|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// studiomdl.c: generates a studio .mdl file from a .qc script
// models/<scriptname>.mdl.
//
// $NoKeywords: $
//
//===========================================================================//
#pragma warning( disable : 4244 )
#pragma warning( disable : 4237 )
#pragma warning( disable : 4305 )
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <math.h>
#include <float.h>
#include "cmdlib.h"
#include "scriplib.h"
#include "mathlib/mathlib.h"
#include "studio.h"
#include "studiomdl.h"
#include "bone_setup.h"
#include "tier1/strtools.h"
#include "mathlib/vmatrix.h"
#include "mdlobjects/dmeboneflexdriver.h"
class CBoneRenderBounds { public: Vector m_Mins; // In bone space.
Vector m_Maxs; };
// this is computed once so render models and their physics hulls get translated by the same amount
static Vector g_PropCenterOffset(0,0,0);
//----------------------------------------------------------------------
// underlay:
// studiomdl : delta = new_anim * ( -1 * base_anim )
// engine : result = (w * delta) * base_anim
//
// overlay
//
// studiomdl : delta = (-1 * base_anim ) * new_anim
// engine : result = base_anim * (w * delta)
//
//----------------------------------------------------------------------
void QuaternionSMAngles( float s, Quaternion const &p, Quaternion const &q, RadianEuler &angles ) { Quaternion qt; QuaternionSM( s, p, q, qt ); QuaternionAngles( qt, angles ); }
void QuaternionMAAngles( Quaternion const &p, float s, Quaternion const &q, RadianEuler &angles ) { Quaternion qt; QuaternionMA( p, s, q, qt ); QuaternionAngles( qt, angles ); }
// q = p * (-q * p)
//-----------------------------------------------------------------------------
// Purpose: subtract linear motion from root bone animations
// fixup missing frames from looping animations
// create "delta" animations
//-----------------------------------------------------------------------------
int g_rootIndex = 0;
void buildAnimationWeights( void ); void extractLinearMotion( s_animation_t *panim, int motiontype, int iStartFrame, int iEndFrame, int iSrcFrame, s_animation_t *pRefAnim, int iRefFrame /* , Vector pos, QAngle angles */ ); void fixupMissingFrame( s_animation_t *panim ); void realignLooping( s_animation_t *panim ); void extractUnusedMotion( s_animation_t *panim );
// TODO: psrc and pdest as terms are ambigious, replace with something better
void setAnimationWeight( s_animation_t *panim, int index ); void processMatch( s_animation_t *psrc, s_animation_t *pdest, int flags ); void worldspaceBlend( s_animation_t *psrc, s_animation_t *pdest, int srcframe, int flags ); void processAutoorigin( s_animation_t *psrc, s_animation_t *pdest, int flags, int srcframe, int destframe, int bone ); void subtractBaseAnimations( s_animation_t *psrc, s_animation_t *pdest, int srcframe, int flags ); void fixupLoopingDiscontinuities( s_animation_t *panim, int start, int end ); void matchBlend( s_animation_t *pDestAnim, s_animation_t *pSrcAnimation, int iSrcFrame, int iDestFrame, int iPre, int iPost ); void makeAngle( s_animation_t *panim, float angle ); void fixupIKErrors( s_animation_t *panim, s_ikrule_t *pRule ); void createDerivative( s_animation_t *panim, float scale ); void clearAnimations( s_animation_t *panim ); void counterRotateBone( s_animation_t *panim, int bone, QAngle target ); void localHierarchy( s_animation_t *panim, char *pBonename, char *pParentname, int start, int peak, int tail, int end );
void linearDelta( s_animation_t *psrc, s_animation_t *pdest, int srcframe, int flags ); void splineDelta( s_animation_t *psrc, s_animation_t *pdest, int srcframe, int flags ); void reencodeAnimation( s_animation_t *panim, int frameskip ); void forceNumframes( s_animation_t *panim, int frames );
void forceAnimationLoop( s_animation_t *panim );
void solveBone( s_animation_t *panim, int iFrame, int iBone, matrix3x4_t* pBoneToWorld );
void ClearModel (void) {
}
void processAnimations() { int i, j;
// find global root bone.
if ( strlen( rootname ) ) { g_rootIndex = findGlobalBone( rootname ); if (g_rootIndex == -1) g_rootIndex = 0; }
buildAnimationWeights( );
for (i = 0; i < g_numani; i++) { s_animation_t *panim = g_panimation[i];
extractUnusedMotion( panim ); // FIXME: this should be part of LinearMotion()
setAnimationWeight( panim, 0 );
int startframe = 0;
if (panim->fudgeloop) { fixupMissingFrame( panim ); }
for (j = 0; j < panim->numcmds; j++) { s_animcmd_t *pcmd = &panim->cmds[j];
switch( pcmd->cmd ) { case CMD_WEIGHTS: setAnimationWeight( panim, pcmd->u.weightlist.index ); break; case CMD_SUBTRACT: panim->flags |= STUDIO_DELTA; subtractBaseAnimations( pcmd->u.subtract.ref, panim, pcmd->u.subtract.frame, pcmd->u.subtract.flags ); break; case CMD_AO: { int bone = g_rootIndex; if (pcmd->u.ao.pBonename != NULL) { bone = findGlobalBone( pcmd->u.ao.pBonename ); if (bone == -1) { MdlError("unable to find bone %s to alignbone\n", pcmd->u.ao.pBonename ); } } processAutoorigin( pcmd->u.ao.ref, panim, pcmd->u.ao.motiontype, pcmd->u.ao.srcframe, pcmd->u.ao.destframe, bone ); } break; case CMD_MATCH: processMatch( pcmd->u.match.ref, panim, false ); break; case CMD_FIXUP: fixupLoopingDiscontinuities( panim, pcmd->u.fixuploop.start, pcmd->u.fixuploop.end ); break; case CMD_ANGLE: makeAngle( panim, pcmd->u.angle.angle ); break; case CMD_IKFIXUP: break; case CMD_IKRULE: // processed later
break; case CMD_MOTION: { extractLinearMotion( panim, pcmd->u.motion.motiontype, startframe, pcmd->u.motion.iEndFrame, pcmd->u.motion.iEndFrame, panim, startframe ); startframe = pcmd->u.motion.iEndFrame; } break; case CMD_REFMOTION: { extractLinearMotion( panim, pcmd->u.motion.motiontype, startframe, pcmd->u.motion.iEndFrame, pcmd->u.motion.iSrcFrame, pcmd->u.motion.pRefAnim, pcmd->u.motion.iRefFrame ); startframe = pcmd->u.motion.iEndFrame; } break; case CMD_DERIVATIVE: { createDerivative( panim, pcmd->u.derivative.scale ); } break; case CMD_NOANIMATION: { clearAnimations( panim ); } break; case CMD_LINEARDELTA: { panim->flags |= STUDIO_DELTA; linearDelta( panim, panim, panim->numframes - 1, pcmd->u.linear.flags ); } break; case CMD_COMPRESS: { reencodeAnimation( panim, pcmd->u.compress.frames ); } break; case CMD_NUMFRAMES: { forceNumframes( panim, pcmd->u.numframes.frames ); } break; case CMD_COUNTERROTATE: { int bone = findGlobalBone( pcmd->u.counterrotate.pBonename ); if (bone != -1) { QAngle target;
if (!pcmd->u.counterrotate.bHasTarget) { matrix3x4_t rootxform; matrix3x4_t defaultBoneToWorld; AngleMatrix( panim->rotation, rootxform ); ConcatTransforms( rootxform, g_bonetable[bone].boneToPose, defaultBoneToWorld );
MatrixAngles( defaultBoneToWorld, target ); } else { target.Init( pcmd->u.counterrotate.targetAngle[0], pcmd->u.counterrotate.targetAngle[1], pcmd->u.counterrotate.targetAngle[2] ); }
counterRotateBone( panim, bone, target ); } else { MdlError("unable to find bone %s to counterrotate\n", pcmd->u.counterrotate.pBonename ); } } break; case CMD_WORLDSPACEBLEND: worldspaceBlend( pcmd->u.world.ref, panim, pcmd->u.world.startframe, pcmd->u.world.loops ); break; case CMD_MATCHBLEND: matchBlend( panim, pcmd->u.match.ref, pcmd->u.match.srcframe, pcmd->u.match.destframe, pcmd->u.match.destpre, pcmd->u.match.destpost ); break; case CMD_LOCALHIERARCHY: localHierarchy( panim, pcmd->u.localhierarchy.pBonename, pcmd->u.localhierarchy.pParentname, pcmd->u.localhierarchy.start, pcmd->u.localhierarchy.peak, pcmd->u.localhierarchy.tail, pcmd->u.localhierarchy.end ); // localHierarchy( panim, char *pBonename, char *pParentname, int start, int peak, int tail, int end );
break; } }
if (panim->motiontype) { int lastframe; if (!(panim->flags & STUDIO_LOOPING) ) { // roll back 0.2 seconds to try to prevent popping
int frames = panim->fps * panim->motionrollback; lastframe = max( min( startframe + 1, panim->numframes - 1), panim->numframes - frames - 1 ); //printf("%s : %d %d (%d)\n", panim->name, startframe, lastframe, panim->numframes - 1 );
} else { lastframe = panim->numframes - 1; } extractLinearMotion( panim, panim->motiontype, startframe, lastframe, panim->numframes - 1, panim, startframe ); startframe = panim->numframes - 1; }
realignLooping( panim );
forceAnimationLoop( panim ); }
// merge weightlists
for (i = 0; i < g_sequence.Count(); i++) { int k, n; for (n = 0; n < g_numbones; n++) { g_sequence[i].weight[n] = 0.0;
for (j = 0; j < g_sequence[i].groupsize[0]; j++) { for (k = 0; k < g_sequence[i].groupsize[1]; k++) { g_sequence[i].weight[n] = max( g_sequence[i].weight[n], g_sequence[i].panim[j][k]->weight[n] ); } } } } }
/*
void lookupLinearMotion( s_animation_t *panim, int motiontype, int startframe, int endframe, Vector &p1, Vector &p2 ) { Vector p0 = panim->sanim[startframe][g_rootIndex].pos; p2 = panim->sanim[endframe][g_rootIndex].pos[0];
float fFrame = (startframe + endframe) / 2.0; int iFrame = (int)fFrame; float s = fFrame - iFrame;
p1 = panim->sanim[iFrame][g_rootIndex].pos * (1 - s) + panim->sanim[iFrame+1][g_rootIndex].pos * s; } */
// 0.375 * v1 + 0.125 * v2 - d2 = 0.5 * v1 + 0.5 * v2 - d3;
// 0.375 * v1 - 0.5 * v1 = 0.5 * v2 - d3 - 0.125 * v2 + d2;
// 0.375 * v1 - 0.5 * v1 = 0.5 * v2 - d3 - 0.125 * v2 + d2;
// -0.125 * v1 = 0.375 * v2 - d3 + d2;
// v1 = (0.375 * v2 - d3 + d2) / -0.125;
// -3 * (0.375 * v2 - d3 + d2) + 0.125 * v2 - d2 = 0
// -3 * (0.375 * v2 - d3 + d2) + 0.125 * v2 - d2 = 0
// -1 * v2 + 3 * d3 - 3 * d2 - d2 = 0
// v2 = 3 * d3 - 4 * d2
// 0.5 * v1 + 0.5 * v2 - d3
// -4 * (0.375 * v2 - d3 + d2) + 0.5 * v2 - d3 = 0
// -1.5 * v2 + 4 * d3 - 4 * d2 + 0.5 * v2 - d3 = 0
// v2 = 4 * d3 - 4 * d2 - d3
// v2 = 3 * d3 - 4 * d2
// 0.5 * v1 + 0.5 * (3 * d3 - 4 * d2) - d3 = 0
// v1 + (3 * d3 - 4 * d2) - 2 * d3 = 0
// v1 = -3 * d3 + 4 * d2 + 2 * d3
// v1 = -1 * d3 + 4 * d2
void ConvertToAnimLocal( s_animation_t *panim, Vector &pos, QAngle &angles ) { matrix3x4_t bonematrix; matrix3x4_t adjmatrix;
// convert explicit position/angle into animation relative values
AngleMatrix( angles, pos, bonematrix ); AngleMatrix( panim->rotation, panim->adjust, adjmatrix ); MatrixInvert( adjmatrix, adjmatrix ); ConcatTransforms( adjmatrix, bonematrix, bonematrix ); MatrixAngles( bonematrix, angles, pos ); // pos = pos * panim->scale;
}
//-----------------------------------------------------------------------------
// Purpose: find the linear movement/rotation between two frames, subtract that
// out of the animation and add it back on as a "piecewise movement" command
// panim - current animation
// motiontype - what to extract
// iStartFrame - first frame to apply motion over
// iEndFrame - last end frame to apply motion over
// iSrcFrame - match refFrame against what frame of the current animation
// pRefAnim - reference animtion
// iRefFrame - frame of reference animation to match
//-----------------------------------------------------------------------------
void extractLinearMotion( s_animation_t *panim, int motiontype, int iStartFrame, int iEndFrame, int iSrcFrame, s_animation_t *pRefAnim, int iRefFrame /* , Vector pos, QAngle angles */ ) { int j, k; matrix3x4_t adjmatrix;
// Can't extract motion with only 1 frame of animation!
if ( panim->numframes <= 1 ) { MdlError( "Can't extract motion from sequence %s (%s). Check your QC options!\n", panim->name, panim->filename ); }
if (panim->numpiecewisekeys >= MAXSTUDIOMOVEKEYS) { MdlError( "Too many piecewise movement keys in %s (%s)\n", panim->name, panim->filename ); }
if (iEndFrame > panim->numframes - 1) iEndFrame = panim->numframes - 1;
if (iSrcFrame > panim->numframes - 1) iSrcFrame = panim->numframes - 1;
if (iStartFrame >= iEndFrame) { MdlWarning("Motion extraction ignored, no frames remaining in %s (%s)\n", panim->name, panim->filename ); return; }
float fFrame = (iStartFrame + iSrcFrame) / 2.0; int iMidFrame = (int)fFrame; float s = fFrame - iMidFrame;
// find rotation
RadianEuler rot( 0, 0, 0 );
if (motiontype & (STUDIO_LXR | STUDIO_LYR | STUDIO_LZR)) { Quaternion q0; Quaternion q1; Quaternion q2;
AngleQuaternion( pRefAnim->sanim[iRefFrame][g_rootIndex].rot, q0 ); AngleQuaternion( panim->sanim[iMidFrame][g_rootIndex].rot, q1 ); // only used for rotation checking
AngleQuaternion( panim->sanim[iSrcFrame][g_rootIndex].rot, q2 );
Quaternion deltaQ1; QuaternionMA( q1, -1, q0, deltaQ1 ); Quaternion deltaQ2; QuaternionMA( q2, -1, q0, deltaQ2 );
// FIXME: this is still wrong, but it should be slightly more robust
RadianEuler a3; if (motiontype & STUDIO_LXR) { Quaternion q4; q4.Init( deltaQ2.x, 0, 0, deltaQ2.w ); QuaternionNormalize( q4 ); QuaternionAngles( q4, a3 ); rot.x = a3.x; } if (motiontype & STUDIO_LYR) { Quaternion q4; q4.Init( 0, deltaQ2.y, 0, deltaQ2.w ); QuaternionNormalize( q4 ); QuaternionAngles( q4, a3 ); rot.y = a3.y; } if (motiontype & STUDIO_LZR) { Quaternion q4; q4.Init( 0, 0, deltaQ2.z, deltaQ2.w ); QuaternionNormalize( q4 ); QuaternionAngles( q4, a3 );
// check for possible rotations >180 degrees by looking at the
// halfway point and seeing if it's rotating a different direction
// than the shortest path to the end point
Quaternion q5; RadianEuler a5; q5.Init( 0, 0, deltaQ1.z, deltaQ1.w ); QuaternionNormalize( q5 ); QuaternionAngles( q5, a5 ); if (a3.z > M_PI) a5.z -= 2*M_PI; if (a3.z < -M_PI) a5.z += 2*M_PI; if (a5.z > M_PI) a5.z -= 2*M_PI; if (a5.z < -M_PI) a5.z += 2*M_PI; if (a5.z > M_PI/4 && a3.z < 0) { a3.z += 2*M_PI; } if (a5.z < -M_PI/4 && a3.z > 0) { a3.z -= 2*M_PI; }
rot.z = a3.z; } }
// find movement
Vector p0; AngleMatrix(rot, adjmatrix ); VectorRotate( pRefAnim->sanim[iRefFrame][g_rootIndex].pos, adjmatrix, p0 );
Vector p2 = panim->sanim[iSrcFrame][g_rootIndex].pos; Vector p1 = panim->sanim[iMidFrame][g_rootIndex].pos * (1 - s) + panim->sanim[iMidFrame+1][g_rootIndex].pos * s;
// ConvertToAnimLocal( panim, pos, angles ); // FIXME: unused
p2 = p2 - p0; p1 = p1 - p0;
if (!(motiontype & STUDIO_LX)) { p2.x = 0; p1.x = 0; }; if (!(motiontype & STUDIO_LY)) { p2.y = 0; p1.y = 0; }; if (!(motiontype & STUDIO_LZ)) { p2.z = 0; p1.z = 0; }; // printf("%s %.1f %.1f %.1f\n", g_bonetable[g_rootIndex].name, p2.x, p2.y, p2.z );
float d1 = p1.Length(); float d2 = p2.Length();
float v0 = -1 * d2 + 4 * d1; float v1 = 3 * d2 - 4 * d1;
if ( g_verbose ) { printf("%s : %d - %d : %.1f %.1f %.1f\n", panim->name, iStartFrame, iEndFrame, p2.x, p2.y, RAD2DEG( rot[2] ) ); }
int numframes = iEndFrame - iStartFrame + 1; if (numframes < 1) return;
float n = numframes - 1;
//printf("%f %f : ", v0, v1 );
if (motiontype & STUDIO_LINEAR) { v0 = v1 = p2.Length(); } else if (v0 < 0.0f) { v0 = 0.0; v1 = p2.Length() * 2.0; } else if (v1 < 0.0) { v0 = p2.Length() * 2.0; v1 = 0.0; } else if ((v0+v1) > 0.01 && (fabs(v0-v1) / (v0+v1)) < 0.2) { // if they're within 10% of each other, assum no acceleration
v0 = v1 = p2.Length(); }
//printf("%f %f\n", v0, v1 );
Vector v = p2; VectorNormalize( v );
Vector A, B, C; if (motiontype & STUDIO_QUADRATIC_MOTION) { SolveInverseQuadratic( 0, 0, 0.5, p1.x, 1.0, p2.x, A.x, B.x, C.x ); SolveInverseQuadratic( 0, 0, 0.5, p1.y, 1.0, p2.y, A.y, B.y, C.y ); SolveInverseQuadratic( 0, 0, 0.5, p1.z, 1.0, p2.z, A.z, B.z, C.z ); }
Vector adjpos; RadianEuler adjangle; matrix3x4_t bonematrix; for (j = 0; j < numframes; j++) { float t = (j / n);
if (motiontype & STUDIO_QUADRATIC_MOTION) { adjpos.x = t * t * A.x + t * B.x + C.x; adjpos.y = t * t * A.y + t * B.y + C.y; adjpos.z = t * t * A.z + t * B.z + C.z; } else { VectorScale( v, v0 * t + 0.5 * (v1 - v0) * t * t, adjpos ); }
VectorScale( rot, t, adjangle );
AngleMatrix( adjangle, adjpos, adjmatrix ); MatrixInvert( adjmatrix, adjmatrix );
for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].parent == -1) { // printf(" %.1f %.1f %.1f : ", adjpos[0], adjpos[1], RAD2DEG( adjangle[2] ));
// printf(" %.1f %.1f %.1f\n", adjpos[0], adjpos[1], adjpos[2] );
AngleMatrix( panim->sanim[j+iStartFrame][k].rot, panim->sanim[j+iStartFrame][k].pos, bonematrix ); ConcatTransforms( adjmatrix, bonematrix, bonematrix );
MatrixAngles( bonematrix, panim->sanim[j+iStartFrame][k].rot, panim->sanim[j+iStartFrame][k].pos ); // printf("%d : %.1f %.1f %.1f\n", j, panim->sanim[j+iStartFrame][k].pos.x, panim->sanim[j+iStartFrame][k].pos.y, RAD2DEG( panim->sanim[j+iStartFrame][k].rot.z ) );
} } }
for (; j+iStartFrame < panim->numframes; j++) { for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].parent == -1) { AngleMatrix( panim->sanim[j+iStartFrame][k].rot, panim->sanim[j+iStartFrame][k].pos, bonematrix ); ConcatTransforms( adjmatrix, bonematrix, bonematrix ); MatrixAngles( bonematrix, panim->sanim[j+iStartFrame][k].rot, panim->sanim[j+iStartFrame][k].pos ); } } }
// create piecewise motion paths
s_linearmove_t *pmove = &panim->piecewisemove[panim->numpiecewisekeys++];
pmove->endframe = iEndFrame;
pmove->flags = motiontype;
// concatinate xforms
if (panim->numpiecewisekeys > 1) { AngleMatrix( adjangle, adjpos, bonematrix ); AngleMatrix( pmove[-1].rot, pmove[-1].pos, adjmatrix ); ConcatTransforms( adjmatrix, bonematrix, bonematrix ); MatrixAngles( bonematrix, pmove[0].rot, pmove[0].pos ); pmove->vector = pmove[0].pos - pmove[-1].pos; } else { VectorCopy( adjpos, pmove[0].pos ); VectorCopy( adjangle, pmove[0].rot ); pmove->vector = pmove[0].pos; } VectorNormalize( pmove->vector );
// printf("%d : %.1f %.1f %.1f\n", iEndFrame, pmove[0].pos.x, pmove[0].pos.y, RAD2DEG( pmove[0].rot.z ) );
pmove->v0 = v0; pmove->v1 = v1; }
//-----------------------------------------------------------------------------
// Purpose: process the "piecewise movement" commands and return where the animation
// would move to on a given frame (assuming frame 0 is at the origin)
//-----------------------------------------------------------------------------
Vector calcPosition( s_animation_t *panim, int iFrame ) { Vector vecPos; vecPos.Init();
if (panim->numpiecewisekeys == 0) return vecPos;
if (panim->numframes == 1) return vecPos;
int iLoops = 0; while (iFrame >= (panim->numframes - 1)) { iLoops++; iFrame = iFrame - (panim->numframes - 1); }
float prevframe = 0.0f;
for (int i = 0; i < panim->numpiecewisekeys; i++) { s_linearmove_t *pmove = &panim->piecewisemove[i];
if (pmove->endframe >= iFrame) { float f = (iFrame - prevframe) / (pmove->endframe - prevframe);
float d = pmove->v0 * f + 0.5 * (pmove->v1 - pmove->v0) * f * f;
vecPos = vecPos + d * pmove->vector; if (iLoops != 0) { s_linearmove_t *pmove = &panim->piecewisemove[panim->numpiecewisekeys - 1]; vecPos = vecPos + iLoops * pmove->pos; } return vecPos; } else { prevframe = pmove->endframe; vecPos = pmove->pos; } } return vecPos; }
//-----------------------------------------------------------------------------
// Purpose: calculate how far an animation travels between two frames
//-----------------------------------------------------------------------------
Vector calcMovement( s_animation_t *panim, int iFrom, int iTo ) { Vector p1 = calcPosition( panim, iFrom ); Vector p2 = calcPosition( panim, iTo );
return p2 - p1; }
#if 0
// FIXME: add in correct motion!!!
