|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include <stdio.h>
#include <io.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <time.h>
#include <stdarg.h>
#include "tier0/platform.h"
#include "tier0/dbg.h"
#include "tier1/utlbuffer.h"
#include "cfgprocessor.h"
// Type conversions should be controlled by programmer explicitly - shadercompile makes use of 64-bit integer arithmetics
#pragma warning( error : 4244 )
namespace {
int Usage() { printf( "Usage: expparser [OPTIONS] <input.txt 2>>output.txt\n" ); printf( "Options: [none]\n" ); printf( "Input: Sections in a file:\n" ); printf( " #BEGIN\n" ); printf( " #DEFINES:\n" ); printf( " FASTPATH=0..2\n" ); printf( " FOGTYPE=0..5\n" ); printf( " #SKIP:\n" ); printf( " ($FOGTYPE > 1) && (!$FASTPATH)\n" ); printf( " #COMMAND:\n" ); printf( " fxc.exe /DFLAGS=0x00\n" ); printf( " /Foshader.o myshader.fxc > output.txt\n" ); printf( " #END\n" ); printf( "Version: expparser compiled on " __DATE__ " @ " __TIME__ ".\n" );
return -1; } };
namespace {
static bool s_bNoOutput = true;
void OutputF( FILE *f, char const *szFmt, ... ) { if( s_bNoOutput ) return;
va_list args; va_start( args, szFmt ); vfprintf( f, szFmt, args ); va_end( args ); }
};
//////////////////////////////////////////////////////////////////////////
//
// Utility classes:
// QuickArray<T>
// QuickStrIdx
// QuickString
// QuickStrUnique
// QuickMap
//
//////////////////////////////////////////////////////////////////////////
#include <unordered_map>
#include <map>
#include <set>
#include <vector>
#include <string>
#include <algorithm>
template < typename T > class QuickArray : private std::vector < T > { public: void Append( T const &e ) { push_back( e ); }; int Size( void ) const { return ( int ) size(); }; T const & Get( int idx ) const { return at( idx ); }; T & GetForEdit( int idx ) { return at( idx ); } void Clear( void ) { clear(); } T const * ArrayBase() const { return empty() ? NULL : &at( 0 ); } T * ArrayBaseForEdit() { return empty() ? NULL : &at( 0 ); } };
template < typename T > class QuickStack : private std::vector < T > { public: void Push( T const &e ) { push_back( e ); }; int Size( void ) const { return ( int ) size(); }; T const & Top( void ) const { return at( Size() - 1 ); }; void Pop( void ) { pop_back(); } void Clear( void ) { clear(); } };
template < typename K, typename V > class QuickMap : private std::map < K, V > { public: void Append( K const &k, V const &v ) { insert( value_type( k, v ) ); }; int Size( void ) const { return ( int ) size(); }; V const & GetLessOrEq( K &k, V const &v ) const; V const & Get( K const &k, V const &v ) const { const_iterator it = find( k ); return ( it != end() ? it->second : v ); }; V & GetForEdit( K const &k, V &v ) { iterator it = find( k ); return ( it != end() ? it->second : v ); }; void Clear( void ) { clear(); } };
template < typename K, typename V > V const & QuickMap< K, V >::GetLessOrEq( K &k, V const &v ) const { const_iterator it = lower_bound( k ); if ( end() == it ) { if ( empty() ) return v; -- it; }
if ( k < it->first ) { if ( begin() == it ) return v; -- it; }
k = it->first; return it->second; }
class QuickStrIdx : private std::unordered_map < std::string, int > { public: void Append( char const *szName, int idx ) { insert( value_type( szName, idx ) ); }; int Size( void ) const { return ( int ) size(); }; int Get( char const *szName ) const { const_iterator it = find( szName ); if ( end() != it ) return it->second; else return -1; }; void Clear( void ) { clear(); } };
class QuickStrUnique : private std::set < std::string > { public: int Size( void ) const { return ( int ) size(); } bool Add( char const *szString ) { return insert( szString ).second; } void Remove( char const *szString ) { erase( szString ); } char const * Lookup( char const *szString ) { const_iterator it = find( szString ); if ( end() != it ) return it->data(); else return NULL; } char const * AddLookup( char const *szString ) { iterator it = insert( szString ).first; if ( end() != it ) return it->data(); else return NULL; } void Clear( void ) { clear(); } };
class QuickString : private std::vector< char > { public: explicit QuickString( char const *szValue, size_t len = -1 ); int Size() const { return ( int ) ( size() - 1 ); } char * Get() { return &at( 0 ); } };
QuickString::QuickString( char const *szValue, size_t len ) { if ( size_t( -1 ) == len ) len = ( size_t ) strlen( szValue );
