|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
//-----------------------------------------------------------------------------
// FILE: TRISTRIP.CPP
//
// Desc: Xbox tristripper
//
// Copyright (c) 1999-2000 Microsoft Corporation. All rights reserved.
//-----------------------------------------------------------------------------
// identifier was truncated to '255' characters in the debug information
#pragma warning(disable: 4786)
// conversion from 'double' to 'float'
#pragma warning(disable: 4244)
#pragma warning(disable: 4530)
#include <stdio.h>
#include <stdarg.h>
#include <algorithm>
#include <list>
#include <vector>
#include <assert.h>
#ifdef _DEBUG
#include <crtdbg.h>
#endif
#include "mstristrip.h"
using namespace std;
//=========================================================================
// structs
//=========================================================================
typedef vector<WORD> STRIPVERTS; typedef list<STRIPVERTS *> STRIPLIST; typedef WORD (*TRIANGLELIST)[3];
struct TRIANGLEINFO { int neighbortri[3]; int neighboredge[3]; };
// return true if strip starts clockwise
inline bool FIsStripCW(const STRIPVERTS &stripvertices) { // last index should have cw/ccw bool
return !!stripvertices[stripvertices.size() - 1]; }
// return length of strip
inline int StripLen(const STRIPVERTS &stripvertices) { return (int)stripvertices.size() - 1; }
// free all stripverts and clear the striplist
inline void FreeStripListVerts(STRIPLIST *pstriplist) { STRIPLIST::iterator istriplist = pstriplist->begin(); while(istriplist != pstriplist->end()) { STRIPVERTS *pstripverts = *istriplist; delete pstripverts; pstriplist->erase(istriplist++); } }
//=========================================================================
// main stripper class
//=========================================================================
class CStripper { public: // ctors/dtors
CStripper(int numtris, TRIANGLELIST ptriangles); ~CStripper();
// initialize tri info
void InitTriangleInfo(int tri, int vert);
// get maximum length strip from tri/vert
int CreateStrip(int tri, int vert, int maxlen, int *pswaps, bool flookahead, bool fstartcw, int *pstriptris, int *pstripverts);
// stripify entire mesh
void BuildStrips(STRIPLIST *pstriplist, int maxlen, bool flookahead);
// blast strip indices to ppstripindices
int CreateManyStrips(STRIPLIST *pstriplist, WORD **ppstripindices); int CreateLongStrip(STRIPLIST *pstriplist, WORD **ppstripindices);
inline int GetNeighborCount(int tri) { int count = 0; for(int vert = 0; vert < 3; vert++) { int neighbortri = m_ptriinfo[tri].neighbortri[vert]; count += (neighbortri != -1) && !m_pused[neighbortri]; } return count; }
// from callee
int m_numtris; // # tris
TRIANGLELIST m_ptriangles; // trilist
TRIANGLEINFO *m_ptriinfo; // tri edge, neighbor info
int *m_pused; // tri used flag
};
//=========================================================================
// vertex cache class
//=========================================================================
class CVertCache { public: CVertCache() { Reset(); } ~CVertCache() {};
// reset cache
void Reset() { m_iCachePtr = 0; m_cachehits = 0; memset(m_rgCache, 0xff, sizeof(m_rgCache)); }
// add vertindex to cache
bool Add(int strip, int vertindex);
int NumCacheHits() const { return m_cachehits; }
// enum { CACHE_SIZE = 10 };
enum { CACHE_SIZE = 18 };
private: int m_cachehits; // current # of cache hits
WORD m_rgCache[CACHE_SIZE]; // vertex cache
int m_rgCacheStrip[CACHE_SIZE]; // strip # which added vert
int m_iCachePtr; // fifo ptr
};
//=========================================================================
// Get maximum length of strip starting at tri/vert
//=========================================================================
int CStripper::CreateStrip(int tri, int vert, int maxlen, int *pswaps, bool flookahead, bool fstartcw, int *pstriptris, int *pstripverts) { *pswaps = 0;
// this guy has already been used?
