|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Builds physics collision models from studio model source
//
// $Workfile: $
// $Date: $
// $NoKeywords: $
//=============================================================================//
// NOTE: The term joint here is used to mean a bone, collision model, and a joint.
// Each "joint" is the collision geometry at a named bone (or set of bones that have been merged)
// and the joint (with constraints) between that set and its parent. The root "joint" has
// no constraints.
// I chose to refer to them as joints to avoid confusion. Yes they encompass bones and joints,
// but they use the same names, and the data is actually linked.
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <math.h>
#include "vphysics/constraints.h"
#include "collisionmodel.h"
#include "cmdlib.h"
#include "scriplib.h"
#include "mathlib/mathlib.h"
#include "studio.h"
#include "studiomdl.h"
#include "physdll.h"
#include "phyfile.h"
#include "utlvector.h"
#include "vcollide_parse.h"
#include "tier1/strtools.h"
#include "tier2/tier2.h"
#include "KeyValues.h"
#include "tier1/smartptr.h"
#include "tier2/p4helpers.h"
// these functions just wrap atoi/atof and check for NULL
static float Safe_atof( const char *pString ); static int Safe_atoi( const char *pString );
IPhysicsCollision *physcollision = NULL; IPhysicsSurfaceProps *physprops = NULL;
float g_WeldVertEpsilon = 0.0f; float g_WeldNormalEpsilon = 0.999f;
//-----------------------------------------------------------------------------
// Purpose: Contains a single convex element of a physical collision system
//-----------------------------------------------------------------------------
class CPhysCollisionModel { public: CPhysCollisionModel( void ) { memset( this, 0, sizeof(*this) ); }
const char *m_parent; const char *m_name;
// physical properties stored on disk
float m_mass; float m_volume; float m_surfaceArea; float m_damping; float m_rotdamping; float m_inertia; float m_dragCoefficient;
// these tune the model building process, they don't go in the file
float m_massBias;
CPhysCollide *m_pCollisionData; CPhysCollisionModel *m_pNext; };
enum jointlimit_t { JOINT_FREE = 0, JOINT_FIXED = 1, JOINT_LIMIT = 2, };
// list of vertex indices that form a convex element
struct convexlist_t { int firstVertIndex; int numVertIndex; };
//-----------------------------------------------------------------------------
// Purpose: element of a list of constraints for a jointed model
//-----------------------------------------------------------------------------
class CJointConstraint { public: CJointConstraint( void ) { m_pJointName = NULL; }
CJointConstraint( const char *pName, int axis, jointlimit_t type, float min, float max, float friction ) : m_axis(axis), m_jointType(type), m_limitMin(min), m_limitMax(max), m_friction(friction) { m_pJointName = pName; }
const char *m_pJointName; int m_axis; jointlimit_t m_jointType; float m_limitMin; float m_limitMax; float m_friction;
CJointConstraint *m_pNext; };
struct mergelist_t { char *pParent; char *pChild; };
struct collisionpair_t { int obj0; int obj1; const char *pName0; const char *pName1; collisionpair_t *pNext; };
//-----------------------------------------------------------------------------
// Purpose: Search a source for a bone with a specified name
// Input : *pSource -
// *pName -
// Output : int boneIndex, -1 if none
//-----------------------------------------------------------------------------
int FindLocalBoneNamed( const s_source_t *pSource, const char *pName ) { if ( pName ) { int i; for ( i = 0; i < pSource->numbones; i++ ) { if ( !stricmp( pName, pSource->localBone[i].name ) ) return i; }
pName = RenameBone( pName );
for ( i = 0; i < pSource->numbones; i++ ) { if ( !stricmp( pName, pSource->localBone[i].name ) ) return i; } }
return -1; }
// Returns the index to pName in g_bonetable
int FindBoneInTable( const char *pName ) { return findGlobalBone( pName ); }
//-----------------------------------------------------------------------------
// Purpose: Contains a complete physical joint system with constraint relationships
//-----------------------------------------------------------------------------
// This class is really just a namespace for a set of globals...
class CJointedModel { public: s_source_t *m_pModel; int m_collisionCount; CPhysCollisionModel *m_pCollisionList; collisionpair_t *m_pCollisionPairs; float m_totalMass; int m_bonemap[MAXSTUDIOSRCBONES]; CJointConstraint *m_pConstraintList; int m_constraintCount; int m_totalVerts; int m_maxConvex; char m_rootName[128]; bool m_allowConcave; bool m_allowConcaveJoints; bool m_isMassCenterForced; bool m_noSelfCollisions; bool m_remove2d; Vector m_massCenterForced;
float m_defaultDamping; float m_defaultRotdamping; float m_defaultInertia; float m_defaultDrag; CUtlVector<char> m_textCommands; CUtlVector<mergelist_t> m_mergeList;
CJointedModel( void );
void SetSource( s_source_t *pmodel );
void InitBoneMap( void ); void SkipBone( int boneIndex ); void MergeBones( int parent, int child ); void AddMergeCommand( char const *pParent, char const *pChild ); bool ShouldProcessBone( int boneIndex ); int BoneIndex( const char *pName ); int RemapBone( int boneIndex ) const; void AppendCollisionModel( CPhysCollisionModel *pCollide ); void UnlinkCollisionModel( CPhysCollisionModel *pCollide ); CPhysCollisionModel *GetCollisionModel( const char *pName ); void AppendCollisionPair( const char *pName0, const char *pName1 ); void AddConstraint( const char *pJointName, int axis, jointlimit_t jointType, float limitMin, float limitMax, float friction ); int CollisionIndex( const char *pName ); void SortCollisionList( void ); void ForceMassCenter( const Vector ¢erOfMass ); void AllowConcave( void ) { m_allowConcave = true; } void AllowConcaveJoints() { m_allowConcaveJoints = true; } void Remove2DConvex() { m_remove2d = true; } void SetMaxConvex( int newMax ) { m_maxConvex = newMax; } void Simplify(); void DefaultDamping( float damping ); void DefaultRotdamping( float rotdamping ); void DefaultInertia( float inertia ); void DefaultDrag( float drag ); void SetTotalMass( float mass ); void SetAutoMass( void ); void SetNoSelfCollisions(); void SetCollisionModelDefaults( CPhysCollisionModel *pModel );
void JointDamping( const char *pJointName, float damping ); void JointRotdamping( const char *pJointName, float rotdamping ); void JointInertia( const char *pJointName, float inertia ); void JointMassBias( const char *pJointName, float massBias );
void AddText( const char *pText ) { int len = strlen(pText); int count = m_textCommands.Size(); m_textCommands.AddMultipleToTail( len ); memcpy( m_textCommands.Base() + count, pText, len ); } void ComputeMass( void );
float m_flFrictionTimeIn; float m_flFrictionTimeOut; float m_flFrictionTimeHold; int m_iMinAnimatedFriction; int m_iMaxAnimatedFriction; bool m_bHasAnimatedFriction;
bool m_bAssumeWorldspace; // assume the model is already declared in worldspace, regardless of bone names
};
CJointedModel g_JointedModel; bool g_bJointed = false;
CJointedModel::CJointedModel( void ) { m_pModel = NULL;
m_collisionCount = 0; m_pCollisionList = NULL; m_pCollisionPairs = NULL; m_totalMass = 1.0;
memset( m_bonemap, 0, sizeof(m_bonemap) ); m_pConstraintList = NULL; m_constraintCount = 0; m_totalVerts = 0;
// UNDONE: Move these defaults elsewhere? They are all overrideable by the QC/script
m_defaultDamping = 0; m_defaultRotdamping = 0; m_defaultInertia = 1.0; m_defaultDrag = -1; m_allowConcave = false; m_allowConcaveJoints = false; m_remove2d = false; m_maxConvex = 40; m_isMassCenterForced = false; m_noSelfCollisions = false; m_massCenterForced.Init();
m_flFrictionTimeIn = 0.0f; m_flFrictionTimeOut = 0.0f; m_iMinAnimatedFriction = 1.0f; m_iMaxAnimatedFriction = 1.0f; m_bHasAnimatedFriction = false; }
void CJointedModel::SetSource( s_source_t *pmodel ) { m_pModel = pmodel; InitBoneMap(); m_totalVerts = pmodel->numvertices; }
void CJointedModel::InitBoneMap( void ) { for ( int i = 0; i < m_pModel->numbones; i++ ) { m_bonemap[i] = i; } }
void CJointedModel::SkipBone( int boneIndex ) { if ( boneIndex >= 0 ) m_bonemap[boneIndex] = -1; }
void CJointedModel::AddMergeCommand( char const *pParent, char const *pChild ) { int i = m_mergeList.AddToTail(); m_mergeList[i].pParent = strdup(pParent); m_mergeList[i].pChild = strdup(pChild); }
void CJointedModel::MergeBones( int parent, int child ) { if ( parent < 0 || child < 0 ) return;
int map = parent; int safety = 0; while ( m_bonemap[map] != map ) { map = m_bonemap[map]; safety++; // infinite loop?
if ( safety > m_pModel->numbones ) break;
if ( map < 0 ) break; }
m_bonemap[child] = map; }
bool CJointedModel::ShouldProcessBone( int boneIndex ) { if ( boneIndex >= 0 ) { if ( m_bonemap[boneIndex] == boneIndex ) return true; } return false; }
int CJointedModel::BoneIndex( const char *pName ) { pName = RenameBone( pName ); for ( int boneIndex = 0; boneIndex < m_pModel->numbones; boneIndex++ ) { if ( !stricmp( m_pModel->localBone[boneIndex].name, pName ) ) return boneIndex; }
return -1; }
int CJointedModel::RemapBone( int boneIndex ) const { if ( boneIndex >= 0 ) return m_bonemap[boneIndex]; return boneIndex; }
void CJointedModel::AppendCollisionModel( CPhysCollisionModel *pCollide ) { if ( m_isMassCenterForced ) { physcollision->CollideSetMassCenter( pCollide->m_pCollisionData, m_massCenterForced ); }
pCollide->m_pNext = m_pCollisionList; m_pCollisionList = pCollide; m_collisionCount++; }
void CJointedModel::UnlinkCollisionModel( CPhysCollisionModel *pCollide ) { CPhysCollisionModel **pList = &m_pCollisionList;
if ( !pCollide ) return;
while ( *pList ) { CPhysCollisionModel *pNode = *pList; if ( pNode == pCollide ) { *pList = pCollide->m_pNext; m_collisionCount--; pCollide->m_pNext = NULL; return; } pList = &pNode->m_pNext; } }
int CJointedModel::CollisionIndex( const char *pName ) { CPhysCollisionModel *pList = m_pCollisionList; int index = 0; while ( pList ) { if ( !stricmp( pName, pList->m_name ) ) return index; pList = pList->m_pNext; index++; }
return -1; }
//-----------------------------------------------------------------------------
// Purpose: Sort the list so that parents come before their children
//-----------------------------------------------------------------------------
void CJointedModel::SortCollisionList( void ) { if ( !m_collisionCount ) return;
CPhysCollisionModel **pArray; pArray = new CPhysCollisionModel *[m_collisionCount]; CPhysCollisionModel *pList = m_pCollisionList; // make an array to make sorting easier
int i = 0;
while ( pList ) { pArray[i++] = pList; pList = pList->m_pNext; }
// really stupid bubble sort!