resize( len + 1, 0 ); memcpy( Get(), szValue, len ); }
//////////////////////////////////////////////////////////////////////////
//
// Define class
//
//////////////////////////////////////////////////////////////////////////
class Define { public: explicit Define( char const *szName, int min, int max, bool bStatic ) : m_sName( szName ), m_min( min ), m_max( max ), m_bStatic( bStatic ) {}
public: char const * Name() const { return m_sName.data(); }; int Min() const { return m_min; }; int Max() const { return m_max; }; bool IsStatic() const { return m_bStatic; }
protected: std::string m_sName; int m_min, m_max; bool m_bStatic; };
//////////////////////////////////////////////////////////////////////////
//
// Expression parser
//
//////////////////////////////////////////////////////////////////////////
class IEvaluationContext { public: virtual int GetVariableValue( int nSlot ) = 0; virtual char const * GetVariableName( int nSlot ) = 0; virtual int GetVariableSlot( char const *szVariableName ) = 0; };
class IExpression { public: virtual int Evaluate( IEvaluationContext *pCtx ) const = 0; virtual void Print( IEvaluationContext *pCtx ) const = 0; };
#define EVAL virtual int Evaluate( IEvaluationContext *pCtx ) const
#define PRNT virtual void Print( IEvaluationContext *pCtx ) const
class CExprConstant : public IExpression { public: CExprConstant( int value ) : m_value( value ) {} EVAL { pCtx; return m_value; }; PRNT { pCtx; OutputF( stdout, "%d", m_value ); } public: int m_value; };
class CExprVariable : public IExpression { public: CExprVariable( int nSlot ) : m_nSlot( nSlot ) {} EVAL { return (m_nSlot >= 0) ? pCtx->GetVariableValue( m_nSlot ) : 0; }; PRNT { (m_nSlot >= 0) ? OutputF( stdout, "$%s", pCtx->GetVariableName( m_nSlot ) ) : OutputF( stdout, "$**@**" ); } public: int m_nSlot; };
class CExprUnary : public IExpression { public: CExprUnary( IExpression *x ) : m_x( x ) {} public: IExpression *m_x; };
#define BEGIN_EXPR_UNARY( className ) class className : public CExprUnary { public: className( IExpression *x ) : CExprUnary( x ) {}
#define END_EXPR_UNARY() };
BEGIN_EXPR_UNARY( CExprUnary_Negate ) EVAL { return ! m_x->Evaluate( pCtx ); }; PRNT { OutputF( stdout, "!" ); m_x->Print(pCtx); } END_EXPR_UNARY()
class CExprBinary : public IExpression { public: CExprBinary( IExpression *x, IExpression *y ) : m_x( x ), m_y( y ) {} virtual int Priority() const = 0; public: IExpression *m_x; IExpression *m_y; };
#define BEGIN_EXPR_BINARY( className ) class className : public CExprBinary { public: className( IExpression *x, IExpression *y ) : CExprBinary( x, y ) {}
#define EXPR_BINARY_PRIORITY( nPriority ) virtual int Priority() const { return nPriority; };
#define END_EXPR_BINARY() };
BEGIN_EXPR_BINARY( CExprBinary_And ) EVAL { return m_x->Evaluate( pCtx ) && m_y->Evaluate( pCtx ); } PRNT { OutputF( stdout, "( " ); m_x->Print( pCtx ); OutputF( stdout, " && " ); m_y->Print( pCtx ); OutputF( stdout, " )" ); } EXPR_BINARY_PRIORITY( 1 ); END_EXPR_BINARY()
BEGIN_EXPR_BINARY( CExprBinary_Or ) EVAL { return m_x->Evaluate( pCtx ) || m_y->Evaluate( pCtx ); } PRNT { OutputF( stdout, "( " ); m_x->Print( pCtx ); OutputF( stdout, " || " ); m_y->Print( pCtx ); OutputF( stdout, " )" ); } EXPR_BINARY_PRIORITY( 2 ); END_EXPR_BINARY()
BEGIN_EXPR_BINARY( CExprBinary_Eq ) EVAL { return m_x->Evaluate( pCtx ) == m_y->Evaluate( pCtx ); } PRNT { OutputF( stdout, "( " ); m_x->Print( pCtx ); OutputF( stdout, " == " ); m_y->Print( pCtx ); OutputF( stdout, " )" ); } EXPR_BINARY_PRIORITY( 0 ); END_EXPR_BINARY()
BEGIN_EXPR_BINARY( CExprBinary_Neq ) EVAL { return m_x->Evaluate( pCtx ) != m_y->Evaluate( pCtx ); } PRNT { OutputF( stdout, "( " ); m_x->Print( pCtx ); OutputF( stdout, " != " ); m_y->Print( pCtx ); OutputF( stdout, " )" ); } EXPR_BINARY_PRIORITY( 0 ); END_EXPR_BINARY()
BEGIN_EXPR_BINARY( CExprBinary_G ) EVAL { return m_x->Evaluate( pCtx ) > m_y->Evaluate( pCtx ); } PRNT { OutputF( stdout, "( " ); m_x->Print( pCtx ); OutputF( stdout, " > " ); m_y->Print( pCtx ); OutputF( stdout, " )" ); } EXPR_BINARY_PRIORITY( 0 ); END_EXPR_BINARY()
BEGIN_EXPR_BINARY( CExprBinary_Ge ) EVAL { return m_x->Evaluate( pCtx ) >= m_y->Evaluate( pCtx ); } PRNT { OutputF( stdout, "( " ); m_x->Print( pCtx ); OutputF( stdout, " >= " ); m_y->Print( pCtx ); OutputF( stdout, " )" ); } EXPR_BINARY_PRIORITY( 0 ); END_EXPR_BINARY()
