_t lumpfile = g_pFileSystem->Open(lumppre, "wb"); if ( !lumpfile ) { Error ("Error opening %s! (Check for write enable)\n",filename); return; }
// Write the header
lumpfileheader_t lumpHeader; lumpHeader.lumpID = lump; lumpHeader.lumpVersion = nLumpVersion; lumpHeader.lumpLength = nBufLen; lumpHeader.mapRevision = LittleLong( g_MapRevision ); lumpHeader.lumpOffset = sizeof(lumpfileheader_t); // Lump starts after the header
SafeWrite( lumpfile, &lumpHeader, sizeof(lumpfileheader_t));
// Write the lump
SafeWrite( lumpfile, pBuffer, nBufLen );
g_pFileSystem->Close( lumpfile ); }
//============================================================================
#define ENTRIES(a) (sizeof(a)/sizeof(*(a)))
#define ENTRYSIZE(a) (sizeof(*(a)))
int ArrayUsage( const char *szItem, int items, int maxitems, int itemsize ) { float percentage = maxitems ? items * 100.0 / maxitems : 0.0;
Msg("%-17.17s %8i/%-8i %8i/%-8i (%4.1f%%) ", szItem, items, maxitems, items * itemsize, maxitems * itemsize, percentage ); if ( percentage > 80.0 ) Msg( "VERY FULL!\n" ); else if ( percentage > 95.0 ) Msg( "SIZE DANGER!\n" ); else if ( percentage > 99.9 ) Msg( "SIZE OVERFLOW!!!\n" ); else Msg( "\n" ); return items * itemsize; }
int GlobUsage( const char *szItem, int itemstorage, int maxstorage ) { float percentage = maxstorage ? itemstorage * 100.0 / maxstorage : 0.0; Msg("%-17.17s [variable] %8i/%-8i (%4.1f%%) ", szItem, itemstorage, maxstorage, percentage ); if ( percentage > 80.0 ) Msg( "VERY FULL!\n" ); else if ( percentage > 95.0 ) Msg( "SIZE DANGER!\n" ); else if ( percentage > 99.9 ) Msg( "SIZE OVERFLOW!!!\n" ); else Msg( "\n" ); return itemstorage; }
/*
============= PrintBSPFileSizes
Dumps info about current file ============= */ void PrintBSPFileSizes (void) { int totalmemory = 0;
// if (!num_entities)
// ParseEntities ();
Msg("\n"); Msg( "%-17s %16s %16s %9s \n", "Object names", "Objects/Maxobjs", "Memory / Maxmem", "Fullness" ); Msg( "%-17s %16s %16s %9s \n", "------------", "---------------", "---------------", "--------" );
totalmemory += ArrayUsage( "models", nummodels, ENTRIES(dmodels), ENTRYSIZE(dmodels) ); totalmemory += ArrayUsage( "brushes", numbrushes, ENTRIES(dbrushes), ENTRYSIZE(dbrushes) ); totalmemory += ArrayUsage( "brushsides", numbrushsides, ENTRIES(dbrushsides), ENTRYSIZE(dbrushsides) ); totalmemory += ArrayUsage( "planes", numplanes, ENTRIES(dplanes), ENTRYSIZE(dplanes) ); totalmemory += ArrayUsage( "vertexes", numvertexes, ENTRIES(dvertexes), ENTRYSIZE(dvertexes) ); totalmemory += ArrayUsage( "nodes", numnodes, ENTRIES(dnodes), ENTRYSIZE(dnodes) ); totalmemory += ArrayUsage( "texinfos", texinfo.Count(),MAX_MAP_TEXINFO, sizeof(texinfo_t) ); totalmemory += ArrayUsage( "texdata", numtexdata, ENTRIES(dtexdata), ENTRYSIZE(dtexdata) ); totalmemory += ArrayUsage( "dispinfos", g_dispinfo.Count(), 0, sizeof( ddispinfo_t ) ); totalmemory += ArrayUsage( "disp_verts", g_DispVerts.Count(), 0, sizeof( g_DispVerts[0] ) ); totalmemory += ArrayUsage( "disp_tris", g_DispTris.Count(), 0, sizeof( g_DispTris[0] ) ); totalmemory += ArrayUsage( "disp_lmsamples",g_DispLightmapSamplePositions.Count(),0,sizeof( g_DispLightmapSamplePositions[0] ) ); totalmemory += ArrayUsage( "faces", numfaces, ENTRIES(dfaces), ENTRYSIZE(dfaces) ); totalmemory += ArrayUsage( "hdr faces", numfaces_hdr, ENTRIES(dfaces_hdr), ENTRYSIZE(dfaces_hdr) ); totalmemory += ArrayUsage( "origfaces", numorigfaces, ENTRIES(dorigfaces), ENTRYSIZE(dorigfaces) ); // original faces
totalmemory += ArrayUsage( "leaves", numleafs, ENTRIES(dleafs), ENTRYSIZE(dleafs) ); totalmemory += ArrayUsage( "leaffaces", numleaffaces, ENTRIES(dleaffaces), ENTRYSIZE(dleaffaces) ); totalmemory += ArrayUsage( "leafbrushes", numleafbrushes, ENTRIES(dleafbrushes), ENTRYSIZE(dleafbrushes) ); totalmemory += ArrayUsage( "areas", numareas, ENTRIES(dareas), ENTRYSIZE(dareas) ); totalmemory += ArrayUsage( "surfedges", numsurfedges, ENTRIES(dsurfedges), ENTRYSIZE(dsurfedges) ); totalmemory += ArrayUsage( "edges", numedges, ENTRIES(dedges), ENTRYSIZE(dedges) ); totalmemory += ArrayUsage( "LDR worldlights", numworldlightsLDR, ENTRIES(dworldlightsLDR), ENTRYSIZE(dworldlightsLDR) ); totalmemory += ArrayUsage( "HDR worldlights", numworldlightsHDR, ENTRIES(dworldlightsHDR), ENTRYSIZE(dworldlightsHDR) );
totalmemory += ArrayUsage( "leafwaterdata", numleafwaterdata,ENTRIES(dleafwaterdata), ENTRYSIZE(dleafwaterdata) ); totalmemory += ArrayUsage( "waterstrips", g_numprimitives,ENTRIES(g_primitives), ENTRYSIZE(g_primitives) ); totalmemory += ArrayUsage( "waterverts", g_numprimverts, ENTRIES(g_primverts), ENTRYSIZE(g_primverts) ); totalmemory += ArrayUsage( "waterindices", g_numprimindices,ENTRIES(g_primindices),ENTRYSIZE(g_primindices) ); totalmemory += ArrayUsage( "cubemapsamples", g_nCubemapSamples,ENTRIES(g_CubemapSamples),ENTRYSIZE(g_CubemapSamples) ); totalmemory += ArrayUsage( "overlays", g_nOverlayCount, ENTRIES(g_Overlays), ENTRYSIZE(g_Overlays) ); totalmemory += GlobUsage( "LDR lightdata", dlightdataLDR.Count(), 0 ); totalmemory += GlobUsage( "HDR lightdata", dlightdataHDR.Count(), 0 ); totalmemory += GlobUsage( "visdata", visdatasize, sizeof(dvisdata) ); totalmemory += GlobUsage( "entdata", dentdata.Count(), 384*1024 ); // goal is <384K
totalmemory += ArrayUsage( "LDR ambient table", g_LeafAmbientIndexLDR.Count(), MAX_MAP_LEAFS, sizeof( g_LeafAmbientIndexLDR[0] ) ); totalmemory += ArrayUsage( "HDR ambient table", g_LeafAmbientIndexHDR.Count(), MAX_MAP_LEAFS, sizeof( g_LeafAmbientIndexHDR[0] ) ); totalmemory += ArrayUsage( "LDR leaf ambient lighting", g_LeafAmbientLightingLDR.Count(), MAX_MAP_LEAFS, sizeof( g_LeafAmbientLightingLDR[0] ) ); totalmemory += ArrayUsage( "HDR leaf ambient lighting", g_LeafAmbientLightingHDR.Count(), MAX_MAP_LEAFS, sizeof( g_LeafAmbientLightingHDR[0] ) );
totalmemory += ArrayUsage( "occluders", g_OccluderData.Count(), 0, sizeof( g_OccluderData[0] ) ); totalmemory += ArrayUsage( "occluder polygons", g_OccluderPolyData.Count(), 0, sizeof( g_OccluderPolyData[0] ) ); totalmemory += ArrayUsage( "occluder vert ind",g_OccluderVertexIndices.Count(),0, sizeof( g_OccluderVertexIndices[0] ) );
GameLumpHandle_t h = g_GameLumps.GetGameLumpHandle( GAMELUMP_DETAIL_PROPS ); if (h != g_GameLumps.InvalidGameLump()) totalmemory += GlobUsage( "detail props", 1, g_GameLumps.GameLumpSize(h) ); h = g_GameLumps.GetGameLumpHandle( GAMELUMP_DETAIL_PROP_LIGHTING ); if (h != g_GameLumps.InvalidGameLump()) totalmemory += GlobUsage( "dtl prp lght", 1, g_GameLumps.GameLumpSize(h) ); h = g_GameLumps.GetGameLumpHandle( GAMELUMP_DETAIL_PROP_LIGHTING_HDR ); if (h != g_GameLumps.InvalidGameLump()) totalmemory += GlobUsage( "HDR dtl prp lght", 1, g_GameLumps.GameLumpSize(h) ); h = g_GameLumps.GetGameLumpHandle( GAMELUMP_STATIC_PROPS ); if (h != g_GameLumps.InvalidGameLump()) totalmemory += GlobUsage( "static props", 1, g_GameLumps.GameLumpSize(h) );
totalmemory += GlobUsage( "pakfile", GetPakFile()->EstimateSize(), 0 ); // HACKHACK: Set physics limit at 4MB, in reality this is totally dynamic
totalmemory += GlobUsage( "physics", g_PhysCollideSize, 4*1024*1024 ); totalmemory += GlobUsage( "physics terrain", g_PhysDispSize, 1*1024*1024 );
Msg( "\nLevel flags = %x\n", g_LevelFlags );
Msg( "\n" );
int triangleCount = 0;
for ( int i = 0; i < numfaces; i++ ) { // face tris = numedges - 2
triangleCount += dfaces[i].numedges - 2; } Msg("Total triangle count: %d\n", triangleCount );
// UNDONE:
// areaportals, portals, texdata, clusters, worldlights, portalverts
}
/*
============= PrintBSPPackDirectory
Dumps a list of files stored in the bsp pack. ============= */ void PrintBSPPackDirectory( void ) { GetPakFile()->PrintDirectory(); }
//============================================
int num_entities; entity_t entities[MAX_MAP_ENTITIES];
void StripTrailing (char *e) { char *s;
s = e + strlen(e)-1; while (s >= e && *s <= 32) { *s = 0; s--; } }
/*
================= ParseEpair ================= */ epair_t *ParseEpair (void) { epair_t *e;
e = (epair_t*)malloc (sizeof(epair_t)); memset (e, 0, sizeof(epair_t)); if (strlen(token) >= MAX_KEY-1) Error ("ParseEpar: token too long"); e->key = copystring(token);