// this is really inefficient but it was easy to code and there are never
// more than maxConvex elements.
bool swapped = true;
while ( swapped ) { swapped = false; // loop over all solids and swap any parent/child pairs that are out of order
for ( i = 0; i < m_collisionCount; i++ ) { CPhysCollisionModel *pPhys = pArray[i]; if ( !pPhys->m_parent ) continue;
// Don't try to move ones where the pPhys and its parent have the same name
// otherwise an infinite loop results
if ( !Q_stricmp( pPhys->m_name, pPhys->m_parent ) ) continue;
// find the parent
int j; for ( j = 0; j < m_collisionCount; j++ ) { if ( j == i ) continue;
if ( !stricmp( pPhys->m_parent, pArray[j]->m_name ) ) break; }
// if the child came before the parent, then swap the parent and child positions
if ( j > i && j < m_collisionCount ) { swapped = true; pArray[i] = pArray[j]; pArray[j] = pPhys; } } }
// link up the sorted list
for ( i = 0; i < m_collisionCount-1; i++ ) { pArray[i]->m_pNext = pArray[i+1]; } // terminate
pArray[i]->m_pNext = NULL; // point the list to first joint
m_pCollisionList = pArray[0];
// delete the working array
delete[] pArray; }
void CJointedModel::AppendCollisionPair( const char *pName0, const char *pName1 ) { collisionpair_t *pPair = new collisionpair_t; pPair->obj0 = -1; pPair->obj1 = -1; int jointIndex0 = FindLocalBoneNamed( m_pModel, pName0 ); pPair->pName0 = (jointIndex0 >= 0) ? m_pModel->localBone[jointIndex0].name : NULL; int jointIndex1 = FindLocalBoneNamed( m_pModel, pName1 ); pPair->pName1 = (jointIndex1 >= 0) ? m_pModel->localBone[jointIndex1].name : NULL;
pPair->pNext = m_pCollisionPairs; m_pCollisionPairs = pPair; }
void CJointedModel::ForceMassCenter( const Vector ¢erOfMass ) { m_isMassCenterForced = true; m_massCenterForced = centerOfMass; }
// called before processing, after the model has been simplified.
// Update internal state due to simplification
void CJointedModel::Simplify() { for ( int i = 0; i < m_pModel->numbones; i++ ) { if ( m_pModel->boneLocalToGlobal[i] < 0 ) { SkipBone(i); } }
extern int g_rootIndex; const char *pAnimationRootBone = g_bonetable[g_rootIndex].name;
// merge this root bone with the root of animation
MergeBones( FindLocalBoneNamed( m_pModel, pAnimationRootBone ), FindLocalBoneNamed( m_pModel, m_rootName ) );
}
CPhysCollisionModel *CJointedModel::GetCollisionModel( const char *pName ) { CPhysCollisionModel *pList = m_pCollisionList; while ( pList ) { if ( !stricmp( pName, pList->m_name ) ) return pList; pList = pList->m_pNext; }
return NULL; }
void CJointedModel::AddConstraint( const char *pJointName, int axis, jointlimit_t jointType, float limitMin, float limitMax, float friction ) { // In the editor/qc friction values are shown as 5X so 1.0 can be the default.
CJointConstraint *pConstraint = new CJointConstraint( pJointName, axis, jointType, limitMin, limitMax, friction * (1.0f/5.0f) );
// link it in
pConstraint->m_pNext = m_pConstraintList; m_pConstraintList = pConstraint; m_constraintCount++; }
void CJointedModel::DefaultDamping( float damping ) { m_defaultDamping = damping; }
void CJointedModel::DefaultRotdamping( float rotdamping ) { m_defaultRotdamping = rotdamping; }
void CJointedModel::DefaultInertia( float inertia ) { m_defaultInertia = inertia; }
void CJointedModel::SetTotalMass( float mass ) { m_totalMass = mass; }
void CJointedModel::SetAutoMass( void ) { m_totalMass = -1; }
void CJointedModel::SetNoSelfCollisions() { m_noSelfCollisions = true; }
void CJointedModel::SetCollisionModelDefaults( CPhysCollisionModel *pModel ) { pModel->m_damping = m_defaultDamping; pModel->m_inertia = m_defaultInertia; pModel->m_rotdamping = m_defaultRotdamping; pModel->m_massBias = 1.0; // not written unless modified
pModel->m_dragCoefficient = m_defaultDrag; }
void CJointedModel::ComputeMass( void ) { // already set
if ( m_totalMass >= 0 ) return;
CPhysCollisionModel *pList = m_pCollisionList; m_totalMass = 0;
while ( pList ) { char* pSurfaceProps = GetSurfaceProp( pList->m_name ); int index = physprops->GetSurfaceIndex( pSurfaceProps ); float density, thickness; physprops->GetPhysicsProperties( index, &density, &thickness, NULL, NULL );
if ( thickness > 0 ) { m_totalMass += pList->m_surfaceArea * thickness * CUBIC_METERS_PER_CUBIC_INCH * density; } else { // density is in kg/m^3, volume is in in^3
m_totalMass += pList->m_volume * CUBIC_METERS_PER_CUBIC_INCH * density; } pList = pList->m_pNext; }
if( !g_quiet ) { printf("Computed Mass: %.2f kg\n", m_totalMass ); } }
//-----------------------------------------------------------------------------
// Purpose: Creates a collision object using the defaults in joints
// Input : &joints - joint system to create the model in
// *pJointName - name to give this model
// Output : static CPhysCollisionModel
//-----------------------------------------------------------------------------
static CPhysCollisionModel *InitCollisionModel( CJointedModel &joints, const char *pJointName ) { CPhysCollisionModel *pModel = joints.GetCollisionModel( pJointName ); if ( !pModel ) { int boneIndex = joints.BoneIndex( pJointName ); if ( boneIndex < 0 ) return NULL;
pModel = new CPhysCollisionModel; // this name is the same as pJointName, but guaranteed to be non-volatile (we'd have to copy pJointName)
pModel->m_name = joints.m_pModel->localBone[boneIndex].name; if ( joints.m_pModel->localBone[boneIndex].parent >= 0 ) { pModel->m_parent = joints.m_pModel->localBone[joints.m_pModel->localBone[boneIndex].parent].name; } else { pModel->m_parent = NULL; }
joints.SetCollisionModelDefaults( pModel ); joints.AppendCollisionModel( pModel ); }
return pModel; }
void CJointedModel::JointDamping( const char *pJointName, float damping ) { CPhysCollisionModel *pModel = InitCollisionModel( *this, pJointName ); if ( pModel ) { pModel->m_damping = damping; } }
void CJointedModel::JointRotdamping( const char *pJointName, float rotdamping ) { CPhysCollisionModel *pModel = InitCollisionModel( *this, pJointName ); if ( pModel ) { pModel->m_rotdamping = rotdamping; } }
void CJointedModel::JointMassBias( const char *pJointName, float massBias ) { CPhysCollisionModel *pModel = InitCollisionModel( *this, pJointName ); if ( pModel ) { pModel->m_massBias = massBias; } }
void CJointedModel::JointInertia( const char *pJointName, float inertia ) { CPhysCollisionModel *pModel = InitCollisionModel( *this, pJointName ); if ( pModel ) { pModel->m_inertia = inertia; } }
void CJointedModel::DefaultDrag( float drag ) { m_defaultDrag = drag; }
// ----------------------------------------------------------
//-----------------------------------------------------------------------------
// Purpose: Transforms the source's verts into "world" space
// Input : *psource -
// *worldVerts -
//-----------------------------------------------------------------------------
void ConvertToWorldSpace( CJointedModel &joints, s_source_t *psource, CUtlVector<Vector> &worldVerts ) { int i, n;
if (!joints.m_bAssumeWorldspace) { matrix3x4_t boneToWorld[MAXSTUDIOSRCBONES]; // bone transformation matrix
CalcBoneTransforms( g_panimation[0], 0, boneToWorld );
for (i = 0; i < psource->numvertices; i++) { Vector tmp,tmp2; worldVerts[i].Init( 0, 0, 0 );
int nBoneCount = psource->vertex[i].boneweight.numbones; for (n = 0; n < nBoneCount; n++) { // convert to Half-Life world space
// convert vertex into original models' bone local space
int localBone = psource->vertex[i].boneweight.bone[n]; int globalBone = psource->boneLocalToGlobal[localBone]; Assert( localBone >= 0 ); Assert( globalBone >= 0 );
matrix3x4_t boneToPose; ConcatTransforms( psource->boneToPose[localBone], g_bonetable[globalBone].srcRealign, boneToPose ); VectorITransform( psource->vertex[i].position, boneToPose, tmp2 );
// now transform to that bone's world-space position in this animation
VectorTransform(tmp2, boneToWorld[globalBone], tmp ); VectorMA( worldVerts[i], psource->vertex[i].boneweight.weight[n], tmp, worldVerts[i] ); } } } else { matrix3x4_t srcBoneToWorld[MAXSTUDIOSRCBONES]; // bone transformation matrix
BuildRawTransforms( psource, "BindPose", 0, psource->scale, psource->adjust, psource->rotation, 0, srcBoneToWorld );
for (i = 0; i < psource->numvertices; i++) { Vector tmp; worldVerts[i].Init( 0, 0, 0 );
int nBoneCount = psource->vertex[i].boneweight.numbones; for (n = 0; n < nBoneCount; n++) { int localBone = psource->vertex[i].boneweight.bone[n]; Assert( localBone >= 0 );
// convert vertex into world space
VectorTransform( psource->vertex[i].position, srcBoneToWorld[localBone], tmp ); // just assume the model is in identity space
// FIXME: shouldn't this do an inverse xform of the default boneToWorld?