BEGIN_EXPR_BINARY( CExprBinary_L ) EVAL { return m_x->Evaluate( pCtx ) < m_y->Evaluate( pCtx ); } PRNT { OutputF( stdout, "( " ); m_x->Print( pCtx ); OutputF( stdout, " < " ); m_y->Print( pCtx ); OutputF( stdout, " )" ); } EXPR_BINARY_PRIORITY( 0 ); END_EXPR_BINARY()
BEGIN_EXPR_BINARY( CExprBinary_Le ) EVAL { return m_x->Evaluate( pCtx ) <= m_y->Evaluate( pCtx ); } PRNT { OutputF( stdout, "( " ); m_x->Print( pCtx ); OutputF( stdout, " <= " ); m_y->Print( pCtx ); OutputF( stdout, " )" ); } EXPR_BINARY_PRIORITY( 0 ); END_EXPR_BINARY()
class CComplexExpression : public IExpression { public: CComplexExpression( IEvaluationContext *pCtx ) : m_pRoot( NULL ), m_pContext( pCtx ) { } ~CComplexExpression() { Clear(); }
void Parse( char const *szExpression ); void Clear( void );
public: EVAL { return m_pRoot ? m_pRoot->Evaluate( pCtx ? pCtx : m_pContext ) : 0; }; PRNT { OutputF( stdout, "[ " ); m_pRoot ? m_pRoot->Print( pCtx ? pCtx : m_pContext ) : OutputF( stdout, "**NEXPR**" ); OutputF( stdout, " ]\n" ); }
protected: IExpression * ParseTopLevel( char *&szExpression ); IExpression * ParseInternal( char *&szExpression ); IExpression * Allocated( IExpression *pExpression ); IExpression * AbortedParse( char *&szExpression ) const { *szExpression = 0; return m_pDefFalse; }
protected: QuickArray < IExpression * > m_arrAllExpressions; IExpression *m_pRoot; IEvaluationContext *m_pContext;
IExpression *m_pDefTrue, *m_pDefFalse; };
void CComplexExpression::Parse( char const *szExpression ) { Clear();
m_pDefTrue = Allocated( new CExprConstant( 1 ) ); m_pDefFalse = Allocated( new CExprConstant( 0 ) );
m_pRoot = m_pDefFalse;
if (szExpression) { QuickString qs( szExpression ); char *szExpression = qs.Get(), *szExpectEnd = szExpression + qs.Size(), *szParse = szExpression; m_pRoot = ParseTopLevel( szParse );
if ( szParse != szExpectEnd ) { m_pRoot = m_pDefFalse; } } }
IExpression * CComplexExpression::ParseTopLevel( char *&szExpression ) { QuickStack< CExprBinary * > exprStack; IExpression *pFirstToken = ParseInternal( szExpression );
for ( ; ; ) { // Skip whitespace
while ( *szExpression && V_isspace( *szExpression ) ) { ++ szExpression; }
// End of binary expression
if ( !*szExpression || ( *szExpression == ')' ) ) { break; }
// Determine the binary expression type
CExprBinary *pBinaryExpression = NULL;
if ( 0 ) { NULL; } else if ( !strncmp( szExpression, "&&", 2 ) ) { pBinaryExpression = new CExprBinary_And( NULL, NULL ); szExpression += 2; } else if ( !strncmp( szExpression, "||", 2 ) ) { pBinaryExpression = new CExprBinary_Or( NULL, NULL ); szExpression += 2; } else if ( !strncmp( szExpression, ">=", 2 ) ) { pBinaryExpression = new CExprBinary_Ge( NULL, NULL ); szExpression += 2; } else if ( !strncmp( szExpression, "<=", 2 ) ) { pBinaryExpression = new CExprBinary_Le( NULL, NULL ); szExpression += 2; } else if ( !strncmp( szExpression, "==", 2 ) ) { pBinaryExpression = new CExprBinary_Eq( NULL, NULL ); szExpression += 2; } else if ( !strncmp( szExpression, "!=", 2 ) ) { pBinaryExpression = new CExprBinary_Neq( NULL, NULL ); szExpression += 2; } else if ( *szExpression == '>' ) { pBinaryExpression = new CExprBinary_G( NULL, NULL ); ++ szExpression; } else if ( *szExpression == '<' ) { pBinaryExpression = new CExprBinary_L( NULL, NULL ); ++ szExpression; } else { return AbortedParse( szExpression ); }
Allocated( pBinaryExpression ); pBinaryExpression->m_y = ParseInternal( szExpression );
// Figure out the expression priority
int nPriority = pBinaryExpression->Priority(); IExpression *pLastExpr = pFirstToken; while ( exprStack.Size() ) { CExprBinary *pStickTo = exprStack.Top(); pLastExpr = pStickTo;
if ( nPriority > pStickTo->Priority() ) exprStack.Pop(); else break; }
if ( exprStack.Size() ) { CExprBinary *pStickTo = exprStack.Top(); pBinaryExpression->m_x = pStickTo->m_y; pStickTo->m_y = pBinaryExpression; } else { pBinaryExpression->m_x = pLastExpr; }
exprStack.Push( pBinaryExpression ); }
// Tip-of-the-tree retrieval
{ IExpression *pLastExpr = pFirstToken; while ( exprStack.Size() ) { pLastExpr = exprStack.Top(); exprStack.Pop(); }
return pLastExpr; } }
IExpression * CComplexExpression::ParseInternal( char *&szExpression ) { // Skip whitespace
while ( *szExpression && V_isspace( *szExpression ) ) { ++ szExpression; }
if ( !*szExpression ) return AbortedParse( szExpression );