GetToken (false); if (strlen(token) >= MAX_VALUE-1) Error ("ParseEpar: token too long"); e->value = copystring(token);
// strip trailing spaces
StripTrailing (e->key); StripTrailing (e->value);
return e; }
/*
================ ParseEntity ================ */ qboolean ParseEntity (void) { epair_t *e; entity_t *mapent;
if (!GetToken (true)) return false;
if (Q_stricmp (token, "{") ) Error ("ParseEntity: { not found"); if (num_entities == MAX_MAP_ENTITIES) Error ("num_entities == MAX_MAP_ENTITIES");
mapent = &entities[num_entities]; num_entities++;
do { if (!GetToken (true)) Error ("ParseEntity: EOF without closing brace"); if (!Q_stricmp (token, "}") ) break; e = ParseEpair (); e->next = mapent->epairs; mapent->epairs = e; } while (1); return true; }
/*
================ ParseEntities
Parses the dentdata string into entities ================ */ void ParseEntities (void) { num_entities = 0; ParseFromMemory (dentdata.Base(), dentdata.Count());
while (ParseEntity ()) { } }
/*
================ UnparseEntities
Generates the dentdata string from all the entities ================ */ void UnparseEntities (void) { epair_t *ep; char line[2048]; int i; char key[1024], value[1024];
CUtlBuffer buffer( 0, 0, CUtlBuffer::TEXT_BUFFER ); buffer.EnsureCapacity( 256 * 1024 ); for (i=0 ; i<num_entities ; i++) { ep = entities[i].epairs; if (!ep) continue; // ent got removed
buffer.PutString( "{\n" ); for (ep = entities[i].epairs ; ep ; ep=ep->next) { strcpy (key, ep->key); StripTrailing (key); strcpy (value, ep->value); StripTrailing (value); sprintf(line, "\"%s\" \"%s\"\n", key, value); buffer.PutString( line ); } buffer.PutString("}\n"); } int entdatasize = buffer.TellPut()+1;
dentdata.SetSize( entdatasize ); memcpy( dentdata.Base(), buffer.Base(), entdatasize-1 ); dentdata[entdatasize-1] = 0; }
void PrintEntity (entity_t *ent) { epair_t *ep; Msg ("------- entity %p -------\n", ent); for (ep=ent->epairs ; ep ; ep=ep->next) { Msg ("%s = %s\n", ep->key, ep->value); }
}
void SetKeyValue(entity_t *ent, const char *key, const char *value) { epair_t *ep; for (ep=ent->epairs ; ep ; ep=ep->next) if (!Q_stricmp (ep->key, key) ) { free (ep->value); ep->value = copystring(value); return; } ep = (epair_t*)malloc (sizeof(*ep)); ep->next = ent->epairs; ent->epairs = ep; ep->key = copystring(key); ep->value = copystring(value); }
char *ValueForKey (entity_t *ent, char *key) { for (epair_t *ep=ent->epairs ; ep ; ep=ep->next) if (!Q_stricmp (ep->key, key) ) return ep->value; return ""; }
vec_t FloatForKey (entity_t *ent, char *key) { char *k = ValueForKey (ent, key); return atof(k); }
vec_t FloatForKeyWithDefault (entity_t *ent, char *key, float default_value) { for (epair_t *ep=ent->epairs ; ep ; ep=ep->next) if (!Q_stricmp (ep->key, key) ) return atof( ep->value ); return default_value; }
int IntForKey (entity_t *ent, char *key) { char *k = ValueForKey (ent, key); return atol(k); }
int IntForKeyWithDefault(entity_t *ent, char *key, int nDefault ) { char *k = ValueForKey (ent, key); if ( !k[0] ) return nDefault; return atol(k); }
void GetVectorForKey (entity_t *ent, char *key, Vector& vec) {
char *k = ValueForKey (ent, key); // scanf into doubles, then assign, so it is vec_t size independent
double v1, v2, v3; v1 = v2 = v3 = 0; sscanf (k, "%lf %lf %lf", &v1, &v2, &v3); vec[0] = v1; vec[1] = v2; vec[2] = v3; }
void GetVector2DForKey (entity_t *ent, char *key, Vector2D& vec) { double v1, v2;
char *k = ValueForKey (ent, key); // scanf into doubles, then assign, so it is vec_t size independent
v1 = v2 = 0; sscanf (k, "%lf %lf", &v1, &v2); vec[0] = v1; vec[1] = v2; }
void GetAnglesForKey (entity_t *ent, char *key, QAngle& angle) { char *k; double v1, v2, v3;
k = ValueForKey (ent, key); // scanf into doubles, then assign, so it is vec_t size independent
v1 = v2 = v3 = 0; sscanf (k, "%lf %lf %lf", &v1, &v2, &v3); angle[0] = v1; angle[1] = v2; angle[2] = v3; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void BuildFaceCalcWindingData( dface_t *pFace, int *points ) { for( int i = 0; i < pFace->numedges; i++ ) { int eIndex = dsurfedges[pFace->firstedge+i]; if( eIndex < 0 ) { points[i] = dedges[-eIndex].v[1]; } else { points[i] = dedges[eIndex].v[0]; } } }
void TriStripToTriList( unsigned short const *pTriStripIndices, int nTriStripIndices, unsigned short **pTriListIndices, int *pnTriListIndices ) { int nMaxTriListIndices = (nTriStripIndices - 2) * 3; *pTriListIndices = new unsigned short[ nMaxTriListIndices ]; *pnTriListIndices = 0;
for( int i=0; i < nTriStripIndices - 2; i++ ) { if( pTriStripIndices[i] == pTriStripIndices[i+1] || pTriStripIndices[i] == pTriStripIndices[i+2] || pTriStripIndices[i+1] == pTriStripIndices[i+2] ) { } else { // Flip odd numbered tris..
if( i & 1 ) { (*pTriListIndices)[(*pnTriListIndices)++] = pTriStripIndices[i+2]; (*pTriListIndices)[(*pnTriListIndices)++] = pTriStripIndices[i+1]; (*pTriListIndices)[(*pnTriListIndices)++] = pTriStripIndices[i]; } else { (*pTriListIndices)[(*pnTriListIndices)++] = pTriStripIndices[i]; (*pTriListIndices)[(*pnTriListIndices)++] = pTriStripIndices[i+1]; (*pTriListIndices)[(*pnTriListIndices)++] = pTriStripIndices[i+2]; } } } }
void CalcTextureCoordsAtPoints( float const texelsPerWorldUnits[2][4], int const subtractOffset[2], Vector const *pPoints, int const nPoints, Vector2D *pCoords ) { for( int i=0; i < nPoints; i++ ) { for( int iCoord=0; iCoord < 2; iCoord++ ) { float *pDestCoord = &pCoords[i][iCoord];
*pDestCoord = 0; for( int iDot=0; iDot < 3; iDot++ ) *pDestCoord += pPoints[i][iDot] * texelsPerWorldUnits[iCoord][iDot];
*pDestCoord += texelsPerWorldUnits[iCoord][3]; *pDestCoord -= subtractOffset[iCoord]; } } }
/*
================ CalcFaceExtents
Fills in s->texmins[] and s->texsize[] ================ */ void CalcFaceExtents(dface_t *s, int lightmapTextureMinsInLuxels[2], int lightmapTextureSizeInLuxels[2]) { vec_t mins[2], maxs[2], val=0; int i,j, e=0; dvertex_t *v=NULL; texinfo_t *tex=NULL; mins[0] = mins[1] = 1e24; maxs[0] = maxs[1] = -1e24;
tex = &texinfo[s->texinfo]; for (i=0 ; i<s->numedges ; i++) { e = dsurfedges[s->firstedge+i]; if (e >= 0) v = dvertexes + dedges[e].v[0]; else v = dvertexes + dedges[-e].v[1]; for (j=0 ; j<2 ; j++) { val = v->point[0] * tex->lightmapVecsLuxelsPerWorldUnits[j][0] + v->point[1] * tex->lightmapVecsLuxelsPerWorldUnits[j][1] + v->point[2] * tex->lightmapVecsLuxelsPerWorldUnits[j][2] + tex->lightmapVecsLuxelsPerWorldUnits[j][3]; if (val < mins[j]) mins[j] = val; if (val > maxs[j]) maxs[j] = val; } }
int nMaxLightmapDim = (s->dispinfo == -1) ? MAX_LIGHTMAP_DIM_WITHOUT_BORDER : MAX_DISP_LIGHTMAP_DIM_WITHOUT_BORDER; for (i=0 ; i<2 ; i++) { mins[i] = ( float )floor( mins[i] ); maxs[i] = ( float )ceil( maxs[i] );
lightmapTextureMinsInLuxels[i] = ( int )mins[i]; lightmapTextureSizeInLuxels[i] = ( int )( maxs[i] - mins[i] ); if( lightmapTextureSizeInLuxels[i] > nMaxLightmapDim + 1 ) { Vector point = vec3_origin; for (int j=0 ; j<s->numedges ; j++) { e = dsurfedges[s->firstedge+j]; v = (e<0)?dvertexes + dedges[-e].v[1] : dvertexes + dedges[e].v[0]; point += v->point; Warning( "Bad surface extents point: %f %f %f\n", v->point.x, v->point.y, v->point.z ); } point *= 1.0f/s->numedges; Error( "Bad surface extents - surface is too big to have a lightmap\n\tmaterial %s around point (%.1f %.1f %.1f)\n\t(dimension: %d, %d>%d)\n", TexDataStringTable_GetString( dtexdata[texinfo[s->texinfo].texdata].nameStringTableID ), point.x, point.y, point.z, ( int )i, ( int )lightmapTextureSizeInLuxels[i], ( int )( nMaxLightmapDim + 1 ) ); } } }
void UpdateAllFaceLightmapExtents() { for( int i=0; i < numfaces; i++ ) { dface_t *pFace = &dfaces[i];
if ( texinfo[pFace->texinfo].flags & (SURF_SKY|SURF_NOLIGHT) ) continue; // non-lit texture
CalcFaceExtents( pFace, pFace->m_LightmapTextureMinsInLuxels, pFace->m_LightmapTextureSizeInLuxels ); } }
//-----------------------------------------------------------------------------
//
// Helper class to iterate over leaves, used by tools
//
//-----------------------------------------------------------------------------
#define TEST_EPSILON (0.03125)
class CToolBSPTree : public ISpatialQuery { public: // Returns the number of leaves
int LeafCount() const;
// Enumerates the leaves along a ray, box, etc.