VectorMA( worldVerts[i], psource->vertex[i].boneweight.weight[n], tmp, worldVerts[i] ); } } } }
//-----------------------------------------------------------------------------
// Purpose: Transforms the set of verts into the space of a particular bone
// Input : *psource -
// boneIndex -
// *boneVerts -
//-----------------------------------------------------------------------------
void ConvertToBoneSpace( s_source_t *psource, int boneIndex, CUtlVector<Vector> &boneVerts ) { int i;
int remapIndex = psource->boneLocalToGlobal[boneIndex]; matrix3x4_t boneToPose; if ( remapIndex < 0 ) { MdlWarning("Error! physics for unused bone %s\n", psource->localBone[boneIndex].name ); MatrixCopy( psource->boneToPose[boneIndex], boneToPose ); } else { ConcatTransforms( psource->boneToPose[boneIndex], g_bonetable[remapIndex].srcRealign, boneToPose ); }
for (i = 0; i < psource->numvertices; i++) { VectorITransform(psource->vertex[i].position, boneToPose, boneVerts[i] ); } }
//-----------------------------------------------------------------------------
// Purpose: Test this face to see if any of its verts are assigned to a particular bone
// Input : &joints -
// *pmodel -
// *face -
// boneIndex -
// Output : Returns true if this face has a vert assigned to boneIndex
//-----------------------------------------------------------------------------
bool FaceHasVertOnBone( const CJointedModel &joints, s_source_t *pSource, s_face_t *face, int boneIndex ) { if ( boneIndex < 0 ) return true;
int j; s_boneweight_t *pweight; pweight = &pSource->vertex[ face->a ].boneweight; for ( j = 0; j < pweight->numbones; j++ ) { // assigned to boneIndex?
if ( joints.RemapBone( pweight->bone[j] ) == boneIndex ) return true; }
pweight = &pSource->vertex[ face->b ].boneweight; for ( j = 0; j < pweight->numbones; j++ ) { // assigned to boneIndex?
if ( joints.RemapBone( pweight->bone[j] ) == boneIndex ) return true; }
pweight = &pSource->vertex[ face->c ].boneweight; for ( j = 0; j < pweight->numbones; j++ ) { // assigned to boneIndex?
if ( joints.RemapBone( pweight->bone[j] ) == boneIndex ) return true; }
return false;
}
//-----------------------------------------------------------------------------
// Purpose: Fixup the pointers in this face to reference the mesh globally (source relative)
// (faces are mesh relative, each source has several meshes)
// Input : *pout -
// *pmesh -
// *pin -
//-----------------------------------------------------------------------------
void GlobalFace( s_face_t *pout, s_mesh_t *pmesh, s_face_t *pin ) { pout->a = pmesh->vertexoffset + pin->a; pout->b = pmesh->vertexoffset + pin->b; pout->c = pmesh->vertexoffset + pin->c; }
//-----------------------------------------------------------------------------
// Purpose: Copy all verts assigned to this bone.
// NOTE: Leaves gaps in the model around joints
// Input : **verts -
// *worldVerts -
// &joints -
// boneIndex -
// Output : int vertCount
//-----------------------------------------------------------------------------
int CopyVertsByBone( Vector **verts, Vector *worldVerts, const CJointedModel &joints, int boneIndex ) { int vertCount = 0; s_source_t *pmodel = joints.m_pModel;
// loop through each vert to find those assigned to this bone
for ( int i = 0; i < pmodel->numvertices; i++ ) { s_boneweight_t *pweight = &pmodel->vertex[ i ].boneweight;
// look at each assignment for this vert
for ( int j = 0; j < pweight->numbones; j++ ) { // Discover the local bone index for this bone
int localBone = pweight->bone[j];
// assigned to boneIndex?
if ( joints.RemapBone( localBone ) == boneIndex ) { // add this vert to model
verts[vertCount++] = &worldVerts[i]; } } }
return vertCount; }
//-----------------------------------------------------------------------------
// Purpose: Copy all verts that are referenced by a face which has a vert assigned
// to this bone.
// NOTE: convex hulls of each bone will overlap at the joints
// Input : **verts -
// *worldVerts -
// &joints -
// boneIndex -
// Output : int
//-----------------------------------------------------------------------------
int CopyFaceVertsByBone( Vector **verts, Vector *worldVerts, const CJointedModel &joints, int boneIndex ) { int vertCount = 0; s_source_t *pmodel = joints.m_pModel;
int *vertChecked = new int[pmodel->numvertices]; for ( int b = 0; b < pmodel->numvertices; b++ ) { vertChecked[b] = 0; }
for ( int i = 0; i < pmodel->nummeshes; i++ ) { s_mesh_t *pmesh = pmodel->mesh + pmodel->meshindex[i]; for ( int j = 0; j < pmesh->numfaces; j++ ) { s_face_t *face = pmodel->face + pmesh->faceoffset + j; s_face_t globalFace; GlobalFace( &globalFace, pmesh, face ); if ( FaceHasVertOnBone( joints, pmodel, &globalFace, boneIndex ) ) { if ( !vertChecked[globalFace.a] ) { // add this vert to model
verts[vertCount++] = &worldVerts[globalFace.a]; } if ( !vertChecked[globalFace.b] ) { // add this vert to model
verts[vertCount++] = &worldVerts[globalFace.b]; } if ( !vertChecked[globalFace.c] ) { // add this vert to model
verts[vertCount++] = &worldVerts[globalFace.c]; } // mark these verts so you only add them once
vertChecked[globalFace.a] = 1; vertChecked[globalFace.b] = 1; vertChecked[globalFace.c] = 1; } } }
delete[] vertChecked; return vertCount; }
//-----------------------------------------------------------------------------
// Purpose: Find all verts that differ only by texture coordinates - this allows
// us to ignore texture coordinates on collision models
// Input : *weldTable - output table
// *pmodel - input model
//-----------------------------------------------------------------------------
void BuildVertWeldTable( int *weldTable, s_source_t *pmodel ) { for ( int i = 0; i < pmodel->numvertices; i++ ) { bool found = false; for ( int j = 0; j < i; j++ ) { float dist = (pmodel->vertex[j].position - pmodel->vertex[i].position).Length(); float normalDist = DotProduct( pmodel->vertex[j].normal, pmodel->vertex[i].normal ); if ( dist <= g_WeldVertEpsilon && normalDist > g_WeldNormalEpsilon ) { found = true; weldTable[i] = j; break; } }
if ( !found ) { weldTable[i] = i; } } }
//-----------------------------------------------------------------------------
// Purpose: marks all verts with a unique ID. Each set of connected verts has
// the same ID. IDs are the index of the lowest numbered face on the
// mesh
// Input : *vertID - array that holds IDs
// *pmodel - model to process
//-----------------------------------------------------------------------------
void MarkConnectedMeshes( int *vertID, s_source_t *pmodel, int *vertMap ) { int i;
// mark all verts as max faceid + 1
for ( i = 0; i < pmodel->numvertices; i++ ) { // If these verts have been welded to a lower-index vert, mark them
// as already processed to avoid making additional convex objects out of them.
if ( vertMap[i] != i ) { vertID[i] = -1; } else { vertID[i] = pmodel->numfaces+1; } }
int marked = 0; int faceid = 0; // iterate the face list, minimizing the vertID at each vert
// until we have an iteration where no vertIDs are changed
do { marked = 0; faceid = 0;
for ( i = 0; i < pmodel->nummeshes; i++ ) { s_mesh_t *pmesh = pmodel->mesh + pmodel->meshindex[i]; for ( int j = 0; j < pmesh->numfaces; j++ ) { s_face_t *face = pmodel->face + pmesh->faceoffset + j; s_face_t globalFace; GlobalFace( &globalFace, pmesh, face ); // account for welding
globalFace.a = vertMap[globalFace.a]; globalFace.b = vertMap[globalFace.b]; globalFace.c = vertMap[globalFace.c];
// find min(faceid, vertID[a], vertID[b], vertID[c]);
int newid = min(faceid, vertID[globalFace.a]); newid = min( newid, vertID[globalFace.b]); newid = min( newid, vertID[globalFace.c]); // mark all verts with the minimum, count the number we had to mark
if ( vertID[globalFace.a] != newid ) { vertID[globalFace.a] = newid; marked++; } if ( vertID[globalFace.b] != newid ) { vertID[globalFace.b] = newid; marked++; } if ( vertID[globalFace.c] != newid ) { vertID[globalFace.c] = newid; marked++; } faceid++; } } } while ( marked != 0 ); }
//-----------------------------------------------------------------------------
// Purpose: Finds a CPhysCollisionModel in a linked list of models.