if(m_pused[tri]) return 0;
// mark tri as used
m_pused[tri] = 1;
int swaps = 0;
// add first tri info
pstriptris[0] = tri; pstriptris[1] = tri; pstriptris[2] = tri;
if(fstartcw) { pstripverts[0] = (vert) % 3; pstripverts[1] = (vert + 1) % 3; pstripverts[2] = (vert + 2) % 3; } else { pstripverts[0] = (vert + 1) % 3; pstripverts[1] = (vert + 0) % 3; pstripverts[2] = (vert + 2) % 3; } fstartcw = !fstartcw;
// get next tri information
int edge = (fstartcw ? vert + 2 : vert + 1) % 3; int nexttri = m_ptriinfo[tri].neighbortri[edge]; int nextvert = m_ptriinfo[tri].neighboredge[edge];
// start building the strip until we run out of room or indices
int stripcount; for( stripcount = 3; stripcount < maxlen; stripcount++) { // dead end?
if(nexttri == -1 || m_pused[nexttri]) break;
// move to next tri
tri = nexttri; vert = nextvert;
// toggle orientation
fstartcw = !fstartcw;
// find the next natural edge
int edge = (fstartcw ? vert + 2 : vert + 1) % 3; nexttri = m_ptriinfo[tri].neighbortri[edge]; nextvert = m_ptriinfo[tri].neighboredge[edge];
bool fswap = false; if(nexttri == -1 || m_pused[nexttri]) { // if the next tri is a dead end - try swapping orientation
fswap = true; } else if(flookahead) { // try a swap and see who our new neighbor would be
int edgeswap = (fstartcw ? vert + 1 : vert + 2) % 3; int nexttriswap = m_ptriinfo[tri].neighbortri[edgeswap]; int nextvertswap = m_ptriinfo[tri].neighboredge[edgeswap];
if(nexttriswap != -1 && !m_pused[nexttriswap]) { assert(nexttri != -1);
// if the swap neighbor has a lower count, change directions
if(GetNeighborCount(nexttriswap) < GetNeighborCount(nexttri)) { fswap = true; } else if(GetNeighborCount(nexttriswap) == GetNeighborCount(nexttri)) { // if they have the same number of neighbors - check their neighbors
edgeswap = (fstartcw ? nextvertswap + 2 : nextvertswap + 1) % 3; nexttriswap = m_ptriinfo[nexttriswap].neighbortri[edgeswap];
int edge1 = (fstartcw ? nextvert + 1 : nextvert + 2) % 3; int nexttri1 = m_ptriinfo[nexttri].neighbortri[edge1];
if(nexttri1 == -1 || m_pused[nexttri1]) { // natural winding order leads us to a dead end so turn
fswap = true; } else if(nexttriswap != -1 && !m_pused[nexttriswap]) { // check neighbor counts on both directions and swap if it's better
if(GetNeighborCount(nexttriswap) < GetNeighborCount(nexttri1)) fswap = true; } } } }
if(fswap) { // we've been told to change directions so make sure we actually can
// and then add the swap vertex
int edgeswap = (fstartcw ? vert + 1 : vert + 2) % 3; nexttri = m_ptriinfo[tri].neighbortri[edgeswap]; nextvert = m_ptriinfo[tri].neighboredge[edgeswap];
if(nexttri != -1 && !m_pused[nexttri]) { pstriptris[stripcount] = pstriptris[stripcount - 2]; pstripverts[stripcount] = pstripverts[stripcount - 2]; stripcount++; swaps++; fstartcw = !fstartcw; } }
// record index information
pstriptris[stripcount] = tri; pstripverts[stripcount] = (vert + 2) % 3;
// mark triangle as used
m_pused[tri] = 1; }
// clear the used flags
for(int j = 2; j < stripcount; j++) m_pused[pstriptris[j]] = 0;
// return swap count and striplen
*pswaps = swaps; return stripcount; }
//=========================================================================
// Given a striplist and current cache state, pick the best next strip
//=========================================================================
STRIPLIST::iterator FindBestCachedStrip(STRIPLIST *pstriplist, const CVertCache &vertcachestate) { if(pstriplist->empty()) return pstriplist->end();
bool fFlipStrip = false; int maxcachehits = -1; STRIPLIST::iterator istriplistbest = pstriplist->begin();
int striplen = StripLen(**istriplistbest); bool fstartcw = FIsStripCW(**istriplistbest);
// go through all the other strips looking for the best caching
for(STRIPLIST::iterator istriplist = pstriplist->begin(); istriplist != pstriplist->end(); ++istriplist) { bool fFlip = false; const STRIPVERTS &stripverts = **istriplist; int striplennew = StripLen(stripverts);
// check cache if this strip is the same type as us (ie: cw/odd)
if((FIsStripCW(stripverts) == fstartcw) && ((striplen & 0x1) == (striplennew & 0x1))) { // copy current state of cache
CVertCache vertcachenew = vertcachestate;
// figure out what this guy would do to our cache
for(int ivert = 0; ivert < striplennew; ivert++) vertcachenew.Add(2, stripverts[ivert]);
// even length strip - see if better cache hits reversed
if(!(striplennew & 0x1)) { CVertCache vertcacheflipped = vertcachestate;