if ( 0 ) { NULL; } else if ( V_isdigit( *szExpression ) ) { long lValue = strtol( szExpression, &szExpression, 10 ); return Allocated( new CExprConstant( lValue ) ); } else if ( !strncmp( szExpression, "defined", 7 ) ) { szExpression += 7; IExpression *pNext = ParseInternal( szExpression ); return Allocated( new CExprConstant( pNext->Evaluate( m_pContext ) ) ); } else if ( *szExpression == '(' ) { ++ szExpression; IExpression *pBracketed = ParseTopLevel( szExpression ); if ( ')' == *szExpression ) { ++ szExpression; return pBracketed; } else { return AbortedParse( szExpression ); } } else if ( *szExpression == '$' ) { size_t lenVariable = 0; for ( char *szEndVar = szExpression + 1; *szEndVar; ++ szEndVar, ++ lenVariable ) { if ( !V_isalnum( *szEndVar ) ) { switch ( *szEndVar ) { case '_': break; default: goto parsed_variable_name; } } }
parsed_variable_name: int nSlot = m_pContext->GetVariableSlot( QuickString( szExpression + 1, lenVariable ).Get() ); szExpression += lenVariable + 1;
return Allocated( new CExprVariable( nSlot ) ); } else if ( *szExpression == '!' ) { ++ szExpression; IExpression *pNext = ParseInternal( szExpression ); return Allocated( new CExprUnary_Negate( pNext ) ); } else { return AbortedParse( szExpression ); } }
IExpression * CComplexExpression::Allocated( IExpression *pExpression ) { m_arrAllExpressions.Append( pExpression ); return pExpression; }
void CComplexExpression::Clear( void ) { for ( int k = 0; k < m_arrAllExpressions.Size() ; ++ k ) { delete m_arrAllExpressions.Get( k ); }
m_arrAllExpressions.Clear(); m_pRoot = NULL; }
#undef BEGIN_EXPR_UNARY
#undef BEGIN_EXPR_BINARY
#undef END_EXPR_UNARY
#undef END_EXPR_BINARY
#undef EVAL
#undef PRNT
//////////////////////////////////////////////////////////////////////////
//
// Combo Generator class
//
//////////////////////////////////////////////////////////////////////////
class ComboGenerator : public IEvaluationContext { public: void AddDefine( Define const &df ); Define const * const GetDefinesBase( void ) { return m_arrDefines.ArrayBase(); } Define const * const GetDefinesEnd( void ) { return m_arrDefines.ArrayBase() + m_arrDefines.Size(); }
uint64 NumCombos(); uint64 NumCombos( bool bStaticCombos ); void RunAllCombos( CComplexExpression const &skipExpr );
// IEvaluationContext
public: virtual int GetVariableValue( int nSlot ) { return m_arrVarSlots.Get( nSlot ); }; virtual char const * GetVariableName( int nSlot ) { return m_arrDefines.Get( nSlot ).Name(); }; virtual int GetVariableSlot( char const *szVariableName ) { return m_mapDefines.Get( szVariableName ); };
protected: QuickArray< Define > m_arrDefines; QuickStrIdx m_mapDefines; QuickArray < int > m_arrVarSlots; };
void ComboGenerator::AddDefine( Define const &df ) { m_mapDefines.Append( df.Name(), m_arrDefines.Size() ); m_arrDefines.Append( df ); m_arrVarSlots.Append( 1 ); }
uint64 ComboGenerator::NumCombos() { uint64 numCombos = 1;
for ( int k = 0, kEnd = m_arrDefines.Size(); k < kEnd; ++ k ) { Define const &df = m_arrDefines.Get( k ); numCombos *= ( df.Max() - df.Min() + 1 ); }
return numCombos; }
uint64 ComboGenerator::NumCombos( bool bStaticCombos ) { uint64 numCombos = 1;
for ( int k = 0, kEnd = m_arrDefines.Size(); k < kEnd; ++ k ) { Define const &df = m_arrDefines.Get( k ); ( df.IsStatic() == bStaticCombos ) ? numCombos *= ( df.Max() - df.Min() + 1 ) : 0; }
return numCombos; }
struct ComboEmission { std::string m_sPrefix; std::string m_sSuffix; } g_comboEmission;
size_t const g_lenTmpBuffer = 1 * 1024 * 1024; // 1Mb buffer for tmp storage
char g_chTmpBuffer[g_lenTmpBuffer];
void ComboGenerator::RunAllCombos( CComplexExpression const &skipExpr ) { // Combo numbers
uint64 const nTotalCombos = NumCombos();
// Get the pointers
int * const pnValues = m_arrVarSlots.ArrayBaseForEdit(); int * const pnValuesEnd = pnValues + m_arrVarSlots.Size(); int *pSetValues;
// Defines
Define const * const pDefVars = m_arrDefines.ArrayBase(); Define const *pSetDef;
// Set all the variables to max values
for ( pSetValues = pnValues, pSetDef = pDefVars; pSetValues < pnValuesEnd; ++ pSetValues, ++ pSetDef ) { *pSetValues = pSetDef->Max(); }
// Expressions distributed [0] = skips, [1] = evaluated
uint64 nSkipEvalCounters[2] = { 0, 0 };
// Go ahead and run the iterations
{ uint64 nCurrentCombo = nTotalCombos;
next_combo_iteration: -- nCurrentCombo; int const valExprSkip = skipExpr.Evaluate( this );
++ nSkipEvalCounters[ !valExprSkip ];
if ( valExprSkip ) { // TECH NOTE: Giving performance hint to compiler to place a jump here
// since there will be much more skips and actually less than 0.8% cases
// will be "OnCombo" hits.
