|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================//
#include "cbase.h"
#include <stdio.h>
#include <windows.h>
#include "snd_audio_source.h"
#include "snd_wave_source.h"
#include "snd_wave_mixer_private.h"
#include "snd_wave_mixer_adpcm.h"
#include "iscenemanagersound.h"
#include "AudioWaveOutput.h"
#include "tier2/riff.h"
typedef struct channel_s { int leftvol; int rightvol; int rleftvol; int rrightvol; float pitch; } channel_t;
//-----------------------------------------------------------------------------
// These mixers provide an abstraction layer between the audio device and
// mixing/decoding code. They allow data to be decoded and mixed using
// optimized, format sensitive code by calling back into the device that
// controls them.
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Purpose: maps mixing to 8-bit mono mixer
//-----------------------------------------------------------------------------
class CAudioMixerWave8Mono : public CAudioMixerWave { public: CAudioMixerWave8Mono( CWaveData *data ) : CAudioMixerWave( data ) {} virtual void Mix( IAudioDevice *pDevice, channel_t *pChannel, void *pData, int outputOffset, int inputOffset, fixedint fracRate, int outCount, int timecompress, bool forward = true ) { pDevice->Mix8Mono( pChannel, (char *)pData, outputOffset, inputOffset, fracRate, outCount, timecompress, forward ); } };
//-----------------------------------------------------------------------------
// Purpose: maps mixing to 8-bit stereo mixer
//-----------------------------------------------------------------------------
class CAudioMixerWave8Stereo : public CAudioMixerWave { public: CAudioMixerWave8Stereo( CWaveData *data ) : CAudioMixerWave( data ) {} virtual void Mix( IAudioDevice *pDevice, channel_t *pChannel, void *pData, int outputOffset, int inputOffset, fixedint fracRate, int outCount, int timecompress, bool forward = true ) { pDevice->Mix8Stereo( pChannel, (char *)pData, outputOffset, inputOffset, fracRate, outCount, timecompress, forward ); } };
//-----------------------------------------------------------------------------
// Purpose: maps mixing to 16-bit mono mixer
//-----------------------------------------------------------------------------
class CAudioMixerWave16Mono : public CAudioMixerWave { public: CAudioMixerWave16Mono( CWaveData *data ) : CAudioMixerWave( data ) {} virtual void Mix( IAudioDevice *pDevice, channel_t *pChannel, void *pData, int outputOffset, int inputOffset, fixedint fracRate, int outCount, int timecompress, bool forward = true ) { pDevice->Mix16Mono( pChannel, (short *)pData, outputOffset, inputOffset, fracRate, outCount, timecompress, forward ); } };
//-----------------------------------------------------------------------------
// Purpose: maps mixing to 16-bit stereo mixer
//-----------------------------------------------------------------------------
class CAudioMixerWave16Stereo : public CAudioMixerWave { public: CAudioMixerWave16Stereo( CWaveData *data ) : CAudioMixerWave( data ) {} virtual void Mix( IAudioDevice *pDevice, channel_t *pChannel, void *pData, int outputOffset, int inputOffset, fixedint fracRate, int outCount, int timecompress, bool forward = true ) { pDevice->Mix16Stereo( pChannel, (short *)pData, outputOffset, inputOffset, fracRate, outCount, timecompress, forward ); } };
//-----------------------------------------------------------------------------
// Purpose: Create an approprite mixer type given the data format
// Input : *data - data access abstraction
// format - pcm or adpcm (1 or 2 -- RIFF format)
// channels - number of audio channels (1 = mono, 2 = stereo)
// bits - bits per sample
// Output : CAudioMixer * abstract mixer type that maps mixing to appropriate code
//-----------------------------------------------------------------------------
CAudioMixer *CreateWaveMixer( CWaveData *data, int format, int channels, int bits ) { if ( format == WAVE_FORMAT_PCM ) { if ( channels > 1 ) { if ( bits == 8 ) return new CAudioMixerWave8Stereo( data ); else return new CAudioMixerWave16Stereo( data ); } else { if ( bits == 8 ) return new CAudioMixerWave8Mono( data ); else return new CAudioMixerWave16Mono( data ); } } else if ( format == WAVE_FORMAT_ADPCM ) { return CreateADPCMMixer( data ); } return NULL; }
//-----------------------------------------------------------------------------
// Purpose: Init the base WAVE mixer.