int iFrame = pRule->peak - pRule->start - k; if (pRule->start + k > panim->numframes - 1) { iFrame = iFrame + 1; } Vector pos = footfall; if (panim->numframes > 1) pos = pos + panim->piecewisemove[0].pos * (iFrame) / (panim->numframes - 1.0f); #endif
//-----------------------------------------------------------------------------
// Purpose: try to calculate a "missing" frame of animation, i.e the overlapping frame
//-----------------------------------------------------------------------------
void fixupMissingFrame( s_animation_t *panim ) { // the animations DIDN'T have the end frame the same as the start frame, so fudge it
int size = g_numbones * sizeof( s_bone_t ); int j = panim->numframes;
float scale = 1 / (j - 1.0f);
panim->sanim[j] = (s_bone_t *)kalloc( 1, size );
Vector deltapos;
for (int k = 0; k < g_numbones; k++) { VectorSubtract( panim->sanim[j-1][k].pos, panim->sanim[0][k].pos, deltapos ); VectorMA( panim->sanim[j-1][k].pos, scale, deltapos, panim->sanim[j][k].pos ); VectorCopy( panim->sanim[0][k].rot, panim->sanim[j][k].rot ); }
panim->numframes = j + 1; }
//-----------------------------------------------------------------------------
// Purpose: shift the frames of the animation so that it starts on the desired frame
//-----------------------------------------------------------------------------
void realignLooping( s_animation_t *panim ) { int j, k;
// realign looping animations
if (panim->numframes > 1 && panim->looprestart) { if (panim->looprestart >= panim->numframes) { MdlError( "loopstart (%d) out of range for animation %s (%d)", panim->looprestart, panim->name, panim->numframes ); }
for (k = 0; k < g_numbones; k++) { int n;
Vector shiftpos[MAXSTUDIOANIMFRAMES]; RadianEuler shiftrot[MAXSTUDIOANIMFRAMES];
// printf("%f %f %f\n", motion[0], motion[1], motion[2] );
for (j = 0; j < panim->numframes - 1; j++) { n = (j + panim->looprestart) % (panim->numframes - 1); VectorCopy( panim->sanim[n][k].pos, shiftpos[j] ); VectorCopy( panim->sanim[n][k].rot, shiftrot[j] ); }
n = panim->looprestart; j = panim->numframes - 1; VectorCopy( panim->sanim[n][k].pos, shiftpos[j] ); VectorCopy( panim->sanim[n][k].rot, shiftrot[j] );
for (j = 0; j < panim->numframes; j++) { VectorCopy( shiftpos[j], panim->sanim[j][k].pos ); VectorCopy( shiftrot[j], panim->sanim[j][k].rot ); } } } }
void extractUnusedMotion( s_animation_t *panim ) { int j, k;
int type = panim->motiontype;
for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].parent == -1) { float motion[6]; motion[0] = panim->sanim[0][k].pos[0]; motion[1] = panim->sanim[0][k].pos[1]; motion[2] = panim->sanim[0][k].pos[2]; motion[3] = panim->sanim[0][k].rot[0]; motion[4] = panim->sanim[0][k].rot[1]; motion[5] = panim->sanim[0][k].rot[2];
for (j = 0; j < panim->numframes; j++) { if (type & STUDIO_X) panim->sanim[j][k].pos[0] = motion[0]; if (type & STUDIO_Y) panim->sanim[j][k].pos[1] = motion[1]; if (type & STUDIO_Z) panim->sanim[j][k].pos[2] = motion[2]; if (type & STUDIO_XR) panim->sanim[j][k].rot[0] = motion[3]; if (type & STUDIO_YR) panim->sanim[j][k].rot[1] = motion[4]; if (type & STUDIO_ZR) panim->sanim[j][k].rot[2] = motion[5]; } } } }
//-----------------------------------------------------------------------------
// Purpose: find the difference between the src and dest animations, then add that
// difference to all the frames of the dest animation.
//-----------------------------------------------------------------------------
void processMatch( s_animation_t *psrc, s_animation_t *pdest, int flags ) { int j, k;
// process "match"
Vector delta_pos[MAXSTUDIOSRCBONES]; Quaternion delta_q[MAXSTUDIOSRCBONES];
for (k = 0; k < g_numbones; k++) { if (flags) VectorSubtract( psrc->sanim[0][k].pos, pdest->sanim[0][k].pos, delta_pos[k] ); QuaternionSM( -1, pdest->sanim[0][k].rot, psrc->sanim[0][k].rot, delta_q[k] ); }
// printf("%.2f %.2f %.2f\n", adj.x, adj.y, adj.z );
for (j = 0; j < pdest->numframes; j++) { for (k = 0; k < g_numbones; k++) { if (pdest->weight[k] > 0) { if (flags) VectorAdd( pdest->sanim[j][k].pos, delta_pos[k], pdest->sanim[j][k].pos ); QuaternionMAAngles( pdest->sanim[j][k].rot, 1.0, delta_q[k], pdest->sanim[j][k].rot ); } } } }
//-----------------------------------------------------------------------------
// Purpose: blend the psrc animation overtop the pdest animation, but blend the
// quaternions in world space instead of parent bone space.
// Also, blend bone lengths, but only for non root animations.
//-----------------------------------------------------------------------------
void worldspaceBlend( s_animation_t *psrc, s_animation_t *pdest, int srcframe, int flags ) { int j, k, n;
// process "match"
Quaternion srcQ[MAXSTUDIOSRCBONES]; Vector srcPos[MAXSTUDIOSRCBONES]; Vector tmp;
matrix3x4_t srcBoneToWorld[MAXSTUDIOBONES]; matrix3x4_t destBoneToWorld[MAXSTUDIOBONES];
if (!flags) { CalcBoneTransforms( psrc, srcframe, srcBoneToWorld ); for (k = 0; k < g_numbones; k++) { MatrixAngles( srcBoneToWorld[k], srcQ[k], tmp ); srcPos[k] = psrc->sanim[srcframe][k].pos; } }
Quaternion targetQ, destQ;
// printf("%.2f %.2f %.2f\n", adj.x, adj.y, adj.z );
for (j = 0; j < pdest->numframes; j++) { if (flags) { // pull from a looping source
float flCycle = (float)j / (pdest->numframes - 1); flCycle += (float)srcframe / (psrc->numframes - 1); CalcBoneTransformsCycle( psrc, psrc, flCycle, srcBoneToWorld ); for (k = 0; k < g_numbones; k++) { MatrixAngles( srcBoneToWorld[k], srcQ[k], tmp );
n = g_bonetable[k].parent; if (n == -1) { MatrixPosition( srcBoneToWorld[k], srcPos[k] ); } else { matrix3x4_t worldToBone; MatrixInvert( srcBoneToWorld[n], worldToBone );
matrix3x4_t local; ConcatTransforms( worldToBone, srcBoneToWorld[k], local ); MatrixPosition( local, srcPos[k] ); } } }
CalcBoneTransforms( pdest, j, destBoneToWorld );
for (k = 0; k < g_numbones; k++) { if (pdest->weight[k] > 0) { // blend the boneToWorld transforms in world space
MatrixAngles( destBoneToWorld[k], destQ, tmp ); QuaternionSlerp( destQ, srcQ[k], pdest->weight[k], targetQ );
AngleMatrix( targetQ, tmp, destBoneToWorld[k] ); }
// back solve
n = g_bonetable[k].parent; if (n == -1) { MatrixAngles( destBoneToWorld[k], pdest->sanim[j][k].rot, tmp );
// FIXME: it's not clear if this should blend position or not....it'd be
// better if weight lists could do quat and pos independently.
} else { matrix3x4_t worldToBone; MatrixInvert( destBoneToWorld[n], worldToBone );
matrix3x4_t local; ConcatTransforms( worldToBone, destBoneToWorld[k], local ); MatrixAngles( local, pdest->sanim[j][k].rot, tmp );
// blend bone lengths (local space)
pdest->sanim[j][k].pos = Lerp( pdest->posweight[k], pdest->sanim[j][k].pos, srcPos[k] ); } } } }
//-----------------------------------------------------------------------------
// Purpose: match one animations position/orientation to another animations position/orientation
//-----------------------------------------------------------------------------
void processAutoorigin( s_animation_t *psrc, s_animation_t *pdest, int motiontype, int srcframe, int destframe, int bone ) { int j, k; matrix3x4_t adjmatrix;
matrix3x4_t srcBoneToWorld[MAXSTUDIOBONES]; matrix3x4_t destBoneToWorld[MAXSTUDIOBONES];
CalcBoneTransforms( psrc, srcframe, srcBoneToWorld ); CalcBoneTransforms( pdest, destframe, destBoneToWorld );
// find rotation
RadianEuler rot( 0, 0, 0 );
Quaternion q0; Quaternion q2; Vector srcPos; Vector destPos;
MatrixAngles( srcBoneToWorld[bone], q0, srcPos ); MatrixAngles( destBoneToWorld[bone], q2, destPos );
if (motiontype & (STUDIO_LXR | STUDIO_LYR | STUDIO_LZR | STUDIO_XR | STUDIO_YR | STUDIO_ZR)) { Quaternion deltaQ2; QuaternionMA( q2, -1, q0, deltaQ2 );
RadianEuler a3; if (motiontype & (STUDIO_LXR | STUDIO_XR)) { Quaternion q4; q4.Init( deltaQ2.x, 0, 0, deltaQ2.w ); QuaternionNormalize( q4 ); QuaternionAngles( q4, a3 ); rot.x = a3.x; } if (motiontype & (STUDIO_LYR | STUDIO_YR)) { Quaternion q4; q4.Init( 0, deltaQ2.y, 0, deltaQ2.w ); QuaternionNormalize( q4 ); QuaternionAngles( q4, a3 ); rot.y = a3.y; } if (motiontype & (STUDIO_LZR | STUDIO_ZR)) { Quaternion q4; q4.Init( 0, 0, deltaQ2.z, deltaQ2.w ); QuaternionNormalize( q4 ); QuaternionAngles( q4, a3 ); rot.z = a3.z; } if ((motiontype & STUDIO_XR) && (motiontype & STUDIO_YR) && (motiontype & STUDIO_ZR)) { QuaternionAngles( deltaQ2, rot ); } }
// find movement
Vector p0 = srcPos; Vector p2; AngleMatrix(rot, adjmatrix ); MatrixInvert( adjmatrix, adjmatrix ); VectorRotate( destPos, adjmatrix, p2 );
Vector adj = p0 - p2;
if (!(motiontype & (STUDIO_X | STUDIO_LX))) adj.x = 0; if (!(motiontype & (STUDIO_Y | STUDIO_LY))) adj.y = 0; if (!(motiontype & (STUDIO_Z | STUDIO_LZ))) adj.z = 0;
PositionMatrix( adj, adjmatrix );
if (g_verbose && bone != g_rootIndex) { printf("%s aligning to %s - %.2f %.2f %.2f\n", pdest->name, g_bonetable[bone].name, adj.x, adj.y, adj.z ); }
for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].parent == -1) { for (j = 0; j < pdest->numframes; j++) { matrix3x4_t bonematrix; AngleMatrix( pdest->sanim[j][k].rot, pdest->sanim[j][k].pos, bonematrix ); ConcatTransforms( adjmatrix, bonematrix, bonematrix ); MatrixAngles( bonematrix, pdest->sanim[j][k].rot, pdest->sanim[j][k].pos ); } } } }
//-----------------------------------------------------------------------------
// Purpose: subtract one animaiton from animation to create an animation of the "difference"
//-----------------------------------------------------------------------------
void subtractBaseAnimations( s_animation_t *psrc, s_animation_t *pdest, int srcframe, int flags ) { int j, k;
// create delta animations
s_bone_t src[MAXSTUDIOSRCBONES];
if (srcframe >= psrc->numframes) { MdlError( "subtract frame %d out of range for %s\n", srcframe, psrc->name ); }
for (k = 0; k < g_numbones; k++) { VectorCopy( psrc->sanim[srcframe][k].pos, src[k].pos ); VectorCopy( psrc->sanim[srcframe][k].rot, src[k].rot ); }
for (k = 0; k < g_numbones; k++) { for (j = 0; j < pdest->numframes; j++) { if (pdest->weight[k] > 0) { /*
printf("%2d : %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n", k, src[k].pos[0], src[k].pos[1], src[k].pos[2], src[k].rot[0], src[k].rot[1], src[k].rot[2] );
printf(" %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n", RAD2DEG(pdest->sanim[j][k].pos[0]), RAD2DEG(pdest->sanim[j][k].pos[1]), RAD2DEG(pdest->sanim[j][k].pos[2]), RAD2DEG(pdest->sanim[j][k].rot[0]), RAD2DEG(pdest->sanim[j][k].rot[1]), RAD2DEG(pdest->sanim[j][k].rot[2]) ); */
// calc differences between two rotations
if (flags & STUDIO_POST) { // find pdest in src's reference frame
QuaternionSMAngles( -1, src[k].rot, pdest->sanim[j][k].rot, pdest->sanim[j][k].rot ); VectorSubtract( pdest->sanim[j][k].pos, src[k].pos, pdest->sanim[j][k].pos ); } else { // find src in pdest's reference frame?
QuaternionMAAngles( pdest->sanim[j][k].rot, -1, src[k].rot, pdest->sanim[j][k].rot ); VectorSubtract( src[k].pos, pdest->sanim[j][k].pos, pdest->sanim[j][k].pos ); }
/*
printf(" %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n", pdest->sanim[j][k].pos[0], pdest->sanim[j][k].pos[1], pdest->sanim[j][k].pos[2], RAD2DEG(pdest->sanim[j][k].rot[0]), RAD2DEG(pdest->sanim[j][k].rot[1]), RAD2DEG(pdest->sanim[j][k].rot[2]) ); */ } } }
#if 0
// cleanup weightlists
for (k = 0; k < g_numbones; k++) { panim->weight[k] = 0.0; }
for (k = 0; k < g_numbones; k++) { if (g_weightlist[panim->weightlist].weight[k] > 0.0) { for (j = 0; j < panim->numframes; j++) { if (fabs(panim->sanim[j][k].pos[0]) > 0.001 || fabs(panim->sanim[j][k].pos[1]) > 0.001 || fabs(panim->sanim[j][k].pos[2]) > 0.001 || fabs(panim->sanim[j][k].rot[0]) > 0.001 || fabs(panim->sanim[j][k].rot[1]) > 0.001 || fabs(panim->sanim[j][k].rot[2]) > 0.001) { panim->weight[k] = g_weightlist[panim->weightlist].weight[k]; break; } } } } #endif
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void QuaternionSlerp( const RadianEuler &r0, const RadianEuler &r1, float t, RadianEuler &r2 ) { Quaternion q0, q1, q2; AngleQuaternion( r0, q0 ); AngleQuaternion( r1, q1 ); QuaternionSlerp( q0, q1, t, q2 ); QuaternionAngles( q2, r2 ); }
//-----------------------------------------------------------------------------
// Purpose: subtract each frame running interpolation of the first frame to the last frame
//-----------------------------------------------------------------------------
void linearDelta( s_animation_t *psrc, s_animation_t *pdest, int srcframe, int flags ) { int j, k;
// create delta animations
s_bone_t src0[MAXSTUDIOSRCBONES]; s_bone_t src1[MAXSTUDIOSRCBONES];
for (k = 0; k < g_numbones; k++) { VectorCopy( psrc->sanim[0][k].pos, src0[k].pos ); VectorCopy( psrc->sanim[0][k].rot, src0[k].rot ); VectorCopy( psrc->sanim[srcframe][k].pos, src1[k].pos ); VectorCopy( psrc->sanim[srcframe][k].rot, src1[k].rot ); }
if (pdest->numframes == 1) { MdlWarning( "%s too short for splinedelta\n", pdest->name ); }
for (k = 0; k < g_numbones; k++) { for (j = 0; j < pdest->numframes; j++) { float s = 1; if (pdest->numframes > 1) { s = (float)j / (pdest->numframes - 1); }
// make it a spline curve
if (flags & STUDIO_AL_SPLINE) { s = 3 * s * s - 2 * s * s * s; }
if (pdest->weight[k] > 0) { /*
printf("%2d : %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n", k, src[k].pos[0], src[k].pos[1], src[k].pos[2], src[k].rot[0], src[k].rot[1], src[k].rot[2] );
printf(" %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n", RAD2DEG(pdest->sanim[j][k].pos[0]), RAD2DEG(pdest->sanim[j][k].pos[1]), RAD2DEG(pdest->sanim[j][k].pos[2]), RAD2DEG(pdest->sanim[j][k].rot[0]), RAD2DEG(pdest->sanim[j][k].rot[1]), RAD2DEG(pdest->sanim[j][k].rot[2]) ); */
s_bone_t src;
src.pos = src0[k].pos * (1 - s) + src1[k].pos * s; QuaternionSlerp( src0[k].rot, src1[k].rot, s, src.rot );
// calc differences between two rotations
if (flags & STUDIO_AL_POST) { // find pdest in src's reference frame
QuaternionSMAngles( -1, src.rot, pdest->sanim[j][k].rot, pdest->sanim[j][k].rot ); VectorSubtract( pdest->sanim[j][k].pos, src.pos, pdest->sanim[j][k].pos ); } else { // find src in pdest's reference frame?