NULL; } else { // ------- OnCombo( nCurrentCombo ); ----------
OutputF( stderr, "%s ", g_comboEmission.m_sPrefix.data() ); OutputF( stderr, "/DSHADERCOMBO=%d ", nCurrentCombo );
for ( pSetValues = pnValues, pSetDef = pDefVars; pSetValues < pnValuesEnd; ++ pSetValues, ++ pSetDef ) { OutputF( stderr, "/D%s=%d ", pSetDef->Name(), *pSetValues ); }
OutputF( stderr, "%s\n", g_comboEmission.m_sSuffix.data() ); // ------- end of OnCombo ---------------------
}
// Do a next iteration
for ( pSetValues = pnValues, pSetDef = pDefVars; pSetValues < pnValuesEnd; ++ pSetValues, ++ pSetDef ) { if ( -- *pSetValues >= pSetDef->Min() ) goto next_combo_iteration;
*pSetValues = pSetDef->Max(); } }
OutputF( stdout, "Generated %d combos: %d evaluated, %d skipped.\n", nTotalCombos, nSkipEvalCounters[1], nSkipEvalCounters[0] ); }
namespace ConfigurationProcessing { class CfgEntry { public: CfgEntry() : m_szName( "" ), m_szShaderSrc( "" ), m_pCg( NULL ), m_pExpr( NULL ) { memset( &m_eiInfo, 0, sizeof( m_eiInfo ) ); } static void Destroy( CfgEntry const &x ) { delete x.m_pCg; delete x.m_pExpr; }
public: bool operator < ( CfgEntry const &x ) const { return m_pCg->NumCombos() < x.m_pCg->NumCombos(); }
public: char const *m_szName; char const *m_szShaderSrc; ComboGenerator *m_pCg; CComplexExpression *m_pExpr; std::string m_sPrefix; std::string m_sSuffix;
CfgProcessor::CfgEntryInfo m_eiInfo; };
QuickStrUnique s_uniqueSections, s_strPool; std::multiset< CfgEntry > s_setEntries;
class ComboHandleImpl : public IEvaluationContext { public: uint64 m_iTotalCommand; uint64 m_iComboNumber; uint64 m_numCombos; CfgEntry const *m_pEntry;
public: ComboHandleImpl() : m_iTotalCommand( 0 ), m_iComboNumber( 0 ), m_numCombos( 0 ), m_pEntry( NULL ) {}
// IEvaluationContext
public: QuickArray < int > m_arrVarSlots; public: virtual int GetVariableValue( int nSlot ) { return m_arrVarSlots.Get( nSlot ); }; virtual char const * GetVariableName( int nSlot ) { return m_pEntry->m_pCg->GetVariableName( nSlot ); }; virtual int GetVariableSlot( char const *szVariableName ) { return m_pEntry->m_pCg->GetVariableSlot( szVariableName ); };
// External implementation
public: bool Initialize( uint64 iTotalCommand, const CfgEntry *pEntry ); bool AdvanceCommands( uint64 &riAdvanceMore ); bool NextNotSkipped( uint64 iTotalCommand ); bool IsSkipped( void ) { return ( m_pEntry->m_pExpr->Evaluate( this ) != 0 ); } void FormatCommand( char *pchBuffer ); };
QuickMap < uint64, ComboHandleImpl > s_mapComboCommands;
bool ComboHandleImpl::Initialize( uint64 iTotalCommand, const CfgEntry *pEntry ) { m_iTotalCommand = iTotalCommand; m_pEntry = pEntry; m_numCombos = m_pEntry->m_pCg->NumCombos();
// Defines
Define const * const pDefVars = m_pEntry->m_pCg->GetDefinesBase(); Define const * const pDefVarsEnd = m_pEntry->m_pCg->GetDefinesEnd(); Define const *pSetDef;
// Set all the variables to max values
for ( pSetDef = pDefVars; pSetDef < pDefVarsEnd; ++ pSetDef ) { m_arrVarSlots.Append( pSetDef->Max() ); }
m_iComboNumber = m_numCombos - 1; return true; }
bool ComboHandleImpl::AdvanceCommands( uint64 &riAdvanceMore ) { if ( !riAdvanceMore ) return true;
// Get the pointers
int * const pnValues = m_arrVarSlots.ArrayBaseForEdit(); int * const pnValuesEnd = pnValues + m_arrVarSlots.Size(); int *pSetValues;
// Defines
Define const * const pDefVars = m_pEntry->m_pCg->GetDefinesBase(); Define const *pSetDef;
if ( m_iComboNumber < riAdvanceMore ) { riAdvanceMore -= m_iComboNumber; return false; }
// Do the advance
m_iTotalCommand += riAdvanceMore; m_iComboNumber -= riAdvanceMore; for ( pSetValues = pnValues, pSetDef = pDefVars; ( pSetValues < pnValuesEnd ) && ( riAdvanceMore > 0 ); ++ pSetValues, ++ pSetDef ) { riAdvanceMore += ( pSetDef->Max() - *pSetValues ); *pSetValues = pSetDef->Max(); int iInterval = ( pSetDef->Max() - pSetDef->Min() + 1 ); *pSetValues -= int( riAdvanceMore % iInterval ); riAdvanceMore /= iInterval; }
return true; }
bool ComboHandleImpl::NextNotSkipped( uint64 iTotalCommand ) { // Get the pointers
int * const pnValues = m_arrVarSlots.ArrayBaseForEdit(); int * const pnValuesEnd = pnValues + m_arrVarSlots.Size(); int *pSetValues;
// Defines
Define const * const pDefVars = m_pEntry->m_pCg->GetDefinesBase(); Define const *pSetDef;