bool EnumerateLeavesAtPoint( Vector const& pt, ISpatialLeafEnumerator* pEnum, int context ); bool EnumerateLeavesInBox( Vector const& mins, Vector const& maxs, ISpatialLeafEnumerator* pEnum, int context ); bool EnumerateLeavesInSphere( Vector const& center, float radius, ISpatialLeafEnumerator* pEnum, int context ); bool EnumerateLeavesAlongRay( Ray_t const& ray, ISpatialLeafEnumerator* pEnum, int context ); };
//-----------------------------------------------------------------------------
// Returns the number of leaves
//-----------------------------------------------------------------------------
int CToolBSPTree::LeafCount() const { return numleafs; }
//-----------------------------------------------------------------------------
// Enumerates the leaves at a point
//-----------------------------------------------------------------------------
bool CToolBSPTree::EnumerateLeavesAtPoint( Vector const& pt, ISpatialLeafEnumerator* pEnum, int context ) { int node = 0; while( node >= 0 ) { dnode_t* pNode = &dnodes[node]; dplane_t* pPlane = &dplanes[pNode->planenum];
if (DotProduct( pPlane->normal, pt ) <= pPlane->dist) { node = pNode->children[1]; } else { node = pNode->children[0]; } }
return pEnum->EnumerateLeaf( - node - 1, context ); }
//-----------------------------------------------------------------------------
// Enumerates the leaves in a box
//-----------------------------------------------------------------------------
static bool EnumerateLeavesInBox_R( int node, Vector const& mins, Vector const& maxs, ISpatialLeafEnumerator* pEnum, int context ) { Vector cornermin, cornermax;
while( node >= 0 ) { dnode_t* pNode = &dnodes[node]; dplane_t* pPlane = &dplanes[pNode->planenum];
// Arbitrary split plane here
for (int i = 0; i < 3; ++i) { if (pPlane->normal[i] >= 0) { cornermin[i] = mins[i]; cornermax[i] = maxs[i]; } else { cornermin[i] = maxs[i]; cornermax[i] = mins[i]; } }
if ( (DotProduct( pPlane->normal, cornermax ) - pPlane->dist) <= -TEST_EPSILON ) { node = pNode->children[1]; } else if ( (DotProduct( pPlane->normal, cornermin ) - pPlane->dist) >= TEST_EPSILON ) { node = pNode->children[0]; } else { if (!EnumerateLeavesInBox_R( pNode->children[0], mins, maxs, pEnum, context )) { return false; }
return EnumerateLeavesInBox_R( pNode->children[1], mins, maxs, pEnum, context ); } }
return pEnum->EnumerateLeaf( - node - 1, context ); }
bool CToolBSPTree::EnumerateLeavesInBox( Vector const& mins, Vector const& maxs, ISpatialLeafEnumerator* pEnum, int context ) { return EnumerateLeavesInBox_R( 0, mins, maxs, pEnum, context ); }
//-----------------------------------------------------------------------------
// Enumerate leaves within a sphere
//-----------------------------------------------------------------------------
static bool EnumerateLeavesInSphere_R( int node, Vector const& origin, float radius, ISpatialLeafEnumerator* pEnum, int context ) { while( node >= 0 ) { dnode_t* pNode = &dnodes[node]; dplane_t* pPlane = &dplanes[pNode->planenum];
if (DotProduct( pPlane->normal, origin ) + radius - pPlane->dist <= -TEST_EPSILON ) { node = pNode->children[1]; } else if (DotProduct( pPlane->normal, origin ) - radius - pPlane->dist >= TEST_EPSILON ) { node = pNode->children[0]; } else { if (!EnumerateLeavesInSphere_R( pNode->children[0], origin, radius, pEnum, context )) { return false; }
return EnumerateLeavesInSphere_R( pNode->children[1], origin, radius, pEnum, context ); } }
return pEnum->EnumerateLeaf( - node - 1, context ); }
bool CToolBSPTree::EnumerateLeavesInSphere( Vector const& center, float radius, ISpatialLeafEnumerator* pEnum, int context ) { return EnumerateLeavesInSphere_R( 0, center, radius, pEnum, context ); }
//-----------------------------------------------------------------------------
// Enumerate leaves along a ray
//-----------------------------------------------------------------------------
static bool EnumerateLeavesAlongRay_R( int node, Ray_t const& ray, Vector const& start, Vector const& end, ISpatialLeafEnumerator* pEnum, int context ) { float front,back;
while (node >= 0) { dnode_t* pNode = &dnodes[node]; dplane_t* pPlane = &dplanes[pNode->planenum];
if ( pPlane->type <= PLANE_Z ) { front = start[pPlane->type] - pPlane->dist; back = end[pPlane->type] - pPlane->dist; } else { front = DotProduct(start, pPlane->normal) - pPlane->dist; back = DotProduct(end, pPlane->normal) - pPlane->dist; }
if (front <= -TEST_EPSILON && back <= -TEST_EPSILON) { node = pNode->children[1]; } else if (front >= TEST_EPSILON && back >= TEST_EPSILON) { node = pNode->children[0]; } else { // test the front side first
bool side = front < 0;
// Compute intersection point based on the original ray
float splitfrac; float denom = DotProduct( ray.m_Delta, pPlane->normal ); if ( denom == 0.0f ) { splitfrac = 1.0f; } else { splitfrac = ( pPlane->dist - DotProduct( ray.m_Start, pPlane->normal ) ) / denom; if (splitfrac < 0) splitfrac = 0; else if (splitfrac > 1) splitfrac = 1; }
// Compute the split point
Vector split; VectorMA( ray.m_Start, splitfrac, ray.m_Delta, split );
bool r = EnumerateLeavesAlongRay_R (pNode->children[side], ray, start, split, pEnum, context ); if (!r) return r; return EnumerateLeavesAlongRay_R (pNode->children[!side], ray, split, end, pEnum, context); } }
return pEnum->EnumerateLeaf( - node - 1, context ); }
bool CToolBSPTree::EnumerateLeavesAlongRay( Ray_t const& ray, ISpatialLeafEnumerator* pEnum, int context ) { if (!ray.m_IsSwept) { Vector mins, maxs; VectorAdd( ray.m_Start, ray.m_Extents, maxs ); VectorSubtract( ray.m_Start, ray.m_Extents, mins );
return EnumerateLeavesInBox_R( 0, mins, maxs, pEnum, context ); }
// FIXME: Extruded ray not implemented yet
Assert( ray.m_IsRay );
Vector end; VectorAdd( ray.m_Start, ray.m_Delta, end ); return EnumerateLeavesAlongRay_R( 0, ray, ray.m_Start, end, pEnum, context ); }
//-----------------------------------------------------------------------------
// Singleton accessor
//-----------------------------------------------------------------------------
ISpatialQuery* ToolBSPTree() { static CToolBSPTree s_ToolBSPTree; return &s_ToolBSPTree; }
//-----------------------------------------------------------------------------
// Enumerates nodes in front to back order...
//-----------------------------------------------------------------------------
// FIXME: Do we want this in the IBSPTree interface?
static bool EnumerateNodesAlongRay_R( int node, Ray_t const& ray, float start, float end, IBSPNodeEnumerator* pEnum, int context ) { float front, back; float startDotN, deltaDotN;
while (node >= 0) { dnode_t* pNode = &dnodes[node]; dplane_t* pPlane = &dplanes[pNode->planenum];
if ( pPlane->type <= PLANE_Z ) { startDotN = ray.m_Start[pPlane->type]; deltaDotN = ray.m_Delta[pPlane->type]; } else { startDotN = DotProduct( ray.m_Start, pPlane->normal ); deltaDotN = DotProduct( ray.m_Delta, pPlane->normal ); }
front = startDotN + start * deltaDotN - pPlane->dist; back = startDotN + end * deltaDotN - pPlane->dist;
if (front <= -TEST_EPSILON && back <= -TEST_EPSILON) { node = pNode->children[1]; } else if (front >= TEST_EPSILON && back >= TEST_EPSILON) { node = pNode->children[0]; } else { // test the front side first
bool side = front < 0;
// Compute intersection point based on the original ray
float splitfrac; if ( deltaDotN == 0.0f ) { splitfrac = 1.0f; } else { splitfrac = ( pPlane->dist - startDotN ) / deltaDotN; if (splitfrac < 0.0f) splitfrac = 0.0f; else if (splitfrac > 1.0f) splitfrac = 1.0f; }
bool r = EnumerateNodesAlongRay_R (pNode->children[side], ray, start, splitfrac, pEnum, context ); if (!r) return r;
// Visit the node...
if (!pEnum->EnumerateNode( node, ray, splitfrac, context )) return false;
return EnumerateNodesAlongRay_R (pNode->children[!side], ray, splitfrac, end, pEnum, context); } }
// Visit the leaf...
return pEnum->EnumerateLeaf( - node - 1, ray, start, end, context ); }
bool EnumerateNodesAlongRay( Ray_t const& ray, IBSPNodeEnumerator* pEnum, int context ) { Vector end; VectorAdd( ray.m_Start, ray.m_Delta, end ); return EnumerateNodesAlongRay_R( 0, ray, 0.0f, 1.0f, pEnum, context ); }
//-----------------------------------------------------------------------------
// Helps us find all leaves associated with a particular cluster
//-----------------------------------------------------------------------------
CUtlVector<clusterlist_t> g_ClusterLeaves;
void BuildClusterTable( void ) { int i, j; int leafCount; int leafList[MAX_MAP_LEAFS];
g_ClusterLeaves.SetCount( dvis->numclusters ); for ( i = 0; i < dvis->numclusters; i++ ) { leafCount = 0; for ( j = 0; j < numleafs; j++ ) { if ( dleafs[j].cluster == i ) { leafList[ leafCount ] = j; leafCount++; } }
g_ClusterLeaves[i].leafCount = leafCount; if ( leafCount ) { g_ClusterLeaves[i].leafs.SetCount( leafCount ); memcpy( g_ClusterLeaves[i].leafs.Base(), leafList, sizeof(int) * leafCount ); } } }
// There's a version of this in checksum_engine.cpp!!! Make sure that they match.
static bool CRC_MapFile(CRC32_t *crcvalue, const char *pszFileName) { byte chunk[1024]; lump_t *curLump;
FileHandle_t fp = g_pFileSystem->Open( pszFileName, "rb" ); if ( !fp ) return false;
// CRC across all lumps except for the Entities lump
for ( int l = 0; l < HEADER_LUMPS; ++l ) { if (l == LUMP_ENTITIES) continue;
curLump = &g_pBSPHeader->lumps[l]; unsigned int nSize = curLump->filelen;
g_pFileSystem->Seek( fp, curLump->fileofs, FILESYSTEM_SEEK_HEAD );
// Now read in 1K chunks
while ( nSize > 0 ) { int nBytesRead = 0;
if ( nSize > 1024 ) nBytesRead = g_pFileSystem->Read( chunk, 1024, fp ); else nBytesRead = g_pFileSystem->Read( chunk, nSize, fp );
// If any data was received, CRC it.