for(int ivert = StripLen(stripverts) - 1; ivert >= 0; ivert--) vertcacheflipped.Add(2, stripverts[ivert]);
if(vertcacheflipped.NumCacheHits() > vertcachenew.NumCacheHits()) { vertcachenew = vertcacheflipped; fFlip = true; } }
// record the best number of cache hits to date
int numcachehits = vertcachenew.NumCacheHits() - vertcachestate.NumCacheHits(); if(numcachehits > maxcachehits) { maxcachehits = numcachehits; istriplistbest = istriplist; fFlipStrip = fFlip; } } }
if(fFlipStrip) { STRIPVERTS &stripverts = **istriplistbest; STRIPVERTS::iterator vend = stripverts.end(); reverse(stripverts.begin(), --vend); }
// make sure we keep the list in order and always pull off
// the first dude.
if(istriplistbest != pstriplist->begin()) swap(*istriplistbest, *pstriplist->begin());
return pstriplist->begin(); }
//=========================================================================
// Don't merge the strips - just blast em into the stripbuffer one by one
// (useful for debugging)
//=========================================================================
int CStripper::CreateManyStrips(STRIPLIST *pstriplist, WORD **ppstripindices) { // allow room for each of the strips size plus the final 0
int indexcount = (int)pstriplist->size() + 1;
// we're storing the strips in [size1 i1 i2 i3][size2 i4 i5 i6][0] format
STRIPLIST::iterator istriplist; for( istriplist = pstriplist->begin(); istriplist != pstriplist->end(); ++istriplist) { // add striplength plus potential degenerate to swap ccw --> cw
indexcount += StripLen(**istriplist) + 1; }
// alloc the space for all this stuff
WORD *pstripindices = new WORD [indexcount]; assert(pstripindices);
CVertCache vertcache; int numstripindices = 0;
for(istriplist = pstriplist->begin(); !pstriplist->empty(); istriplist = FindBestCachedStrip(pstriplist, vertcache)) { const STRIPVERTS &stripverts = **istriplist;
if(!FIsStripCW(stripverts)) { // add an extra index if it's ccw
pstripindices[numstripindices++] = StripLen(stripverts) + 1; pstripindices[numstripindices++] = stripverts[0]; } else { // add the strip length
pstripindices[numstripindices++] = StripLen(stripverts); }
// add all the strip indices
for(int i = 0; i < StripLen(stripverts); i++) { pstripindices[numstripindices++] = stripverts[i]; vertcache.Add(1, stripverts[i]); }
// free this guy and pop him off the list
delete &stripverts; pstriplist->pop_front(); }
// add terminating zero
pstripindices[numstripindices++] = 0; *ppstripindices = pstripindices;
return numstripindices; }
//=========================================================================
// Merge striplist into one big uberlist with (hopefully) optimal caching
//=========================================================================
int CStripper::CreateLongStrip(STRIPLIST *pstriplist, WORD **ppstripindices) { // allow room for one strip length plus a possible 3 extra indices per
// concatenated strip list plus the final 0
int indexcount = ((int)pstriplist->size() * 3) + 2;
// we're storing the strips in [size1 i1 i2 i3][size2 i4 i5 i6][0] format
STRIPLIST::iterator istriplist; for( istriplist = pstriplist->begin(); istriplist != pstriplist->end(); ++istriplist) { indexcount += StripLen(**istriplist); }
// alloc the space for all this stuff
WORD *pstripindices = new WORD [indexcount]; assert(pstripindices);
CVertCache vertcache; int numstripindices = 0;
// add first strip
istriplist = pstriplist->begin(); const STRIPVERTS &stripverts = **istriplist;
// first strip should be cw
assert(FIsStripCW(stripverts));
for(int ivert = 0; ivert < StripLen(stripverts); ivert++) { pstripindices[numstripindices++] = stripverts[ivert]; vertcache.Add(1, stripverts[ivert]); }
// kill first dude
delete &stripverts; pstriplist->erase(istriplist);
// add all the others
while(pstriplist->size()) { istriplist = FindBestCachedStrip(pstriplist, vertcache); STRIPVERTS &stripverts = **istriplist; short lastvert = pstripindices[numstripindices - 1]; short firstvert = stripverts[0];
if(firstvert != lastvert) { // add degenerate from last strip
pstripindices[numstripindices++] = lastvert;
// add degenerate from our strip
pstripindices[numstripindices++] = firstvert; }
// if we're not orientated correctly, we need to add a degenerate
if(FIsStripCW(stripverts) != !(numstripindices & 0x1)) { // This shouldn't happen - we're currently trying very hard
// to keep everything oriented correctly.