// Go ahead and run the iterations
{ next_combo_iteration: if ( m_iTotalCommand + 1 >= iTotalCommand || !m_iComboNumber ) return false;
-- m_iComboNumber; ++ m_iTotalCommand;
// Do a next iteration
for ( pSetValues = pnValues, pSetDef = pDefVars; pSetValues < pnValuesEnd; ++ pSetValues, ++ pSetDef ) { if ( -- *pSetValues >= pSetDef->Min() ) goto have_combo_iteration;
*pSetValues = pSetDef->Max(); }
return false;
have_combo_iteration: if ( m_pEntry->m_pExpr->Evaluate( this ) ) goto next_combo_iteration; else return true; } }
void ComboHandleImpl::FormatCommand( char *pchBuffer ) { // Get the pointers
int * const pnValues = m_arrVarSlots.ArrayBaseForEdit(); int * const pnValuesEnd = pnValues + m_arrVarSlots.Size(); int *pSetValues;
// Defines
Define const * const pDefVars = m_pEntry->m_pCg->GetDefinesBase(); Define const *pSetDef; { // ------- OnCombo( nCurrentCombo ); ----------
sprintf( pchBuffer, "%s ", m_pEntry->m_sPrefix.data() ); pchBuffer += strlen( pchBuffer );
sprintf( pchBuffer, "/DSHADERCOMBO=%llu ", m_iComboNumber ); pchBuffer += strlen( pchBuffer );
for ( pSetValues = pnValues, pSetDef = pDefVars; pSetValues < pnValuesEnd; ++ pSetValues, ++ pSetDef ) { sprintf( pchBuffer, "/D%s=%d ", pSetDef->Name(), *pSetValues ); pchBuffer += strlen( pchBuffer ); }
sprintf( pchBuffer, "%s\n", m_pEntry->m_sSuffix.data() ); pchBuffer += strlen( pchBuffer ); // ------- end of OnCombo ---------------------
} }
struct CAutoDestroyEntries { ~CAutoDestroyEntries( void ) { std::for_each( s_setEntries.begin(), s_setEntries.end(), CfgEntry::Destroy ); } } s_autoDestroyEntries;
FILE *& GetInputStream( FILE * ) { static FILE *s_fInput = stdin; return s_fInput; }
CUtlInplaceBuffer *& GetInputStream( CUtlInplaceBuffer * ) { static CUtlInplaceBuffer *s_fInput = NULL; return s_fInput; }
char * GetLinePtr_Private( void ) { if ( CUtlInplaceBuffer *pUtlBuffer = GetInputStream( ( CUtlInplaceBuffer * ) NULL ) ) return pUtlBuffer->InplaceGetLinePtr();
if ( FILE *fInput = GetInputStream( ( FILE * ) NULL ) ) return fgets( g_chTmpBuffer, g_lenTmpBuffer, fInput );
return NULL; }
bool LineEquals( char const *sz1, char const *sz2, int nLen ) { return 0 == strncmp( sz1, sz2, nLen ); }
char * NextLine( void ) { if ( char *szLine = GetLinePtr_Private() ) { // Trim trailing whitespace as well
size_t len = ( size_t ) strlen( szLine ); while ( len -- > 0 && V_isspace( szLine[ len ] ) ) { szLine[ len ] = 0; } return szLine; } return NULL; }
char * WaitFor( char const *szWaitString, int nMatchLength ) { while ( char *pchResult = NextLine() ) { if ( LineEquals( pchResult, szWaitString, nMatchLength ) ) return pchResult; }
return NULL; }
bool ProcessSection( CfgEntry &cfge ) { bool bStaticDefines;
// Read the next line for the section src file
if ( char *szLine = NextLine() ) { cfge.m_szShaderSrc = s_strPool.AddLookup( szLine ); }
if ( char *szLine = WaitFor( "#DEFINES-", 9 ) ) { bStaticDefines = ( szLine[9] == 'S' ); } else return false;
// Combo generator
ComboGenerator &cg = *( cfge.m_pCg = new ComboGenerator ); CComplexExpression &exprSkip = *( cfge.m_pExpr = new CComplexExpression( &cg ) );
// #DEFINES:
while ( char *szLine = NextLine() ) { if ( LineEquals( szLine, "#SKIP", 5 ) ) break;
// static defines
if ( LineEquals( szLine, "#DEFINES-", 9 ) ) { bStaticDefines = ( szLine[9] == 'S' ); continue; }
while ( *szLine && V_isspace(*szLine) ) { ++ szLine; }
// Find the eq
char *pchEq = strchr( szLine, '=' ); if ( !pchEq ) continue;
char *pchStartRange = pchEq + 1; *pchEq = 0; while ( -- pchEq >= szLine && V_isspace( *pchEq ) ) { *pchEq = 0; } if ( !*szLine ) continue;
// Find the end of range
char *pchEndRange = strstr( pchStartRange, ".." ); if ( !pchEndRange ) continue; pchEndRange += 2;
// Create the define
Define df( szLine, atoi( pchStartRange ), atoi( pchEndRange ), bStaticDefines ); if ( df.Max() < df.Min() ) continue;
// Add the define
cg.AddDefine( df ); }
// #SKIP:
if ( char *szLine = NextLine() ) { exprSkip.Parse( szLine ); } else return false;
// #COMMAND:
if ( !WaitFor( "#COMMAND", 8 ) ) return false; if ( char *szLine = NextLine() ) cfge.m_sPrefix = szLine; if ( char *szLine = NextLine() ) cfge.m_sSuffix = szLine;