if ( nBytesRead > 0 ) { nSize -= nBytesRead; CRC32_ProcessBuffer( crcvalue, chunk, nBytesRead ); } else { g_pFileSystem->Close( fp ); return false; } } } g_pFileSystem->Close( fp ); return true; }
void SetHDRMode( bool bHDR ) { g_bHDR = bHDR; if ( bHDR ) { pdlightdata = &dlightdataHDR; g_pLeafAmbientLighting = &g_LeafAmbientLightingHDR; g_pLeafAmbientIndex = &g_LeafAmbientIndexHDR; pNumworldlights = &numworldlightsHDR; dworldlights = dworldlightsHDR; #ifdef VRAD
extern void VRadDetailProps_SetHDRMode( bool bHDR ); VRadDetailProps_SetHDRMode( bHDR ); #endif
} else { pdlightdata = &dlightdataLDR; g_pLeafAmbientLighting = &g_LeafAmbientLightingLDR; g_pLeafAmbientIndex = &g_LeafAmbientIndexLDR; pNumworldlights = &numworldlightsLDR; dworldlights = dworldlightsLDR; #ifdef VRAD
extern void VRadDetailProps_SetHDRMode( bool bHDR ); VRadDetailProps_SetHDRMode( bHDR ); #endif
} }
bool SwapVHV( void *pDestBase, void *pSrcBase ) { byte *pDest = (byte*)pDestBase; byte *pSrc = (byte*)pSrcBase;
HardwareVerts::FileHeader_t *pHdr = (HardwareVerts::FileHeader_t*)( g_bSwapOnLoad ? pDest : pSrc ); g_Swap.SwapFieldsToTargetEndian<HardwareVerts::FileHeader_t>( (HardwareVerts::FileHeader_t*)pDest, (HardwareVerts::FileHeader_t*)pSrc ); pSrc += sizeof(HardwareVerts::FileHeader_t); pDest += sizeof(HardwareVerts::FileHeader_t);
// This swap is pretty format specific
Assert( pHdr->m_nVersion == VHV_VERSION ); if ( pHdr->m_nVersion != VHV_VERSION ) return false;
HardwareVerts::MeshHeader_t *pSrcMesh = (HardwareVerts::MeshHeader_t*)pSrc; HardwareVerts::MeshHeader_t *pDestMesh = (HardwareVerts::MeshHeader_t*)pDest; HardwareVerts::MeshHeader_t *pMesh = (HardwareVerts::MeshHeader_t*)( g_bSwapOnLoad ? pDest : pSrc ); for ( int i = 0; i < pHdr->m_nMeshes; ++i, ++pMesh, ++pSrcMesh, ++pDestMesh ) { g_Swap.SwapFieldsToTargetEndian( pDestMesh, pSrcMesh );
pSrc = (byte*)pSrcBase + pMesh->m_nOffset; pDest = (byte*)pDestBase + pMesh->m_nOffset;
// Swap as a buffer of integers
// (source is bgra for an Intel swap to argb. PowerPC won't swap, so we need argb source.
g_Swap.SwapBufferToTargetEndian<int>( (int*)pDest, (int*)pSrc, pMesh->m_nVertexes ); } return true; }
const char *ResolveStaticPropToModel( const char *pPropName ) { // resolve back to static prop
int iProp = -1;
// filename should be sp_???.vhv or sp_hdr_???.vhv
if ( V_strnicmp( pPropName, "sp_", 3 ) ) { return NULL; } const char *pPropNumber = V_strrchr( pPropName, '_' ); if ( pPropNumber ) { sscanf( pPropNumber+1, "%d.vhv", &iProp ); } else { return NULL; }
// look up the prop to get to the actual model
if ( iProp < 0 || iProp >= g_StaticPropInstances.Count() ) { // prop out of range
return NULL; } int iModel = g_StaticPropInstances[iProp]; if ( iModel < 0 || iModel >= g_StaticPropNames.Count() ) { // model out of range
return NULL; }
return g_StaticPropNames[iModel].String(); }
//-----------------------------------------------------------------------------
// Iterate files in pak file, distribute to converters
// pak file will be ready for serialization upon completion
//-----------------------------------------------------------------------------
void ConvertPakFileContents( const char *pInFilename ) { IZip *newPakFile = IZip::CreateZip( NULL );
CUtlBuffer sourceBuf; CUtlBuffer targetBuf; bool bConverted; CUtlVector< CUtlString > hdrFiles;
int id = -1; int fileSize; while ( 1 ) { char relativeName[MAX_PATH]; id = GetNextFilename( GetPakFile(), id, relativeName, sizeof( relativeName ), fileSize ); if ( id == -1) break;
bConverted = false; sourceBuf.Purge(); targetBuf.Purge();
const char* pExtension = V_GetFileExtension( relativeName ); const char* pExt = 0;
bool bOK = ReadFileFromPak( GetPakFile(), relativeName, false, sourceBuf ); if ( !bOK ) { Warning( "Failed to load '%s' from lump pak for conversion or copy in '%s'.\n", relativeName, pInFilename ); continue; }
if ( pExtension && !V_stricmp( pExtension, "vtf" ) ) { bOK = g_pVTFConvertFunc( relativeName, sourceBuf, targetBuf, g_pCompressFunc ); if ( !bOK ) { Warning( "Failed to convert '%s' in '%s'.\n", relativeName, pInFilename ); continue; } bConverted = true; pExt = ".vtf"; } else if ( pExtension && !V_stricmp( pExtension, "vhv" ) ) { CUtlBuffer tempBuffer; if ( g_pVHVFixupFunc ) { // caller supplied a fixup
const char *pModelName = ResolveStaticPropToModel( relativeName ); if ( !pModelName ) { Warning( "Static Prop '%s' failed to resolve actual model in '%s'.\n", relativeName, pInFilename ); continue; }
// output temp buffer may shrink, must use TellPut() to determine size
bOK = g_pVHVFixupFunc( relativeName, pModelName, sourceBuf, tempBuffer ); if ( !bOK ) { Warning( "Failed to convert '%s' in '%s'.\n", relativeName, pInFilename ); continue; } } else { // use the source buffer as-is
tempBuffer.EnsureCapacity( sourceBuf.TellMaxPut() ); tempBuffer.Put( sourceBuf.Base(), sourceBuf.TellMaxPut() ); }
// swap the VHV
targetBuf.EnsureCapacity( tempBuffer.TellPut() ); bOK = SwapVHV( targetBuf.Base(), tempBuffer.Base() ); if ( !bOK ) { Warning( "Failed to swap '%s' in '%s'.\n", relativeName, pInFilename ); continue; } targetBuf.SeekPut( CUtlBuffer::SEEK_HEAD, tempBuffer.TellPut() );
if ( g_pCompressFunc ) { CUtlBuffer compressedBuffer; targetBuf.SeekGet( CUtlBuffer::SEEK_HEAD, sizeof( HardwareVerts::FileHeader_t ) ); bool bCompressed = g_pCompressFunc( targetBuf, compressedBuffer ); if ( bCompressed ) { // copy all the header data off
CUtlBuffer headerBuffer; headerBuffer.EnsureCapacity( sizeof( HardwareVerts::FileHeader_t ) ); headerBuffer.Put( targetBuf.Base(), sizeof( HardwareVerts::FileHeader_t ) );
// reform the target with the header and then the compressed data
targetBuf.Clear(); targetBuf.Put( headerBuffer.Base(), sizeof( HardwareVerts::FileHeader_t ) ); targetBuf.Put( compressedBuffer.Base(), compressedBuffer.TellPut() ); }
targetBuf.SeekGet( CUtlBuffer::SEEK_HEAD, 0 ); }
bConverted = true; pExt = ".vhv"; }
if ( !bConverted ) { // straight copy
AddBufferToPak( newPakFile, relativeName, sourceBuf.Base(), sourceBuf.TellMaxPut(), false, IZip::eCompressionType_None ); } else { // converted filename
V_StripExtension( relativeName, relativeName, sizeof( relativeName ) ); V_strcat( relativeName, ".360", sizeof( relativeName ) ); V_strcat( relativeName, pExt, sizeof( relativeName ) ); AddBufferToPak( newPakFile, relativeName, targetBuf.Base(), targetBuf.TellMaxPut(), false, IZip::eCompressionType_None ); }
if ( V_stristr( relativeName, ".hdr" ) || V_stristr( relativeName, "_hdr" ) ) { hdrFiles.AddToTail( relativeName ); }
DevMsg( "Created '%s' in lump pak in '%s'.\n", relativeName, pInFilename ); }
// strip ldr version of hdr files
for ( int i=0; i<hdrFiles.Count(); i++ ) { char ldrFileName[MAX_PATH];
strcpy( ldrFileName, hdrFiles[i].String() );
char *pHDRExtension = V_stristr( ldrFileName, ".hdr" ); if ( !pHDRExtension ) { pHDRExtension = V_stristr( ldrFileName, "_hdr" ); }
if ( pHDRExtension ) { // strip .hdr or _hdr to get ldr filename
memcpy( pHDRExtension, pHDRExtension+4, strlen( pHDRExtension+4 )+1 );
DevMsg( "Stripping LDR: %s\n", ldrFileName ); newPakFile->RemoveFileFromZip( ldrFileName ); } }
// discard old pak in favor of new pak
IZip::ReleaseZip( s_pakFile ); s_pakFile = newPakFile; }
void SetAlignedLumpPosition( int lumpnum, int alignment = LUMP_ALIGNMENT ) { g_pBSPHeader->lumps[lumpnum].fileofs = AlignFilePosition( g_hBSPFile, alignment ); }
template< class T > int SwapLumpToDisk( int fieldType, int lumpnum ) { if ( g_pBSPHeader->lumps[lumpnum].filelen == 0 ) return 0;
DevMsg( "Swapping %s\n", GetLumpName( lumpnum ) );
// lump swap may expand, allocate enough expansion room
void *pBuffer = malloc( 2*g_pBSPHeader->lumps[lumpnum].filelen );
// CopyLumpInternal will handle the swap on load case