QuaternionMAAngles( pdest->sanim[j][k].rot, -1, src.rot, pdest->sanim[j][k].rot ); VectorSubtract( src.pos, pdest->sanim[j][k].pos, pdest->sanim[j][k].pos ); }
/*
printf(" %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n", pdest->sanim[j][k].pos[0], pdest->sanim[j][k].pos[1], pdest->sanim[j][k].pos[2], RAD2DEG(pdest->sanim[j][k].rot[0]), RAD2DEG(pdest->sanim[j][k].rot[1]), RAD2DEG(pdest->sanim[j][k].rot[2]) ); */ } } } }
//-----------------------------------------------------------------------------
// Purpose: turn the animation into a lower fps encoded version
//-----------------------------------------------------------------------------
void reencodeAnimation( s_animation_t *panim, int frameskip ) { int j, k, n;
n = 1; for (j = frameskip; j < panim->numframes; j += frameskip) { for (k = 0; k < g_numbones; k++) { panim->sanim[n][k] = panim->sanim[j][k]; } n++; } panim->numframes = n;
panim->fps = panim->fps / frameskip; }
//-----------------------------------------------------------------------------
// Purpose: clip or pad the animation as nessesary to be a specified number of frames
//-----------------------------------------------------------------------------
void forceNumframes( s_animation_t *panim, int numframes ) { int j;
int size = g_numbones * sizeof( s_bone_t );
// copy
for (j = panim->numframes; j < numframes; j++) { panim->sanim[j] = (s_bone_t *)kalloc( 1, size ); memcpy( panim->sanim[j], panim->sanim[panim->numframes-1], size ); }
panim->numframes = numframes; }
//-----------------------------------------------------------------------------
// Purpose: subtract each frame from the previous to calculate the animations derivative
//-----------------------------------------------------------------------------
void createDerivative( s_animation_t *panim, float scale ) { int j, k;
s_bone_t orig[MAXSTUDIOSRCBONES];
j = panim->numframes - 1; if (panim->flags & STUDIO_LOOPING) { j--; }
for (k = 0; k < g_numbones; k++) { VectorCopy( panim->sanim[j][k].pos, orig[k].pos ); VectorCopy( panim->sanim[j][k].rot, orig[k].rot ); }
for (j = panim->numframes - 1; j >= 0; j--) { s_bone_t *psrc; s_bone_t *pdest;
if (j - 1 >= 0) { psrc = panim->sanim[j-1]; } else { psrc = orig; } pdest = panim->sanim[j];
for (k = 0; k < g_numbones; k++) { if (panim->weight[k] > 0) { /*
{ printf("%2d : %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n", k, psrc[k].pos[0], psrc[k].pos[1], psrc[k].pos[2], RAD2DEG(psrc[k].rot[0]), RAD2DEG(psrc[k].rot[1]), RAD2DEG(psrc[k].rot[2]) );
printf(" %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n", pdest[k].pos[0], pdest[k].pos[1], pdest[k].pos[2], RAD2DEG(pdest[k].rot[0]), RAD2DEG(pdest[k].rot[1]), RAD2DEG(pdest[k].rot[2]) ); } */
// find pdest in src's reference frame
QuaternionSMAngles( -1, psrc[k].rot, pdest[k].rot, pdest[k].rot ); VectorSubtract( pdest[k].pos, psrc[k].pos, pdest[k].pos );
// rescale results (not sure what basis physics system is expecting)
{ // QuaternionScale( pdest[k].rot, scale, pdest[k].rot );
Quaternion q; AngleQuaternion( pdest[k].rot, q ); QuaternionScale( q, scale, q ); QuaternionAngles( q, pdest[k].rot ); VectorScale( pdest[k].pos, scale, pdest[k].pos ); }
/*
{ printf(" %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n", pdest[k].pos[0], pdest[k].pos[1], pdest[k].pos[2], RAD2DEG(pdest[k].rot[0]), RAD2DEG(pdest[k].rot[1]), RAD2DEG(pdest[k].rot[2]) ); } */ } } } }
//-----------------------------------------------------------------------------
// Purpose: subtract each frame from the previous to calculate the animations derivative
//-----------------------------------------------------------------------------
void clearAnimations( s_animation_t *panim ) { panim->flags |= STUDIO_DELTA; panim->flags |= STUDIO_ALLZEROS; panim->numframes = 1; panim->startframe = 0; panim->endframe = 1; int k;
for (k = 0; k < g_numbones; k++) { panim->sanim[0][k].pos = Vector( 0, 0, 0 ); panim->sanim[0][k].rot = RadianEuler( 0, 0, 0 ); panim->weight[k] = 0.0; panim->posweight[k] = 0.0; } }
//-----------------------------------------------------------------------------
// Purpose: remove all world rotation from a bone
//-----------------------------------------------------------------------------
void counterRotateBone( s_animation_t *panim, int iBone, QAngle target ) { matrix3x4_t boneToWorld[MAXSTUDIOBONES]; Vector pos; matrix3x4_t defaultBoneToWorld;
int j;
AngleMatrix( target, defaultBoneToWorld );
for (j = 0; j < panim->numframes; j++) { CalcBoneTransforms( panim, j, boneToWorld );
MatrixPosition( boneToWorld[iBone], pos ); PositionMatrix( pos, defaultBoneToWorld ); boneToWorld[iBone] = defaultBoneToWorld;
solveBone( panim, j, iBone, boneToWorld ); } }
//-----------------------------------------------------------------------------
// Purpose: build transforms in source space, assuming source bones
//-----------------------------------------------------------------------------
void BuildRawTransforms( const s_source_t *psource, const char *pAnimationName, int frame, float scale, Vector const &shift, RadianEuler const &rotate, int flags, matrix3x4_t* boneToWorld ) { int k; Vector tmp; Vector pos; RadianEuler rot; matrix3x4_t bonematrix; matrix3x4_t rootxform;
AngleMatrix( rotate, rootxform );
const s_sourceanim_t *pSourceAnim = FindSourceAnim( psource, pAnimationName ); if ( !pSourceAnim ) { MdlError( "Unknown animation name %s\n", pAnimationName ); return; }
if ( flags & STUDIO_LOOPING ) { if ( frame ) { while ( frame < 0) frame += pSourceAnim->numframes; frame = frame % pSourceAnim->numframes; } } else { frame = clamp( frame, 0, pSourceAnim->numframes - 1 ); }
// build source space local to world transforms
for (k = 0; k < psource->numbones; k++) { VectorScale( pSourceAnim->rawanim.Element(frame)[k].pos, scale, pos ); VectorCopy( pSourceAnim->rawanim.Element(frame)[k].rot, rot );
if ( psource->localBone[k].parent == -1 ) { // translate
VectorSubtract( pos, shift, tmp );
// rotate
VectorRotate( tmp, rootxform, pos );
matrix3x4_t m; AngleMatrix( rot, m ); ConcatTransforms( rootxform, m, bonematrix ); MatrixAngles( bonematrix, rot ); clip_rotations( rot ); }
AngleMatrix( rot, pos, bonematrix );
if ( psource->localBone[k].parent == -1 ) { MatrixCopy( bonematrix, boneToWorld[k] ); } else { ConcatTransforms( boneToWorld[psource->localBone[k].parent], bonematrix, boneToWorld[k] ); // ConcatTransforms( worldToBone[psource->localBone[k].parent], boneToWorld[k], bonematrix );
// B * C => A
// C <= B-1 * A
} } }
void BuildRawTransforms( const s_source_t *psource, const char *pAnimationName, int frame, matrix3x4_t* boneToWorld ) { BuildRawTransforms( psource, pAnimationName, frame, 1.0f, Vector( 0, 0, 0 ), RadianEuler( 0, 0, 0 ), 0, boneToWorld ); }
//-----------------------------------------------------------------------------
// Purpose: convert source bone animation into global bone animation
//-----------------------------------------------------------------------------
void TranslateAnimations( const s_source_t *pSource, const matrix3x4_t *pSrcBoneToWorld, matrix3x4_t *pDestBoneToWorld ) { matrix3x4_t bonematrix;
for (int k = 0; k < g_numbones; k++) { int q = pSource->boneGlobalToLocal[k]; if ( q == -1 ) { // unknown bone, copy over defaults
if ( g_bonetable[k].parent >= 0 ) { AngleMatrix( g_bonetable[k].rot, g_bonetable[k].pos, bonematrix ); ConcatTransforms( pDestBoneToWorld[g_bonetable[k].parent], bonematrix, pDestBoneToWorld[k] ); } else { AngleMatrix( g_bonetable[k].rot, g_bonetable[k].pos, pDestBoneToWorld[k] ); } } else { ConcatTransforms( pSrcBoneToWorld[q], g_bonetable[k].srcRealign, pDestBoneToWorld[k] ); } } }
//-----------------------------------------------------------------------------
// Purpose: convert source bone animation into global bone animation
//-----------------------------------------------------------------------------
void ConvertAnimation( const s_source_t *psource, const char *pAnimationName, int frame, float scale, Vector const &shift, RadianEuler const &rotate, s_bone_t *dest ) { int k; matrix3x4_t srcBoneToWorld[MAXSTUDIOSRCBONES]; //matrix3x4_t srcWorldToBone[MAXSTUDIOSRCBONES];
matrix3x4_t destBoneToWorld[MAXSTUDIOSRCBONES]; matrix3x4_t destWorldToBone[MAXSTUDIOSRCBONES];
matrix3x4_t bonematrix;
BuildRawTransforms( psource, pAnimationName, frame, scale, shift, rotate, 0, srcBoneToWorld );
/*
for (k = 0; k < psource->numbones; k++) { MatrixInvert( srcBoneToWorld[k], srcWorldToBone[k] ); } */
TranslateAnimations( psource, srcBoneToWorld, destBoneToWorld );
for (k = 0; k < g_numbones; k++) { MatrixInvert( destBoneToWorld[k], destWorldToBone[k] ); }
// convert source_space_local_to_world transforms to shared_space_local_to_world transforms
for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].parent == -1) { MatrixCopy( destBoneToWorld[k], bonematrix ); } else { // convert my transform into parent relative space
ConcatTransforms( destWorldToBone[g_bonetable[k].parent], destBoneToWorld[k], bonematrix );
// printf("%s : %s\n", psource->localBone[q2].name, psource->localBone[q].name );
// B * C => A
// C <= B-1 * A
}
MatrixAngles( bonematrix, dest[k].rot, dest[k].pos ); clip_rotations( dest[k].rot ); } }
//-----------------------------------------------------------------------------
// Purpose: copy the raw animation data from the source files into the individual animations
//-----------------------------------------------------------------------------
void RemapAnimations(void) { int i, j;
// copy source animations
for (i = 0; i < g_numani; i++) { s_animation_t *panim = g_panimation[i];
s_source_t *psource = panim->source; s_sourceanim_t *pSourceAnim = FindSourceAnim( psource, panim->animationname ); int size = g_numbones * sizeof( s_bone_t );
int n = panim->startframe - pSourceAnim->startframe; // printf("%s %d:%d\n", g_panimation[i]->filename, g_panimation[i]->startframe, pSourceAnim->startframe );
for (j = 0; j < panim->numframes; j++) { panim->sanim[j] = (s_bone_t *)kalloc( 1, size );
ConvertAnimation( psource, panim->animationname, n + j, panim->scale, panim->adjust, panim->rotation, panim->sanim[j] ); } } }
void buildAnimationWeights() { int i, j, k;
// rlink animation weights
for (i = 0; i < g_numweightlist; i++) { if (i == 0) { // initialize weights
for (j = 0; j < g_numbones; j++) { if (g_bonetable[j].parent != -1) { // set child bones to uninitialized
g_weightlist[i].weight[j] = -1; } else if (i == 0) { // set root bones to 1
g_weightlist[i].weight[j] = 1; g_weightlist[i].posweight[j] = 1; } } } else { // initialize weights
for (j = 0; j < g_numbones; j++) { if (g_bonetable[j].parent != -1) { // set child bones to uninitialized
g_weightlist[i].weight[j] = g_weightlist[0].weight[j]; g_weightlist[i].posweight[j] = g_weightlist[0].posweight[j]; } else { // set root bones to 0
g_weightlist[i].weight[j] = 0; g_weightlist[i].posweight[j] = 0; } } }
// match up weights
for (j = 0; j < g_weightlist[i].numbones; j++) { k = findGlobalBone( g_weightlist[i].bonename[j] ); if (k == -1) { MdlError("unknown bone reference '%s' in weightlist '%s'\n", g_weightlist[i].bonename[j], g_weightlist[i].name ); } g_weightlist[i].weight[k] = g_weightlist[i].boneweight[j]; g_weightlist[i].posweight[k] = g_weightlist[i].boneposweight[j]; } }
for (i = 0; i < g_numweightlist; i++) { // copy weights forward
for (j = 0; j < g_numbones; j++) { if (g_weightlist[i].weight[j] < 0.0) { if (g_bonetable[j].parent != -1) { g_weightlist[i].weight[j] = g_weightlist[i].weight[g_bonetable[j].parent]; g_weightlist[i].posweight[j] = g_weightlist[i].posweight[g_bonetable[j].parent]; } } } } }
void setAnimationWeight( s_animation_t *panim, int index ) { // copy weightlists to animations
for (int k = 0; k < g_numbones; k++) { panim->weight[k] = g_weightlist[index].weight[k]; panim->posweight[k] = g_weightlist[index].posweight[k]; } }
void addDeltas( s_animation_t *panim, int frame, float s, Vector delta_pos[], Quaternion delta_q[] ) { for (int k = 0; k < g_numbones; k++) { if (panim->weight[k] > 0) { QuaternionSMAngles( s, delta_q[k], panim->sanim[frame][k].rot, panim->sanim[frame][k].rot ); VectorMA( panim->sanim[frame][k].pos, s, delta_pos[k], panim->sanim[frame][k].pos ); } } }
//-----------------------------------------------------------------------------
// Purpose: find the difference between the overlapping frames and spread out
// the difference over multiple frames.
// start: negative number, specifies how far back from the end to start blending
// end: positive number, specifies how many frames from the beginning to blend
//-----------------------------------------------------------------------------
void fixupLoopingDiscontinuities( s_animation_t *panim, int start, int end ) { int j, k, m, n;
// fix C0 errors on looping animations
m = panim->numframes - 1;
Vector delta_pos[MAXSTUDIOSRCBONES]; Quaternion delta_q[MAXSTUDIOSRCBONES];
// skip if there's nothing to smooth
if (m == 0) return;
for (k = 0; k < g_numbones; k++) { VectorSubtract( panim->sanim[m][k].pos, panim->sanim[0][k].pos, delta_pos[k] ); QuaternionMA( panim->sanim[m][k].rot, -1, panim->sanim[0][k].rot, delta_q[k] ); QAngle ang; QuaternionAngles( delta_q[k], ang ); // printf("%2d %.1f %.1f %.1f\n", k, ang.x, ang.y, ang.z );
}
// HACK: skip fixup for motion that'll be matched with linear extraction
// FIXME: remove when "global" extraction moved into normal ordered processing loop
for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].parent == -1) { if (panim->motiontype & STUDIO_LX) delta_pos[k].x = 0.0; if (panim->motiontype & STUDIO_LY) delta_pos[k].y = 0.0; if (panim->motiontype & STUDIO_LZ) delta_pos[k].z = 0.0; // FIXME: add rotation
} }
// make sure loop doesn't exceed animation length
if (end-start > panim->numframes) { end = panim->numframes + start; if (end < 0) { end = 0; start = -(panim->numframes - 1); } }
// FIXME: figure out S
float s = 0; float nf = end - start; for (j = start + 1; j <= 0; j++) { n = j - start; s = (n / nf); s = 3 * s * s - 2 * s * s * s; // printf("%d : %d (%lf)\n", m+j, n, -s );
addDeltas( panim, m+j, -s, delta_pos, delta_q ); }
for (j = 0; j < end; j++) { n = end - j; s = (n / nf); s = 3 * s * s - 2 * s * s * s; //printf("%d : %d (%lf)\n", j, n, s );
addDeltas( panim, j, s, delta_pos, delta_q ); } }
void matchBlend( s_animation_t *pDestAnim, s_animation_t *pSrcAnimation, int iSrcFrame, int iDestFrame, int iPre, int iPost ) { int j, k;
if (pDestAnim->flags & STUDIO_LOOPING) { iPre = max( iPre, -pDestAnim->numframes ); iPost = min( iPost, pDestAnim->numframes ); } else { iPre = max( iPre, -iDestFrame ); iPost = min( iPost, pDestAnim->numframes - iDestFrame ); }
Vector delta_pos[MAXSTUDIOSRCBONES]; Quaternion delta_q[MAXSTUDIOSRCBONES];
for (k = 0; k < g_numbones; k++) { VectorSubtract( pSrcAnimation->sanim[iSrcFrame][k].pos, pDestAnim->sanim[iDestFrame][k].pos, delta_pos[k] ); QuaternionMA( pSrcAnimation->sanim[iSrcFrame][k].rot, -1, pDestAnim->sanim[iDestFrame][k].rot, delta_q[k] ); /*
QAngle ang; QuaternionAngles( delta_q[k], ang ); printf("%2d %.1f %.1f %.1f\n", k, ang.x, ang.y, ang.z ); */ }
// HACK: skip fixup for motion that'll be matched with linear extraction
// FIXME: remove when "global" extraction moved into normal ordered processing loop
for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].parent == -1) { if (pDestAnim->motiontype & STUDIO_LX) delta_pos[k].x = 0.0; if (pDestAnim->motiontype & STUDIO_LY) delta_pos[k].y = 0.0; if (pDestAnim->motiontype & STUDIO_LZ) delta_pos[k].z = 0.0; // FIXME: add rotation
} }
// FIXME: figure out S
float s = 0;
for (j = iPre; j <= iPost; j++) { if (j < 0) { s = j / (float)(iPre-1); } else { s = j / (float)(iPost+1); } s = SimpleSpline( 1 - s ); k = iDestFrame + j; if (k < 0) { k += (pDestAnim->numframes - 1); } else { k = k % (pDestAnim->numframes - 1); } //printf("%d : %d (%lf)\n", iDestFrame + j, k, s );
addDeltas( pDestAnim, k, s, delta_pos, delta_q ); // make sure final frame of a looping animation matches frame 0
if ((pDestAnim->flags & STUDIO_LOOPING) && k == 0) { addDeltas( pDestAnim, pDestAnim->numframes - 1, s, delta_pos, delta_q ); } } }
//-----------------------------------------------------------------------------
// Purpose: copy the first frame overtop the last frame
//-----------------------------------------------------------------------------
void forceAnimationLoop( s_animation_t *panim ) { int k, m, n;
// force looping animations to be looping
if (panim->flags & STUDIO_LOOPING) { n = 0; m = panim->numframes - 1;
for (k = 0; k < g_numbones; k++) { int type = panim->motiontype;
if (!(type & STUDIO_LX)) panim->sanim[m][k].pos[0] = panim->sanim[n][k].pos[0]; if (!(type & STUDIO_LY)) panim->sanim[m][k].pos[1] = panim->sanim[n][k].pos[1]; if (!(type & STUDIO_LZ)) panim->sanim[m][k].pos[2] = panim->sanim[n][k].pos[2];
if (!(type & STUDIO_LXR)) panim->sanim[m][k].rot[0] = panim->sanim[n][k].rot[0]; if (!(type & STUDIO_LYR)) panim->sanim[m][k].rot[1] = panim->sanim[n][k].rot[1]; if (!(type & STUDIO_LZR)) panim->sanim[m][k].rot[2] = panim->sanim[n][k].rot[2]; } }
// printf("\n");
}
//-----------------------------------------------------------------------------
// Purpose: calculate an single bones animation in a different parent's reference frame
//-----------------------------------------------------------------------------
void localHierarchy( s_animation_t *panim, char *pBonename, char *pParentname, int start, int peak, int tail, int end ) { s_localhierarchy_t *pRule;
pRule = &panim->localhierarchy[ panim->numlocalhierarchy ]; panim->numlocalhierarchy++;
pRule->start = start; pRule->peak = peak; pRule->tail = tail; pRule->end = end;
if (pRule->start == 0 && pRule->peak == 0 && pRule->tail == 0 && pRule->end == 0) { pRule->tail = panim->numframes - 1; pRule->end = panim->numframes - 1; }
if (pRule->start != -1 && pRule->peak == -1 && pRule->tail == -1 && pRule->end != -1) { pRule->peak = (pRule->start + pRule->end) / 2; pRule->tail = (pRule->start + pRule->end) / 2; }
if (pRule->start != -1 && pRule->peak == -1 && pRule->tail != -1) { pRule->peak = (pRule->start + pRule->tail) / 2; }
if (pRule->peak != -1 && pRule->tail == -1 && pRule->end != -1) { pRule->tail = (pRule->peak + pRule->end) / 2; }
if (pRule->peak == -1) { pRule->start = 0; pRule->peak = 0; }
if (pRule->tail == -1) { pRule->tail = panim->numframes - 1; pRule->end = panim->numframes - 1; }
// check for wrapping
if (pRule->peak < pRule->start) { pRule->peak += panim->numframes - 1; } if (pRule->tail < pRule->peak) { pRule->tail += panim->numframes - 1; } if (pRule->end < pRule->tail) { pRule->end += panim->numframes - 1; }
pRule->localData.numerror = pRule->end - pRule->start + 1; if (pRule->end >= panim->numframes) pRule->localData.numerror = pRule->localData.numerror + 2;
pRule->localData.pError = (s_streamdata_t *)kalloc( pRule->localData.numerror, sizeof( s_streamdata_t ));
matrix3x4_t boneToWorld[MAXSTUDIOBONES]; matrix3x4_t worldToBone; matrix3x4_t local;
pRule->bone = findGlobalBone( pBonename ); if (pRule->bone == -1) { MdlError("anim '%s' references unknown bone '%s' in localhierarchy\n", panim->name, pBonename ); }
if (strlen( pParentname ) == 0) { pRule->newparent = -1; } else { pRule->newparent = findGlobalBone( pParentname ); if (pRule->newparent == -1) { MdlError("anim '%s' references unknown bone '%s' in localhierarchy\n", panim->name, pParentname ); } }
int k; const char *pAnimationName = panim->animationname; s_sourceanim_t *pSourceAnim = FindSourceAnim( panim->source, pAnimationName );
for (k = 0; k < pRule->localData.numerror; k++) { matrix3x4_t srcBoneToWorld[MAXSTUDIOSRCBONES]; BuildRawTransforms( panim->source, pAnimationName, k + pRule->start + panim->startframe - pSourceAnim->startframe, panim->scale, panim->adjust, panim->rotation, panim->flags, srcBoneToWorld );
TranslateAnimations( panim->source, srcBoneToWorld, boneToWorld );
if (pRule->newparent != -1) { MatrixInvert( boneToWorld[pRule->newparent], worldToBone ); ConcatTransforms( worldToBone, boneToWorld[pRule->bone], local ); } else { MatrixCopy( boneToWorld[pRule->bone], local ); }
MatrixAngles( local, pRule->localData.pError[k].q, pRule->localData.pError[k].pos );
/*
QAngle ang; QuaternionAngles( pRule->errorData.pError[k].q, ang ); printf("%d %.1f %.1f %.1f : %.1f %.1f %.1f\n", k, pRule->errorData.pError[k].pos.x, pRule->errorData.pError[k].pos.y, pRule->errorData.pError[k].pos.z, ang.x, ang.y, ang.z ); */ } }
//-----------------------------------------------------------------------------
// Purpose: rotate the animation so that it's moving in the specified angle
//-----------------------------------------------------------------------------
void makeAngle( s_animation_t *panim, float angle ) { float da = 0.0f;
if (panim->numpiecewisekeys != 0) { // look for movement in total piecewise movement
Vector pos = panim->piecewisemove[panim->numpiecewisekeys-1].pos; if (pos[0] != 0 || pos[1] != 0) { float a = atan2( pos[1], pos[0] ) * (180 / M_PI); da = angle - a; }
for (int i = 0; i < panim->numpiecewisekeys; i++) { VectorYawRotate( panim->piecewisemove[i].pos, da, panim->piecewisemove[i].pos ); VectorYawRotate( panim->piecewisemove[i].vector, da, panim->piecewisemove[i].vector ); } } else { // look for movement in root bone
Vector pos = panim->sanim[(panim->numframes - 1)][g_rootIndex].pos - panim->sanim[0][g_rootIndex].pos; if (pos[0] != 0 || pos[1] != 0) { float a = atan2( pos[1], pos[0] ) * (180 / M_PI); da = angle - a; } }
/*
if (da > -0.01 && da < 0.01) return; */
matrix3x4_t rootxform; matrix3x4_t src; matrix3x4_t dest;
AngleMatrix( QAngle( 0, da, 0), rootxform );
for (int j = 0; j < panim->numframes; j++) { for (int k = 0; k < g_numbones; k++) { if (g_bonetable[k].parent == -1) { AngleMatrix( panim->sanim[j][k].rot, panim->sanim[j][k].pos, src ); ConcatTransforms( rootxform, src, dest ); MatrixAngles( dest, panim->sanim[j][k].rot, panim->sanim[j][k].pos ); } } }
// FIXME: not finished
}
//-----------------------------------------------------------------------------
// Purpose: convert pBoneToWorld back into rot/pos data
//-----------------------------------------------------------------------------
void solveBone( s_animation_t *panim, int iFrame, int iBone, matrix3x4_t* pBoneToWorld ) { int iParent = g_bonetable[iBone].parent;
if (iParent == -1) { MatrixAngles( pBoneToWorld[iBone], panim->sanim[iFrame][iBone].rot, panim->sanim[iFrame][iBone].pos ); return; }
matrix3x4_t worldToBone; MatrixInvert( pBoneToWorld[iParent], worldToBone );
matrix3x4_t local; ConcatTransforms( worldToBone, pBoneToWorld[iBone], local );
iFrame = iFrame % panim->numframes;
MatrixAngles( local, panim->sanim[iFrame][iBone].rot, panim->sanim[iFrame][iBone].pos ); }
//-----------------------------------------------------------------------------
// Purpose: calc the influence of a ik rule for a specific point in the animation cycle
//-----------------------------------------------------------------------------
float IKRuleWeight( s_ikrule_t *pRule, float flCycle ) { if (pRule->end > 1.0f && flCycle < pRule->start) { flCycle = flCycle + 1.0f; }
float value = 0.0f; if (flCycle < pRule->start) { return 0.0f; } else if (flCycle < pRule->peak ) { value = (flCycle - pRule->start) / (pRule->peak - pRule->start); } else if (flCycle < pRule->tail ) { return 1.0f; } else if (flCycle < pRule->end ) { value = 1.0f - ((flCycle - pRule->tail) / (pRule->end - pRule->tail)); } return 3.0f * value * value - 2.0f * value * value * value; }
//-----------------------------------------------------------------------------
// Purpose: Lock the ik target to a specific location in order to clean up bad animations (shouldn't be needed).