// #END
if ( !WaitFor( "#END", 4 ) ) return false;
return true; }
void UnrollSectionCommands( CfgEntry const &cfge ) { // Execute the combo computation
//
//
g_comboEmission.m_sPrefix = cfge.m_sPrefix; g_comboEmission.m_sSuffix = cfge.m_sSuffix;
OutputF( stdout, "Preparing %d combos for %s...\n", cfge.m_pCg->NumCombos(), cfge.m_szName ); OutputF( stderr, "#%s\n", cfge.m_szName );
time_t tt_start = time( NULL ); cfge.m_pCg->RunAllCombos( *cfge.m_pExpr ); time_t tt_end = time( NULL );
OutputF( stderr, "#%s\n", cfge.m_szName ); OutputF( stdout, "Prepared %s combos. %d sec.\n", cfge.m_szName, ( int ) difftime( tt_end, tt_start ) );
g_comboEmission.m_sPrefix = ""; g_comboEmission.m_sSuffix = ""; }
void RunSection( CfgEntry const &cfge ) { // Execute the combo computation
//
//
g_comboEmission.m_sPrefix = cfge.m_sPrefix; g_comboEmission.m_sSuffix = cfge.m_sSuffix;
OutputF( stdout, "Preparing %d combos for %s...\n", cfge.m_pCg->NumCombos(), cfge.m_szName ); OutputF( stderr, "#%s\n", cfge.m_szName );
time_t tt_start = time( NULL ); cfge.m_pCg->RunAllCombos( *cfge.m_pExpr ); time_t tt_end = time( NULL );
OutputF( stderr, "#%s\n", cfge.m_szName ); OutputF( stdout, "Prepared %s combos. %d sec.\n", cfge.m_szName, ( int ) difftime( tt_end, tt_start ) );
g_comboEmission.m_sPrefix = ""; g_comboEmission.m_sSuffix = ""; }
void ProcessConfiguration() { static bool s_bProcessOnce = false;
while ( char *szLine = WaitFor( "#BEGIN", 6 ) ) { if ( ' ' == szLine[6] && !s_uniqueSections.Add(szLine + 7) ) continue;
CfgEntry cfge; cfge.m_szName = s_uniqueSections.Lookup( szLine + 7 ); ProcessSection( cfge ); s_setEntries.insert( cfge ); }
uint64 nCurrentCommand = 0; for( std::multiset< CfgEntry >::reverse_iterator it = s_setEntries.rbegin(), itEnd = s_setEntries.rend(); it != itEnd; ++ it ) { // We establish a command mapping for the beginning of the entry
ComboHandleImpl chi; chi.Initialize( nCurrentCommand, &*it ); s_mapComboCommands.Append( nCurrentCommand, chi );
// We also establish mapping by either splitting the
// combos into 500 intervals or stepping by every 1000 combos.
int iPartStep = ( int ) max( 1000, (int)( chi.m_numCombos / 500 ) ); for ( uint64 iRecord = nCurrentCommand + iPartStep; iRecord < nCurrentCommand + chi.m_numCombos; iRecord += iPartStep ) { uint64 iAdvance = iPartStep; chi.AdvanceCommands( iAdvance ); s_mapComboCommands.Append( iRecord, chi ); }
nCurrentCommand += chi.m_numCombos; }
// Establish the last command terminator
{ static CfgEntry s_term; s_term.m_eiInfo.m_iCommandStart = s_term.m_eiInfo.m_iCommandEnd = nCurrentCommand; s_term.m_eiInfo.m_numCombos = s_term.m_eiInfo.m_numStaticCombos = s_term.m_eiInfo.m_numDynamicCombos = 1; s_term.m_eiInfo.m_szName = s_term.m_eiInfo.m_szShaderFileName = ""; ComboHandleImpl chi; chi.m_iTotalCommand = nCurrentCommand; chi.m_pEntry = &s_term; s_mapComboCommands.Append( nCurrentCommand, chi ); } }
}; // namespace ConfigurationProcessing
/*
int main( int argc, char **argv ) { if ( _isatty( _fileno( stdin ) ) ) { return Usage(); }
// Go ahead processing the configuration
ConfigurationProcessing::ProcessConfiguration();
return 0; } */
namespace CfgProcessor {
typedef ConfigurationProcessing::ComboHandleImpl CPCHI_t; CPCHI_t * FromHandle( ComboHandle hCombo ) { return reinterpret_cast < CPCHI_t * > ( hCombo ); } ComboHandle AsHandle( CPCHI_t *pImpl ) { return reinterpret_cast < ComboHandle > ( pImpl ); }
void ReadConfiguration( FILE *fInputStream ) { CAutoPushPop < FILE * > pushInputStream( ConfigurationProcessing::GetInputStream( fInputStream ), fInputStream ); ConfigurationProcessing::ProcessConfiguration(); }
void ReadConfiguration( CUtlInplaceBuffer *fInputStream ) { CAutoPushPop < CUtlInplaceBuffer * > pushInputStream( ConfigurationProcessing::GetInputStream( fInputStream ), fInputStream ); ConfigurationProcessing::ProcessConfiguration(); }
void DescribeConfiguration( CArrayAutoPtr < CfgEntryInfo > &rarrEntries ) { rarrEntries.Delete(); rarrEntries.Attach( new CfgEntryInfo [ ConfigurationProcessing::s_setEntries.size() + 1 ] );
CfgEntryInfo *pInfo = rarrEntries.Get(); uint64 nCurrentCommand = 0;