// Input : *data - data access object
//-----------------------------------------------------------------------------
CAudioMixerWave::CAudioMixerWave( CWaveData *data ) : m_pData(data) { m_loop = 0; m_sample = 0; m_absoluteSample = 0; m_fracOffset = 0; m_bActive = false; m_nModelIndex = -1; m_bForward = true; m_bAutoDelete = true; }
//-----------------------------------------------------------------------------
// Purpose: Frees the data access object (we own it after construction)
//-----------------------------------------------------------------------------
CAudioMixerWave::~CAudioMixerWave( void ) { delete m_pData; }
//-----------------------------------------------------------------------------
// Purpose: Decode and read the data
// by default we just pass the request on to the data access object
// other mixers may need to buffer or decode the data for some reason
//
// Input : **pData - dest pointer
// sampleCount - number of samples needed
// Output : number of samples available in this batch
//-----------------------------------------------------------------------------
int CAudioMixerWave::GetOutputData( void **pData, int samplePosition, int sampleCount, bool forward /*= true*/ ) { if ( samplePosition != m_sample ) { // Seek
m_sample = samplePosition; m_absoluteSample = samplePosition; }
return m_pData->ReadSourceData( pData, m_sample, sampleCount, forward ); }
//-----------------------------------------------------------------------------
// Purpose: calls through the wavedata to get the audio source
// Output : CAudioSource
//-----------------------------------------------------------------------------
CAudioSource *CAudioMixerWave::GetSource( void ) { if ( m_pData ) return &m_pData->Source();
return NULL; }
//-----------------------------------------------------------------------------
// Purpose: Gets the current sample location in playback
// Output : int (samples from start of wave)
//-----------------------------------------------------------------------------
int CAudioMixerWave::GetSamplePosition( void ) { return m_sample; }
//-----------------------------------------------------------------------------
// Purpose:
// Input : position -
//-----------------------------------------------------------------------------
bool CAudioMixerWave::SetSamplePosition( int position ) { position = max( 0, position );
m_sample = position; m_absoluteSample = position; m_startpos = m_sample;
return true; }
//-----------------------------------------------------------------------------
// Purpose:
// Input : position -
//-----------------------------------------------------------------------------
void CAudioMixerWave::SetLoopPosition( int position ) { m_loop = position; }
//-----------------------------------------------------------------------------
// Purpose:
// Output : int
//-----------------------------------------------------------------------------
int CAudioMixerWave::GetStartPosition( void ) { return m_startpos; }
bool CAudioMixerWave::GetActive( void ) { return m_bActive; }
void CAudioMixerWave::SetActive( bool active ) { m_bActive = active; }
void CAudioMixerWave::SetModelIndex( int index ) { m_nModelIndex = index; }
int CAudioMixerWave::GetModelIndex( void ) const { return m_nModelIndex; }
void CAudioMixerWave::SetDirection( bool forward ) { m_bForward = forward; }
bool CAudioMixerWave::GetDirection( void ) const { return m_bForward; }
void CAudioMixerWave::SetAutoDelete( bool autodelete ) { m_bAutoDelete = autodelete; }
bool CAudioMixerWave::GetAutoDelete( void ) const { return m_bAutoDelete; }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pChannel -
// sampleCount -
// outputRate -
//-----------------------------------------------------------------------------
void CAudioMixerWave::IncrementSamples( channel_t *pChannel, int startSample, int sampleCount,int outputRate, bool forward /*= true*/ ) { int inputSampleRate = (int)(pChannel->pitch * m_pData->Source().SampleRate()); float rate = (float)inputSampleRate / outputRate;
int startpos = startSample;
if ( !forward ) { int requestedstart = startSample - (int)( sampleCount * rate ); if ( requestedstart < 0 ) return;
startpos = max( 0, requestedstart ); SetSamplePosition( startpos ); }
while ( sampleCount > 0 ) { int inputSampleCount; int outputSampleCount = sampleCount; if ( outputRate != inputSampleRate ) { inputSampleCount = (int)(sampleCount * rate); } else { inputSampleCount = sampleCount; } sampleCount -= outputSampleCount; if ( forward ) { m_sample += inputSampleCount; m_absoluteSample += inputSampleCount; } } }
//-----------------------------------------------------------------------------
// Purpose: The device calls this to request data. The mixer must provide the
// full amount of samples or have silence in its output stream.