//-----------------------------------------------------------------------------
void fixupIKErrors( s_animation_t *panim, s_ikrule_t *pRule ) { int k;
if (pRule->start == 0 && pRule->peak == 0 && pRule->tail == 0 && pRule->end == 0) { pRule->tail = panim->numframes - 1; pRule->end = panim->numframes - 1; }
// check for wrapping
if (pRule->peak < pRule->start) { pRule->peak += panim->numframes - 1; } if (pRule->tail < pRule->peak) { pRule->tail += panim->numframes - 1; } if (pRule->end < pRule->tail) { pRule->end += panim->numframes - 1; }
if (pRule->contact == -1) { pRule->contact = pRule->peak; }
if (panim->numframes <= 1) return;
pRule->errorData.numerror = pRule->end - pRule->start + 1; switch( pRule->type ) { case IK_SELF: #if 0
// this code has never been run.....
{ matrix3x4_t boneToWorld[MAXSTUDIOBONES]; matrix3x4_t worldToBone; matrix3x4_t local; Vector targetPos; Quaternion targetQuat;
pRule->bone = findGlobalBone( pRule->bonename ); if (pRule->bone == -1) { MdlError("unknown bone '%s' in ikrule\n", pRule->bonename ); }
matrix3x4_t srcBoneToWorld[MAXSTUDIOSRCBONES]; BuildRawTransforms( panim->source, pRule->contact + panim->startframe - panim->source->startframe, srcBoneToWorld ); TranslateAnimations( panim->source, srcBoneToWorld, boneToWorld );
MatrixInvert( boneToWorld[pRule->bone], worldToBone ); ConcatTransforms( worldToBone, boneToWorld[g_ikchain[pRule->chain].link[2].bone], local ); MatrixAngles( local, targetQuat, targetPos );
for (k = 0; k < pRule->errorData.numerror; k++) { BuildRawTransforms( panim->source, k + pRule->start + panim->startframe - panim->source->startframe, srcBoneToWorld ); TranslateAnimations( panim->source, srcBoneToWorld, boneToWorld );
float cycle = (panim->numframes <= 1) ? 0 : (k + pRule->start) / (panim->numframes - 1); float s = IKRuleWeight( pRule, cycle );
Quaternion curQuat; Vector curPos;
// convert into rule bone space
MatrixInvert( boneToWorld[pRule->bone], worldToBone ); ConcatTransforms( worldToBone, boneToWorld[g_ikchain[pRule->chain].link[2].bone], local ); MatrixAngles( local, curQuat, curPos );
// find blended rule bone relative position
Vector rulePos = curPos * s + targetPos * (1.0 - s); Quaternion ruleQuat; QuaternionSlerp( curQuat, targetQuat, s, ruleQuat ); QuaternionMatrix( ruleQuat, rulePos, local );
Vector worldPos; VectorTransform( rulePos, boneToWorld[pRule->bone], worldPos );
// printf("%d (%d) : %.1f %.1f %1.f\n", k + pRule->start, pRule->peak, pos.x, pos.y, pos.z );
Studio_SolveIK( g_ikchain[pRule->chain].link[0].bone, g_ikchain[pRule->chain].link[1].bone, g_ikchain[pRule->chain].link[2].bone, worldPos, boneToWorld );
// slam final matrix
// FIXME: this isn't taking into account the IK may have failed
ConcatTransforms( boneToWorld[pRule->bone], local, boneToWorld[g_ikchain[pRule->chain].link[2].bone] );
solveBone( panim, k + pRule->start, g_ikchain[pRule->chain].link[0].bone, boneToWorld ); solveBone( panim, k + pRule->start, g_ikchain[pRule->chain].link[1].bone, boneToWorld ); solveBone( panim, k + pRule->start, g_ikchain[pRule->chain].link[2].bone, boneToWorld ); } } #endif
break; case IK_WORLD: case IK_GROUND: { matrix3x4_t boneToWorld[MAXSTUDIOBONES];
int bone = g_ikchain[pRule->chain].link[2].bone; CalcBoneTransforms( panim, pRule->contact, boneToWorld ); // FIXME: add in motion
Vector footfall; MatrixGetColumn( boneToWorld[bone], 3, footfall );
//printf("%d %d %d %d (%d)\n", pRule->start, pRule->peak, pRule->tail, pRule->end, pRule->errorData.numerror );
for (k = 0; k < pRule->errorData.numerror; k++) { CalcBoneTransforms( panim, k + pRule->start, boneToWorld );
float cycle = (panim->numframes <= 1) ? 0 : (float)(k + pRule->start) / (panim->numframes - 1); float s = IKRuleWeight( pRule, cycle ); s = 1.0; // FIXME - the weight rule is wrong
Vector orig; MatrixPosition( boneToWorld[g_ikchain[pRule->chain].link[2].bone], orig );
Vector pos = (footfall + calcMovement( panim, k + pRule->start, pRule->contact )) * s + orig * (1.0 - s);
//printf("%d (%.1f:%.1f) : %.1f %.1f %1.f\n", k + pRule->start, cycle, s, pos.x, pos.y, pos.z );
Studio_SolveIK( g_ikchain[pRule->chain].link[0].bone, g_ikchain[pRule->chain].link[1].bone, g_ikchain[pRule->chain].link[2].bone, pos, boneToWorld );
solveBone( panim, k + pRule->start, g_ikchain[pRule->chain].link[0].bone, boneToWorld ); solveBone( panim, k + pRule->start, g_ikchain[pRule->chain].link[1].bone, boneToWorld ); solveBone( panim, k + pRule->start, g_ikchain[pRule->chain].link[2].bone, boneToWorld ); } } } forceAnimationLoop( panim ); // !!!
}
//-----------------------------------------------------------------------------
// Purpose: map the vertex animations to their equivalent vertex in the base animations
//-----------------------------------------------------------------------------
static void ComputeSideAndScale( const s_flexkey_t &flexKey, s_vertanim_t *pVAnim, float *pSide, float *pScale ) { *pScale = 1.0f; *pSide = 0.0f;
if ( flexKey.split > 0.0f ) { if ( pVAnim->pos.x > flexKey.split ) { *pScale = 0.0f; } else if ( pVAnim->pos.x < -flexKey.split ) { *pScale = 1.0f; } else { float t = ( flexKey.split - pVAnim->pos.x ) / (2.0 * flexKey.split); *pScale = 3.0f * t * t - 2.0f * t * t * t; // printf( "%.1f : %.2f\n", pSrcAnim->pos.x, *pScale );
} } else if ( flexKey.split < 0.0f ) { if ( pVAnim->pos.x < flexKey.split) { *pScale = 0.0f; } else if ( pVAnim->pos.x > -flexKey.split) { *pScale = 1.0f; } else { float t = ( flexKey.split - pVAnim->pos.x ) / ( 2.0f * flexKey.split ); *pScale = 3.0f * t * t - 2.0f * t * t * t; // printf( "%.1f : %.2f\n", pSrcAnim->pos.x, *pScale );
} }
if ( flexKey.flexpair != 0) { // paired flexes are full scale but variable side to side
*pSide = 1.0 - *pScale; *pScale = 1.0; } else { // unpaired flexes are variable scale, one sided
*pSide = 0; } }
//-----------------------------------------------------------------------------
// Purpose: map the vertex animations to their equivalent vertex in the base animations
//-----------------------------------------------------------------------------
static void ComputeVertexAnimationSpeed( s_flexkey_t& flexKey ) { // calc max total scale for deltas
float flScale = 0.0f; for ( int m = 0; m < flexKey.numvanims; m++ ) { float s =flexKey.vanim[m].pos.Length();
if ( s > flScale ) { flScale = s; } } if ( flScale == 0.0f ) { flScale = 0.01f; }
// set
for ( int m = 0; m < flexKey.numvanims; m++ ) { if ( flexKey.decay == 0.0f ) { flexKey.vanim[m].speed = 1.0f; } else { flexKey.vanim[m].speed = clamp( flexKey.vanim[m].pos.Length() / (flScale * flexKey.decay), 0.0f, 1.0f ); } } }
//-----------------------------------------------------------------------------
// Purpose: map the vertex animations to their equivalent vertex in the base animations
//-----------------------------------------------------------------------------
static void BuildVAnimFlags( s_source_t *pVSource, s_sourceanim_t *pVSourceAnim, int nCurrentFlexKey ) { pVSourceAnim->vanim_flag = (int *)kalloc( pVSource->numvertices, sizeof( int )); for ( int n = nCurrentFlexKey; n < g_numflexkeys; n++ ) { // make sure it's the current flex file and that it's not frame 0 (happens with eyeball stuff).
if ( g_flexkey[n].source != pVSource ) continue;
if ( Q_stricmp( g_flexkey[n].animationname, pVSourceAnim->animationname ) ) continue;
const s_sourceanim_t *pAnim = FindSourceAnim( g_flexkey[n].source, g_flexkey[n].animationname ); if ( !pAnim ) continue;
if ( pAnim->newStyleVertexAnimations != pVSourceAnim->newStyleVertexAnimations ) continue;
if ( !pAnim->newStyleVertexAnimations && g_flexkey[n].frame == 0 ) continue;
int k = g_flexkey[n].frame; for ( int m = 0; m < pVSourceAnim->numvanims[k]; m++ ) { pVSourceAnim->vanim_flag[ pVSourceAnim->vanim[k][m].vertex ] = 1; } } }
//-----------------------------------------------------------------------------
// Purpose: Build an array indexed by model vertex which indicates which vanim vertex corresponds best to it
//-----------------------------------------------------------------------------
static void BuildModelToVAnimMap( s_source_t *pVSource, s_sourceanim_t *pVSourceAnim, s_loddata_t *pmLodSource, bool bNewVertexAnimations, int *pModelToVAnim ) { static float imapdist[MAXSTUDIOVERTS]; // distance from src vert to vanim vert
static float imapdot[MAXSTUDIOVERTS]; // dot product of src norm to vanim normal
Vector tmp;
// find frame 0 vertices to closest g_model vertex
for ( int j = 0; j < pmLodSource->numvertices; j++ ) { imapdist[j] = 1E30; imapdot[j] = -1.0; pModelToVAnim[j] = -1; }
int nMinLod = min( g_minLod, g_ScriptLODs.Count() - 1 );
for ( int j = 0; j < pVSource->numvertices; j++ ) { float flMinDist = 1E30; int n = -1; for ( int k = 0; k < pmLodSource->numvertices; k++ ) { // go ahead and skip vertices that are just going to be stripped later
// TODO: take this out when the lod clamping stuff gets moved into the LOD code instead of being a post process
if ( nMinLod && !( pmLodSource->vertex[k].lodFlag & (0xFFFFFF << nMinLod) ) ) continue;
const Vector& vecModelPos = bNewVertexAnimations ? pVSource->vertex[j].position : pVSourceAnim->vanim[0][j].pos;
// TODO: Length() gives inconsistent results in release build
VectorSubtract( pmLodSource->vertex[k].position, vecModelPos, tmp ); float flDist = tmp.LengthSqr(); if ( flDist >= 0.15f ) continue;
const Vector& vecModelNormal = bNewVertexAnimations ? pVSource->vertex[j].normal : pVSourceAnim->vanim[0][j].normal; float flDot = DotProduct( pmLodSource->vertex[k].normal, vecModelNormal ); if ( flDist < imapdist[k] || ( flDist == imapdist[k] && flDot > imapdot[k])) { imapdist[k] = flDist; imapdot[k] = flDot; pModelToVAnim[k] = j; }
if ( flDist < flMinDist ) { flMinDist = flDist; n = j; } }
if ( flMinDist > 0.01 ) { // printf("vert %d dist %.4f\n", j, minDist );
// printf("%.4f %.4f %.4f\n", pvsource->vanim[0][j].pos[0], pvsource->vanim[0][j].pos[1], pvsource->vanim[0][j].pos[2] );
}
// VectorSubtract( modelpos[n], pvsource->vanim[0][j].pos, matchdelta[j] );
if ( n == -1 ) { // printf("no match for animated vertex %d : %.4f %.4f %.4f\n", j, pVSourceAnim->vanim[0][j].pos[0], pVSourceAnim->vanim[0][j].pos[1], pVSourceAnim->vanim[0][j].pos[2] );
} }
/*
for (j = 0; j < pmsource->numvertices; j++) { printf("%4d : %7.4f %7.4f : %5d", j, imapdist[j], imapdot[j], model_to_vanim_vert_imap[j] ); printf(" : %8.4f %8.4f %8.4f", modelpos[j][0], modelpos[j][1], modelpos[j][2] ); printf("\n"); } */
/*
for (j = 0; j < pmsource->numvertices; j++) { if (fabs( modelpos[j][2] - 64.36) > 0.01) continue;
printf("%4d : %8.4f %8.4f %8.4f\n", j, modelpos[j][0], modelpos[j][1], modelpos[j][2] ); }
for (j = 0; j < pvsource->numvertices; j++) { if (!pvsource->vanim_flag[j]) continue;
printf("%4d : %8.2f %8.2f %8.2f : ", j, pvsource->vanim[0][j].pos[0], pvsource->vanim[0][j].pos[1], pvsource->vanim[0][j].pos[2] ); for (k = 0; k < pmsource->numvertices; k++) { if (model_to_vanim_vert_imap[k] == j) printf(" %d", k ); } printf("\n"); } */ }
//-----------------------------------------------------------------------------
// Purpose: Build an array indexed by model vertex which indicates which vanim vertex corresponds best to it
//-----------------------------------------------------------------------------
static void BuildVAnimMap( s_source_t *pVSource, s_sourceanim_t *pVSourceAnim, s_loddata_t *pmLodSource, const int *pModelToVAnim ) { // indexed by vertex anim vertex index
static int *mapp[MAXSTUDIOVERTS*4];
// count number of times each vanim vert connectes to a model vert
int n = 0; pVSourceAnim->vanim_mapcount = (int *)kalloc( pVSource->numvertices, sizeof( int ) ); for ( int j = 0; j < pmLodSource->numvertices; j++ ) { if ( pModelToVAnim[j] != -1 ) { pVSourceAnim->vanim_mapcount[ pModelToVAnim[j] ]++; n++; } }
pVSourceAnim->vanim_map = (int **)kalloc( pVSource->numvertices, sizeof( int * )); int *vmap = (int *)kalloc( n, sizeof( int ) );
// build mapping arrays
for ( int j = 0; j < pVSource->numvertices; j++ ) { if ( pVSourceAnim->vanim_mapcount[j] ) { pVSourceAnim->vanim_map[j] = vmap; mapp[j] = vmap; vmap += pVSourceAnim->vanim_mapcount[j]; } else if ( pVSourceAnim->vanim_flag[j] ) { // printf("%d animates but no matching vertex\n", j );
} }
for ( int j = 0; j < pmLodSource->numvertices; j++ ) { if (pModelToVAnim[j] != -1) { *(mapp[ pModelToVAnim[j] ]++) = j; } } }
//-----------------------------------------------------------------------------
// Computes the number of unique desination vanims, allocates space for it
//-----------------------------------------------------------------------------
static void AllocateDestVAnim( s_flexkey_t &flexKey, s_sourceanim_t *pVSourceAnim ) { int nVAnimCount = pVSourceAnim->numvanims[ flexKey.frame ]; s_vertanim_t *pVAnim = pVSourceAnim->vanim[ flexKey.frame ];
// frame 0 is special. Always assume zero vertex animations
if ( !pVSourceAnim->newStyleVertexAnimations && flexKey.frame == 0 ) { nVAnimCount = 0; }
// count total possible remapped animations
int nNumDestVAnims = 0; for ( int m = 0; m < nVAnimCount; m++) { nNumDestVAnims += pVSourceAnim->vanim_mapcount[ pVAnim[m].vertex ]; }
// allocate room to all possible resulting deltas
s_vertanim_t *pDestAnim = (s_vertanim_t *)kalloc( nNumDestVAnims, sizeof( s_vertanim_t ) ); flexKey.vanim = pDestAnim; flexKey.vanimtype = STUDIO_VERT_ANIM_NORMAL; // default
}
//-----------------------------------------------------------------------------
// Purpose: map the vertex animations to their equivalent vertex in the base animations
//-----------------------------------------------------------------------------
void RemapVertexAnimations(void) { int i, j, k; int n, m; s_source_t *pvsource; // vertex animation source
const char *pAnimationName; s_sourceanim_t *pSourceAnim; s_loddata_t *pmLodSource; // original model source
Vector tmp;
// index by vertex in targets root LOD
static int model_to_vanim_vert_imap[MAXSTUDIOVERTS]; // model vert to vanim vert mapping
// for all the sources of flexes, find a mapping of vertex animations to base model.