// Input : *pHead -
// *pName -
// Output : CPhysCollisionModel
//-----------------------------------------------------------------------------
CPhysCollisionModel *FindObjectInList( CPhysCollisionModel *pHead, const char *pName ) { while ( pHead ) { if ( !stricmp( pName, pHead->m_name ) ) break; pHead = pHead->m_pNext; }
return pHead; }
//-----------------------------------------------------------------------------
// Purpose: Fix all bones to reference the remapped/collapsed bone structure
// Input : *pSource -
// *pList -
//-----------------------------------------------------------------------------
void FixBoneList( int *boneMap, const s_source_t *pSource, CPhysCollisionModel *pList ) { if ( !g_bJointed ) return;
CPhysCollisionModel *pmodel = pList; while ( pmodel ) { int nodeIndex = FindLocalBoneNamed( pSource, pmodel->m_name ); if ( nodeIndex < 0 ) { MdlWarning("Physics for unknown bone %s\n", pmodel->m_name ); } else { int count = 0; // remove simplified bones
while ( pSource->boneLocalToGlobal[nodeIndex] < 0 ) { if ( count++ > MAXSTUDIOSRCBONES ) break;
// simplified out, move up to the parent
nodeIndex = pSource->localBone[nodeIndex].parent; }
if ( nodeIndex >= 0 ) { // bone collapse may have changed parent hierarchy, and the root name.
// The vertices are converted to the new reference by ConvertToWorldSpace(), as well as RemapVerticesToGlobalBones()
pmodel->m_name = g_bonetable[ pSource->boneLocalToGlobal[nodeIndex] ].name; pmodel->m_parent = NULL; int parentIndex = pSource->localBone[nodeIndex].parent; if ( parentIndex >= 0 && parentIndex != nodeIndex ) { parentIndex = boneMap[parentIndex]; if (pSource->boneLocalToGlobal[parentIndex] < 0) { pmodel->m_parent = pSource->localBone[parentIndex].name; } else { pmodel->m_parent = g_bonetable[ pSource->boneLocalToGlobal[parentIndex] ].name; } } } else { MdlWarning("Physics for unknown bone %s\n", pmodel->m_name ); } }
pmodel = pmodel->m_pNext; } }
//-----------------------------------------------------------------------------
// Purpose: Fixup all references to parents by walking up on models whose parents
// have no collision geometry. Bones without geometry cannot be physically
// simulated, so they must be removed.
// NOTE: This is broken. It won't work for tree structures with an empty parent
// (i.e. 2 children attached to a parent bone that has no physics geometry - thus empty)
// It will not convert that parent into a constraint between 2 children
// Input : *pList -
// *pSource -
// *pParentName -
// Output : const char
//-----------------------------------------------------------------------------
const char *FixParent( CPhysCollisionModel *pList, s_source_t *pSource, const char *pParentName ) { while ( pParentName ) { if ( FindObjectInList( pList, pParentName ) ) { return pParentName; } int nodeIndex = FindLocalBoneNamed( pSource, pParentName ); if ( nodeIndex < 0 ) return NULL; int parentIndex = pSource->localBone[nodeIndex].parent; if ( parentIndex < 0 ) { break; }
pParentName = pSource->localBone[parentIndex].name; }
return NULL; }
struct boundingvolume_t { Vector mins; Vector maxs; };
void CreateCollide( CPhysCollisionModel *pBase, CPhysConvex **pElements, int elementCount, const boundingvolume_t &bv ) { int i;
if ( !pBase ) return;
// NOTE: Must do this before building collide
pBase->m_volume = 0; pBase->m_surfaceArea = 0; for ( i = 0; i < elementCount; i++ ) { pBase->m_volume += physcollision->ConvexVolume( pElements[i] ); pBase->m_surfaceArea += physcollision->ConvexSurfaceArea( pElements[i] ); }
convertconvexparams_t params; params.Defaults(); params.buildOuterConvexHull = true; params.buildDragAxisAreas = true; Vector size = bv.maxs - bv.mins;
int largest = 0; float minSurfaceArea = -1.0f; for ( i = 0; i < 3; i++ ) { if ( size[i] > size[largest] ) { largest = i; }
int other = (i+1)%3; int cross = (i+2)%3; float surfaceArea = size[other] * size[cross]; if ( minSurfaceArea < 0 || surfaceArea < minSurfaceArea ) { minSurfaceArea = surfaceArea; } } // this can be really slow with super-large models and a low error tolerance
// Basically you get a ray cast through each square of epsilon surface area on each OBB side
// So compute it for 0.01% error (on the smallest side, less on larger sides)
params.dragAreaEpsilon = clamp( minSurfaceArea * 1e-4f, 0.25f, 128.0f );
Vector tmp = size; tmp[largest] = 0; float len = tmp.Length(); if ( len > 0 ) { float sizeRatio = size[largest] / len; // HACKHACK: Hardcoded size ratio to induce damping
// This prevents long skinny objects from rolling endlessly
if ( sizeRatio > 9 ) { pBase->m_rotdamping = 1.0f; } } // THIS DESTROYS pConvex!!
pBase->m_pCollisionData = physcollision->ConvertConvexToCollideParams( pElements, elementCount, params );
// debug output for the drag area calculations
#if 0
Msg("Drag epsilon is %.3f\n", params.dragAreaEpsilon ); Vector areas = physcollision->CollideGetOrthographicAreas( pBase->m_pCollisionData ); Msg("Drag fractions are %.3f %.3f %.3f\n", areas.x, areas.y, areas.z ); #endif
}
// is this list of verts contained in a slab of epsilon width? If so, it's probably
// an error of some kind - we shouldn't be authoring flat or 2d collision models
bool IsApproximatelyPlanar( Vector **verts, int vertCount, float epsilon ) { if ( vertCount < 4 ) return true;
// If we're using an un-welded model, then this may generate a degenerate normal
// loop to search for an actual plane
int v0 = 1, v1 = 2; Vector normal; while ( v0 < vertCount && v1 < vertCount ) { Vector edge0 = *verts[v0] - *verts[0]; Vector edge1 = *verts[v1] - *verts[0];
normal = CrossProduct( edge0, edge1 ); float len = VectorNormalize( normal ); if ( len > 0.001 ) break; if ( edge0.Length() < 0.001 ) { // verts[0] and v0 are coincident, try new verts
v0++; v1++; } else { // v0 seems fine, try a new v1 -- it's probably coincident with v0
v1++; } }
// form the plane and project all of the verts into it
float minDist = DotProduct( normal, *verts[0] ); float maxDist = minDist;
for ( int i = 0; i < vertCount; i++ ) { float d = DotProduct( *verts[i], normal ); if ( d < minDist ) { minDist = d; } else if ( d > maxDist ) { maxDist = d; } // at least one vert out of the plane, we've got something 3 dimensional
if ( fabsf(maxDist-minDist) > epsilon ) return false; } return true; }
void BuildConvexListByVertID( s_source_t *pmodel, CUtlVector<convexlist_t> &convexList, CUtlVector<int> &vertList, CUtlVector<int> &vertID ) { // loop through each island of verts and append it to the convex list
convexlist_t current; for ( int i = 0; i < pmodel->numvertices; i++ ) { // already processed this group
if ( vertID[i] < 0 || vertID[i] > pmodel->numfaces ) continue;
current.firstVertIndex = vertList.Count(); current.numVertIndex = 0;
int id = vertID[i];
for ( int j = i; j < pmodel->numvertices; j++ ) { if ( vertID[j] == id ) { vertList.AddToTail(j); current.numVertIndex++; // don't reuse this vert
vertID[j] = -1; } } convexList.AddToTail(current); } }
// build a list of vertex indices for each connected sub-piece
void BuildSingleConvexForFaceList( s_source_t *pmodel, CUtlVector<convexlist_t> &convexList, CUtlVector<int> &vertList, const CUtlVector<s_face_t> &faceList ) { CUtlVector<int> vertID; vertID.SetCount(pmodel->numvertices); int i; for ( i = 0; i < pmodel->numvertices; i++ ) { vertID[i] = -1; }
for ( i = 0; i < faceList.Count(); i++ ) { const s_face_t &globalFace = faceList[i]; vertID[globalFace.a] = 1; vertID[globalFace.b] = 1; vertID[globalFace.c] = 1; } BuildConvexListByVertID( pmodel, convexList, vertList, vertID ); }
void BuildConvexListForFaceList( s_source_t *pmodel, CUtlVector<convexlist_t> &convexList, CUtlVector<int> &vertList, const CUtlVector<s_face_t> &faceList ) { CUtlVector<int> weldTable; weldTable.SetCount(pmodel->numvertices); BuildVertWeldTable( weldTable.Base(), pmodel );
int i; CUtlVector<int> vertID; vertID.SetCount(pmodel->numvertices);
// mark all verts as max faceid + 1
for ( i = 0; i < pmodel->numvertices; i++ ) { // If these verts have been welded to a lower-index vert, mark them
// as already processed to avoid making additional convex objects out of them.
if ( weldTable[i] != i ) { vertID[i] = -1; } else { vertID[i] = pmodel->numfaces+1; } }
Assert(convexList.Count()==0); Assert(vertList.Count()==0);
int marked = 0; int faceid = 0; // iterate the face list, minimizing the vertID at each vert
// until we have an iteration where no vertIDs are changed
do { marked = 0; faceid = 0;
// basically this flood fills ids out to the verts until each island of connected
// verts shares a single id (so new verts got marked)
for ( i = 0; i < faceList.Count(); i++ ) { s_face_t globalFace = faceList[i]; // account for welding
globalFace.a = weldTable[globalFace.a]; globalFace.b = weldTable[globalFace.b]; globalFace.c = weldTable[globalFace.c];
int newid = min(i, vertID[globalFace.a]); newid = min( newid, vertID[globalFace.b]); newid = min( newid, vertID[globalFace.c]);
// mark all verts with the minimum, count the number we had to mark
if ( vertID[globalFace.a] != newid ) { vertID[globalFace.a] = newid; marked++; } if ( vertID[globalFace.b] != newid ) { vertID[globalFace.b] = newid; marked++; } if ( vertID[globalFace.c] != newid ) { vertID[globalFace.c] = newid; marked++; } } } while ( marked != 0 );
BuildConvexListByVertID( pmodel, convexList, vertList, vertID ); }
// take a list of convex elements (lists of vert indices into master vert list) and build CPhysConvex out of them
// return true if there are no errors detected
bool BuildConvexesForLists( CUtlVector<CPhysConvex *> &convexOut, const CUtlVector<convexlist_t> &convexList, const CUtlVector<int> &vertList, const CUtlVector<Vector> &worldspaceVerts, bool bRemove2d ) { bool bValid = true; CUtlVector<Vector *> vertsThisConvex; for ( int i = 0; i < convexList.Count(); i++ ) { const convexlist_t &elem = convexList[i]; vertsThisConvex.RemoveAll(); for ( int j = 0; j < elem.numVertIndex; j++ ) { // this is ok because physcollision won't modify these, but wants non-const
Vector *pVert = const_cast<Vector *>(&worldspaceVerts[vertList[j + elem.firstVertIndex]]); vertsThisConvex.AddToTail( pVert ); }
// need at least 3 verts to build a CPhysConvex
if ( vertsThisConvex.Count() > 2 ) { const float g_epsilon_2d = 0.5f; // HACKHACK: A heuristic to detect models without smoothing groups set
// UNDONE: Do a BSP to decompose arbitrary models to convex?