for( std::multiset< ConfigurationProcessing::CfgEntry >::reverse_iterator it = ConfigurationProcessing::s_setEntries.rbegin(), itEnd = ConfigurationProcessing::s_setEntries.rend(); it != itEnd; ++ it, ++ pInfo ) { ConfigurationProcessing::CfgEntry const &e = *it;
pInfo->m_szName = e.m_szName; pInfo->m_szShaderFileName = e.m_szShaderSrc;
pInfo->m_iCommandStart = nCurrentCommand; pInfo->m_numCombos = e.m_pCg->NumCombos(); pInfo->m_numDynamicCombos = e.m_pCg->NumCombos( false ); pInfo->m_numStaticCombos = e.m_pCg->NumCombos( true ); pInfo->m_iCommandEnd = pInfo->m_iCommandStart + pInfo->m_numCombos;
const_cast< CfgEntryInfo & > ( e.m_eiInfo ) = *pInfo;
nCurrentCommand += pInfo->m_numCombos; }
// Terminator
memset( pInfo, 0, sizeof( CfgEntryInfo ) ); pInfo->m_iCommandStart = nCurrentCommand; pInfo->m_iCommandEnd = nCurrentCommand; }
ComboHandle Combo_GetCombo( uint64 iCommandNumber ) { // Find earlier command
uint64 iCommandFound = iCommandNumber; CPCHI_t emptyCPCHI; CPCHI_t const &chiFound = ConfigurationProcessing::s_mapComboCommands.GetLessOrEq( iCommandFound, emptyCPCHI );
if ( chiFound.m_iTotalCommand < 0 || chiFound.m_iTotalCommand > iCommandNumber ) return NULL;
// Advance the handle as needed
CPCHI_t *pImpl = new CPCHI_t( chiFound ); uint64 iCommandFoundAdvance = iCommandNumber - iCommandFound; pImpl->AdvanceCommands( iCommandFoundAdvance );
return AsHandle( pImpl ); }
ComboHandle Combo_GetNext( uint64 &riCommandNumber, ComboHandle &rhCombo, uint64 iCommandEnd ) { // Combo handle implementation
CPCHI_t *pImpl = FromHandle( rhCombo );
if ( !rhCombo ) { // We don't have a combo handle that corresponds to the command
// Find earlier command
uint64 iCommandFound = riCommandNumber; CPCHI_t emptyCPCHI; CPCHI_t const &chiFound = ConfigurationProcessing::s_mapComboCommands.GetLessOrEq( iCommandFound, emptyCPCHI );
if ( !chiFound.m_pEntry || !chiFound.m_pEntry->m_pCg || !chiFound.m_pEntry->m_pExpr || chiFound.m_iTotalCommand < 0 || chiFound.m_iTotalCommand > riCommandNumber ) return NULL;
// Advance the handle as needed
pImpl = new CPCHI_t( chiFound ); rhCombo = AsHandle( pImpl ); uint64 iCommandFoundAdvance = riCommandNumber - iCommandFound; pImpl->AdvanceCommands( iCommandFoundAdvance );
if ( !pImpl->IsSkipped() ) return rhCombo; }
for ( ; ; ) { // We have the combo handle now
if ( pImpl->NextNotSkipped( iCommandEnd ) ) { riCommandNumber = pImpl->m_iTotalCommand; return rhCombo; }
// We failed to get the next combo command (out of range)
if ( pImpl->m_iTotalCommand + 1 >= iCommandEnd ) { delete pImpl; rhCombo = NULL; riCommandNumber = iCommandEnd; return NULL; }
// Otherwise we just have to obtain the next combo handle
riCommandNumber = pImpl->m_iTotalCommand + 1;
// Delete the old combo handle
delete pImpl; rhCombo = NULL;
// Retrieve the next combo handle data
uint64 iCommandLookup = riCommandNumber; CPCHI_t emptyCPCHI; CPCHI_t const &chiNext = ConfigurationProcessing::s_mapComboCommands.GetLessOrEq( iCommandLookup, emptyCPCHI ); Assert( ( iCommandLookup == riCommandNumber ) && ( chiNext.m_pEntry ) );
// Set up the new combo handle
pImpl = new CPCHI_t( chiNext ); rhCombo = AsHandle( pImpl ); if ( !pImpl->IsSkipped() ) return rhCombo; } }
void Combo_FormatCommand( ComboHandle hCombo, char *pchBuffer ) { CPCHI_t *pImpl = FromHandle( hCombo ); pImpl->FormatCommand( pchBuffer ); }
uint64 Combo_GetCommandNum( ComboHandle hCombo ) { if ( CPCHI_t *pImpl = FromHandle( hCombo ) ) return pImpl->m_iTotalCommand; else return ~uint64(0); }
uint64 Combo_GetComboNum( ComboHandle hCombo ) { if ( CPCHI_t *pImpl = FromHandle( hCombo ) ) return pImpl->m_iComboNumber; else return ~uint64(0); }
CfgEntryInfo const *Combo_GetEntryInfo( ComboHandle hCombo ) { if ( CPCHI_t *pImpl = FromHandle( hCombo ) ) return &pImpl->m_pEntry->m_eiInfo; else return NULL; }
ComboHandle Combo_Alloc( ComboHandle hComboCopyFrom ) { if ( hComboCopyFrom ) return AsHandle( new CPCHI_t( * FromHandle( hComboCopyFrom ) ) ); else return AsHandle( new CPCHI_t ); }
void Combo_Assign( ComboHandle hComboDst, ComboHandle hComboSrc ) { Assert( hComboDst ); * FromHandle( hComboDst ) = * FromHandle( hComboSrc ); }
void Combo_Free( ComboHandle &rhComboFree ) { delete FromHandle( rhComboFree ); rhComboFree = NULL; }
}; // namespace CfgProcessor
|