assert(false); pstripindices[numstripindices++] = firstvert; }
// add these verts
for(int ivert = 0; ivert < StripLen(stripverts); ivert++) { pstripindices[numstripindices++] = stripverts[ivert]; vertcache.Add(1, stripverts[ivert]); }
// free these guys
delete &stripverts; pstriplist->erase(istriplist); }
*ppstripindices = pstripindices; return numstripindices; }
//=========================================================================
// Build a (hopefully) optimal set of strips from a trilist
//=========================================================================
void CStripper::BuildStrips(STRIPLIST *pstriplist, int maxlen, bool flookahead) { // temp indices storage
const int ctmpverts = 1024; int pstripverts[ctmpverts + 1]; int pstriptris[ctmpverts + 1];
assert(maxlen <= ctmpverts);
// clear all the used flags for the tris
memset(m_pused, 0, sizeof(m_pused[0]) * m_numtris);
bool fstartcw = true; for(;;) { int besttri = 0; int bestvert = 0; float bestratio = 2.0f; int bestneighborcount = INT_MAX;
int tri; for( tri = 0; tri < m_numtris; tri++) { // if used the continue
if(m_pused[tri]) continue;
// get the neighbor count
int curneightborcount = GetNeighborCount(tri); assert(curneightborcount >= 0 && curneightborcount <= 3);
// push all the singletons to the very end
if(!curneightborcount) curneightborcount = 4;
// if this guy has more neighbors than the current best - bail
if(curneightborcount > bestneighborcount) continue;
// try starting the strip with each of this tris verts
for(int vert = 0; vert < 3; vert++) { int swaps; int len = CreateStrip(tri, vert, maxlen, &swaps, flookahead, fstartcw, pstriptris, pstripverts); assert(len);
float ratio = (len == 3) ? 1.0f : (float)swaps / len;
// check if this ratio is better than what we've already got for
// this neighborcount
if((curneightborcount < bestneighborcount) || ((curneightborcount == bestneighborcount) && (ratio < bestratio))) { bestneighborcount = curneightborcount;
besttri = tri; bestvert = vert; bestratio = ratio; }
} }
// no strips found?
if(bestneighborcount == INT_MAX) break;
// recreate this strip
int swaps; int len = CreateStrip(besttri, bestvert, maxlen, &swaps, flookahead, fstartcw, pstriptris, pstripverts); assert(len);
// mark the tris on the best strip as used
for(tri = 0; tri < len; tri++) m_pused[pstriptris[tri]] = 1;
// create a new STRIPVERTS and stuff in the indices
STRIPVERTS *pstripvertices = new STRIPVERTS(len + 1); assert(pstripvertices);
// store orientation in first entry
for(tri = 0; tri < len; tri++) (*pstripvertices)[tri] = m_ptriangles[pstriptris[tri]][pstripverts[tri]]; (*pstripvertices)[len] = fstartcw;
// store the STRIPVERTS
pstriplist->push_back(pstripvertices);
// if strip was odd - swap orientation
if((len & 0x1)) fstartcw = !fstartcw; }
#ifdef _DEBUG
// make sure all tris are used
for(int t = 0; t < m_numtris; t++) assert(m_pused[t]); #endif
}
//=========================================================================
// Guesstimate on the total index count for this list of strips
//=========================================================================
int EstimateStripCost(STRIPLIST *pstriplist) { int count = 0;
for(STRIPLIST::iterator istriplist = pstriplist->begin(); istriplist != pstriplist->end(); ++istriplist) { // add count of indices
count += StripLen(**istriplist); }
// assume 2 indices per strip to tack all these guys together
return count + ((int)pstriplist->size() - 1) * 2; }
//=========================================================================
// Initialize triangle information (edges, #neighbors, etc.)