unsigned int fieldSize = ( fieldType == FIELD_VECTOR ) ? sizeof(Vector) : sizeof(T); unsigned int count = CopyLumpInternal<T>( fieldType, lumpnum, (T*)pBuffer, g_pBSPHeader->lumps[lumpnum].version ); g_pBSPHeader->lumps[lumpnum].filelen = count * fieldSize;
if ( g_bSwapOnWrite ) { // Swap the lump in place before writing
switch( lumpnum ) { case LUMP_VISIBILITY: SwapVisibilityLump( (byte*)pBuffer, (byte*)pBuffer, count ); break; case LUMP_PHYSCOLLIDE: // SwapPhyscollideLump may change size
SwapPhyscollideLump( (byte*)pBuffer, (byte*)pBuffer, count ); g_pBSPHeader->lumps[lumpnum].filelen = count; break;
case LUMP_PHYSDISP: SwapPhysdispLump( (byte*)pBuffer, (byte*)pBuffer, count ); break;
default: g_Swap.SwapBufferToTargetEndian( (T*)pBuffer, (T*)pBuffer, g_pBSPHeader->lumps[lumpnum].filelen / sizeof(T) ); break; } }
SetAlignedLumpPosition( lumpnum ); SafeWrite( g_hBSPFile, pBuffer, g_pBSPHeader->lumps[lumpnum].filelen );
free( pBuffer );
return g_pBSPHeader->lumps[lumpnum].filelen; }
template< class T > int SwapLumpToDisk( int lumpnum ) { if ( g_pBSPHeader->lumps[lumpnum].filelen == 0 || g_Lumps.bLumpParsed[lumpnum] ) return 0;
DevMsg( "Swapping %s\n", GetLumpName( lumpnum ) );
// lump swap may expand, allocate enough room
void *pBuffer = malloc( 2*g_pBSPHeader->lumps[lumpnum].filelen );
// CopyLumpInternal will handle the swap on load case
int count = CopyLumpInternal<T>( lumpnum, (T*)pBuffer, g_pBSPHeader->lumps[lumpnum].version ); g_pBSPHeader->lumps[lumpnum].filelen = count * sizeof(T);
if ( g_bSwapOnWrite ) { // Swap the lump in place before writing
g_Swap.SwapFieldsToTargetEndian( (T*)pBuffer, (T*)pBuffer, count ); }
SetAlignedLumpPosition( lumpnum ); SafeWrite( g_hBSPFile, pBuffer, g_pBSPHeader->lumps[lumpnum].filelen ); free( pBuffer );
return g_pBSPHeader->lumps[lumpnum].filelen; }
void SwapLeafAmbientLightingLumpToDisk() { if ( HasLump( LUMP_LEAF_AMBIENT_INDEX ) || HasLump( LUMP_LEAF_AMBIENT_INDEX_HDR ) ) { // current version, swap in place
if ( HasLump( LUMP_LEAF_AMBIENT_INDEX_HDR ) ) { // write HDR
SwapLumpToDisk< dleafambientlighting_t >( LUMP_LEAF_AMBIENT_LIGHTING_HDR ); SwapLumpToDisk< dleafambientindex_t >( LUMP_LEAF_AMBIENT_INDEX_HDR );
// cull LDR
g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING].filelen = 0; g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_INDEX].filelen = 0; } else { // no HDR, keep LDR version
SwapLumpToDisk< dleafambientlighting_t >( LUMP_LEAF_AMBIENT_LIGHTING ); SwapLumpToDisk< dleafambientindex_t >( LUMP_LEAF_AMBIENT_INDEX ); } } else { // older ambient lighting version (before index)
// load older ambient lighting into memory and build ambient/index
// an older leaf version would have already built the new LDR leaf ambient/index
int numLeafs = g_pBSPHeader->lumps[LUMP_LEAFS].filelen / sizeof( dleaf_t ); LoadLeafAmbientLighting( numLeafs );
if ( HasLump( LUMP_LEAF_AMBIENT_LIGHTING_HDR ) ) { DevMsg( "Swapping %s\n", GetLumpName( LUMP_LEAF_AMBIENT_LIGHTING_HDR ) ); DevMsg( "Swapping %s\n", GetLumpName( LUMP_LEAF_AMBIENT_INDEX_HDR ) );
// write HDR
if ( g_bSwapOnWrite ) { g_Swap.SwapFieldsToTargetEndian( g_LeafAmbientLightingHDR.Base(), g_LeafAmbientLightingHDR.Count() ); g_Swap.SwapFieldsToTargetEndian( g_LeafAmbientIndexHDR.Base(), g_LeafAmbientIndexHDR.Count() ); }
SetAlignedLumpPosition( LUMP_LEAF_AMBIENT_LIGHTING_HDR ); g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING_HDR].version = LUMP_LEAF_AMBIENT_LIGHTING_VERSION; g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING_HDR].filelen = g_LeafAmbientLightingHDR.Count() * sizeof( dleafambientlighting_t ); SafeWrite( g_hBSPFile, g_LeafAmbientLightingHDR.Base(), g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING_HDR].filelen );
SetAlignedLumpPosition( LUMP_LEAF_AMBIENT_INDEX_HDR ); g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_INDEX_HDR].filelen = g_LeafAmbientIndexHDR.Count() * sizeof( dleafambientindex_t ); SafeWrite( g_hBSPFile, g_LeafAmbientIndexHDR.Base(), g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_INDEX_HDR].filelen );
// mark as processed
g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_LIGHTING_HDR] = true; g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_INDEX_HDR] = true;
// cull LDR
g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING].filelen = 0; g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_INDEX].filelen = 0; } else { // no HDR, keep LDR version
DevMsg( "Swapping %s\n", GetLumpName( LUMP_LEAF_AMBIENT_LIGHTING ) ); DevMsg( "Swapping %s\n", GetLumpName( LUMP_LEAF_AMBIENT_INDEX ) );
if ( g_bSwapOnWrite ) { g_Swap.SwapFieldsToTargetEndian( g_LeafAmbientLightingLDR.Base(), g_LeafAmbientLightingLDR.Count() ); g_Swap.SwapFieldsToTargetEndian( g_LeafAmbientIndexLDR.Base(), g_LeafAmbientIndexLDR.Count() ); }
SetAlignedLumpPosition( LUMP_LEAF_AMBIENT_LIGHTING ); g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING].version = LUMP_LEAF_AMBIENT_LIGHTING_VERSION; g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING].filelen = g_LeafAmbientLightingLDR.Count() * sizeof( dleafambientlighting_t ); SafeWrite( g_hBSPFile, g_LeafAmbientLightingLDR.Base(), g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING].filelen );
SetAlignedLumpPosition( LUMP_LEAF_AMBIENT_INDEX ); g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_INDEX].filelen = g_LeafAmbientIndexLDR.Count() * sizeof( dleafambientindex_t ); SafeWrite( g_hBSPFile, g_LeafAmbientIndexLDR.Base(), g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_INDEX].filelen );
// mark as processed
g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_LIGHTING] = true; g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_INDEX] = true; }
g_LeafAmbientLightingLDR.Purge(); g_LeafAmbientIndexLDR.Purge(); g_LeafAmbientLightingHDR.Purge(); g_LeafAmbientIndexHDR.Purge(); } }
void SwapLeafLumpToDisk( void ) { DevMsg( "Swapping %s\n", GetLumpName( LUMP_LEAFS ) );
// load the leafs
int count = LoadLeafs(); if ( g_bSwapOnWrite ) { g_Swap.SwapFieldsToTargetEndian( dleafs, count ); }
bool bOldLeafVersion = ( LumpVersion( LUMP_LEAFS ) == 0 ); if ( bOldLeafVersion ) { // version has been converted in the load process
// not updating the version ye, SwapLeafAmbientLightingLumpToDisk() can detect
g_pBSPHeader->lumps[LUMP_LEAFS].filelen = count * sizeof( dleaf_t ); }
SetAlignedLumpPosition( LUMP_LEAFS ); SafeWrite( g_hBSPFile, dleafs, g_pBSPHeader->lumps[LUMP_LEAFS].filelen );
SwapLeafAmbientLightingLumpToDisk();
if ( bOldLeafVersion ) { // version has been converted in the load process
// can now safely change
g_pBSPHeader->lumps[LUMP_LEAFS].version = 1; }
#if defined( BSP_USE_LESS_MEMORY )
if ( dleafs ) { free( dleafs ); dleafs = NULL; } #endif
}
void SwapOcclusionLumpToDisk( void ) { DevMsg( "Swapping %s\n", GetLumpName( LUMP_OCCLUSION ) );
LoadOcclusionLump(); SetAlignedLumpPosition( LUMP_OCCLUSION ); AddOcclusionLump(); }
void SwapPakfileLumpToDisk( const char *pInFilename ) { DevMsg( "Swapping %s\n", GetLumpName( LUMP_PAKFILE ) );
byte *pakbuffer = NULL; int paksize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PAKFILE, ( void ** )&pakbuffer ); if ( paksize > 0 ) { GetPakFile()->ActivateByteSwapping( IsX360() ); GetPakFile()->ParseFromBuffer( pakbuffer, paksize );
ConvertPakFileContents( pInFilename ); } free( pakbuffer );
SetAlignedLumpPosition( LUMP_PAKFILE, XBOX_DVD_SECTORSIZE ); WritePakFileLump();
ReleasePakFileLumps(); }
void SwapGameLumpsToDisk( void ) { DevMsg( "Swapping %s\n", GetLumpName( LUMP_GAME_LUMP ) );
g_GameLumps.ParseGameLump( g_pBSPHeader ); SetAlignedLumpPosition( LUMP_GAME_LUMP ); AddGameLumps(); }
//-----------------------------------------------------------------------------
// Generate a table of all static props, used for resolving static prop lighting
// files back to their actual mdl.