if ( IsApproximatelyPlanar( vertsThisConvex.Base(), vertsThisConvex.Count(), g_epsilon_2d ) ) { if ( bRemove2d ) continue; MdlWarning("Model has 2-dimensional geometry (less than %.3f inches thick on any axis)!!!\n", g_epsilon_2d ); bValid = false; } // go ahead and build it out
CPhysConvex *pConvex = physcollision->ConvexFromVerts( vertsThisConvex.Base(), vertsThisConvex.Count() ); if ( pConvex ) { // Got something valid, attach this convex data to the root model
physcollision->SetConvexGameData( pConvex, 0 ); convexOut.AddToTail(pConvex); } } }
return bValid; }
//-----------------------------------------------------------------------------
// Purpose: Build a jointed collision model with constraints
// Input : &joints -
// Output : int
//-----------------------------------------------------------------------------
int ProcessJointedModel( CJointedModel &joints ) { if( !g_quiet ) { printf("Processing jointed collision model\n" ); } s_source_t *pmodel = joints.m_pModel; // loop through each bone and form a collision model
for ( int boneIndex = 0; boneIndex < joints.m_pModel->numbones; boneIndex++ ) { if ( !joints.ShouldProcessBone( boneIndex ) ) continue;
CUtlVector<Vector> bonespaceVerts; bonespaceVerts.SetCount(pmodel->numvertices); ConvertToBoneSpace( joints.m_pModel, boneIndex, bonespaceVerts ); CUtlVector<s_face_t> faceList; CUtlVector<convexlist_t> convexList; CUtlVector<int> vertList; CUtlVector<CPhysConvex *> convexOut; bool bValid = false;
for ( int i = 0; i < pmodel->nummeshes; i++ ) { s_mesh_t *pmesh = pmodel->mesh + pmodel->meshindex[i]; for ( int j = 0; j < pmesh->numfaces; j++ ) { s_face_t *face = pmodel->face + pmesh->faceoffset + j; s_face_t globalFace; GlobalFace( &globalFace, pmesh, face ); if ( FaceHasVertOnBone( joints, pmodel, &globalFace, boneIndex ) ) { faceList.AddToTail( globalFace ); } } if ( joints.m_allowConcaveJoints ) { BuildConvexListForFaceList( pmodel, convexList, vertList, faceList ); } else { BuildSingleConvexForFaceList( pmodel, convexList, vertList, faceList ); }
bValid = BuildConvexesForLists( convexOut, convexList, vertList, bonespaceVerts, joints.m_remove2d ); }
if ( convexOut.Count() > joints.m_maxConvex ) { MdlWarning("COSTLY COLLISION MODEL!!!! (%d parts - %d allowed)\n", convexOut.Count(), joints.m_maxConvex ); bValid = false; }
if ( !bValid && convexOut.Count() ) { MdlWarning("Error with convex elements of %s, building single convex!!!!\n", pmodel->filename ); for ( int i = 0; i < convexOut.Count(); i++ ) { physcollision->ConvexFree( convexOut[i] ); } convexOut.Purge(); }
if ( convexOut.Count() ) { int i;
CPhysCollisionModel *pPhys = InitCollisionModel( joints, pmodel->localBone[boneIndex].name );
pPhys->m_mass = 1.0; pPhys->m_name = joints.m_pModel->localBone[boneIndex].name; if ( joints.m_pModel->localBone[boneIndex].parent >= 0 ) { pPhys->m_parent = joints.m_pModel->localBone[joints.m_pModel->localBone[boneIndex].parent].name; } else { pPhys->m_parent = NULL; }
boundingvolume_t bv; ClearBounds( bv.mins, bv.maxs ); int vertCount = 0; for ( i = 0; i < convexList.Count(); i++ ) { const convexlist_t &elem = convexList[i]; for ( int j = 0; j < elem.numVertIndex; j++ ) { AddPointToBounds( bonespaceVerts[vertList[elem.firstVertIndex+j]], bv.mins, bv.maxs ); vertCount++; } } for ( i = 0; i < convexOut.Count(); i++ ) { // Attach this convex data to this particular bone
int globalBoneIndex = joints.m_pModel->boneLocalToGlobal[boneIndex]; physcollision->SetConvexGameData( convexOut[i], globalBoneIndex + 1 ); }
CreateCollide( pPhys, convexOut.Base(), convexOut.Count(), bv ); if( !g_quiet ) { printf("%-24s (%3d verts, %d convex elements) volume: %4.2f\n", pPhys->m_name, vertCount, convexOut.Count(), pPhys->m_volume ); } joints.UnlinkCollisionModel( pPhys ); joints.AppendCollisionModel( pPhys ); } } // remove any non-physical joints at this point
CPhysCollisionModel *pPhys = joints.m_pCollisionList; while (pPhys) { CPhysCollisionModel *pNext = pPhys->m_pNext; if ( !pPhys->m_pCollisionData ) { joints.UnlinkCollisionModel(pPhys); delete pPhys; } pPhys = pNext; }
return 1; }
#if 0
// debug visualization code - use this to dump out intermediate geometry files for visualization in glview.exe
void DumpToGLView( char const *pName, s_source_t *pmodel, Vector *worldVerts, int *used ) { int i;
for ( i = 0; i < pmodel->numvertices; i++ ) used[i] = -1;
FILE *fp = fopen( pName, "w" ); // dump the model to a glview file
for ( i = 0; i < pmodel->nummeshes; i++ ) { s_mesh_t *pmesh = pmodel->mesh + pmodel->meshindex[i]; for ( int j = 0; j < pmesh->numfaces; j++ ) { s_face_t *face = pmodel->face + pmesh->faceoffset + j; s_face_t globalFace; GlobalFace( &globalFace, pmesh, face );
fprintf( fp, "3\n" ); fprintf( fp, "%6.3f %6.3f %6.3f 0 1 0\n", worldVerts[globalFace.b].x, worldVerts[globalFace.b].y, worldVerts[globalFace.b].z ); fprintf( fp, "%6.3f %6.3f %6.3f 1 0 0\n", worldVerts[globalFace.a].x, worldVerts[globalFace.a].y, worldVerts[globalFace.a].z ); fprintf( fp, "%6.3f %6.3f %6.3f 0 0 1\n", worldVerts[globalFace.c].x, worldVerts[globalFace.c].y, worldVerts[globalFace.c].z ); used[globalFace.a] = 0; used[globalFace.b] = 0; used[globalFace.c] = 0; } }
// dump a triangle expanded around each vert to the file (to show degenerate tris' verts).
for ( i = 0; i < pmodel->numvertices; i++ ) { if ( used[i] < 0 ) continue;
fprintf( fp, "3\n" ); Vector vert; vert = worldVerts[i] + Vector(0,0,5); fprintf( fp, "%6.3f %6.3f %6.3f 1 0 0\n", vert.x, vert.y, vert.z ); vert = worldVerts[i] + Vector(5,0,-5); fprintf( fp, "%6.3f %6.3f %6.3f 0 1 0\n", vert.x, vert.y, vert.z ); vert = worldVerts[i] + Vector(-5,0,-5); fprintf( fp, "%6.3f %6.3f %6.3f 0 0 1\n", vert.x, vert.y, vert.z );
}
fclose( fp ); } #endif
int ProcessSingleBody( CJointedModel &joints ) { s_source_t *pmodel = joints.m_pModel; // THIS CODE IS ONLY EXECUTED ON PROPS - i.e. NON-JOINTED MODELS
CUtlVector<Vector> worldspaceVerts; worldspaceVerts.SetCount(pmodel->numvertices); ConvertToWorldSpace( joints, pmodel, worldspaceVerts ); CUtlVector<s_face_t> faceList;
CUtlVector<convexlist_t> convexList; CUtlVector<int> vertList; CUtlVector<CPhysConvex *> convexOut; bool bValid = false; if ( joints.m_allowConcave ) { for ( int i = 0; i < pmodel->nummeshes; i++ ) { s_mesh_t *pmesh = pmodel->mesh + pmodel->meshindex[i]; for ( int j = 0; j < pmesh->numfaces; j++ ) { s_face_t *face = pmodel->face + pmesh->faceoffset + j; s_face_t globalFace; GlobalFace( &globalFace, pmesh, face ); faceList.AddToTail( globalFace ); } } BuildConvexListForFaceList( pmodel, convexList, vertList, faceList ); bValid = BuildConvexesForLists( convexOut, convexList, vertList, worldspaceVerts, joints.m_remove2d ); }
if ( convexOut.Count() > joints.m_maxConvex ) { MdlWarning("COSTLY COLLISION MODEL!!!! (%d parts - %d allowed)\n", convexOut.Count(), joints.m_maxConvex ); bValid = false; }
if ( !bValid && convexOut.Count() ) { MdlWarning("Error with convex elements of %s, building single convex!!!!\n", pmodel->filename ); for ( int i = 0; i < convexOut.Count(); i++ ) { physcollision->ConvexFree( convexOut[i] ); } convexOut.Purge(); }
// either we don't want concave, or there was an error building it
if ( !convexOut.Count() ) { convexlist_t elem; elem.firstVertIndex = 0; elem.numVertIndex = pmodel->numvertices; convexList.AddToTail(elem); for ( int i = 0; i < pmodel->numvertices; i++ ) { vertList.AddToTail(i); } BuildConvexesForLists( convexOut, convexList, vertList, worldspaceVerts, true ); }
if ( convexOut.Count() ) { if( !g_quiet ) { printf("Model has %d convex sub-parts\n", convexOut.Count() ); }
CPhysCollisionModel *pPhys = new CPhysCollisionModel; joints.SetCollisionModelDefaults( pPhys );
boundingvolume_t bv; ClearBounds( bv.mins, bv.maxs ); for ( int i = worldspaceVerts.Count()-1; --i >= 0; ) { AddPointToBounds( worldspaceVerts[i], bv.mins, bv.maxs ); } CreateCollide( pPhys, convexOut.Base(), convexOut.Count(), bv );
// Init mass, write routine will distribute the total mass
pPhys->m_mass = 1.0; char tmp[512]; Q_FileBase( pmodel->filename, tmp, sizeof( tmp ) );
// UNDONE: Memory leak
char *out = new char[strlen(tmp)+1]; strcpy( out, tmp ); pPhys->m_name = out; pPhys->m_parent = NULL;
joints.AppendCollisionModel( pPhys ); } return 1; }
#define MAX_ARGS 16
#define ARG_SIZE 256
//-----------------------------------------------------------------------------
// Purpose: HACKETY HACK - get the args into a buffer.