//=========================================================================
void CStripper::InitTriangleInfo(int tri, int vert) { WORD *ptriverts = &m_ptriangles[tri + 1][0]; int vert1 = m_ptriangles[tri][(vert + 1) % 3]; int vert2 = m_ptriangles[tri][vert];
for(int itri = tri + 1; itri < m_numtris; itri++, ptriverts += 3) { if(m_pused[itri] != 0x7) { for(int ivert = 0; ivert < 3; ivert++) { if((ptriverts[ivert] == vert1) && (ptriverts[(ivert + 1) % 3] == vert2)) { // add the triangle info
m_ptriinfo[tri].neighbortri[vert] = itri; m_ptriinfo[tri].neighboredge[vert] = ivert; m_pused[tri] |= (1 << vert);
m_ptriinfo[itri].neighbortri[ivert] = tri; m_ptriinfo[itri].neighboredge[ivert] = vert; m_pused[itri] |= (1 << ivert); return; } } } } }
//=========================================================================
// CStripper ctor
//=========================================================================
CStripper::CStripper(int numtris, TRIANGLELIST ptriangles) { // store trilist info
m_numtris = numtris; m_ptriangles = ptriangles;
m_pused = new int[numtris]; assert(m_pused); m_ptriinfo = new TRIANGLEINFO[numtris]; assert(m_ptriinfo);
// init triinfo
int itri; for( itri = 0; itri < numtris; itri++) { m_ptriinfo[itri].neighbortri[0] = -1; m_ptriinfo[itri].neighbortri[1] = -1; m_ptriinfo[itri].neighbortri[2] = -1; }
// clear the used flag
memset(m_pused, 0, sizeof(m_pused[0]) * m_numtris);
// go through all the triangles and find edges, neighbor counts
for(itri = 0; itri < numtris; itri++) { for(int ivert = 0; ivert < 3; ivert++) { if(!(m_pused[itri] & (1 << ivert))) InitTriangleInfo(itri, ivert); } }
// clear the used flags from InitTriangleInfo
memset(m_pused, 0, sizeof(m_pused[0]) * m_numtris); }
//=========================================================================
// CStripper dtor
//=========================================================================
CStripper::~CStripper() { // free stuff
delete [] m_pused; m_pused = NULL;
delete [] m_ptriinfo; m_ptriinfo = NULL; }
//=========================================================================
// Add an index to the cache - returns true if it was added, false otherwise
//=========================================================================
bool CVertCache::Add(int strip, int vertindex) { // find index in cache
for(int iCache = 0; iCache < CACHE_SIZE; iCache++) { if(vertindex == m_rgCache[iCache]) { // if it's in the cache and it's from a different strip
// change the strip to the new one and count the cache hit
if(strip != m_rgCacheStrip[iCache]) { m_cachehits++; m_rgCacheStrip[iCache] = strip; return true; }
// we added this item to the cache earlier - carry on
return false; } }
// not in cache, add vert and strip
m_rgCache[m_iCachePtr] = vertindex; m_rgCacheStrip[m_iCachePtr] = strip; m_iCachePtr = (m_iCachePtr + 1) % CACHE_SIZE; return true; }
#ifdef _DEBUG
//=========================================================================
// Turn on c runtime leak checking, etc.