//-----------------------------------------------------------------------------
void BuildStaticPropNameTable() { g_StaticPropNames.Purge(); g_StaticPropInstances.Purge();
g_GameLumps.ParseGameLump( g_pBSPHeader );
GameLumpHandle_t hGameLump = g_GameLumps.GetGameLumpHandle( GAMELUMP_STATIC_PROPS ); if ( hGameLump != g_GameLumps.InvalidGameLump() ) { int nVersion = g_GameLumps.GetGameLumpVersion( hGameLump ); if ( nVersion < 4 ) { // old unsupported version
return; }
if ( nVersion != 4 && nVersion != 5 && nVersion != 6 ) { Error( "Unknown Static Prop Lump version %d!\n", nVersion ); }
byte *pGameLumpData = (byte *)g_GameLumps.GetGameLump( hGameLump ); if ( pGameLumpData && g_GameLumps.GameLumpSize( hGameLump ) ) { // get the model dictionary
int count = ((int *)pGameLumpData)[0]; pGameLumpData += sizeof( int ); StaticPropDictLump_t *pStaticPropDictLump = (StaticPropDictLump_t *)pGameLumpData; for ( int i = 0; i < count; i++ ) { g_StaticPropNames.AddToTail( pStaticPropDictLump[i].m_Name ); } pGameLumpData += count * sizeof( StaticPropDictLump_t );
// skip the leaf list
count = ((int *)pGameLumpData)[0]; pGameLumpData += sizeof( int ); pGameLumpData += count * sizeof( StaticPropLeafLump_t );
// get the instances
count = ((int *)pGameLumpData)[0]; pGameLumpData += sizeof( int ); for ( int i = 0; i < count; i++ ) { int propType; if ( nVersion == 4 ) { propType = ((StaticPropLumpV4_t *)pGameLumpData)->m_PropType; pGameLumpData += sizeof( StaticPropLumpV4_t ); } else if ( nVersion == 5 ) { propType = ((StaticPropLumpV5_t *)pGameLumpData)->m_PropType; pGameLumpData += sizeof( StaticPropLumpV5_t ); } else { propType = ((StaticPropLump_t *)pGameLumpData)->m_PropType; pGameLumpData += sizeof( StaticPropLump_t ); } g_StaticPropInstances.AddToTail( propType ); } } }
g_GameLumps.DestroyAllGameLumps(); }
int AlignBuffer( CUtlBuffer &buffer, int alignment ) { unsigned int newPosition = AlignValue( buffer.TellPut(), alignment ); int padLength = newPosition - buffer.TellPut(); for ( int i = 0; i<padLength; i++ ) { buffer.PutChar( '\0' ); } return buffer.TellPut(); }
struct SortedLump_t { int lumpNum; lump_t *pLump; };
int SortLumpsByOffset( const SortedLump_t *pSortedLumpA, const SortedLump_t *pSortedLumpB ) { int fileOffsetA = pSortedLumpA->pLump->fileofs; int fileOffsetB = pSortedLumpB->pLump->fileofs;
int fileSizeA = pSortedLumpA->pLump->filelen; int fileSizeB = pSortedLumpB->pLump->filelen;
// invalid or empty lumps get sorted together
if ( !fileSizeA ) { fileOffsetA = 0; } if ( !fileSizeB ) { fileOffsetB = 0; }
// compare by offset, want ascending
if ( fileOffsetA < fileOffsetB ) { return -1; } else if ( fileOffsetA > fileOffsetB ) { return 1; }
return 0; }
bool CompressGameLump( dheader_t *pInBSPHeader, dheader_t *pOutBSPHeader, CUtlBuffer &outputBuffer, CompressFunc_t pCompressFunc ) { CByteswap byteSwap;
dgamelumpheader_t* pInGameLumpHeader = (dgamelumpheader_t*)(((byte *)pInBSPHeader) + pInBSPHeader->lumps[LUMP_GAME_LUMP].fileofs); dgamelump_t* pInGameLump = (dgamelump_t*)(pInGameLumpHeader + 1);
if ( IsX360() ) { byteSwap.ActivateByteSwapping( true ); byteSwap.SwapFieldsToTargetEndian( pInGameLumpHeader ); byteSwap.SwapFieldsToTargetEndian( pInGameLump, pInGameLumpHeader->lumpCount ); }
unsigned int newOffset = outputBuffer.TellPut(); // Make room for gamelump header and gamelump structs, which we'll write at the end
outputBuffer.SeekPut( CUtlBuffer::SEEK_CURRENT, sizeof( dgamelumpheader_t ) ); outputBuffer.SeekPut( CUtlBuffer::SEEK_CURRENT, pInGameLumpHeader->lumpCount * sizeof( dgamelump_t ) );
// Start with input lumps, and fixup
dgamelumpheader_t sOutGameLumpHeader = *pInGameLumpHeader; CUtlBuffer sOutGameLumpBuf; sOutGameLumpBuf.Put( pInGameLump, pInGameLumpHeader->lumpCount * sizeof( dgamelump_t ) ); dgamelump_t *sOutGameLump = (dgamelump_t *)sOutGameLumpBuf.Base();
// add a dummy terminal gamelump
// purposely NOT updating the .filelen to reflect the compressed size, but leaving as original size
// callers use the next entry offset to determine compressed size
sOutGameLumpHeader.lumpCount++; dgamelump_t dummyLump = { 0 }; outputBuffer.Put( &dummyLump, sizeof( dgamelump_t ) );
for ( int i = 0; i < pInGameLumpHeader->lumpCount; i++ ) { CUtlBuffer inputBuffer; CUtlBuffer compressedBuffer;
sOutGameLump[i].fileofs = AlignBuffer( outputBuffer, 4 );
if ( pInGameLump[i].filelen ) { if ( pInGameLump[i].flags & GAMELUMPFLAG_COMPRESSED ) { byte *pCompressedLump = ((byte *)pInBSPHeader) + pInGameLump[i].fileofs; if ( CLZMA::IsCompressed( pCompressedLump ) ) { inputBuffer.EnsureCapacity( CLZMA::GetActualSize( pCompressedLump ) ); unsigned int outSize = CLZMA::Uncompress( pCompressedLump, (unsigned char *)inputBuffer.Base() ); inputBuffer.SeekPut( CUtlBuffer::SEEK_CURRENT, outSize ); if ( outSize != CLZMA::GetActualSize( pCompressedLump ) ) { Warning( "Decompressed size differs from header, BSP may be corrupt\n" ); } } else { Assert( CLZMA::IsCompressed( pCompressedLump ) ); Warning( "Unsupported BSP: Unrecognized compressed game lump\n" ); }
} else { inputBuffer.SetExternalBuffer( ((byte *)pInBSPHeader) + pInGameLump[i].fileofs, pInGameLump[i].filelen, pInGameLump[i].filelen ); }
bool bCompressed = pCompressFunc ? pCompressFunc( inputBuffer, compressedBuffer ) : false; if ( bCompressed ) { sOutGameLump[i].flags |= GAMELUMPFLAG_COMPRESSED;
outputBuffer.Put( compressedBuffer.Base(), compressedBuffer.TellPut() ); compressedBuffer.Purge(); } else { // as is, clear compression flag from input lump
sOutGameLump[i].flags &= ~GAMELUMPFLAG_COMPRESSED; outputBuffer.Put( inputBuffer.Base(), inputBuffer.TellPut() ); } } }
// fix the dummy terminal lump
int lastLump = sOutGameLumpHeader.lumpCount-1; sOutGameLump[lastLump].fileofs = outputBuffer.TellPut();
if ( IsX360() ) { // fix the output for 360, swapping it back
byteSwap.SwapFieldsToTargetEndian( sOutGameLump, sOutGameLumpHeader.lumpCount ); byteSwap.SwapFieldsToTargetEndian( &sOutGameLumpHeader ); }
pOutBSPHeader->lumps[LUMP_GAME_LUMP].fileofs = newOffset; pOutBSPHeader->lumps[LUMP_GAME_LUMP].filelen = outputBuffer.TellPut() - newOffset; // We set GAMELUMPFLAG_COMPRESSED and handle compression at the sub-lump level, this whole lump is not
// decompressable as a block.
pOutBSPHeader->lumps[LUMP_GAME_LUMP].uncompressedSize = 0;
// Rewind to start and write lump headers
unsigned int endOffset = outputBuffer.TellPut(); outputBuffer.SeekPut( CUtlBuffer::SEEK_HEAD, newOffset ); outputBuffer.Put( &sOutGameLumpHeader, sizeof( dgamelumpheader_t ) ); outputBuffer.Put( sOutGameLumpBuf.Base(), sOutGameLumpBuf.TellPut() ); outputBuffer.SeekPut( CUtlBuffer::SEEK_HEAD, endOffset );
return true; }
//-----------------------------------------------------------------------------
// Compress callback for RepackBSP
//-----------------------------------------------------------------------------
bool RepackBSPCallback_LZMA( CUtlBuffer &inputBuffer, CUtlBuffer &outputBuffer ) { if ( !inputBuffer.TellPut() ) { // nothing to do
return false; }
unsigned int originalSize = inputBuffer.TellPut() - inputBuffer.TellGet(); unsigned int compressedSize = 0; unsigned char *pCompressedOutput = LZMA_Compress( (unsigned char *)inputBuffer.Base() + inputBuffer.TellGet(), originalSize, &compressedSize ); if ( pCompressedOutput ) { outputBuffer.Put( pCompressedOutput, compressedSize ); DevMsg( "Compressed bsp lump %u -> %u bytes\n", originalSize, compressedSize ); free( pCompressedOutput ); return true; }
return false; }
bool RepackBSP( CUtlBuffer &inputBuffer, CUtlBuffer &outputBuffer, CompressFunc_t pCompressFunc, IZip::eCompressionType packfileCompression ) { dheader_t *pInBSPHeader = (dheader_t *)inputBuffer.Base(); // The 360 swaps this header to disk. For some reason.
if ( pInBSPHeader->ident != ( IsX360() ? BigLong( IDBSPHEADER ) : IDBSPHEADER ) ) { Warning( "RepackBSP given invalid input data\n" ); return false; }
CByteswap byteSwap; if ( IsX360() ) { // bsp is 360, swap the header back
byteSwap.ActivateByteSwapping( true ); byteSwap.SwapFieldsToTargetEndian( pInBSPHeader ); }
unsigned int headerOffset = outputBuffer.TellPut(); outputBuffer.Put( pInBSPHeader, sizeof( dheader_t ) );
// This buffer grows dynamically, don't keep pointers to it around. Write out header at end.