// Input : *pDevice - requesting device
// sampleCount - number of samples at the output rate
// outputRate - sampling rate of the request
// Output : Returns true to keep mixing, false to delete this mixer
//-----------------------------------------------------------------------------
bool CAudioMixerWave::SkipSamples( channel_t *pChannel, int startSample, int sampleCount, int outputRate, bool forward /*= true*/ ) { int offset = 0;
int inputSampleRate = (int)(pChannel->pitch * m_pData->Source().SampleRate()); float rate = (float)inputSampleRate / outputRate; // fixedint fracstep = FIX_FLOAT( rate );
sampleCount = min( sampleCount, PAINTBUFFER_SIZE );
int startpos = startSample;
if ( !forward ) { int requestedstart = startSample - (int)( sampleCount * rate ); if ( requestedstart < 0 ) return false;
startpos = max( 0, requestedstart ); SetSamplePosition( startpos ); }
while ( sampleCount > 0 ) { int availableSamples; int inputSampleCount; char *pData = NULL; int outputSampleCount = sampleCount; if ( outputRate != inputSampleRate ) { inputSampleCount = (int)(sampleCount * rate); if ( !forward ) { startSample = max( 0, startSample - inputSampleCount ); } int availableSamples = GetOutputData( (void **)&pData, startSample, inputSampleCount, forward ); if ( !availableSamples ) break;
if ( availableSamples < inputSampleCount ) { outputSampleCount = (int)(availableSamples / rate); inputSampleCount = availableSamples; }
// compute new fraction part of sample index
float offset = (m_fracOffset / FIX_SCALE) + (rate * outputSampleCount); offset = offset - (float)((int)offset); m_fracOffset = FIX_FLOAT(offset); } else { if ( !forward ) { startSample = max( 0, startSample - sampleCount ); } availableSamples = GetOutputData( (void **)&pData, startSample, sampleCount, forward ); if ( !availableSamples ) break; outputSampleCount = availableSamples; inputSampleCount = availableSamples;
} offset += outputSampleCount; sampleCount -= outputSampleCount; if ( forward ) { m_sample += inputSampleCount; m_absoluteSample += inputSampleCount; }
if ( m_loop != 0 && m_sample >= m_loop ) { SetSamplePosition( m_startpos ); }
}
if ( sampleCount > 0 ) return false;
return true; }
//-----------------------------------------------------------------------------
// Purpose: The device calls this to request data. The mixer must provide the
// full amount of samples or have silence in its output stream.
// Input : *pDevice - requesting device
// sampleCount - number of samples at the output rate
// outputRate - sampling rate of the request
// Output : Returns true to keep mixing, false to delete this mixer
//-----------------------------------------------------------------------------
bool CAudioMixerWave::MixDataToDevice( IAudioDevice *pDevice, channel_t *pChannel, int startSample, int sampleCount, int outputRate, bool forward /*= true*/ ) { int offset = 0;
int inputSampleRate = (int)(pChannel->pitch * m_pData->Source().SampleRate()); float rate = (float)inputSampleRate / outputRate; fixedint fracstep = FIX_FLOAT( rate );
sampleCount = min( sampleCount, PAINTBUFFER_SIZE );
int startpos = startSample;
if ( !forward ) { int requestedstart = startSample - (int)( sampleCount * rate ); if ( requestedstart < 0 ) return false;
startpos = max( 0, requestedstart ); SetSamplePosition( startpos ); }
while ( sampleCount > 0 ) { int availableSamples; int inputSampleCount; char *pData = NULL; int outputSampleCount = sampleCount; if ( outputRate != inputSampleRate ) { inputSampleCount = (int)(sampleCount * rate);
int availableSamples = GetOutputData( (void **)&pData, startpos, inputSampleCount, forward ); if ( !availableSamples ) break;
if ( availableSamples < inputSampleCount ) { outputSampleCount = (int)(availableSamples / rate); inputSampleCount = availableSamples; }
Mix( pDevice, pChannel, pData, offset, m_fracOffset, fracstep, outputSampleCount, 0, forward ); // compute new fraction part of sample index
float offset = (m_fracOffset / FIX_SCALE) + (rate * outputSampleCount); offset = offset - (float)((int)offset); m_fracOffset = FIX_FLOAT(offset); } else { availableSamples = GetOutputData( (void **)&pData, startpos, sampleCount, forward ); if ( !availableSamples ) break;
outputSampleCount = availableSamples; inputSampleCount = availableSamples;
Mix( pDevice, pChannel, pData, offset, m_fracOffset, FIX(1), outputSampleCount, 0, forward ); } offset += outputSampleCount; sampleCount -= outputSampleCount;
if ( forward ) { m_sample += inputSampleCount; m_absoluteSample += inputSampleCount; }
if ( m_loop != 0 && m_sample >= m_loop ) { SetSamplePosition( m_startpos ); }
}
if ( sampleCount > 0 ) return false;
return true; }
|