// This checks for overflow, but it's not very robust - shouldn't be necessary though
// Input : pArgs[][ARG_SIZE] -
// maxCount - array size of pargs
// Output : int - count actually used
//-----------------------------------------------------------------------------
int ReadArgs( char pArgs[][ARG_SIZE], int maxCount ) { int argCount = 0;
while ( argCount < maxCount && TokenAvailable() ) { GetToken(false); strncpy( pArgs[argCount], token, ARG_SIZE ); argCount++; }
return argCount; }
//-----------------------------------------------------------------------------
// Purpose: Simple atof wrapper to keep from crashing on bad user input
// Input : *pString -
// Output : float
//-----------------------------------------------------------------------------
float Safe_atof( const char *pString ) { if ( !pString ) return 0;
return atof(pString); }
//-----------------------------------------------------------------------------
// Purpose: Simple atoi wrapper to avoid crashing on bad user input
// Input : *pString -
// Output : int
//-----------------------------------------------------------------------------
int Safe_atoi( const char *pString ) { if ( !pString ) return 0;
return atoi(pString); }
//-----------------------------------------------------------------------------
// Purpose: Add a constraint to our joint system
// Input : &joints -
// *pJointName -
// *pJointAxis -
// *pJointType -
// *pLimitMin -
// *pLimitMax -
//-----------------------------------------------------------------------------
void CCmd_JointConstrain( CJointedModel &joints, const char *pJointName, const char *pJointAxis, const char *pJointType, const char *pLimitMin, const char *pLimitMax, const char *pFriction ) { float limitMin = Safe_atof(pLimitMin); float limitMax = Safe_atof(pLimitMax); float friction = Safe_atof(pFriction); int axis = -1; int jointIndex = FindLocalBoneNamed( joints.m_pModel, pJointName ); if ( !g_bCreateMakefile && jointIndex < 0 ) { MdlWarning("Can't find joint %s\n", pJointName ); return; } pJointName = joints.m_pModel->localBone[jointIndex].name;
if ( pJointAxis ) { axis = tolower(pJointAxis[0]) - 'x'; } if ( axis < 0 || axis > 2 || limitMin > limitMax ) { MdlError("Invalid joint constraint for %s\nCan't build ragdoll!\n", pJointName ); return; }
jointlimit_t jointType = JOINT_FREE; if ( !stricmp( pJointType, "free" ) ) { jointType = JOINT_FREE; } else if ( !stricmp( pJointType, "fixed" ) ) { jointType = JOINT_FIXED; } else if ( !stricmp( pJointType, "limit" ) ) { jointType = JOINT_LIMIT; } else { MdlWarning("Unknown joint type %s (must be free, fixed, or limit)\n", pJointType ); return; } joints.AddConstraint( pJointName, axis, jointType, limitMin, limitMax, friction ); }
//-----------------------------------------------------------------------------
// Purpose: Remove a joint from the system (don't create physical geometry for it)
// Input : &joints -
// args[][ARG_SIZE] -
// argCount -
//-----------------------------------------------------------------------------
// UNDONE: Automatically skip joints that will have mass that is too low?
void CCmd_JointSkip( CJointedModel &joints, const char *pName ) { int boneIndex = FindLocalBoneNamed( joints.m_pModel, pName ); if ( boneIndex < 0 ) { MdlWarning("Can't skip joint %s, not found\n", pName ); } else { // printf("skipping joint %s\n", pName );
joints.SkipBone( boneIndex ); } }
//-----------------------------------------------------------------------------
// Purpose: Sets the object's mass. The code will distribute this mass to each
// part based on the collision model's volume
// Input : &joints -
// *pMass -
//-----------------------------------------------------------------------------
void CCmd_TotalMass( CJointedModel &joints, const char *pMass ) { joints.SetTotalMass( Safe_atof(pMass) ); }
//-----------------------------------------------------------------------------
// Purpose: verts from the bone named pChild are added to the collision model of pParent
// Input : *pmodel - source model
// *pParent - destination bone name
// *pChild - source bone name
//-----------------------------------------------------------------------------
void CCmd_JointMerge( CJointedModel &joints, const char *pParent, const char *pChild ) { joints.AddMergeCommand( pParent, pChild ); joints.MergeBones( FindLocalBoneNamed( joints.m_pModel, pParent ), FindLocalBoneNamed( joints.m_pModel, pChild ) ); }
void CCmd_JointRoot( CJointedModel &joints, const char *pBone ) { // save the root bone name
strcpy( joints.m_rootName, pBone ); }
void CCmd_JoinAnimatedFriction( CJointedModel &joints, const char *pMinFriction, const char *pMaxFriction, const char *pTimeIn, const char *pTimeHold, const char *pTimeOut ) { joints.m_flFrictionTimeIn = Safe_atof( pTimeIn ); joints.m_flFrictionTimeOut = Safe_atof( pTimeOut ); joints.m_flFrictionTimeHold = Safe_atof( pTimeHold ); joints.m_iMinAnimatedFriction = Safe_atoi( pMinFriction ); joints.m_iMaxAnimatedFriction = Safe_atoi( pMaxFriction ); joints.m_bHasAnimatedFriction = true; }
//-----------------------------------------------------------------------------
// Purpose: Parses all legal commands inside the $collisionjoints {} block
// Input : &joints -
//-----------------------------------------------------------------------------
void ParseCollisionCommands( CJointedModel &joints ) { char command[512];
char args[MAX_ARGS][ARG_SIZE]; int argCount;
while( GetToken( true ) ) { if ( !strcmp( token, "}" ) ) return;
strcpy( command, token );
if ( !stricmp( command, "$mass" ) ) { argCount = ReadArgs( args, 1 ); CCmd_TotalMass( joints, args[0] ); } // default properties
else if ( !stricmp( command, "$automass" ) ) { joints.SetAutoMass(); } else if ( !stricmp( command, "$inertia" ) ) { argCount = ReadArgs( args, 1 ); joints.DefaultInertia( Safe_atof( args[0] ) ); } else if ( !stricmp( command, "$damping" ) ) { argCount = ReadArgs( args, 1 ); joints.DefaultDamping( Safe_atof( args[0] ) ); } else if ( !stricmp( command, "$rotdamping" ) ) { argCount = ReadArgs( args, 1 ); joints.DefaultRotdamping( Safe_atof( args[0] ) ); } else if ( !stricmp( command, "$drag" ) ) { argCount = ReadArgs( args, 1 ); joints.DefaultDrag( Safe_atof( args[0] ) ); } else if ( !stricmp( command, "$rollingDrag" ) ) { argCount = ReadArgs( args, 1 ); // JAY: Removed this in favor of heuristic/tuning approach
//joints.DefaultRollingDrag( Safe_atof( args[0] ) );
} else if ( !stricmp( command, "$maxconvexpieces") ) { argCount = ReadArgs( args, 1 ); joints.SetMaxConvex( Safe_atoi(args[0]) ); } else if ( !stricmp( command, "$remove2d") ) { joints.Remove2DConvex(); } else if ( !stricmp( command, "$concaveperjoint") ) { joints.AllowConcaveJoints(); } else if ( !stricmp( command, "$weldposition") ) { argCount = ReadArgs(args,1); g_WeldVertEpsilon = Safe_atof( args[0] ); } else if ( !stricmp( command, "$weldnormal") ) { argCount = ReadArgs(args,1); g_WeldNormalEpsilon = Safe_atof( args[0] ); } else if ( !stricmp( command, "$concave" ) ) { joints.AllowConcave(); } else if ( !stricmp( command, "$masscenter" ) ) { argCount = ReadArgs( args, 3 ); Vector center; center.Init( Safe_atof(args[0]), Safe_atof(args[1]), Safe_atof(args[2]) ); joints.ForceMassCenter( center ); } // joint commands
else if ( !stricmp( command, "$jointskip" ) ) { argCount = ReadArgs( args, 1 ); CCmd_JointSkip( joints, args[0] ); } else if ( !stricmp( command, "$jointmerge" ) ) { argCount = ReadArgs( args, 2 ); CCmd_JointMerge( joints, args[0], args[1] ); } else if ( !stricmp( command, "$rootbone" ) ) { argCount = ReadArgs( args, 1 ); CCmd_JointRoot( joints, args[0] ); } else if ( !stricmp( command, "$jointconstrain" ) ) { argCount = ReadArgs( args, 6 ); char *pFriction = args[5]; if ( argCount < 6 ) { pFriction = "1.0"; } CCmd_JointConstrain( joints, args[0], args[1], args[2], args[3], args[4], pFriction ); } // joint properties