dheader_t sOutBSPHeader = *pInBSPHeader;
// must adhere to input lump's offset order and process according to that, NOT lump num
// sort by offset order
CUtlVector< SortedLump_t > sortedLumps; for ( int i = 0; i < HEADER_LUMPS; i++ ) { int iIndex = sortedLumps.AddToTail(); sortedLumps[iIndex].lumpNum = i; sortedLumps[iIndex].pLump = &pInBSPHeader->lumps[i]; } sortedLumps.Sort( SortLumpsByOffset );
// iterate in sorted order
for ( int i = 0; i < HEADER_LUMPS; ++i ) { SortedLump_t *pSortedLump = &sortedLumps[i]; int lumpNum = pSortedLump->lumpNum;
// Should be set below, don't copy over old data
sOutBSPHeader.lumps[lumpNum].fileofs = 0; sOutBSPHeader.lumps[lumpNum].filelen = 0; // Only set by compressed lumps
sOutBSPHeader.lumps[lumpNum].uncompressedSize = 0;
if ( pSortedLump->pLump->filelen ) // Otherwise its degenerate
{ int alignment = 4; if ( lumpNum == LUMP_PAKFILE ) { alignment = 2048; } unsigned int newOffset = AlignBuffer( outputBuffer, alignment );
CUtlBuffer inputBuffer; if ( pSortedLump->pLump->uncompressedSize ) { byte *pCompressedLump = ((byte *)pInBSPHeader) + pSortedLump->pLump->fileofs; if ( CLZMA::IsCompressed( pCompressedLump ) && pSortedLump->pLump->uncompressedSize == CLZMA::GetActualSize( pCompressedLump ) ) { inputBuffer.EnsureCapacity( CLZMA::GetActualSize( pCompressedLump ) ); unsigned int outSize = CLZMA::Uncompress( pCompressedLump, (unsigned char *)inputBuffer.Base() ); inputBuffer.SeekPut( CUtlBuffer::SEEK_CURRENT, outSize ); if ( outSize != pSortedLump->pLump->uncompressedSize ) { Warning( "Decompressed size differs from header, BSP may be corrupt\n" ); } } else { Assert( CLZMA::IsCompressed( pCompressedLump ) && pSortedLump->pLump->uncompressedSize == CLZMA::GetActualSize( pCompressedLump ) ); Warning( "Unsupported BSP: Unrecognized compressed lump\n" ); } } else { // Just use input
inputBuffer.SetExternalBuffer( ((byte *)pInBSPHeader) + pSortedLump->pLump->fileofs, pSortedLump->pLump->filelen, pSortedLump->pLump->filelen ); }
if ( lumpNum == LUMP_GAME_LUMP ) { // the game lump has to have each of its components individually compressed
CompressGameLump( pInBSPHeader, &sOutBSPHeader, outputBuffer, pCompressFunc ); } else if ( lumpNum == LUMP_PAKFILE ) { IZip *newPakFile = IZip::CreateZip( NULL ); IZip *oldPakFile = IZip::CreateZip( NULL ); oldPakFile->ParseFromBuffer( inputBuffer.Base(), inputBuffer.Size() );
int id = -1; int fileSize; while ( 1 ) { char relativeName[MAX_PATH]; id = GetNextFilename( oldPakFile, id, relativeName, sizeof( relativeName ), fileSize ); if ( id == -1 ) break;
CUtlBuffer sourceBuf; CUtlBuffer targetBuf;
bool bOK = ReadFileFromPak( oldPakFile, relativeName, false, sourceBuf ); if ( !bOK ) { Error( "Failed to load '%s' from lump pak for repacking.\n", relativeName ); continue; }
AddBufferToPak( newPakFile, relativeName, sourceBuf.Base(), sourceBuf.TellMaxPut(), false, packfileCompression );
DevMsg( "Repacking BSP: Created '%s' in lump pak\n", relativeName ); }
// save new pack to buffer
newPakFile->SaveToBuffer( outputBuffer ); sOutBSPHeader.lumps[lumpNum].fileofs = newOffset; sOutBSPHeader.lumps[lumpNum].filelen = outputBuffer.TellPut() - newOffset; // Note that this *lump* is uncompressed, it just contains a packfile that uses compression, so we're
// not setting lumps[lumpNum].uncompressedSize
IZip::ReleaseZip( oldPakFile ); IZip::ReleaseZip( newPakFile ); } else { CUtlBuffer compressedBuffer; bool bCompressed = pCompressFunc ? pCompressFunc( inputBuffer, compressedBuffer ) : false; if ( bCompressed ) { sOutBSPHeader.lumps[lumpNum].uncompressedSize = inputBuffer.TellPut(); sOutBSPHeader.lumps[lumpNum].filelen = compressedBuffer.TellPut(); sOutBSPHeader.lumps[lumpNum].fileofs = newOffset; outputBuffer.Put( compressedBuffer.Base(), compressedBuffer.TellPut() ); compressedBuffer.Purge(); } else { // add as is
sOutBSPHeader.lumps[lumpNum].fileofs = newOffset; sOutBSPHeader.lumps[lumpNum].filelen = inputBuffer.TellPut(); outputBuffer.Put( inputBuffer.Base(), inputBuffer.TellPut() ); } } } }
if ( IsX360() ) { // fix the output for 360, swapping it back
byteSwap.SetTargetBigEndian( true ); byteSwap.SwapFieldsToTargetEndian( &sOutBSPHeader ); }
// Write out header
unsigned int endOffset = outputBuffer.TellPut(); outputBuffer.SeekPut( CUtlBuffer::SEEK_HEAD, headerOffset ); outputBuffer.Put( &sOutBSPHeader, sizeof( sOutBSPHeader ) ); outputBuffer.SeekPut( CUtlBuffer::SEEK_HEAD, endOffset );
return true; }
//-----------------------------------------------------------------------------
// For all lumps in a bsp: Loads the lump from file A, swaps it, writes it to file B.
// This limits the memory used for the swap process which helps the Xbox 360.
//
// NOTE: These lumps will be written to the file in exactly the order they appear here,
// so they can be shifted around if desired for file access optimization.
//-----------------------------------------------------------------------------
bool SwapBSPFile( const char *pInFilename, const char *pOutFilename, bool bSwapOnLoad, VTFConvertFunc_t pVTFConvertFunc, VHVFixupFunc_t pVHVFixupFunc, CompressFunc_t pCompressFunc ) { DevMsg( "Creating %s\n", pOutFilename );
if ( !g_pFileSystem->FileExists( pInFilename ) ) { Warning( "Error! Couldn't open input file %s - BSP swap failed!\n", pInFilename ); return false; }
g_hBSPFile = SafeOpenWrite( pOutFilename ); if ( !g_hBSPFile ) { Warning( "Error! Couldn't open output file %s - BSP swap failed!\n", pOutFilename ); return false; }
if ( !pVTFConvertFunc ) { Warning( "Error! Missing VTF Conversion function\n" ); return false; } g_pVTFConvertFunc = pVTFConvertFunc;
// optional VHV fixup
g_pVHVFixupFunc = pVHVFixupFunc;
// optional compression callback
g_pCompressFunc = pCompressFunc;
// These must be mutually exclusive
g_bSwapOnLoad = bSwapOnLoad; g_bSwapOnWrite = !bSwapOnLoad;
g_Swap.ActivateByteSwapping( true );
OpenBSPFile( pInFilename );
// CRC the bsp first
CRC32_t mapCRC; CRC32_Init(&mapCRC); if ( !CRC_MapFile( &mapCRC, pInFilename ) ) { Warning( "Failed to CRC the bsp\n" ); return false; }
// hold a dictionary of all the static prop names
// this is needed to properly convert any VHV files inside the pak lump
BuildStaticPropNameTable();
// Set the output file pointer after the header
dheader_t dummyHeader = { 0 }; SafeWrite( g_hBSPFile, &dummyHeader, sizeof( dheader_t ) );
// To allow for alignment fixups, the lumps will be written to the
// output file in the order they appear in this function.
// NOTE: Flags for 360 !!!MUST!!! be first
SwapLumpToDisk< dflagslump_t >( LUMP_MAP_FLAGS );
// complex lump swaps first or for later contingent data
SwapLeafLumpToDisk(); SwapOcclusionLumpToDisk(); SwapGameLumpsToDisk();
// Strip dead or non relevant lumps
g_pBSPHeader->lumps[LUMP_DISP_LIGHTMAP_ALPHAS].filelen = 0; g_pBSPHeader->lumps[LUMP_FACEIDS].filelen = 0;
// Strip obsolete LDR in favor of HDR
if ( SwapLumpToDisk<dface_t>( LUMP_FACES_HDR ) ) { g_pBSPHeader->lumps[LUMP_FACES].filelen = 0; } else { // no HDR, keep LDR version
SwapLumpToDisk<dface_t>( LUMP_FACES ); }
if ( SwapLumpToDisk<dworldlight_t>( LUMP_WORLDLIGHTS_HDR ) ) { g_pBSPHeader->lumps[LUMP_WORLDLIGHTS].filelen = 0; } else { // no HDR, keep LDR version
SwapLumpToDisk<dworldlight_t>( LUMP_WORLDLIGHTS ); }
// Simple lump swaps
SwapLumpToDisk<byte>( FIELD_CHARACTER, LUMP_PHYSDISP ); SwapLumpToDisk<byte>( FIELD_CHARACTER, LUMP_PHYSCOLLIDE ); SwapLumpToDisk<byte>( FIELD_CHARACTER, LUMP_VISIBILITY ); SwapLumpToDisk<dmodel_t>( LUMP_MODELS ); SwapLumpToDisk<dvertex_t>( LUMP_VERTEXES ); SwapLumpToDisk<dplane_t>( LUMP_PLANES ); SwapLumpToDisk<dnode_t>( LUMP_NODES ); SwapLumpToDisk<texinfo_t>( LUMP_TEXINFO ); SwapLumpToDisk<dtexdata_t>( LUMP_TEXDATA ); SwapLumpToDisk<ddispinfo_t>( LUMP_DISPINFO ); SwapLumpToDisk<CDispVert>( LUMP_DISP_VERTS ); SwapLumpToDisk<CDispTri>( LUMP_DISP_TRIS ); SwapLumpToDisk<char>( FIELD_CHARACTER, LUMP_DISP_LIGHTMAP_SAMPLE_POSITIONS ); SwapLumpToDisk<CFaceMacroTextureInfo>( LUMP_FACE_MACRO_TEXTURE_INFO ); SwapLumpToDisk<dprimitive_t>( LUMP_PRIMITIVES ); SwapLumpToDisk<dprimvert_t>( LUMP_PRIMVERTS ); SwapLumpToDisk<unsigned short>( FIELD_SHORT, LUMP_PRIMINDICES ); SwapLumpToDisk<dface_t>( LUMP_ORIGINALFACES ); SwapLumpToDisk<unsigned short>( FIELD_SHORT, LUMP_LEAFFACES ); SwapLumpToDisk<unsigned short>( FIELD_SHORT, LUMP_LEAFBRUSHES ); SwapLumpToDisk<int>( FIELD_INTEGER, LUMP_SURFEDGES ); SwapLumpToDisk<dedge_t>( LUMP_EDGES ); SwapLumpToDisk<dbrush_t>( LUMP_BRUSHES ); SwapLumpToDisk<dbrushside_t>( LUMP_BRUSHSIDES ); SwapLumpToDisk<darea_t>( LUMP_AREAS ); SwapLumpToDisk<dareaportal_t>( LUMP_AREAPORTALS ); SwapLumpToDisk<char>( FIELD_CHARACTER, LUMP_ENTITIES ); SwapLumpToDisk<dleafwaterdata_t>( LUMP_LEAFWATERDATA ); SwapLumpToDisk<float>( FIELD_VECTOR, LUMP_VERTNORMALS ); SwapLumpToDisk<short>( FIELD_SHORT, LUMP_VERTNORMALINDICES ); SwapLumpToDisk<float>( FIELD_VECTOR, LUMP_CLIPPORTALVERTS ); SwapLumpToDisk<dcubemapsample_t>( LUMP_CUBEMAPS ); SwapLumpToDisk<char>( FIELD_CHARACTER, LUMP_TEXDATA_STRING_DATA ); SwapLumpToDisk<int>( FIELD_INTEGER, LUMP_TEXDATA_STRING_TABLE ); SwapLumpToDisk<doverlay_t>( LUMP_OVERLAYS ); SwapLumpToDisk<dwateroverlay_t>( LUMP_WATEROVERLAYS ); SwapLumpToDisk<unsigned short>( FIELD_SHORT, LUMP_LEAFMINDISTTOWATER ); SwapLumpToDisk<doverlayfade_t>( LUMP_OVERLAY_FADES );