//=========================================================================
void EnableLeakChecking() { int flCrtDbgFlags = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
flCrtDbgFlags &= ~(_CRTDBG_LEAK_CHECK_DF | _CRTDBG_CHECK_ALWAYS_DF | _CRTDBG_DELAY_FREE_MEM_DF);
// always check for memory leaks
flCrtDbgFlags |= _CRTDBG_LEAK_CHECK_DF;
// others you may / may not want to set
flCrtDbgFlags |= _CRTDBG_CHECK_ALWAYS_DF; flCrtDbgFlags |= _CRTDBG_DELAY_FREE_MEM_DF;
_CrtSetDbgFlag(flCrtDbgFlags);
// all types of reports go via OutputDebugString
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_DEBUG); _CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_DEBUG); _CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_DEBUG);
// big errors and asserts get their own assert window
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_WNDW); _CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_WNDW);
// _CrtSetBreakAlloc(0);
} #endif
//=========================================================================
// Main Stripify routine
//=========================================================================
int Stripify(int numtris, WORD *ptriangles, int *pnumindices, WORD **ppstripindices) { if(!numtris || !ptriangles) return 0;
#ifdef _DEBUG
// EnableLeakChecking();
#endif
CStripper stripper(numtris, (TRIANGLELIST)ptriangles);
// map of various args to try stripifying mesh with
struct ARGMAP { int maxlen; // maximum length of strips
bool flookahead; // use sgi greedy lookahead (or not)
} rgargmap[] = { { 1024, true }, { 1024, false }, }; static const int cargmaps = sizeof(rgargmap) / sizeof(rgargmap[0]); STRIPLIST striplistbest; int bestlistcost = 0;
for(int imap = 0; imap < cargmaps; imap++) { STRIPLIST striplist;
// build the strip with the various args
stripper.BuildStrips(&striplist, rgargmap[imap].maxlen, rgargmap[imap].flookahead);
// guesstimate the list cost and store it if it's good
int listcost = EstimateStripCost(&striplist); if(!bestlistcost || (listcost < bestlistcost)) { // free the old best list
FreeStripListVerts(&striplistbest);
// store the new best list
striplistbest = striplist; bestlistcost = listcost; assert(bestlistcost > 0); } else { FreeStripListVerts(&striplist); } }
#ifdef NEVER
// Return the strips in [size1 i1 i2 i3][size2 i4 i5 i6]...[0] format
// Very useful for debugging...
return stripper.CreateManyStrips(&striplistbest, ppstripindices); #endif // NEVER
// return one big long strip
int numindices = stripper.CreateLongStrip(&striplistbest, ppstripindices);
if(pnumindices) *pnumindices = numindices; return numindices; }
//=========================================================================
// Class used to vertices for locality of access.
//=========================================================================
struct SortEntry { public: int iFirstUsed; int iOrigIndex;
bool operator<(const SortEntry& rhs) { return iFirstUsed < rhs.iFirstUsed; } };
//=========================================================================
// Reorder the vertices
//=========================================================================
void ComputeVertexPermutation(int numstripindices, WORD* pstripindices, int* pnumverts, WORD** ppvertexpermutation) { // Sort verts to maximize locality.
SortEntry* pSortTable = new SortEntry[*pnumverts];
// Fill in original index.
int i; for( i = 0; i < *pnumverts; i++) { pSortTable[i].iOrigIndex = i; pSortTable[i].iFirstUsed = -1; }
// Fill in first used flag.
for(i = 0; i < numstripindices; i++) { int index = pstripindices[i];
if(pSortTable[index].iFirstUsed == -1) pSortTable[index].iFirstUsed = i; }
// Sort the table.
sort(pSortTable, pSortTable + *pnumverts);
// Copy re-mapped to orignal vertex permutaion into output array.
*ppvertexpermutation = new WORD[*pnumverts];
for(i = 0; i < *pnumverts; i++) { (*ppvertexpermutation)[i] = pSortTable[i].iOrigIndex; }
// Build original to re-mapped permutation.
WORD* pInversePermutation = new WORD[numstripindices];
for(i = 0; i < *pnumverts; i++) { pInversePermutation[pSortTable[i].iOrigIndex] = i; }
// We need to remap indices as well.
for(i = 0; i < numstripindices; i++) { pstripindices[i] = pInversePermutation[pstripindices[i]]; }
delete[] pSortTable; delete[] pInversePermutation; }
|