else if ( !stricmp( command, "$jointinertia" ) ) { argCount = ReadArgs( args, 2 ); joints.JointInertia( args[0], Safe_atof( args[1] ) ); } else if ( !stricmp( command, "$jointdamping" ) ) { argCount = ReadArgs( args, 2 ); joints.JointDamping( args[0], Safe_atof( args[1] ) ); } else if ( !stricmp( command, "$jointrotdamping" ) ) { argCount = ReadArgs( args, 2 ); joints.JointRotdamping( args[0], Safe_atof( args[1] ) ); } else if ( !stricmp( command, "$jointmassbias" ) ) { argCount = ReadArgs( args, 2 ); joints.JointMassBias( args[0], Safe_atof( args[1] ) ); } else if ( !stricmp( command, "$noselfcollisions" ) ) { joints.SetNoSelfCollisions(); } else if ( !stricmp( command, "$jointcollide" ) ) { argCount = ReadArgs( args, 2 ); joints.AppendCollisionPair( args[0], args[1] ); } else if ( !stricmp( command, "$animatedfriction" ) ) { argCount = ReadArgs( args, 5 );
if ( argCount == 5 ) { CCmd_JoinAnimatedFriction( joints, args[0], args[1], args[2], args[3], args[4] ); } } else if ( !stricmp( command, "$assumeworldspace") ) { joints.m_bAssumeWorldspace = true; } else { MdlWarning("Unknown command %s in collision series\n", command ); } } }
void Cmd_CollisionText( void ) { int level = 1;
if ( !GetToken( true ) ) return;
if ( token[0] != '{' ) return;
while ( GetToken(true) ) { if ( !strcmp( token, "}" ) ) { level--; if ( level <= 0 ) break; g_JointedModel.AddText( " }\n" ); } else if ( !strcmp( token, "{" ) ) { g_JointedModel.AddText( "{" ); level++; } else { // tokens inside braces are quoted
if ( level > 1 ) { g_JointedModel.AddText( "\"" ); g_JointedModel.AddText( token ); g_JointedModel.AddText( "\" " ); } else { g_JointedModel.AddText( token ); g_JointedModel.AddText( " " ); } } } }
static bool LoadSurfaceProps( const char *pMaterialFilename ) { if ( !physprops ) return false;
FileHandle_t fp = g_pFileSystem->Open( pMaterialFilename, "rb", TOOLS_READ_PATH_ID ); if ( fp == FILESYSTEM_INVALID_HANDLE ) return false;
int len = g_pFileSystem->Size( fp ); char *pText = new char[len+1]; g_pFileSystem->Read( pText, len, fp ); g_pFileSystem->Close( fp ); pText[len]=0;
physprops->ParseSurfaceData( pMaterialFilename, pText );
delete[] pText;
return true; }
void LoadSurfacePropsAll() { // already loaded
if ( physprops->SurfacePropCount() ) return;
const char *SURFACEPROP_MANIFEST_FILE = "scripts/surfaceproperties_manifest.txt"; KeyValues *manifest = new KeyValues( SURFACEPROP_MANIFEST_FILE ); if ( manifest->LoadFromFile( g_pFileSystem, SURFACEPROP_MANIFEST_FILE, "GAME" ) ) { for ( KeyValues *sub = manifest->GetFirstSubKey(); sub != NULL; sub = sub->GetNextKey() ) { if ( !Q_stricmp( sub->GetName(), "file" ) ) { // Add
LoadSurfaceProps( sub->GetString() ); continue; } } }
manifest->deleteThis(); }
//-----------------------------------------------------------------------------
// Purpose: Entry point for script processing. Delegate to necessary subroutines.
// Parse the collisionmodel {} and collisionjoints {} chunks
// Input : separateJoints - whether this has a constraint system or not (true if it does)
// Output : int
//-----------------------------------------------------------------------------
int DoCollisionModel( bool separateJoints ) { char name[512]; s_source_t *pmodel;
// name
if (!GetToken(false)) return 0;
V_strcpy_safe( name, token );
PhysicsDLLPath( "VPHYSICS.DLL" );
// CreateInterfaceFn physicsFactory = GetPhysicsFactory();
CreateInterfaceFn physicsFactory = Sys_GetFactory(Sys_LoadModule( "vphysics.dll" )); if ( !physicsFactory ) return 0;
physcollision = (IPhysicsCollision *)physicsFactory( VPHYSICS_COLLISION_INTERFACE_VERSION, NULL ); physprops = (IPhysicsSurfaceProps *)physicsFactory( VPHYSICS_SURFACEPROPS_INTERFACE_VERSION, NULL ); LoadSurfacePropsAll();
int nummaterials = g_nummaterials; int numtextures = g_numtextures;
pmodel = Load_Source( name, "SMD" ); if ( !pmodel ) return 0;
// auto-remove any new materials/textures
if (nummaterials && numtextures && (numtextures != g_numtextures || nummaterials != g_nummaterials)) { g_numtextures = numtextures; g_nummaterials = nummaterials;
pmodel->texmap[0] = 0; }
// all bones map to themselves by default
g_JointedModel.SetSource( pmodel ); bool parseCommands = false;
// If the next token is a { that means a data block for the collision model
if (GetToken(true)) { if ( !strcmp( token, "{" ) ) { parseCommands = true; } else { UnGetToken(); } }
if ( parseCommands ) { ParseCollisionCommands( g_JointedModel ); }
g_bJointed = separateJoints;
// collision script is stored in g_JointedModel for later processing
return 1; }
//-----------------------------------------------------------------------------
// Purpose: Walk the list of models, add up the volume
// Input : *pList -
// Output : float
//-----------------------------------------------------------------------------
float TotalVolume( CPhysCollisionModel *pList ) { float volume = 0; while ( pList ) { volume += pList->m_volume * pList->m_massBias; pList = pList->m_pNext; }
return volume; }
//-----------------------------------------------------------------------------
// Purpose: Write key/value pairs out to a file
// Input : *fp - output file
// *pKeyName - key name
// outputData - type specific output data
//-----------------------------------------------------------------------------
void KeyWriteInt( FILE *fp, const char *pKeyName, int outputData ) { fprintf( fp, "\"%s\" \"%d\"\n", pKeyName, outputData ); }
void KeyWriteIntPair( FILE *fp, const char *pKeyName, int outputData0, int outputData1 ) { fprintf( fp, "\"%s\" \"%d,%d\"\n", pKeyName, outputData0, outputData1 ); } void KeyWriteString( FILE *fp, const char *pKeyName, const char *outputData ) { fprintf( fp, "\"%s\" \"%s\"\n", pKeyName, outputData ); }
void KeyWriteVector3( FILE *fp, const char *pKeyName, const Vector& outputData ) { fprintf( fp, "\"%s\" \"%f %f %f\"\n", pKeyName, outputData[0], outputData[1], outputData[2] ); }
void KeyWriteQAngle( FILE *fp, const char *pKeyName, const QAngle& outputData ) { fprintf( fp, "\"%s\" \"%f %f %f\"\n", pKeyName, outputData[0], outputData[1], outputData[2] ); }
void KeyWriteFloat( FILE *fp, const char *pKeyName, float outputData ) { fprintf( fp, "\"%s\" \"%f\"\n", pKeyName, outputData ); }
void FixCollisionHierarchy( CJointedModel &joints ) { if ( joints.m_pCollisionList ) { CPhysCollisionModel *pPhys = joints.m_pCollisionList;
FixBoneList( joints.m_bonemap, joints.m_pModel, joints.m_pCollisionList ); // Point parents at joints that are actually in the model
for ( ;pPhys; pPhys = pPhys->m_pNext ) { pPhys->m_parent = FixParent( joints.m_pCollisionList, joints.m_pModel, pPhys->m_parent ); }
// sort the list so parents come before children
joints.SortCollisionList(); // Now remap the constraints to bones to
// Now that bones are in order, set physics indices in main bone structure
CJointConstraint *pList = g_JointedModel.m_pConstraintList; while ( pList ) { pList->m_pJointName = FixParent( joints.m_pCollisionList, joints.m_pModel, pList->m_pJointName ); pList = pList->m_pNext; }
pPhys = joints.m_pCollisionList; int i; for ( i = 0; i < g_numbones; i++ ) { g_bonetable[i].physicsBoneIndex = -1; } int index = 0; while ( pPhys ) { int boneIndex = FindBoneInTable( pPhys->m_name ); if ( boneIndex >= 0 ) { g_bonetable[boneIndex].physicsBoneIndex = index; } pPhys = pPhys->m_pNext; index ++; } for ( i = 0; i < g_numbones; i++ ) { // if no bone was set, set to parent bone
if ( g_bonetable[i].physicsBoneIndex < 0 ) { int index = g_bonetable[i].parent; int bone = -1; while ( index >= 0 ) { bone = g_bonetable[index].physicsBoneIndex; if ( bone >= 0 ) break; index = g_bonetable[index].parent; }
// found one?
if ( bone >= 0 ) { g_bonetable[i].physicsBoneIndex = bone; } else { // just set physics to affect root
g_bonetable[i].physicsBoneIndex = 0; } } } } }
//-----------------------------------------------------------------------------
// Purpose: Builds the physics/collision model.
// This must execute after the model has been simplified!!