// There can be multiple "vertices" in the base model for each animated vertex since vertices
// are duplicated along material boundaries.
for ( i = 0; i < g_numflexkeys; i++ ) { s_source_t *pVSource = g_flexkey[i].source; s_sourceanim_t *pVSourceAnim = FindSourceAnim( pVSource, g_flexkey[i].animationname );
// We only do old-style vertex animations
if ( pVSourceAnim->newStyleVertexAnimations ) continue;
// skip if it's already been done or if has doesn't have any animations
if ( pVSourceAnim->vanim_flag ) continue;
// flag all the vertices that animate (builds the vanim_flag field of the source anim)
BuildVAnimFlags( pVSource, pVSourceAnim, i );
s_loddata_t *pLodData = g_model[ g_flexkey[i].imodel ]->m_pLodData;
// Map vertex indices specified in the model to ones specified in the vanim data
BuildModelToVAnimMap( pVSource, pVSourceAnim, pLodData, false, model_to_vanim_vert_imap );
// Build the vanim_mapcount, vanim_map fields of the source anim
BuildVAnimMap( pVSource, pVSourceAnim, pLodData, model_to_vanim_vert_imap ); }
#if 0
s_vertanim_t *defaultanims = NULL;
if (g_defaultflexkey) { defaultanims = g_defaultflexkey->source->vanim[g_defaultflexkey->frame]; } else { defaultanims = g_flexkey[0].source->vanim[0]; } #endif
// reset model to be default animations
if ( g_defaultflexkey ) { pvsource = g_defaultflexkey->source; pAnimationName = g_defaultflexkey->animationname; pSourceAnim = FindSourceAnim( pvsource, pAnimationName ); pmLodSource = g_model[g_defaultflexkey->imodel]->m_pLodData;
int numsrcanims = pSourceAnim->numvanims[g_defaultflexkey->frame]; s_vertanim_t *psrcanim = pSourceAnim->vanim[g_defaultflexkey->frame];
for (m = 0; m < numsrcanims; m++) { if ( pSourceAnim->vanim_mapcount[psrcanim->vertex]) // bah, only do it for ones that found a match!
{ for (n = 0; n < pSourceAnim->vanim_mapcount[psrcanim->vertex]; n++) { // copy "default" pos to original model
k = pSourceAnim->vanim_map[psrcanim->vertex][n]; VectorCopy( psrcanim->pos, pmLodSource->vertex[k].position ); VectorCopy( psrcanim->normal, pmLodSource->vertex[k].normal );
// copy "default" pos to frame 0 of vertex animation source
// FIXME: this needs to copy to all sources of vertex animation.
// FIXME: the "default" pose needs to be in each vertex animation source since it's likely that the vertices won't be numbered the same in each file.
VectorCopy( psrcanim->pos, pSourceAnim->vanim[0][psrcanim->vertex].pos ); VectorCopy( psrcanim->normal, pSourceAnim->vanim[0][psrcanim->vertex].normal ); } } psrcanim++; } }
static bool doesMove[MAXSTUDIOVERTS]; int numMoved;
memset( doesMove, 0, MAXSTUDIOVERTS * sizeof( bool ) ); numMoved = 0;
for (i = 0; i < g_numflexkeys; i++) { pvsource = g_flexkey[i].source; pAnimationName = g_flexkey[i].animationname; pSourceAnim = FindSourceAnim( pvsource, pAnimationName ); if ( pSourceAnim->newStyleVertexAnimations ) continue;
pmLodSource = g_model[g_flexkey[i].imodel]->m_pLodData;
// Allocate g_flexkey[i].vanim
AllocateDestVAnim( g_flexkey[i], pSourceAnim );
s_vertanim_t *psrcanim = pSourceAnim->vanim[g_flexkey[i].frame]; s_vertanim_t *pdestanim = g_flexkey[i].vanim;
// frame 0 is special. Always assume zero vertex animations
int numsrcanims = ( g_flexkey[i].frame != 0 ) ? pSourceAnim->numvanims[g_flexkey[i].frame] : 0;
for (m = 0; m < numsrcanims; m++, psrcanim++) { Vector delta, ndelta; float flSide, flScale; ComputeSideAndScale( g_flexkey[i], psrcanim, &flSide, &flScale );
// bah, only do it for ones that found a match!
if ( flScale <= 0.0f || !pSourceAnim->vanim_mapcount[psrcanim->vertex] ) continue;
j = pSourceAnim->vanim_map[psrcanim->vertex][0];
//VectorSubtract( psrcanim->pos, pSourceAnim->vanim[0][psrcanim->vertex].pos, tmp );
//VectorTransform( tmp, pmsource->bonefixup[k].im, delta );
VectorSubtract( psrcanim->pos, pSourceAnim->vanim[0][psrcanim->vertex].pos, delta );
//VectorSubtract( psrcanim->normal, pSourceAnim->vanim[0][psrcanim->vertex].normal, tmp );
//VectorTransform( tmp, pmsource->bonefixup[k].im, ndelta );
VectorSubtract( psrcanim->normal, pSourceAnim->vanim[0][psrcanim->vertex].normal, ndelta );
// if the changes are too small, skip 'em
// FIXME: the clamp needs to be paired with the other matching positions.
// currently this is set to the float16 min value. Sucky.
if (DotProduct( delta, delta ) <= (0.001f*0.001f) /* 0.0001 */ && DotProduct( ndelta, ndelta ) <= 0.001) { // printf("%4d %6.4f %6.4f %6.4f\n", pdestanim->vertex, delta.x, delta.y, delta.z );
continue; }
for (n = 0; n < pSourceAnim->vanim_mapcount[psrcanim->vertex]; n++) { pdestanim->vertex = pSourceAnim->vanim_map[psrcanim->vertex][n]; VectorScale( delta, flScale, pdestanim->pos ); VectorScale( ndelta, flScale, pdestanim->normal ); pdestanim->side = flSide;
// count all the unique verts that actually move
if (!doesMove[pdestanim->vertex]) { doesMove[pdestanim->vertex] = true; numMoved++; }
/*
printf("%4d %6.2f %6.2f %6.2f : %4d %5.2f %5.2f %5.2f\n", pdestanim->vertex, // pmsource->vertex[pdestanim->vertex][0], pmsource->vertex[pdestanim->vertex][1], pmsource->vertex[pdestanim->vertex][2],
modelpos[pdestanim->vertex][0], modelpos[pdestanim->vertex][1], modelpos[pdestanim->vertex][2], psrcanim->vertex, pdestanim->pos[0], pdestanim->pos[1], pdestanim->pos[2] ); */ g_flexkey[i].numvanims++; pdestanim++; } }
ComputeVertexAnimationSpeed( g_flexkey[i] ); }
if (numMoved > MAXSTUDIOFLEXVERTS) { MdlError( "Too many flexed verts %d (%d)\n", numMoved, MAXSTUDIOFLEXVERTS ); } else if (numMoved > 0 && !g_quiet) { printf("Max flex verts %d\n", numMoved ); } }
//-----------------------------------------------------------------------------
// Purpose: map the vertex animations to their equivalent vertex in the base animations
//-----------------------------------------------------------------------------
static int FlexKeysSortFunc( const void *pv1, const void *pv2 ) { const s_flexkey_t *pKey1 = (const s_flexkey_t*)pv1; const s_flexkey_t *pKey2 = (const s_flexkey_t*)pv2;
if ( pKey1->source != pKey2->source ) return (size_t)pKey1->source - (size_t)pKey2->source; return Q_stricmp( pKey1->animationname, pKey2->animationname ); }
static int SortFlexKeys( s_flexkey_t **ppSortedFlexKeys ) { int nSortedFlexKeyCount = 0; for ( int i = 0; i < g_numflexkeys; i++ ) { s_source_t *pVSource = g_flexkey[i].source; s_sourceanim_t *pVSourceAnim = FindSourceAnim( pVSource, g_flexkey[i].animationname );
// We only do new-style vertex animations
if ( !pVSourceAnim->newStyleVertexAnimations ) continue;
ppSortedFlexKeys[nSortedFlexKeyCount++] = &g_flexkey[i]; }
if ( nSortedFlexKeyCount > 0 ) { qsort( ppSortedFlexKeys, nSortedFlexKeyCount, sizeof(s_flexkey_t*), FlexKeysSortFunc ); }
return nSortedFlexKeyCount; }
static void RemapVertexAnimationsNewVersion(void) { // index by vertex in targets root LOD
static int model_to_vanim_vert_imap[MAXSTUDIOVERTS];
// Sort flexkeys by source
s_flexkey_t **ppSortedFlexKeys = (s_flexkey_t**)_alloca( g_numflexkeys * sizeof(s_flexkey_t*) ); int nSortedFlexKeyCount = SortFlexKeys( ppSortedFlexKeys ); if ( nSortedFlexKeyCount == 0 ) return;
// for all the sources of flexes, find a mapping of vertex animations to base model.
// There can be multiple "vertices" in the base model for each animated vertex since vertices
// are duplicated along material boundaries.
s_source_t *pVLastSource = NULL; for ( int i = 0; i < nSortedFlexKeyCount; i++ ) { s_flexkey_t *pFlexKey = ppSortedFlexKeys[i]; s_source_t *pVSource = pFlexKey->source; s_sourceanim_t *pVSourceAnim = FindSourceAnim( pVSource, pFlexKey->animationname ); s_loddata_t *pLodSource = g_model[ pFlexKey->imodel ]->m_pLodData;
if ( pVSource != pVLastSource ) { // Map vertex indices specified in the model to ones specified in the vanim data
BuildModelToVAnimMap( pVSource, NULL, pLodSource, true, model_to_vanim_vert_imap ); pVLastSource = pVSource; }
// We only do new-style vertex animations
Assert( pVSourceAnim->newStyleVertexAnimations );
// skip if it's already been done or if has doesn't have any animations
if ( pVSourceAnim->vanim_flag ) continue;
pVSourceAnim->vanim_flag = (int *)kalloc( pVSource->numvertices, sizeof( int ));
// flag all the vertices that animate (builds the vanim_flag field of the source anim)
int j; for ( j = i+1; j < nSortedFlexKeyCount; ++j ) { if ( ( ppSortedFlexKeys[j]->source != pVSource ) || Q_stricmp( ppSortedFlexKeys[j]->animationname, pFlexKey->animationname ) ) break; }
for ( ; i < j; ++i ) { int k = ppSortedFlexKeys[i]->frame; for ( int m = 0; m < pVSourceAnim->numvanims[k]; m++ ) { pVSourceAnim->vanim_flag[ pVSourceAnim->vanim[k][m].vertex ] = 1; } } --i;
// Build the vanim_mapcount, vanim_map fields of the source anim
BuildVAnimMap( pVSource, pVSourceAnim, pLodSource, model_to_vanim_vert_imap ); }
int nNumMoved = 0; static bool pDoesMove[MAXSTUDIOVERTS]; memset( pDoesMove, 0, MAXSTUDIOVERTS * sizeof( bool ) );
for ( int i = 0; i < g_numflexkeys; i++ ) { s_source_t *pVSource = g_flexkey[i].source; s_sourceanim_t *pVSourceAnim = FindSourceAnim( pVSource, g_flexkey[i].animationname ); if ( !pVSourceAnim->newStyleVertexAnimations ) continue;
// Allocate g_flexkey[i].vanim
AllocateDestVAnim( g_flexkey[i], pVSourceAnim );
int nNumSrcVAnims = pVSourceAnim->numvanims[ g_flexkey[i].frame ]; s_vertanim_t *pSrcVAnim = pVSourceAnim->vanim[ g_flexkey[i].frame ]; s_vertanim_t *pDestVAnim = g_flexkey[i].vanim;
for ( int m = 0; m < nNumSrcVAnims; m++, pSrcVAnim++ ) { // bah, only do it for ones that found a match!
if ( !pVSourceAnim->vanim_mapcount[pSrcVAnim->vertex] ) continue;
// if the changes are too small, skip 'em
// FIXME: the clamp needs to be paired with the other matching positions.
// currently this is set to the float16 min value. Sucky.
if ( DotProduct( pSrcVAnim->pos, pSrcVAnim->pos ) <= (0.001f*0.001f) /* 0.0001 */ && DotProduct( pSrcVAnim->normal, pSrcVAnim->normal ) <= 0.001f && pSrcVAnim->wrinkle <= 0.001f ) { // printf("%4d %6.4f %6.4f %6.4f\n", pDestAnim->vertex, delta.x, delta.y, delta.z );
continue; }
for ( int n = 0; n < pVSourceAnim->vanim_mapcount[pSrcVAnim->vertex]; n++ ) { memcpy( pDestVAnim, pSrcVAnim, sizeof(s_vertanim_t) ); pDestVAnim->vertex = pVSourceAnim->vanim_map[pSrcVAnim->vertex][n];
if ( pDestVAnim->wrinkle != 0.0f ) { g_flexkey[i].vanimtype = STUDIO_VERT_ANIM_WRINKLE; }
// count all the unique verts that actually move
if ( !pDoesMove[pDestVAnim->vertex] ) { pDoesMove[pDestVAnim->vertex] = true; nNumMoved++; }
g_flexkey[i].numvanims++; pDestVAnim++; } } }
if ( nNumMoved > MAXSTUDIOFLEXVERTS ) { MdlError( "Too many flexed verts %d (%d)\n", nNumMoved, MAXSTUDIOFLEXVERTS ); } else if ( nNumMoved > 0 && !g_quiet ) { printf("Max flex verts %d\n", nNumMoved ); } }
// Finds the bone index for a particular source
extern int FindLocalBoneNamed( const s_source_t *pSource, const char *pName );
//-----------------------------------------------------------------------------
// Purpose: finds the bone index in the global bone table
//-----------------------------------------------------------------------------
int findGlobalBone( const char *name ) { name = RenameBone( name ); for ( int k = 0; k < g_numbones; k++ ) { if ( !Q_stricmp( g_bonetable[k].name, name ) ) return k; } return -1; }
bool IsGlobalBoneXSI( const char *name, const char *bonename ) { name = RenameBone( name );
int len = strlen( name );
int len2 = strlen( bonename ); if ( len2 == len && strchr( bonename, '.' ) == NULL && stricmp( bonename, name ) == 0 ) return true;
if (len2 > len) {
if (bonename[len2-len-1] == '.') { if (stricmp( &bonename[len2-len], name ) == 0) { return true; } } } return false; }
int findGlobalBoneXSI( const char *name ) { int k;
name = RenameBone( name );
for (k = 0; k < g_numbones; k++) { if (IsGlobalBoneXSI( name, g_bonetable[k].name )) { return k; } } return -1; }
//-----------------------------------------------------------------------------
// Purpose: Acculumate quaternions and try to find the swept area of rotation
// so that a "midpoint" of the rotation area can be found
//-----------------------------------------------------------------------------
void findAnimQuaternionAlignment( int k, int i, Quaternion &qBase, Quaternion &qMin, Quaternion &qMax ) { int j;
AngleQuaternion( g_panimation[i]->sanim[0][k].rot, qBase ); qMin = qBase; float dMin = 1.0; qMax = qBase; float dMax = 1.0; for (j = 1; j < g_panimation[i]->numframes; j++) { Quaternion q;
AngleQuaternion( g_panimation[i]->sanim[j][k].rot, q ); QuaternionAlign( qBase, q, q );
float d0 = QuaternionDotProduct( q, qBase ); float d1 = QuaternionDotProduct( q, qMin ); float d2 = QuaternionDotProduct( q, qMax );
/*
if (i != 0) printf("%f %f %f : %f\n", d0, d1, d2, QuaternionDotProduct( qMin, qMax ) ); */ if (d1 >= d0) { if (d0 < dMin) { qMin = q; dMin = d0; if (dMax == 1.0) { QuaternionMA( qBase, -0.01, qMin, qMax ); QuaternionAlign( qBase, qMax, qMax ); } } } else if (d2 >= d0) { if (d0 < dMax) { qMax = q; dMax = d0; } }
/*
if (i != 0) printf("%f ", QuaternionDotProduct( qMin, qMax ) ); */
QuaternionSlerpNoAlign( qMin, qMax, 0.5, qBase ); Assert( qBase.IsValid() );
/*
if (i != 0) { QAngle ang; QuaternionAngles( qMin, ang ); printf("(%.1f %.1f %.1f) ", ang.x, ang.y, ang.z ); QuaternionAngles( qMax, ang ); printf("(%.1f %.1f %.1f) ", ang.x, ang.y, ang.z ); QuaternionAngles( qBase, ang ); printf("(%.1f %.1f %.1f)\n", ang.x, ang.y, ang.z ); } */
dMin = QuaternionDotProduct( qBase, qMin ); dMax = QuaternionDotProduct( qBase, qMax ); }
// printf("%s (%s): %.3f :%.3f\n", g_bonetable[k].name, g_panimation[i]->name, QuaternionDotProduct( qMin, qMax ), QuaternionDotProduct( qMin, qBase ) );
/*
if (i != 0) exit(0); */ }
//-----------------------------------------------------------------------------
// Purpose: For specific bones, try to find the total valid area of rotation so
// that their mid point of rotation can be used at run time to "pre-align"
// the quaternions so that rotations > 180 degrees don't get blended the
// "short way round".
//-----------------------------------------------------------------------------
void limitBoneRotations( void ) { int i, j, k;
for (i = 0; i < g_numlimitrotation; i++) { Quaternion qBase;
k = findGlobalBone( g_limitrotation[i].name ); if (k == -1) { MdlError("unknown bone \"%s\" in $limitrotation\n", g_limitrotation[i].name ); }
AngleQuaternion( g_bonetable[k].rot, qBase );
if (g_limitrotation[i].numseq == 0) { for (j = 0; j < g_numani; j++) { if (!(g_panimation[j]->flags & STUDIO_DELTA) && g_panimation[j]->numframes > 3) { Quaternion qBase2, qMin2, qMax2; findAnimQuaternionAlignment( k, j, qBase2, qMin2, qMax2 );
QuaternionAdd( qBase, qBase2, qBase ); } } QuaternionNormalize( qBase ); } else { for (j = 0; j < g_limitrotation[i].numseq; j++) {
} }
/*
QAngle ang; QuaternionAngles( qBase, ang ); printf("%s : (%.1f %.1f %.1f) \n", g_bonetable[k].name, ang.x, ang.y, ang.z ); */
g_bonetable[k].qAlignment = qBase; g_bonetable[k].flags |= BONE_FIXED_ALIGNMENT;
// QuaternionAngles( qBase, g_panimation[0]->sanim[0][k].rot );
} }
//-----------------------------------------------------------------------------
// Purpose: For specific bones, try to find the total valid area of rotation so
// that their mid point of rotation can be used at run time to "pre-align"
// the quaternions so that rotations > 180 degrees don't get blended the
// "short way round".
//-----------------------------------------------------------------------------
void limitIKChainLength( void ) { int i, j, k; matrix3x4_t boneToWorld[MAXSTUDIOSRCBONES]; // bone transformation matrix
for (k = 0; k < g_numikchains; k++) { bool needsFixup = false; bool hasKnees = false;
Vector kneeDir = g_ikchain[k].link[0].kneeDir; if (kneeDir.Length() > 0.0) { hasKnees = true; } else { for (i = 0; i < g_numani; i++) { s_animation_t *panim = g_panimation[i];
if (panim->flags & STUDIO_DELTA) continue;
if (panim->flags & STUDIO_HIDDEN) continue;
for (j = 0; j < panim->numframes; j++) { CalcBoneTransforms( panim, j, boneToWorld );
Vector worldThigh; Vector worldKnee; Vector worldFoot;
MatrixPosition( boneToWorld[ g_ikchain[k].link[0].bone ], worldThigh ); MatrixPosition( boneToWorld[ g_ikchain[k].link[1].bone ], worldKnee ); MatrixPosition( boneToWorld[ g_ikchain[k].link[2].bone ], worldFoot );
float l1 = (worldKnee-worldThigh).Length(); float l2 = (worldFoot-worldKnee).Length(); float l3 = (worldFoot-worldThigh).Length();
Vector ikHalf = (worldFoot+worldThigh) * 0.5;
// FIXME: what to do when the knee completely straight?