// NOTE: this data placed at the end for the sake of 360:
{ // NOTE: lighting must be the penultimate lump
// (allows 360 to free this memory part-way through map loading)
if ( SwapLumpToDisk<byte>( FIELD_CHARACTER, LUMP_LIGHTING_HDR ) ) { g_pBSPHeader->lumps[LUMP_LIGHTING].filelen = 0; } else { // no HDR, keep LDR version
SwapLumpToDisk<byte>( FIELD_CHARACTER, LUMP_LIGHTING ); } // NOTE: Pakfile for 360 !!!MUST!!! be last
SwapPakfileLumpToDisk( pInFilename ); }
// Store the crc in the flags lump version field
g_pBSPHeader->lumps[LUMP_MAP_FLAGS].version = mapCRC;
// Pad out the end of the file to a sector boundary for optimal IO
AlignFilePosition( g_hBSPFile, XBOX_DVD_SECTORSIZE );
// Warn of any lumps that didn't get swapped
for ( int i = 0; i < HEADER_LUMPS; ++i ) { if ( HasLump( i ) && !g_Lumps.bLumpParsed[i] ) { // a new lump got added that needs to have a swap function
Warning( "BSP: '%s', %s has no swap or copy function. Discarding!\n", pInFilename, GetLumpName(i) );
// the data didn't get copied, so don't reference garbage
g_pBSPHeader->lumps[i].filelen = 0; } }
// Write the updated header
g_pFileSystem->Seek( g_hBSPFile, 0, FILESYSTEM_SEEK_HEAD ); WriteData( g_pBSPHeader ); g_pFileSystem->Close( g_hBSPFile ); g_hBSPFile = 0;
// Cleanup
g_Swap.ActivateByteSwapping( false );
CloseBSPFile();
g_StaticPropNames.Purge(); g_StaticPropInstances.Purge();
DevMsg( "Finished BSP Swap\n" );
// caller provided compress func will further compress compatible lumps
if ( pCompressFunc ) { CUtlBuffer inputBuffer; if ( !g_pFileSystem->ReadFile( pOutFilename, NULL, inputBuffer ) ) { Warning( "Error! Couldn't read file %s - final BSP compression failed!\n", pOutFilename ); return false; }
CUtlBuffer outputBuffer; if ( !RepackBSP( inputBuffer, outputBuffer, pCompressFunc, IZip::eCompressionType_None ) ) { Warning( "Error! Failed to compress BSP '%s'!\n", pOutFilename ); return false; }
g_hBSPFile = SafeOpenWrite( pOutFilename ); if ( !g_hBSPFile ) { Warning( "Error! Couldn't open output file %s - BSP swap failed!\n", pOutFilename ); return false; } SafeWrite( g_hBSPFile, outputBuffer.Base(), outputBuffer.TellPut() ); g_pFileSystem->Close( g_hBSPFile ); g_hBSPFile = 0; }
return true; }
//-----------------------------------------------------------------------------
// Get the pak lump from a BSP
//-----------------------------------------------------------------------------
bool GetPakFileLump( const char *pBSPFilename, void **pPakData, int *pPakSize ) { *pPakData = NULL; *pPakSize = 0;
if ( !g_pFileSystem->FileExists( pBSPFilename ) ) { Warning( "Error! Couldn't open file %s!\n", pBSPFilename ); return false; }
// determine endian nature
dheader_t *pHeader; LoadFile( pBSPFilename, (void **)&pHeader ); bool bSwap = ( pHeader->ident == BigLong( IDBSPHEADER ) ); free( pHeader );
g_bSwapOnLoad = bSwap; g_bSwapOnWrite = !bSwap;
OpenBSPFile( pBSPFilename ); if ( g_pBSPHeader->lumps[LUMP_PAKFILE].filelen ) { *pPakSize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PAKFILE, pPakData ); }
CloseBSPFile();
return true; }
// compare function for qsort below
static int LumpOffsetCompare( const void *pElem1, const void *pElem2 ) { int lump1 = *(byte *)pElem1; int lump2 = *(byte *)pElem2;
if ( lump1 != lump2 ) { // force LUMP_MAP_FLAGS to be first, always
if ( lump1 == LUMP_MAP_FLAGS ) { return -1; } else if ( lump2 == LUMP_MAP_FLAGS ) { return 1; }
// force LUMP_PAKFILE to be last, always
if ( lump1 == LUMP_PAKFILE ) { return 1; } else if ( lump2 == LUMP_PAKFILE ) { return -1; } }
int fileOffset1 = g_pBSPHeader->lumps[lump1].fileofs; int fileOffset2 = g_pBSPHeader->lumps[lump2].fileofs;
// invalid or empty lumps will get sorted together
if ( !g_pBSPHeader->lumps[lump1].filelen ) { fileOffset1 = 0; }
if ( !g_pBSPHeader->lumps[lump2].filelen ) { fileOffset2 = 0; }
// compare by offset
if ( fileOffset1 < fileOffset2 ) { return -1; } else if ( fileOffset1 > fileOffset2 ) { return 1; } return 0; }
//-----------------------------------------------------------------------------
// Replace the pak lump in a BSP
//-----------------------------------------------------------------------------
bool SetPakFileLump( const char *pBSPFilename, const char *pNewFilename, void *pPakData, int pakSize ) { if ( !g_pFileSystem->FileExists( pBSPFilename ) ) { Warning( "Error! Couldn't open file %s!\n", pBSPFilename ); return false; }
// determine endian nature
dheader_t *pHeader; LoadFile( pBSPFilename, (void **)&pHeader ); bool bSwap = ( pHeader->ident == BigLong( IDBSPHEADER ) ); free( pHeader );
g_bSwapOnLoad = bSwap; g_bSwapOnWrite = bSwap;
OpenBSPFile( pBSPFilename );
// save a copy of the old header
// generating a new bsp is a destructive operation
dheader_t oldHeader; oldHeader = *g_pBSPHeader;
g_hBSPFile = SafeOpenWrite( pNewFilename ); if ( !g_hBSPFile ) { return false; }
// placeholder only, reset at conclusion
WriteData( &oldHeader );
// lumps must be reserialized in same relative offset order
// build sorted order table
int readOrder[HEADER_LUMPS]; for ( int i=0; i<HEADER_LUMPS; i++ ) { readOrder[i] = i; } qsort( readOrder, HEADER_LUMPS, sizeof( int ), LumpOffsetCompare );
for ( int i = 0; i < HEADER_LUMPS; i++ ) { int lump = readOrder[i];
if ( lump == LUMP_PAKFILE ) { // pak lump always written last, with special alignment
continue; }
int length = g_pBSPHeader->lumps[lump].filelen; if ( length ) { // save the lump data
int offset = g_pBSPHeader->lumps[lump].fileofs; SetAlignedLumpPosition( lump ); SafeWrite( g_hBSPFile, (byte *)g_pBSPHeader + offset, length ); } else { g_pBSPHeader->lumps[lump].fileofs = 0; } }
// Always write the pak file at the end
// Pad out the end of the file to a sector boundary for optimal IO
g_pBSPHeader->lumps[LUMP_PAKFILE].fileofs = AlignFilePosition( g_hBSPFile, XBOX_DVD_SECTORSIZE ); g_pBSPHeader->lumps[LUMP_PAKFILE].filelen = pakSize; SafeWrite( g_hBSPFile, pPakData, pakSize );
// Pad out the end of the file to a sector boundary for optimal IO
AlignFilePosition( g_hBSPFile, XBOX_DVD_SECTORSIZE );
// Write the updated header
g_pFileSystem->Seek( g_hBSPFile, 0, FILESYSTEM_SEEK_HEAD ); WriteData( g_pBSPHeader ); g_pFileSystem->Close( g_hBSPFile );
CloseBSPFile(); return true; }
//-----------------------------------------------------------------------------
// Build a list of files that BSP owns, world/cubemap materials, static props, etc.
//-----------------------------------------------------------------------------
bool GetBSPDependants( const char *pBSPFilename, CUtlVector< CUtlString > *pList ) { if ( !g_pFileSystem->FileExists( pBSPFilename ) ) { Warning( "Error! Couldn't open file %s!\n", pBSPFilename ); return false; }
// must be set, but exact hdr not critical for dependant traversal
SetHDRMode( false );
LoadBSPFile( pBSPFilename );
char szBspName[MAX_PATH]; V_FileBase( pBSPFilename, szBspName, sizeof( szBspName ) ); V_SetExtension( szBspName, ".bsp", sizeof( szBspName ) );
// get embedded pak files, and internals
char szFilename[MAX_PATH]; int fileSize; int fileId = -1; for ( ;; ) { fileId = GetPakFile()->GetNextFilename( fileId, szFilename, sizeof( szFilename ), fileSize ); if ( fileId == -1 ) { break; } pList->AddToTail( szFilename ); }
// get all the world materials
for ( int i=0; i<numtexdata; i++ ) { const char *pName = TexDataStringTable_GetString( dtexdata[i].nameStringTableID ); V_ComposeFileName( "materials", pName, szFilename, sizeof( szFilename ) ); V_SetExtension( szFilename, ".vmt", sizeof( szFilename ) ); pList->AddToTail( szFilename ); }
// get all the static props
GameLumpHandle_t hGameLump = g_GameLumps.GetGameLumpHandle( GAMELUMP_STATIC_PROPS ); if ( hGameLump != g_GameLumps.InvalidGameLump() ) { byte *pGameLumpData = (byte *)g_GameLumps.GetGameLump( hGameLump ); if ( pGameLumpData && g_GameLumps.GameLumpSize( hGameLump ) ) { int count = ((int *)pGameLumpData)[0]; pGameLumpData += sizeof( int );
StaticPropDictLump_t *pStaticPropDictLump = (StaticPropDictLump_t *)pGameLumpData; for ( int i=0; i<count; i++ ) { pList->AddToTail( pStaticPropDictLump[i].m_Name ); } } }
// get all the detail props
hGameLump = g_GameLumps.GetGameLumpHandle( GAMELUMP_DETAIL_PROPS ); if ( hGameLump != g_GameLumps.InvalidGameLump() ) { byte *pGameLumpData = (byte *)g_GameLumps.GetGameLump( hGameLump ); if ( pGameLumpData && g_GameLumps.GameLumpSize( hGameLump ) ) { int count = ((int *)pGameLumpData)[0]; pGameLumpData += sizeof( int );
DetailObjectDictLump_t *pDetailObjectDictLump = (DetailObjectDictLump_t *)pGameLumpData; for ( int i=0; i<count; i++ ) { pList->AddToTail( pDetailObjectDictLump[i].m_Name ); } pGameLumpData += count * sizeof( DetailObjectDictLump_t );
if ( g_GameLumps.GetGameLumpVersion( hGameLump ) == 4 ) { count = ((int *)pGameLumpData)[0]; pGameLumpData += sizeof( int ); if ( count ) { // All detail prop sprites must lie in the material detail/detailsprites
pList->AddToTail( "materials/detail/detailsprites.vmt" ); } } } }
UnloadBSPFile();
return true; }
|