//-----------------------------------------------------------------------------
void CollisionModel_Build( void ) { // no collision model referenced
if ( !g_JointedModel.m_pModel ) return;
g_JointedModel.Simplify(); if ( g_bJointed ) { ProcessJointedModel( g_JointedModel ); } else { ProcessSingleBody( g_JointedModel ); } FixCollisionHierarchy( g_JointedModel ); if( !g_quiet ) { printf("Collision model completed.\n" ); } g_JointedModel.ComputeMass(); }
void BuildRagdollConstraint( CPhysCollisionModel *pPhys, constraint_ragdollparams_t &ragdoll ) { memset( &ragdoll, 0, sizeof(ragdoll) ); ragdoll.parentIndex = g_JointedModel.CollisionIndex(pPhys->m_parent); ragdoll.childIndex = g_JointedModel.CollisionIndex(pPhys->m_name); if ( ragdoll.parentIndex < 0 || ragdoll.childIndex < 0 ) { MdlWarning("Constraint between bone %s and %s\n", pPhys->m_name, pPhys->m_parent ); if ( ragdoll.childIndex < 0 ) MdlWarning("\"%s\" does not appear in collision model!!!\n", pPhys->m_name ); if ( ragdoll.parentIndex < 0 ) MdlWarning("\"%s\" does not appear in collision model!!!\n", pPhys->m_parent ); MdlError("Bad constraint in ragdoll\n"); } CJointConstraint *pList = g_JointedModel.m_pConstraintList; while ( pList ) { int index = g_JointedModel.CollisionIndex(pList->m_pJointName); CPhysCollisionModel *pListModel = g_JointedModel.GetCollisionModel(pList->m_pJointName); if ( index < 0 ) { MdlError("Rotation constraint on bone \"%s\" which does not appear in collision model!!!\n", pList->m_pJointName ); } else if ( (!pListModel->m_parent || g_JointedModel.CollisionIndex(pListModel->m_parent) < 0) && stricmp( pList->m_pJointName, g_JointedModel.m_rootName ) ) { MdlError("Rotation constraint on bone \"%s\" which has no parent!!!\n", pList->m_pJointName ); } else if ( index == ragdoll.childIndex ) { switch ( pList->m_jointType ) { case JOINT_LIMIT: ragdoll.axes[pList->m_axis].SetAxisFriction( pList->m_limitMin, pList->m_limitMax, pList->m_friction ); break; case JOINT_FIXED: ragdoll.axes[pList->m_axis].SetAxisFriction( 0,0,0 ); break; case JOINT_FREE: ragdoll.axes[pList->m_axis].SetAxisFriction( -360, 360, pList->m_friction ); break; } } pList = pList->m_pNext; } }
float GetCollisionModelMass() { return g_JointedModel.m_totalMass; }
void CollisionModel_ExpandBBox( Vector &mins, Vector &maxs ) { // don't do fixup for ragdolls
if ( g_bJointed ) return;
if ( g_JointedModel.m_pCollisionList ) { Vector collideMins, collideMaxs;
physcollision->CollideGetAABB( &collideMins, &collideMaxs, g_JointedModel.m_pCollisionList->m_pCollisionData, vec3_origin, vec3_angle ); // add the 0.25 inch collision separation as well
const float radius = 0.25; collideMins -= Vector(radius,radius,radius); collideMaxs += Vector(radius,radius,radius);
AddPointToBounds( collideMins, mins, maxs ); AddPointToBounds( collideMaxs, mins, maxs ); } }
//-----------------------------------------------------------------------------
// Purpose: Write out any data that's been saved in the globals
//-----------------------------------------------------------------------------
void CollisionModel_Write( long checkSum ) { if ( g_JointedModel.m_pCollisionList ) { CPhysCollisionModel *pPhys = g_JointedModel.m_pCollisionList;
char filename[MAX_PATH];
V_strcpy_safe( filename, gamedir ); // if( *g_pPlatformName )
// {
// strcat( filename, "platform_" );
// strcat( filename, g_pPlatformName );
// strcat( filename, "/" );
// }
V_strcat_safe( filename, "models/" ); V_strcat_safe( filename, outname );
float volume = TotalVolume( pPhys ); if ( volume <= 0 ) volume = 1; if( !g_quiet ) { printf("Collision model volume %.2f in^3\n", volume ); }
Q_SetExtension( filename, ".phy", sizeof( filename ) ); CPlainAutoPtr< CP4File > spFile( g_p4factory->AccessFile( filename ) ); spFile->Edit(); FILE *fp = fopen( filename, "wb" ); if ( fp ) { // write out the collision header (size is version)
phyheader_t header; header.size = sizeof(header); header.id = 0; header.checkSum = checkSum;
header.solidCount = 0; pPhys = g_JointedModel.m_pCollisionList; while ( pPhys ) { header.solidCount++; pPhys = pPhys->m_pNext; }
fwrite( &header, sizeof(header), 1, fp );
// Write out the binary physics collision data
pPhys = g_JointedModel.m_pCollisionList; while ( pPhys ) { int size = physcollision->CollideSize( pPhys->m_pCollisionData ); fwrite( &size, sizeof(int), 1, fp ); char *buf = (char *)stackalloc( size ); physcollision->CollideWrite( buf, pPhys->m_pCollisionData ); fwrite( buf, size, 1, fp ); pPhys = pPhys->m_pNext; }
// write out the properties of each solid
int solidIndex = 0; pPhys = g_JointedModel.m_pCollisionList; while ( pPhys ) { pPhys->m_mass = ((pPhys->m_volume * pPhys->m_massBias) / volume) * g_JointedModel.m_totalMass; if ( pPhys->m_mass < 1.0 ) pPhys->m_mass = 1.0;
fprintf( fp, "solid {\n" ); KeyWriteInt( fp, "index", solidIndex ); KeyWriteString( fp, "name", pPhys->m_name ); if ( pPhys->m_parent ) { KeyWriteString( fp, "parent", pPhys->m_parent ); } KeyWriteFloat( fp, "mass", pPhys->m_mass ); //KeyWriteFloat( fp, "volume", pPhys->m_volume );
char* pSurfaceProps = GetSurfaceProp( pPhys->m_name );
KeyWriteString( fp, "surfaceprop", pSurfaceProps ); KeyWriteFloat( fp, "damping", pPhys->m_damping ); KeyWriteFloat( fp, "rotdamping", pPhys->m_rotdamping ); if ( pPhys->m_dragCoefficient != -1 ) { KeyWriteFloat( fp, "drag", pPhys->m_dragCoefficient ); } KeyWriteFloat( fp, "inertia", pPhys->m_inertia ); KeyWriteFloat( fp, "volume", pPhys->m_volume ); if ( pPhys->m_massBias != 1.0f ) { KeyWriteFloat( fp, "massbias", pPhys->m_massBias ); }
fprintf( fp, "}\n" ); pPhys = pPhys->m_pNext; solidIndex++;
}
// by default, write constraints from each limb to its parent
pPhys = g_JointedModel.m_pCollisionList; while ( pPhys ) { // check to see if bone collapse/remap has left this with parent pointing at itself
if ( pPhys->m_parent ) { constraint_ragdollparams_t ragdoll; BuildRagdollConstraint( pPhys, ragdoll ); if ( ragdoll.parentIndex != ragdoll.childIndex ) { fprintf( fp, "ragdollconstraint {\n" ); KeyWriteInt( fp, "parent", ragdoll.parentIndex ); KeyWriteInt( fp, "child", ragdoll.childIndex ); KeyWriteFloat( fp, "xmin", ragdoll.axes[0].minRotation ); KeyWriteFloat( fp, "xmax", ragdoll.axes[0].maxRotation ); KeyWriteFloat( fp, "xfriction", ragdoll.axes[0].torque ); KeyWriteFloat( fp, "ymin", ragdoll.axes[1].minRotation ); KeyWriteFloat( fp, "ymax", ragdoll.axes[1].maxRotation ); KeyWriteFloat( fp, "yfriction", ragdoll.axes[1].torque ); KeyWriteFloat( fp, "zmin", ragdoll.axes[2].minRotation ); KeyWriteFloat( fp, "zmax", ragdoll.axes[2].maxRotation ); KeyWriteFloat( fp, "zfriction", ragdoll.axes[2].torque ); fprintf( fp, "}\n" ); } } pPhys = pPhys->m_pNext;
} if ( g_JointedModel.m_noSelfCollisions ) { fprintf(fp, "collisionrules {\n" ); KeyWriteInt( fp, "selfcollisions", 0 ); fprintf(fp, "}\n"); } else if ( g_JointedModel.m_pCollisionPairs ) { fprintf(fp, "collisionrules {\n" ); collisionpair_t *pPair = g_JointedModel.m_pCollisionPairs; while ( pPair ) { pPair->obj0 = g_JointedModel.CollisionIndex( pPair->pName0 ); pPair->obj1 = g_JointedModel.CollisionIndex( pPair->pName1 ); if ( pPair->obj0 >= 0 && pPair->obj1 >= 0 && pPair->obj0 != pPair->obj1 ) { KeyWriteIntPair( fp, "collisionpair", pPair->obj0, pPair->obj1 ); } else { MdlWarning("Invalid collision pair (%s, %s)\n", pPair->pName0, pPair->pName1 ); } pPair = pPair->pNext; } fprintf(fp, "}\n"); }
if ( g_JointedModel.m_bHasAnimatedFriction == true ) { fprintf( fp, "animatedfriction {\n" ); KeyWriteFloat( fp, "animfrictionmin", g_JointedModel.m_iMinAnimatedFriction ); KeyWriteFloat( fp, "animfrictionmax", g_JointedModel.m_iMaxAnimatedFriction ); KeyWriteFloat( fp, "animfrictiontimein", g_JointedModel.m_flFrictionTimeIn ); KeyWriteFloat( fp, "animfrictiontimeout", g_JointedModel.m_flFrictionTimeOut ); KeyWriteFloat( fp, "animfrictiontimehold", g_JointedModel.m_flFrictionTimeHold ); fprintf( fp, "}\n" ); }
// block that is only parsed by the editor
fprintf( fp, "editparams {\n" ); KeyWriteString( fp, "rootname", g_JointedModel.m_rootName ); KeyWriteFloat( fp, "totalmass", g_JointedModel.m_totalMass ); if ( g_JointedModel.m_allowConcave ) { KeyWriteInt( fp, "concave", 1 ); } for ( int k = 0; k < g_JointedModel.m_mergeList.Count(); k++ ) { char buf[512]; Q_snprintf( buf, sizeof(buf), "%s,%s", g_JointedModel.m_mergeList[k].pParent, g_JointedModel.m_mergeList[k].pChild ); KeyWriteString( fp, "jointmerge", buf ); }
fprintf( fp, "}\n" );
char terminator = 0; if ( g_JointedModel.m_textCommands.Size() ) { fwrite( g_JointedModel.m_textCommands.Base(), g_JointedModel.m_textCommands.Size(), 1, fp ); } fwrite( &terminator, sizeof(terminator), 1, fp ); fclose( fp ); spFile->Add(); } else { MdlWarning("Error writing %s!!!\n", filename ); } } }
|