Vector ikKneeDir = worldKnee - ikHalf; VectorNormalize( ikKneeDir ); // ikTargetKnee = ikKnee + ikKneeDir * l1;
// leg too straight to figure out knee?
if (l3 > (l1 + l2) * 0.999) { needsFixup = true; } else { // rotate knee into local space
Vector tmp; VectorIRotate( ikKneeDir, boneToWorld[ g_ikchain[k].link[0].bone ], tmp ); float bend = (((DotProduct( worldThigh - worldKnee, worldFoot - worldKnee ) ) / (l1 * l3)) + 1) / 2.0; kneeDir += tmp * bend; hasKnees = true; } } } }
if (!needsFixup) continue;
if (!hasKnees) { MdlWarning( "ik rules for %s but no clear knee direction\n", g_ikchain[k].name ); continue; }
VectorNormalize( kneeDir ); g_ikchain[k].link[0].kneeDir = kneeDir;
if (g_verbose) { printf("knee %s %f %f %f\n", g_ikchain[k].name, kneeDir.x, kneeDir.y, kneeDir.z ); }
#if 0
// don't bother for now, storing the knee direction should fix the runtime problems.
for (i = 0; i < g_numani; i++) { s_animation_t *panim = g_panimation[i];
if (panim->flags & STUDIO_DELTA) continue;
for (j = 0; j < panim->numframes; j++) { CalcBoneTransforms( panim, j, boneToWorld );
Vector worldFoot; MatrixPosition( boneToWorld[ g_ikchain[k].link[2].bone ], worldFoot );
Vector targetKneeDir; VectorRotate( kneeDir, boneToWorld[ g_ikchain[k].link[0].bone ], targetKneeDir );
// run it through the normal IK solver, this should move the foot positions to someplace legal
Studio_SolveIK( g_ikchain[k].link[0].bone, g_ikchain[k].link[1].bone, g_ikchain[k].link[2].bone, worldFoot, targetKneeDir, boneToWorld );
solveBone( panim, j, g_ikchain[k].link[0].bone, boneToWorld ); solveBone( panim, j, g_ikchain[k].link[1].bone, boneToWorld ); solveBone( panim, j, g_ikchain[k].link[2].bone, boneToWorld ); } } #endif
} }
//-----------------------------------------------------------------------------
// Purpose: build "next node" table that links every transition "node" to
// every other transition "node", if possible
//-----------------------------------------------------------------------------
void MakeTransitions( ) { int i, j, k; bool iHit = g_bMultistageGraph;
// add in direct node transitions
for (i = 0; i < g_sequence.Count(); i++) { if (g_sequence[i].entrynode != g_sequence[i].exitnode) { g_xnode[g_sequence[i].entrynode-1][g_sequence[i].exitnode-1] = g_sequence[i].exitnode; if (g_sequence[i].nodeflags) { g_xnode[g_sequence[i].exitnode-1][g_sequence[i].entrynode-1] = g_sequence[i].entrynode; } } }
// calculate multi-stage transitions
while (iHit) { iHit = false; for (i = 1; i <= g_numxnodes; i++) { for (j = 1; j <= g_numxnodes; j++) { // if I can't go there directly
if (i != j && g_xnode[i-1][j-1] == 0) { for (k = 1; k <= g_numxnodes; k++) { // but I found someone who knows how that I can get to
if (g_xnode[k-1][j-1] > 0 && g_xnode[i-1][k-1] > 0) { // then go to them
g_xnode[i-1][j-1] = -g_xnode[i-1][k-1]; iHit = true; break; } } } } } // reset previous pass so the links can be used in the next pass
for (i = 1; i <= g_numxnodes; i++) { for (j = 1; j <= g_numxnodes; j++) { g_xnode[i-1][j-1] = abs( g_xnode[i-1][j-1] ); } } }
// add in allowed "skips"
for (i = 0; i < g_numxnodeskips; i++) { g_xnode[g_xnodeskip[i][0]-1][g_xnodeskip[i][1]-1] = 0; }
if (g_bDumpGraph) { for (j = 1; j <= g_numxnodes; j++) { printf("%2d : %s\n", j, g_xnodename[j] ); } printf(" " ); for (j = 1; j <= g_numxnodes; j++) { printf("%2d ", j ); } printf("\n" );
for (i = 1; i <= g_numxnodes; i++) { printf("%2d: ", i ); for (j = 1; j <= g_numxnodes; j++) { printf("%2d ", g_xnode[i-1][j-1] ); } printf("\n" ); } } }
int VectorCompareEpsilon(const Vector& v1, const Vector& v2, float epsilon) { int i; for (i=0 ; i<3 ; i++) if (fabs(v1[i] - v2[i]) > epsilon) return 0; return 1; }
int RadianEulerCompareEpsilon(const RadianEuler& v1, const RadianEuler& v2, float epsilon) { int i; for (i=0 ; i<3 ; i++) { // clamp to 2pi
float a1 = fmod(v1[i],(float) (2*M_PI)); float a2 = fmod(v2[i],(float) (2*M_PI)); float delta = fabs(a1-a2); // use the smaller angle (359 == 1 degree off)
if ( delta > M_PI ) { delta = 2*M_PI - delta; }
if (delta > epsilon) return 0; } return 1; }
bool AnimationDifferent( const Vector& startPos, const RadianEuler& startRot, const Vector& pos, const RadianEuler& rot ) { if ( !VectorCompareEpsilon( startPos, pos, 0.01 ) ) return true; if ( !RadianEulerCompareEpsilon( startRot, rot, 0.01 ) ) return true;
return false; }
bool BoneHasAnimation( const char *pName ) { bool first = true; Vector pos; RadianEuler rot;
if ( !g_numani ) return false;
int globalIndex = findGlobalBone( pName );
// don't check root bones for animation
if (globalIndex >= 0 && g_bonetable[globalIndex].parent == -1) return true;
// find used bones per g_model
for (int i = 0; i < g_numani; i++) { s_source_t *psource = g_panimation[i]->source; const char *pAnimationName = g_panimation[i]->animationname; s_sourceanim_t *pSourceAnim = FindSourceAnim( psource, pAnimationName );
int boneIndex = FindLocalBoneNamed(psource, pName);
// not in this source?
if (boneIndex < 0) continue;
// this is not right, but enough of the bones are moved unintentionally between
// animations that I put this in to catch them.
first = true; int n = g_panimation[i]->startframe - pSourceAnim->startframe; // printf("%s %d:%d\n", g_panimation[i]->filename, g_panimation[i]->startframe, psource->startframe );
for (int j = 0; j < g_panimation[i]->numframes; j++) { if ( first ) { VectorCopy( pSourceAnim->rawanim[j+n][boneIndex].pos, pos ); VectorCopy( pSourceAnim->rawanim[j+n][boneIndex].rot, rot ); first = false; } else { if ( AnimationDifferent( pos, rot, pSourceAnim->rawanim[j+n][boneIndex].pos, pSourceAnim->rawanim[j+n][boneIndex].rot ) ) return true; } } } return false; }
bool BoneHasAttachments( char const *pname ) { for (int k = 0; k < g_numattachments; k++) { if ( !stricmp( g_attachment[k].bonename, pname ) ) { return true; } } return false; }
bool BoneIsProcedural( char const *pname ) { int k;
for (k = 0; k < g_numaxisinterpbones; k++) { if (! stricmp( g_axisinterpbones[k].bonename, pname ) ) { return true; } }
for (k = 0; k < g_numquatinterpbones; k++) { if (IsGlobalBoneXSI( g_quatinterpbones[k].bonename, pname ) ) { return true; } }
for (k = 0; k < g_numaimatbones; k++) { if (IsGlobalBoneXSI( g_aimatbones[k].bonename, pname ) ) { return true; } }
for (k = 0; k < g_numjigglebones; k++) { if (! stricmp( g_jigglebones[k].bonename, pname ) ) { return true; } }
return false; }
bool BoneIsIK( char const *pname ) { int k;
// tag bones used by ikchains
for (k = 0; k < g_numikchains; k++) { if ( !stricmp( g_ikchain[k].bonename, pname ) ) { return true; } }
return false; }
bool BoneShouldCollapse( char const *pname ) { int k;
for (k = 0; k < g_collapse.Count(); k++) { if (stricmp( g_collapse[k], pname ) == 0) { return true; } }
return (!BoneHasAnimation( pname ) && !BoneIsProcedural( pname ) && !BoneIsIK( pname ) /* && !BoneHasAttachments( pname ) */); }
//-----------------------------------------------------------------------------
// Purpose: Collapse vertex assignments up to parent on bones that are not needed
// This can optimize a model substantially if the animator is using
// lots of helper bones with no animation.
//-----------------------------------------------------------------------------
void CollapseBones( void ) { int j, k; int count = 0;
for (k = 0; k < g_numbones; k++) { if ( g_bonetable[k].bDontCollapse ) continue;
if ( (g_bonetable[k].flags != 0 || g_bonetable[k].bPreDefined) && !BoneShouldCollapse( g_bonetable[k].name ) ) { // printf("skipping %s : %d\n", g_bonetable[k].name, g_bonetable[k].flags );
continue; }
count++;
if( !g_quiet && g_verbose ) { printf("collapsing %s\n", g_bonetable[k].name ); }
g_numbones--; int m = g_bonetable[k].parent;
for (j = k; j < g_numbones; j++) { g_bonetable[j] = g_bonetable[j+1]; if (g_bonetable[j].parent == k) { g_bonetable[j].parent = m; } else if (g_bonetable[j].parent >= k) { g_bonetable[j].parent = g_bonetable[j].parent - 1; } } k--; }
if( !g_quiet && count) { printf("Collapsed %d bones\n", count ); } }
//-----------------------------------------------------------------------------
// Purpose: replace all animation, rotation and translation, etc. with a single bone
//-----------------------------------------------------------------------------
void MakeStaticProp() { int i, j, k; matrix3x4_t rotated;
AngleMatrix( g_defaultrotation, rotated );
// FIXME: missing attachment point recalcs!
// replace bone 0 with "static_prop" bone and attach everything to it.
for (i = 0; i < g_numsources; i++) { s_source_t *psource = g_source[i];
strcpy( psource->localBone[0].name, "static_prop" ); psource->localBone[0].parent = -1;
for (k = 1; k < psource->numbones; k++) { psource->localBone[k].parent = -1; }
rotated[0][3] = g_defaultadjust[0]; rotated[1][3] = g_defaultadjust[1]; rotated[2][3] = g_defaultadjust[2];
Vector mins, maxs; ClearBounds( mins, maxs );
for (j = 0; j < psource->numvertices; j++) { for (k = 0; k < psource->vertex[j].boneweight.numbones; k++) { // attach everything to root
psource->vertex[j].boneweight.bone[k] = 0; }
// **shift everything into identity space**
// position
Vector tmp; VectorTransform( psource->vertex[j].position, rotated, tmp ); VectorCopy( tmp, psource->vertex[j].position );
// normal
VectorRotate( psource->vertex[j].normal, rotated, tmp ); VectorCopy( tmp, psource->vertex[j].normal );
// tangentS
VectorRotate( psource->vertex[j].tangentS.AsVector3D(), rotated, tmp ); VectorCopy( tmp, psource->vertex[j].tangentS.AsVector3D() );
// incrementally compute identity space bbox
AddPointToBounds( psource->vertex[j].position, mins, maxs ); }
if ( g_centerstaticprop ) { const char *pAttachmentName = "placementOrigin"; bool bFound = false; for ( k = 0; k < g_numattachments; k++ ) { if ( !Q_stricmp( g_attachment[k].name, pAttachmentName ) ) { bFound = true; break; } }
if ( !bFound ) { g_PropCenterOffset = -0.5f * (mins + maxs); }
for ( j = 0; j < psource->numvertices; j++ ) { psource->vertex[j].position += g_PropCenterOffset; }
if ( !bFound ) { // now add an attachment point to store this offset
Q_strncpy( g_attachment[g_numattachments].name, pAttachmentName, sizeof(g_attachment[g_numattachments].name) ); Q_strncpy( g_attachment[g_numattachments].bonename, "static_prop", sizeof(g_attachment[g_numattachments].name) ); g_attachment[g_numattachments].bone = 0; g_attachment[g_numattachments].type = 0; AngleMatrix( vec3_angle, g_PropCenterOffset, g_attachment[g_numattachments].local ); g_numattachments++; } }
// force the animation to be identity
s_sourceanim_t *pSourceAnim = FindSourceAnim( psource, "BindPose" ); pSourceAnim->rawanim[0][0].pos = Vector( 0, 0, 0 ); pSourceAnim->rawanim[0][0].rot = RadianEuler( 0, 0, 0 ); // make an identity boneToPose transform
AngleMatrix( QAngle( 0, 0, 0 ), psource->boneToPose[0] ); // make it all a single frame animation
pSourceAnim->numframes = 1; pSourceAnim->startframe = 0; pSourceAnim->endframe = 1; }
// throw away all animations
g_numani = 1; g_panimation[0]->numframes = 1; g_panimation[0]->startframe = 0; g_panimation[0]->endframe = 1; Q_strncpy( g_panimation[0]->animationname, "BindPose", sizeof(g_panimation[0]->animationname) ); g_panimation[0]->rotation = RadianEuler( 0, 0, 0 ); g_panimation[0]->adjust = Vector( 0, 0, 0 );
// throw away all vertex animations
g_numflexkeys = 0; g_defaultflexkey = NULL;
// Recalc attachment points:
for( i = 0; i < g_numattachments; i++ ) { if( g_centerstaticprop && ( i == g_numattachments - 1 ) ) continue; ConcatTransforms( rotated, g_attachment[i].local, g_attachment[i].local );
Q_strncpy( g_attachment[i].bonename, "static_prop", sizeof(g_attachment[i].name) ); g_attachment[i].bone = 0; g_attachment[i].type = 0; } }
//-----------------------------------------------------------------------------
// Marks the boneref all the way up the bone hierarchy
//-----------------------------------------------------------------------------
static void UpdateBonerefRecursive( s_source_t *psource, int nBoneIndex, int nFlags ) { if ( nFlags == 0 ) return;
psource->boneref[nBoneIndex] |= nFlags;
// Chain the flag up the parent
int n = psource->localBone[nBoneIndex].parent; while (n != -1) { psource->boneref[n] |= psource->boneref[nBoneIndex]; n = psource->localBone[n].parent; } }
//-----------------------------------------------------------------------------
// Purpose: Returns the axis of the bone after remapping. Axis 0:X, 1:Y, 2:Z
// If the bone has a parent, axis is returned as is, if bone does not
// have a parent then the $upaxis determines how the axes are mapped.
// Only $upaxis Y is supported (see comment in Cmd_UpAxis).
//-----------------------------------------------------------------------------
int GetRemappedBoneAxis( int nBoneIndex, int nAxis ) { if ( nBoneIndex < 0 || nBoneIndex >= g_numbones ) return nAxis;
if ( g_bonetable[nBoneIndex].parent >= 0 ) return nAxis;
// Y Up
if ( g_defaultrotation.x == static_cast< float >( M_PI / 2.0f ) && g_defaultrotation.y == 0.0f && g_defaultrotation.z == static_cast< float >( M_PI / 2.0f ) ) { static const int nAxisMap[3] = { 1, 2, 0 }; return nAxisMap[ nAxis ]; }
// Default Z Up
return nAxis; }
//-----------------------------------------------------------------------------
// Purpose: Map the flex driver bones to the global bone table
// Also cleans up any that do not match to a global bone
//-----------------------------------------------------------------------------
void MapFlexDriveBonesToGlobalBoneTable() { CDmeBoneFlexDriverList *pDmeBoneFlexDriverList = GetElement< CDmeBoneFlexDriverList >( g_hDmeBoneFlexDriverList ); if ( !pDmeBoneFlexDriverList ) return;
// Loop backwards so we can remove elements as we go
for ( int i = pDmeBoneFlexDriverList->m_eBoneFlexDriverList.Count() - 1; i >= 0; --i ) { CDmeBoneFlexDriver *pDmeBoneFlexDriver = pDmeBoneFlexDriverList->m_eBoneFlexDriverList[i]; if ( !pDmeBoneFlexDriver ) { pDmeBoneFlexDriverList->m_eBoneFlexDriverList.Remove( i ); continue; }
for ( int j = 0; j < g_numbones; ++j ) { if ( !Q_stricmp( g_bonetable[j].name, pDmeBoneFlexDriver->m_sBoneName.Get() ) ) { if ( g_bonetable[j].flags & BONE_ALWAYS_PROCEDURAL ) { MdlWarning( "DmeBoneFlexDriver Bone: %s is marked procedural, Ignoring flex drivers\n", pDmeBoneFlexDriver->m_sBoneName.Get() ); pDmeBoneFlexDriverList->m_eBoneFlexDriverList.Remove( i ); pDmeBoneFlexDriver = NULL; }
pDmeBoneFlexDriver->SetValue( "__boneIndex", j ); // Map the axis for Y up stuff
for ( int k = 0; k < pDmeBoneFlexDriver->m_eControlList.Count(); ++k ) { pDmeBoneFlexDriver->m_eControlList[k]->m_nBoneComponent = GetRemappedBoneAxis( j, pDmeBoneFlexDriver->m_eControlList[k]->m_nBoneComponent ); } break; } }
// Was removed because it was referencing a procedural bone
if ( !pDmeBoneFlexDriver ) continue;
CDmAttribute *pBoneIndexAttr = pDmeBoneFlexDriver->GetAttribute( "__boneIndex" ); if ( pBoneIndexAttr ) { pBoneIndexAttr->AddFlag( FATTRIB_DONTSAVE ); } else { MdlWarning( "DmeBoneFlexDriver Bone: %s - No Bone Found With That Name, Ignoring\n", pDmeBoneFlexDriver->m_sBoneName.Get() ); pDmeBoneFlexDriverList->m_eBoneFlexDriverList.Remove( i ); } } }
//-----------------------------------------------------------------------------
// Purpose: Tag bones in the specified source that are used as a bone flex driver
// Also cleans up any empty bone flex driver elements
// Also tags the DmeBoneFlexDriverControl with
//-----------------------------------------------------------------------------
void TagFlexDriverBones( s_source_t *pSource ) { CDmeBoneFlexDriverList *pDmeBoneFlexDriverList = GetElement< CDmeBoneFlexDriverList >( g_hDmeBoneFlexDriverList ); if ( !pDmeBoneFlexDriverList ) return;
// Loop backwards so we can remove elements as we go
for ( int i = pDmeBoneFlexDriverList->m_eBoneFlexDriverList.Count() - 1; i >= 0; --i ) { CDmeBoneFlexDriver *pDmeBoneFlexDriver = pDmeBoneFlexDriverList->m_eBoneFlexDriverList[i]; if ( !pDmeBoneFlexDriver ) { pDmeBoneFlexDriverList->m_eBoneFlexDriverList.Remove( i ); continue; }
for ( int j = pDmeBoneFlexDriver->m_eControlList.Count() - 1; j >= 0; --j ) { CDmeBoneFlexDriverControl *pDmeBoneFlexDriverControl = pDmeBoneFlexDriver->m_eControlList[j]; if ( !pDmeBoneFlexDriverControl ) { pDmeBoneFlexDriver->m_eControlList.Remove( j ); continue; }
if ( pDmeBoneFlexDriverControl->m_nBoneComponent < STUDIO_BONE_FLEX_TX || pDmeBoneFlexDriverControl->m_nBoneComponent > STUDIO_BONE_FLEX_TZ ) { MdlWarning( "DmeBoneFlexDriver Bone: %s - Flex Controller: %s, Bone Component Out Of Range: %d [0-2], Ignoring\n", pDmeBoneFlexDriver->m_sBoneName.Get(), pDmeBoneFlexDriverControl->m_sFlexControllerName.Get(), pDmeBoneFlexDriverControl->m_nBoneComponent.Get() ); pDmeBoneFlexDriver->m_eControlList.Remove( j ); continue; }
for ( int k = 0; k < g_numflexcontrollers; ++k ) { if ( !Q_stricmp( g_flexcontroller[k].name, pDmeBoneFlexDriverControl->m_sFlexControllerName.Get() ) ) { pDmeBoneFlexDriverControl->SetValue( "__flexControlIndex", k ); break; } }
if ( !pDmeBoneFlexDriverControl->HasAttribute( "__flexControlIndex" ) ) { MdlWarning( "DmeBoneFlexDriver Bone: %s - No Flex Controller Named: %s, Ignoring\n", pDmeBoneFlexDriver->m_sBoneName.Get(), pDmeBoneFlexDriverControl->m_sFlexControllerName.Get() ); pDmeBoneFlexDriver->m_eControlList.Remove( j ); } }
if ( pDmeBoneFlexDriver->m_eControlList.Count() <= 0 ) { MdlWarning( "DmeBoneFlexDriver Bone: %s - No Flex Controllers Defined, Ignoring\n", pDmeBoneFlexDriver->m_sBoneName.Get() ); pDmeBoneFlexDriverList->m_eBoneFlexDriverList.Remove( i ); continue; }
for ( int j = 0; j < pSource->numbones; ++j ) { if ( !Q_stricmp( pSource->localBone[j].name, pDmeBoneFlexDriver->m_sBoneName.Get() ) ) { // Mark used by all LODs
pSource->boneflags[j] |= BONE_USED_BY_VERTEX_MASK; } } } }
//-----------------------------------------------------------------------------
// Purpose: set "boneref" for all the source bones used by vertices, attachments, eyeballs, etc.
//-----------------------------------------------------------------------------
void TagUsedBones( ) { int i, j, k; int n;
// find used bones per g_model
for (i = 0; i < g_numsources; i++) { s_source_t *psource = g_source[i];
for (k = 0; k < MAXSTUDIOSRCBONES; k++) { psource->boneflags[k] = 0; psource->boneref[k] = 0; }
if (!psource->isActiveModel) continue;
// printf("active: %s\n", psource->filename );
for (j = 0; j < psource->numvertices; j++) { for (k = 0; k < psource->vertex[j].boneweight.numbones; k++) { psource->boneflags[psource->vertex[j].boneweight.bone[k]] |= BONE_USED_BY_VERTEX_LOD0; } } }
// find used bones per g_model
for (i = 0; i < g_numsources; i++) { s_source_t *psource = g_source[i];
// FIXME: this is in the wrong place. The attachment may be rigid and it never defined in a reference file
for (k = 0; k < g_numattachments; k++) { for (j = 0; j < psource->numbones; j++) { if ( !stricmp( g_attachment[k].bonename, psource->localBone[j].name ) ) { // this bone is a keeper with or without associated vertices
// because an attachment point depends on it.
if (g_attachment[k].type & IS_RIGID) { for (n = j; n != -1; n = psource->localBone[n].parent) { if (psource->boneflags[n] & BONE_USED_BY_VERTEX_LOD0) { psource->boneflags[n] |= BONE_USED_BY_ATTACHMENT; break; } } } else { psource->boneflags[j] |= BONE_USED_BY_ATTACHMENT; } } } }
for (k = 0; k < g_numikchains; k++) { for (j = 0; j < psource->numbones; j++) { if ( !stricmp( g_ikchain[k].bonename, psource->localBone[j].name ) ) { // this bone is a keeper with or without associated vertices
// because a ikchain depends on it.
psource->boneflags[j] |= BONE_USED_BY_ATTACHMENT; } } }
for (k = 0; k < g_nummouths; k++) { for (j = 0; j < psource->numbones; j++) { if ( !stricmp( g_mouth[k].bonename, psource->localBone[j].name ) ) { // this bone is a keeper with or without associated vertices
// because a mouth shader depends on it.
psource->boneflags[j] |= BONE_USED_BY_ATTACHMENT; } } }
// Tag all bones marked as being used by bonemerge
int nBoneMergeCount = g_BoneMerge.Count(); for ( k = 0; k < nBoneMergeCount; ++k ) { for ( j = 0; j < psource->numbones; j++ ) { if ( stricmp( g_BoneMerge[k].bonename, psource->localBone[j].name ) ) continue;
psource->boneflags[j] |= BONE_USED_BY_BONE_MERGE; } }
// Tag bones used as bone flex drivers, these need to be client side only
TagFlexDriverBones( psource );
// NOTE: This must come last; after all flags have been set!
// tag bonerefs as being used the union of the boneflags all their children
for (k = 0; k < psource->numbones; k++) { UpdateBonerefRecursive( psource, k, psource->boneflags[k] ); } }
// tag all eyeball bones
for (i = 0; i < g_nummodelsbeforeLOD; i++) { s_source_t *psource = g_model[i]->source; for (k = 0; k < g_model[i]->numeyeballs; k++) { psource->boneref[g_model[i]->eyeball[k].bone] |= BONE_USED_BY_ATTACHMENT; } } }
//-----------------------------------------------------------------------------
// Purpose: change the names in the source files for bones that max auto-renamed on us
//-----------------------------------------------------------------------------
void RenameBones( ) { int i, j, k;
// rename source bones if needed
for (i = 0; i < g_numsources; i++) { for (j = 0; j < g_source[i]->numbones; j++) { for (k = 0; k < g_numrenamedbones; k++) { if (!stricmp( g_source[i]->localBone[j].name, g_renamedbone[k].from)) { strcpy( g_source[i]->localBone[j].name, g_renamedbone[k].to ); break; } } } } }
const char *RenameBone( const char *pName ) { for ( int k = 0; k < g_numrenamedbones; k++) { if ( !Q_stricmp( pName, g_renamedbone[k].from ) ) return g_renamedbone[k].to; } return pName; }
//-----------------------------------------------------------------------------
// Tags bones in the global bone table
//-----------------------------------------------------------------------------
void TagUsedImportedBones() { // NOTE: This has to happen because some bones referenced by bonemerge
// can be set up using the importbones feature
int k, j;
// Tag all bones marked as being used by bonemerge
int nBoneMergeCount = g_BoneMerge.Count(); for ( k = 0; k < nBoneMergeCount; ++k ) { for ( j = 0; j < g_numbones; j++ ) { if ( stricmp( g_BoneMerge[k].bonename, g_bonetable[j].name ) ) continue;
g_bonetable[j].flags |= BONE_USED_BY_BONE_MERGE; } } }
//-----------------------------------------------------------------------------
// Purpose: look through all the sources and build a table of used bones
//-----------------------------------------------------------------------------
int BuildGlobalBonetable( ) { int i, j, k, n; int iError = 0;
g_numbones = 0;
for (i = 0; i < MAXSTUDIOSRCBONES; i++) { SetIdentityMatrix( g_bonetable[i].srcRealign ); }
// insert predefined bones first
for (i = 0; i < g_numimportbones; i++) { k = findGlobalBone( g_importbone[i].name ); if (k == -1) { k = g_numbones; V_strcpy_safe( g_bonetable[k].name, g_importbone[i].name ); if ( strlen( g_importbone[i].parent ) == 0 ) { g_bonetable[k].parent = -1; } else { // FIXME: This won't work if the imported bone refers to
// another imported bone which is further along in the list
g_bonetable[k].parent = findGlobalBone( g_importbone[i].parent ); if ( g_bonetable[k].parent == -1 ) { Warning("Imported bone %s tried to access parent bone %s and failed!\n", g_importbone[i].name, g_importbone[i].parent ); } } g_bonetable[k].bPreDefined = true; g_bonetable[k].rawLocal = g_importbone[i].rawLocal; g_bonetable[k].rawLocalOriginal = g_bonetable[k].rawLocal; g_numbones++; } g_bonetable[k].bDontCollapse = true; g_bonetable[k].srcRealign = g_importbone[i].srcRealign; g_bonetable[k].bPreAligned = true; }
TagUsedImportedBones();
// union of all used bones
for ( i = 0; i < g_numsources; i++ ) { s_source_t *psource = g_source[i];
// skip sources with no bones
if (psource->numbones == 0) continue;
matrix3x4_t srcBoneToWorld[MAXSTUDIOSRCBONES]; s_sourceanim_t *pSourceAnim = FindSourceAnim( psource, "BindPose" ); if ( !pSourceAnim ) { pSourceAnim = &psource->m_Animations[0]; } BuildRawTransforms( psource, pSourceAnim->animationname, 0, srcBoneToWorld );
for ( j = 0; j < psource->numbones; j++ ) { if ( g_collapse_bones_aggressive ) { if ( psource->boneflags[j] == 0 ) continue; } else { if ( psource->boneref[j] == 0 ) continue; }
k = findGlobalBone( psource->localBone[j].name ); if (k == -1) { // create new bone
k = g_numbones; V_strcpy_safe( g_bonetable[k].name, psource->localBone[j].name ); if ((n = psource->localBone[j].parent) != -1) g_bonetable[k].parent = findGlobalBone( psource->localBone[n].name ); else g_bonetable[k].parent = -1; g_bonetable[k].bonecontroller = 0; g_bonetable[k].flags = psource->boneflags[j];
if ( g_bonetable[k].parent == -1 || !g_bonetable[g_bonetable[k].parent].bPreAligned ) { AngleMatrix( pSourceAnim->rawanim[0][j].rot, pSourceAnim->rawanim[0][j].pos, g_bonetable[k].rawLocal ); g_bonetable[k].rawLocalOriginal = g_bonetable[k].rawLocal; } else { // convert the local relative position into a realigned relative position
matrix3x4_t srcParentBoneToWorld; ConcatTransforms( srcBoneToWorld[n], g_bonetable[g_bonetable[k].parent].srcRealign, srcParentBoneToWorld ); matrix3x4_t invSrcParentBoneToWorld; MatrixInvert( srcParentBoneToWorld, invSrcParentBoneToWorld ); ConcatTransforms( invSrcParentBoneToWorld, srcBoneToWorld[j], g_bonetable[k].rawLocal ); }
g_bonetable[k].boneToPose.Invalidate();
// printf("%d : %s (%s)\n", k, g_bonetable[k].name, g_bonetable[g_bonetable[k].parent].name );
g_numbones++; continue; } if (g_bOverridePreDefinedBones && g_bonetable[k].bPreDefined) { g_bonetable[k].flags |= psource->boneflags[j];
ConcatTransforms( srcBoneToWorld[j], g_bonetable[k].srcRealign, g_bonetable[k].boneToPose );
if (g_bonetable[k].parent == -1) { MatrixCopy( g_bonetable[k].boneToPose, g_bonetable[k].rawLocal ); } else { matrix3x4_t tmp; MatrixInvert( g_bonetable[g_bonetable[k].parent].boneToPose, tmp ); ConcatTransforms( tmp, g_bonetable[k].boneToPose, g_bonetable[k].rawLocal ); } continue; }
// accumlate flags
g_bonetable[k].flags |= psource->boneflags[j]; } }
return iError; }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void BuildGlobalBoneToPose( ) { int k;
// build reference pose
for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].parent == -1) { MatrixCopy( g_bonetable[k].rawLocal, g_bonetable[k].boneToPose ); } else { ConcatTransforms (g_bonetable[g_bonetable[k].parent].boneToPose, g_bonetable[k].rawLocal, g_bonetable[k].boneToPose); } } }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void RebuildLocalPose( ) { int k;
matrix3x4_t boneToPose[MAXSTUDIOBONES];
// build reference pose
for (k = 0; k < g_numbones; k++) { MatrixCopy( g_bonetable[k].boneToPose, boneToPose[k] ); }
matrix3x4_t poseToBone[MAXSTUDIOBONES];
// rebuild local pose
for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].parent == -1) { MatrixCopy( boneToPose[k], g_bonetable[k].rawLocal ); } else { ConcatTransforms (poseToBone[g_bonetable[k].parent], boneToPose[k], g_bonetable[k].rawLocal ); } MatrixAngles( g_bonetable[k].rawLocal, g_bonetable[k].rot, g_bonetable[k].pos ); MatrixCopy( boneToPose[k], g_bonetable[k].boneToPose ); MatrixInvert( boneToPose[k], poseToBone[k] );
// printf("%d \"%s\" %d\n", k, g_bonetable[k].name, g_bonetable[k].parent );
} //exit(0);
}
//-----------------------------------------------------------------------------
// Purpose: attach bones to different parents if needed
//-----------------------------------------------------------------------------
void EnforceHierarchy( ) { int i, j, k;
// force changes to hierarchy
for (i = 0; i < g_numforcedhierarchy; i++) { j = findGlobalBone( g_forcedhierarchy[i].parentname ); k = findGlobalBone( g_forcedhierarchy[i].childname );
if (j == -1 && strlen( g_forcedhierarchy[i].parentname ) > 0 ) { MdlError( "unknown bone: \"%s\" in forced hierarchy\n", g_forcedhierarchy[i].parentname ); } if (k == -1) { MdlError( "unknown bone: \"%s\" in forced hierarchy\n", g_forcedhierarchy[i].childname ); } /*
if (j > k) { MdlError( "parent \"%s\" declared after child \"%s\" in forced hierarchy\n", g_forcedhierarchy[i].parentname, g_forcedhierarchy[i].childname ); } */
/*
if (strlen(g_forcedhierarchy[i].subparentname) != 0) { int n, m;
m = findGlobalBone( g_forcedhierarchy[i].subparentname ); if (m != -1) { MdlError( "inserted bone \"%s\" matches name of existing bone in hierarchy\n", g_forcedhierarchy[i].parentname, g_forcedhierarchy[i].subparentname ); }
printf("inserting bone \"%s\"\n", g_forcedhierarchy[i].subparentname );
// shift the bone list up
for (n = g_numbones; n > k; n--) { g_bonetable[n] = g_bonetable[n-1]; if (g_bonetable[n].parent >= k) { g_bonetable[n].parent = g_bonetable[n].parent + 1; } MatrixCopy( boneToPose[n-1], boneToPose[n] ); } g_numbones++;
// add the bone
strcpy( g_bonetable[k].name, g_forcedhierarchy[i].subparentname ); g_bonetable[k].parent = j; g_bonetable[k].split = true; g_bonetable[k+1].parent = k;
// split the bone
Quaternion q1, q2; Vector p; MatrixAngles( boneToPose[k], q1, p ); // FIXME: badly named!
// !!!!
// QuaternionScale( q1, 0.5, q2 );
// q2.Init( 0, 0, 0, 1 );
// AngleQuaternion( QAngle( 0, 0, 0 ), q2 );
//QuaternionMatrix( q2, p, boneToPose[k] );
QuaternionMatrix( q1, p, boneToPose[k] ); QuaternionMatrix( q1, p, boneToPose[k+1] ); } else */ { g_bonetable[k].parent = j; } }
// resort hierarchy
bool bSort = true; int count = 0;
while (bSort) { count++; bSort = false; for (i = 0; i < g_numbones; i++) { if (g_bonetable[i].parent > i) { // swap
j = g_bonetable[i].parent; s_bonetable_t tmp; tmp = g_bonetable[i]; g_bonetable[i] = g_bonetable[j]; g_bonetable[j] = tmp;
// relink parents
for (k = i; k < g_numbones; k++) { if (g_bonetable[k].parent == i) { g_bonetable[k].parent = j; } else if (g_bonetable[k].parent == j) { g_bonetable[k].parent = i; } }
bSort = true; } } if (count > 1000) { MdlError( "Circular bone hierarchy\n"); } } }
//-----------------------------------------------------------------------------
// Purpose: find procedural bones and tag for inclusion even if they don't animate
//-----------------------------------------------------------------------------
void TagProceduralBones( ) { int j;
// look for AxisInterp bone definitions
int numaxisinterpbones = 0; for (j = 0; j < g_numaxisinterpbones; j++) { g_axisinterpbones[j].bone = findGlobalBone( g_axisinterpbones[j].bonename ); g_axisinterpbones[j].control = findGlobalBone( g_axisinterpbones[j].controlname );
if (g_axisinterpbones[j].bone == -1) { if (!g_quiet) { printf("axisinterpbone \"%s\" unused\n", g_axisinterpbones[j].bonename ); } continue; // optimized out, don't complain
}
if (g_axisinterpbones[j].control == -1) { MdlError( "Missing control bone \"%s\" for procedural bone \"%s\"\n", g_axisinterpbones[j].bonename, g_axisinterpbones[j].controlname ); }
g_bonetable[g_axisinterpbones[j].bone].flags |= BONE_ALWAYS_PROCEDURAL; // ??? what about physics rules
g_axisinterpbonemap[numaxisinterpbones++] = j; } g_numaxisinterpbones = numaxisinterpbones;
// look for QuatInterp bone definitions
int numquatinterpbones = 0; for (j = 0; j < g_numquatinterpbones; j++) { g_quatinterpbones[j].bone = findGlobalBoneXSI( g_quatinterpbones[j].bonename ); g_quatinterpbones[j].control = findGlobalBoneXSI( g_quatinterpbones[j].controlname );
if (g_quatinterpbones[j].bone == -1) { if (!g_quiet && !g_bCreateMakefile ) { printf("quatinterpbone \"%s\" unused\n", g_quatinterpbones[j].bonename ); } continue; // optimized out, don't complain
}
if (g_quatinterpbones[j].control == -1) { MdlError( "Missing control bone \"%s\" for procedural bone \"%s\"\n", g_quatinterpbones[j].bonename, g_quatinterpbones[j].controlname ); }
g_bonetable[g_quatinterpbones[j].bone].flags |= BONE_ALWAYS_PROCEDURAL; // ??? what about physics rules
g_quatinterpbonemap[numquatinterpbones++] = j; } g_numquatinterpbones = numquatinterpbones; // look for AimAt bone definitions
int numaimatbones = 0; for (j = 0; j < g_numaimatbones; j++) { g_aimatbones[j].bone = findGlobalBoneXSI( g_aimatbones[j].bonename );
if (g_aimatbones[j].bone == -1) { if (!g_quiet && !g_bCreateMakefile ) { printf("<aimconstraint> \"%s\" unused\n", g_aimatbones[j].bonename ); } continue; // optimized out, don't complain
}
g_aimatbones[j].parent = findGlobalBoneXSI( g_aimatbones[j].parentname );
if (g_aimatbones[j].parent == -1) { MdlError( "Missing parent control bone \"%s\" for procedural bone \"%s\"\n", g_aimatbones[j].parentname, g_aimatbones[j].bonename ); }
// Look for the aim bone as an attachment first
g_aimatbones[j].aimAttach = -1;
for ( int ai( 0 ); ai < g_numattachments; ++ai ) { if ( strcmp( g_attachment[ ai ].name, g_aimatbones[j].aimname ) == 0 ) { g_aimatbones[j].aimAttach = ai; break; } }
if ( g_aimatbones[j].aimAttach == -1 ) { g_aimatbones[j].aimBone = findGlobalBoneXSI( g_aimatbones[j].aimname );
if ( g_aimatbones[j].aimBone == -1 ) { MdlError( "Missing aim control attachment or bone \"%s\" for procedural bone \"%s\"\n", g_aimatbones[j].aimname, g_aimatbones[j].bonename ); } }
g_bonetable[g_aimatbones[j].bone].flags |= BONE_ALWAYS_PROCEDURAL; // ??? what about physics rules
g_aimatbonemap[numaimatbones++] = j; }
// look for Jiggle bone definitions
int numjigglebones = 0; for (j = 0; j < g_numjigglebones; j++) { g_jigglebones[j].bone = findGlobalBone( g_jigglebones[j].bonename );
if (g_jigglebones[j].bone == -1) { if (!g_quiet) { printf("jigglebone \"%s\" unused\n", g_jigglebones[j].bonename ); } continue; // optimized out, don't complain
}
g_bonetable[g_jigglebones[j].bone].flags |= BONE_ALWAYS_PROCEDURAL; // ??? what about physics rules
g_jigglebonemap[numjigglebones++] = j; } g_numjigglebones = numjigglebones; }
//-----------------------------------------------------------------------------
// Purpose: convert original procedural bone info into correct values for existing skeleton
//-----------------------------------------------------------------------------
void RemapProceduralBones( ) { int j;
// look for QuatInterp bone definitions
for (j = 0; j < g_numquatinterpbones; j++) { s_quatinterpbone_t *pInterp = &g_quatinterpbones[g_quatinterpbonemap[j]];
int origParent = findGlobalBoneXSI( pInterp->parentname ); int origControlParent = findGlobalBoneXSI( pInterp->controlparentname );
if (origParent == -1) { MdlError( "procedural bone \"%s\", can't find orig parent \"%s\"\n\n", pInterp->bonename, pInterp->parentname ); }
if (origControlParent == -1) { MdlError( "procedural bone \"%s\", can't find control parent \"%s\n\n", pInterp->bonename, pInterp->controlparentname ); }
if ( g_bonetable[pInterp->bone].parent != origParent) { MdlError( "unknown procedural bone parent remapping\n" ); }
if ( g_bonetable[pInterp->control].parent != origControlParent) { MdlError( "procedural bone \"%s\", parent remapping error, control parent was \"%s\", is now \"%s\"\n", pInterp->bonename, pInterp->controlparentname, g_bonetable[g_bonetable[pInterp->control].parent].name ); }
// remap triggers and movements/rotations due to skeleton changes and realignment
for (int k = 0; k < pInterp->numtriggers; k++) { int parent = g_bonetable[pInterp->control].parent;
// triggers are the "control" bone relative to the control's parent bone
if (parent != -1) { matrix3x4_t invControlParentRealign; MatrixInvert( g_bonetable[parent].srcRealign, invControlParentRealign );
matrix3x4_t srcControlParentBoneToPose; ConcatTransforms( g_bonetable[parent].boneToPose, invControlParentRealign, srcControlParentBoneToPose );
matrix3x4_t srcControlRelative; QuaternionMatrix( pInterp->trigger[k], srcControlRelative );
matrix3x4_t srcControlBoneToPose; ConcatTransforms( srcControlParentBoneToPose, srcControlRelative, srcControlBoneToPose );
matrix3x4_t destControlParentBoneToPose; ConcatTransforms( srcControlParentBoneToPose, g_bonetable[parent].srcRealign, destControlParentBoneToPose );
matrix3x4_t destControlBoneToPose; ConcatTransforms( srcControlBoneToPose, g_bonetable[pInterp->control].srcRealign, destControlBoneToPose );
matrix3x4_t invDestControlParentBoneToPose; MatrixInvert( destControlParentBoneToPose, invDestControlParentBoneToPose );
matrix3x4_t destControlRelative; ConcatTransforms( invDestControlParentBoneToPose, destControlBoneToPose, destControlRelative );
Vector tmp; MatrixAngles( destControlRelative, pInterp->trigger[k], tmp );
/*
Vector pos; RadianEuler angles;
MatrixAngles( srcControlRelative, angles, pos ); printf("srcControlRelative : %7.2f %7.2f %7.2f\n", RAD2DEG( angles.x ), RAD2DEG( angles.y ), RAD2DEG( angles.z ) );
MatrixAngles( destControlRelative, angles, pos ); printf("destControlRelative : %7.2f %7.2f %7.2f\n", RAD2DEG( angles.x ), RAD2DEG( angles.y ), RAD2DEG( angles.z ) );
printf("\n"); */ }
// movements are relative to the bone's parent
parent = g_bonetable[pInterp->bone].parent; if (parent != -1) { //printf("procedural bone \"%s\"\n", pInterp->bonename );
//printf("pre : %7.2f %7.2f %7.2f\n", pInterp->pos[k].x, pInterp->pos[k].y, pInterp->pos[k].z );
// get local transform
matrix3x4_t srcParentRelative; QuaternionMatrix( pInterp->quat[k], pInterp->pos[k] + pInterp->basepos, srcParentRelative );
// get original boneToPose
matrix3x4_t invSrcRealign; MatrixInvert( g_bonetable[parent].srcRealign, invSrcRealign ); matrix3x4_t origParentBoneToPose; ConcatTransforms( g_bonetable[parent].boneToPose, invSrcRealign, origParentBoneToPose );
// move bone adjustment into world position
matrix3x4_t srcBoneToWorld; ConcatTransforms( origParentBoneToPose, srcParentRelative, srcBoneToWorld );
// calculate local transform
matrix3x4_t parentPoseToBone; MatrixInvert( g_bonetable[parent].boneToPose, parentPoseToBone ); matrix3x4_t destBoneToWorld; ConcatTransforms( parentPoseToBone, srcBoneToWorld, destBoneToWorld );
// save out the local transform
MatrixAngles( destBoneToWorld, pInterp->quat[k], pInterp->pos[k] );
pInterp->pos[k] += g_bonetable[pInterp->control].pos * pInterp->percentage;
//printf("post : %7.2f %7.2f %7.2f\n", pInterp->pos[k].x, pInterp->pos[k].y, pInterp->pos[k].z );
}
} }
// look for aimatbones
for (j = 0; j < g_numaimatbones; j++) { s_aimatbone_t *pAimAtBone = &g_aimatbones[g_aimatbonemap[j]];
int origParent = findGlobalBoneXSI( pAimAtBone->parentname );
if (origParent == -1) { MdlError( "<aimconstraint> bone \"%s\", can't find parent bone \"%s\"\n\n", pAimAtBone->bonename, pAimAtBone->parentname ); }
int origAim( -1 );
for ( int ai( 0 ); ai < g_numattachments; ++ai ) { if ( strcmp( g_attachment[ ai ].name, pAimAtBone->aimname ) == 0 ) { origAim = ai; break; } }
if (origAim == -1) { MdlError( "<aimconstraint> bone \"%s\", can't find aim bone \"%s\n\n", pAimAtBone->bonename, pAimAtBone->aimname ); } } }
//-----------------------------------------------------------------------------
// Purpose: propogate procedural bone usage up its chain
//-----------------------------------------------------------------------------
void MarkProceduralBoneChain() { int j; int k; int fBoneFlags;
// look for QuatInterp bone definitions
for (j = 0; j < g_numquatinterpbones; j++) { s_quatinterpbone_t *pInterp = &g_quatinterpbones[g_quatinterpbonemap[j]]; fBoneFlags = g_bonetable[pInterp->bone].flags & BONE_USED_MASK;
// propogate the procedural bone usage up its hierarchy
k = pInterp->control; while (k != -1) { g_bonetable[k].flags |= fBoneFlags; k = g_bonetable[k].parent; }
// propogate the procedural bone usage up its hierarchy
k = pInterp->bone; while (k != -1) { g_bonetable[k].flags |= fBoneFlags; k = g_bonetable[k].parent; } } }
//-----------------------------------------------------------------------------
// Purpose: go through all source files and link local bone indices and global bonetable indicies
//-----------------------------------------------------------------------------
static int MapSourcesToGlobalBonetable( ) { int i, j, k; int iError = 0;
// map each source bone list to master list
for (i = 0; i < g_numsources; i++) { s_source_t *pSource = g_source[i];
memset( pSource->boneLocalToGlobal, 0xFF, sizeof(pSource->boneLocalToGlobal) ); memset( pSource->boneGlobalToLocal, 0xFF, sizeof(pSource->boneGlobalToLocal) );
for ( j = 0; j < pSource->numbones; j++ ) { k = findGlobalBone( pSource->localBone[j].name ); if ( k >= 0 ) { pSource->boneLocalToGlobal[j] = k; pSource->boneGlobalToLocal[k] = j; continue; }
int m = pSource->localBone[j].parent; while ( m != -1 && ( k = findGlobalBone( pSource->localBone[m].name ) ) == -1 ) { m = pSource->localBone[m].parent; } if (k == -1) { /*
if (!g_quiet) { printf("unable to find connection for collapsed bone \"%s\" \n", pSource->localBone[j].name ); } */ k = 0; } pSource->boneLocalToGlobal[j] = k; } } return iError; }
//-----------------------------------------------------------------------------
// Purpose: go through bone and find any that arent aligned on the X axis
//-----------------------------------------------------------------------------
void RealignBones( ) { int k;
int childbone[MAXSTUDIOBONES]; for (k = 0; k < g_numbones; k++) { childbone[k] = -1; }
// force bones with IK rules to realign themselves
for (int i = 0; i < g_numikchains; i++) { k = g_ikchain[i].link[0].bone; if (childbone[k] == -1 || childbone[k] == g_ikchain[i].link[1].bone) { childbone[k] = g_ikchain[i].link[1].bone; } else { MdlError("Trying to realign bone \"%s\" with two children \"%s\", \"%s\"\n", g_bonetable[k].name, g_bonetable[childbone[k]].name, g_bonetable[g_ikchain[i].link[1].bone].name ); }
k = g_ikchain[i].link[1].bone; if (childbone[k] == -1 || childbone[k] == g_ikchain[i].link[2].bone) { childbone[k] = g_ikchain[i].link[2].bone; } else { MdlError("Trying to realign bone \"%s\" with two children \"%s\", \"%s\"\n", g_bonetable[k].name, g_bonetable[childbone[k]].name, g_bonetable[g_ikchain[i].link[2].bone].name ); } }
if (g_realignbones) { int children[MAXSTUDIOBONES];
// count children
for (k = 0; k < g_numbones; k++) { children[k] = 0; } for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].parent != -1) { children[g_bonetable[k].parent]++; } }
// if my parent bone only has one child, then tell it to align to me
for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].parent != -1 && children[g_bonetable[k].parent] == 1) { childbone[g_bonetable[k].parent] = k; } } }
matrix3x4_t boneToPose[MAXSTUDIOBONES];
for (k = 0; k < g_numbones; k++) { MatrixCopy( g_bonetable[k].boneToPose, boneToPose[k] ); }
// look for bones that aren't on a primary X axis
for (k = 0; k < g_numbones; k++) { // printf("%s %.4f %.4f %.4f (%d)\n", g_bonetable[k].name, g_bonetable[k].pos.x, g_bonetable[k].pos.y, g_bonetable[k].pos.z, children[k] );
if (!g_bonetable[k].bPreAligned && childbone[k] != -1) { float d = g_bonetable[childbone[k]].pos.Length();
// check to see that it's on positive X
if (d - g_bonetable[childbone[k]].pos.x > 0.01) { Vector v2; Vector v3; // printf("%s:%s %.4f %.4f %.4f\n", g_bonetable[k].name, g_bonetable[childbone[k]].name, g_bonetable[childbone[k]].pos.x, g_bonetable[childbone[k]].pos.y, g_bonetable[childbone[k]].pos.z );
Vector forward, left, up;
// calc X axis
MatrixGetColumn( g_bonetable[childbone[k]].boneToPose, 3, v2 ); MatrixGetColumn( g_bonetable[k].boneToPose, 3, v3 ); forward = v2 - v3; VectorNormalize( forward );
// try to align to existing bone/boundingbox by finding most perpendicular
// existing axis and aligning the new Z axis to it.
Vector forward2, left2, up2; MatrixGetColumn( boneToPose[k], 0, forward2 ); MatrixGetColumn( boneToPose[k], 1, left2 ); MatrixGetColumn( boneToPose[k], 2, up2 ); float d1 = fabs(DotProduct( forward, forward2 )); float d2 = fabs(DotProduct( forward, left2 )); float d3 = fabs(DotProduct( forward, up2 )); if (d1 <= d2 && d1 <= d3) { up = CrossProduct( forward, forward2 ); VectorNormalize( up ); } else if (d2 <= d1 && d2 <= d3) { up = CrossProduct( forward, left2 ); VectorNormalize( up ); } else { up = CrossProduct( forward, up2 ); VectorNormalize( up ); } left = CrossProduct( up, forward );
// setup matrix
MatrixSetColumn( forward, 0, boneToPose[k] ); MatrixSetColumn( left, 1, boneToPose[k] ); MatrixSetColumn( up, 2, boneToPose[k] );
// check orthonormality of matrix
d = fabs( DotProduct( forward, left ) ) + fabs( DotProduct( left, up ) ) + fabs( DotProduct( up, forward ) ) + fabs( DotProduct( boneToPose[k][0], boneToPose[k][1] ) ) + fabs( DotProduct( boneToPose[k][1], boneToPose[k][2] ) ) + fabs( DotProduct( boneToPose[k][2], boneToPose[k][0] ) );
if (d > 0.0001) { MdlError( "error with realigning bone %s\n", g_bonetable[k].name ); }
// printf("%f %f %f\n", DotProduct( boneToPose[k][0], boneToPose[k][1] ), DotProduct( boneToPose[k][1], boneToPose[k][2] ), DotProduct( boneToPose[k][2], boneToPose[k][0] ) );
// printf("%f %f %f\n", DotProduct( forward, left ), DotProduct( left, up ), DotProduct( up, forward ) );
// VectorMatrix( forward, boneToPose[k] );
MatrixSetColumn( v3, 3, boneToPose[k] ); } } }
for (int i = 0; i < g_numforcedrealign; i++) { k = findGlobalBone( g_forcedrealign[i].name ); if (k == -1) { MdlError( "unknown bone %s in $forcedrealign\n", g_forcedrealign[i].name ); }
matrix3x4_t local; matrix3x4_t tmp;
AngleMatrix( g_forcedrealign[i].rot, local ); ConcatTransforms( boneToPose[k], local, tmp ); MatrixCopy( tmp, boneToPose[k] ); }
// build realignment transforms
for (k = 0; k < g_numbones; k++) { if (!g_bonetable[k].bPreAligned) { matrix3x4_t poseToBone;
MatrixInvert( g_bonetable[k].boneToPose, poseToBone ); ConcatTransforms( poseToBone, boneToPose[k], g_bonetable[k].srcRealign );
MatrixCopy( boneToPose[k], g_bonetable[k].boneToPose ); } }
// printf("\n");
// rebuild default angles, position, etc.
for (k = 0; k < g_numbones; k++) { if (!g_bonetable[k].bPreAligned) { matrix3x4_t bonematrix; if (g_bonetable[k].parent == -1) { MatrixCopy( g_bonetable[k].boneToPose, bonematrix ); } else { matrix3x4_t poseToBone; // convert my transform into parent relative space
MatrixInvert( g_bonetable[g_bonetable[k].parent].boneToPose, poseToBone ); ConcatTransforms( poseToBone, g_bonetable[k].boneToPose, bonematrix ); }
MatrixAngles( bonematrix, g_bonetable[k].rot, g_bonetable[k].pos ); } }
// exit(0);
// printf("\n");
// build reference pose
for (k = 0; k < g_numbones; k++) { matrix3x4_t bonematrix; AngleMatrix( g_bonetable[k].rot, g_bonetable[k].pos, bonematrix ); // MatrixCopy( g_bonetable[k].rawLocal, bonematrix );
if (g_bonetable[k].parent == -1) { MatrixCopy( bonematrix, g_bonetable[k].boneToPose ); } else { ConcatTransforms (g_bonetable[g_bonetable[k].parent].boneToPose, bonematrix, g_bonetable[k].boneToPose); } /*
Vector v1; MatrixGetColumn( g_bonetable[k].boneToPose, 3, v1 ); printf("%s %.4f %.4f %.4f\n", g_bonetable[k].name, v1.x, v1.y, v1.z ); */ } }
void CenterBonesOnVerts( void ) { Vector bmin[MAXSTUDIOBONES]; Vector bmax[MAXSTUDIOBONES];
int i, j, k, n;
for (k = 0; k < g_numbones; k++) { bmin[k] = Vector( 1, 1, 1 ) * 99999999.0; bmax[k] = Vector( 1, 1, 1 ) * -99999999.0; }
// find domain of all the vertices
for (i = 0; i < g_numsources; i++) { s_source_t *pSource = g_source[i]; if ( !pSource->vertex ) continue;
s_sourceanim_t *pSourceAnim = FindSourceAnim( pSource, "BindPose" ); if ( !pSourceAnim ) { pSourceAnim = &pSource->m_Animations[0]; } pSource->m_GlobalVertices.AddMultipleToTail( pSource->numvertices );
Vector p; for (j = 0; j < pSource->numvertices; j++) { for (n = 0; n < pSource->m_GlobalVertices[j].boneweight.numbones; n++) { k = pSource->m_GlobalVertices[j].boneweight.bone[n]; p = pSource->m_GlobalVertices[j].position;
bmin[k] = bmin[k].Min( p ); bmax[k] = bmax[k].Max( p ); } } }
// copy min/maxs up to parent
for (k = g_numbones - 1; k >= 0; k--) { if (bmin[k].x > bmax[k].x) { for (j = k + 1; j < g_numbones; j++) { if (g_bonetable[j].parent == k) { bmin[k] = bmin[k].Min( bmin[j] ); bmax[k] = bmax[k].Max( bmax[j] ); } } } }
for (k = 0; k < g_numbones; k++) { if (bmin[k].x <= bmax[k].x) { Vector center = (bmin[k] + bmax[k]) * 0.5; // printf("%d %.1f %.1f %.1f\n", k, center.x, center.y, center.z );
matrix3x4_t updateCenter; MatrixCopy( g_bonetable[k].boneToPose, updateCenter ); PositionMatrix( center, updateCenter );
matrix3x4_t invPoseToBone; MatrixInvert( g_bonetable[k].boneToPose, invPoseToBone ); ConcatTransforms( invPoseToBone, updateCenter, g_bonetable[k].srcRealign );
MatrixCopy( updateCenter, g_bonetable[k].boneToPose ); } } // rebuild default angles, position, etc.
for (k = 0; k < g_numbones; k++) { if (!g_bonetable[k].bPreAligned) { matrix3x4_t bonematrix; if (g_bonetable[k].parent == -1) { MatrixCopy( g_bonetable[k].boneToPose, bonematrix ); } else { matrix3x4_t poseToBone; // convert my transform into parent relative space
MatrixInvert( g_bonetable[g_bonetable[k].parent].boneToPose, poseToBone ); ConcatTransforms( poseToBone, g_bonetable[k].boneToPose, bonematrix ); }
MatrixAngles( bonematrix, g_bonetable[k].rot, g_bonetable[k].pos ); } } }
//-----------------------------------------------------------------------------
// Purpose: find all the different bones used in all the source files and map everything
// to a common bonetable.
//-----------------------------------------------------------------------------
void RemapBones( ) { int iError = 0;
if ( g_staticprop ) { MakeStaticProp( ); } else if ( g_centerstaticprop ) { MdlWarning("Ignoring option $autocenter. Only supported on $staticprop models!!!\n" ); }
TagUsedBones( );
RenameBones( );
iError = BuildGlobalBonetable( );
BuildGlobalBoneToPose( );
EnforceHierarchy( );
{ int k, n; for ( k = 0; k < g_numbones; k++ ) { // tag parent bones as being in the same way as their children
n = g_bonetable[k].parent; while (n != -1) { g_bonetable[n].flags |= g_bonetable[k].flags; n = g_bonetable[n].parent; } } }
if ( g_collapse_bones || g_numimportbones ) { CollapseBones( ); }
if ( g_numbones >= MAXSTUDIOBONES ) { MdlError( "Too many bones used in model, used %d, max %d\n", g_numbones, MAXSTUDIOBONES ); }
/*
for (i = 0; i < g_numbones; i++) { printf("%2d %s %d\n", i, g_bonetable[i].name, g_bonetable[i].parent ); } */
RebuildLocalPose( );
TagProceduralBones( );
if ( iError && !(ignore_warnings) ) { MdlError( "Exiting due to errors\n" ); } MapSourcesToGlobalBonetable( );
if ( iError && !(ignore_warnings) ) { MdlError( "Exiting due to errors\n" ); }
// Map the bone names to global bone indices for all BoneFlexDrivers
MapFlexDriveBonesToGlobalBoneTable(); }
//-----------------------------------------------------------------------------
// Purpose: calculate the bone to world transforms for a processed animation
//-----------------------------------------------------------------------------
void CalcBoneTransforms( s_animation_t *panimation, int frame, matrix3x4_t* pBoneToWorld ) { CalcBoneTransforms( panimation, g_panimation[0], frame, pBoneToWorld ); }
void CalcBoneTransforms( s_animation_t *panimation, s_animation_t *pbaseanimation, int frame, matrix3x4_t* pBoneToWorld ) { if ((panimation->flags & STUDIO_LOOPING) && panimation->numframes > 1) { while (frame >= (panimation->numframes - 1)) { frame = frame - (panimation->numframes - 1); } } if (frame < 0 || frame >= panimation->numframes) { MdlError("requested out of range frame on animation \"%s\" : %d (%d)\n", panimation->name, frame, panimation->numframes ); }
for (int k = 0; k < g_numbones; k++) { Vector angle; matrix3x4_t bonematrix;
if (!(panimation->flags & STUDIO_DELTA)) { AngleMatrix( panimation->sanim[frame][k].rot, panimation->sanim[frame][k].pos, bonematrix ); } else if (pbaseanimation) { Quaternion q1, q2, q3; Vector p3;
//AngleQuaternion( g_bonetable[k].rot, q1 );
AngleQuaternion( pbaseanimation->sanim[0][k].rot, q1 ); AngleQuaternion( panimation->sanim[frame][k].rot, q2 );
float s = panimation->weight[k];
QuaternionMA( q1, s, q2, q3 ); //p3 = g_bonetable[k].pos + s * panimation->sanim[frame][k].pos;
p3 = pbaseanimation->sanim[0][k].pos + s * panimation->sanim[frame][k].pos;
AngleMatrix( q3, p3, bonematrix ); } else { Quaternion q1, q2, q3; Vector p3;
AngleQuaternion( g_bonetable[k].rot, q1 ); AngleQuaternion( panimation->sanim[frame][k].rot, q2 );
float s = panimation->weight[k];
QuaternionMA( q1, s, q2, q3 ); //p3 = g_bonetable[k].pos + s * panimation->sanim[frame][k].pos;
p3 = pbaseanimation->sanim[0][k].pos + s * g_bonetable[k].pos;
AngleMatrix( q3, p3, bonematrix ); }
if (g_bonetable[k].parent == -1) { MatrixCopy( bonematrix, pBoneToWorld[k] ); } else { ConcatTransforms (pBoneToWorld[g_bonetable[k].parent], bonematrix, pBoneToWorld[k]); } } }
//-----------------------------------------------------------------------------
// Purpose: calculate the bone to world transforms for a processed animation
//-----------------------------------------------------------------------------
void CalcBoneTransformsCycle( s_animation_t *panimation, s_animation_t *pbaseanimation, float flCycle, matrix3x4_t* pBoneToWorld ) { float fFrame = flCycle * (panimation->numframes - 1); int iFrame = (int)fFrame; float s = (fFrame - iFrame);
int iFrame1 = iFrame % (panimation->numframes - 1); int iFrame2 = (iFrame + 1) % (panimation->numframes - 1);
for (int k = 0; k < g_numbones; k++) { Quaternion q1, q2, q3; Vector p3; matrix3x4_t bonematrix;
// if (!(panimation->flags & STUDIO_DELTA))
{ AngleQuaternion( panimation->sanim[iFrame1][k].rot, q1 ); AngleQuaternion( panimation->sanim[iFrame2][k].rot, q2 ); QuaternionSlerp( q1, q2, s, q3 );
VectorLerp( panimation->sanim[iFrame1][k].pos, panimation->sanim[iFrame2][k].pos, s, p3 );
AngleMatrix( q3, p3, bonematrix ); } /*
else { Vector p3;
//AngleQuaternion( g_bonetable[k].rot, q1 );
AngleQuaternion( pbaseanimation->sanim[0][k].rot, q1 ); AngleQuaternion( panimation->sanim[frame][k].rot, q2 );
float s = panimation->weight[k];
QuaternionMA( q1, s, q2, q3 ); //p3 = g_bonetable[k].pos + s * panimation->sanim[frame][k].pos;
p3 = pbaseanimation->sanim[0][k].pos + s * panimation->sanim[frame][k].pos;
AngleMatrix( q3, p3, bonematrix ); } */
if (g_bonetable[k].parent == -1) { MatrixCopy( bonematrix, pBoneToWorld[k] ); } else { ConcatTransforms (pBoneToWorld[g_bonetable[k].parent], bonematrix, pBoneToWorld[k]); } } }
//-----------------------------------------------------------------------------
// Purpose: calculate the bone to world transforms for a processed sequence
//-----------------------------------------------------------------------------
void SlerpBones( Quaternion q1[MAXSTUDIOBONES], Vector pos1[MAXSTUDIOBONES], int sequence, const Quaternion q2[MAXSTUDIOBONES], const Vector pos2[MAXSTUDIOBONES], float s ) { int i; Quaternion q3, q4; float s1, s2;
s_sequence_t *pseqdesc = &g_sequence[sequence];
if (s <= 0.0f) { return; } else if (s > 1.0f) { s = 1.0f; }
if (pseqdesc->flags & STUDIO_DELTA) { for (i = 0; i < g_numbones; i++) {
s2 = s * pseqdesc->weight[i]; // blend in based on this bones weight
if (s2 > 0.0) { if (pseqdesc->flags & STUDIO_POST) { QuaternionMA( q1[i], s2, q2[i], q1[i] );
// FIXME: are these correct?
pos1[i][0] = pos1[i][0] + pos2[i][0] * s2; pos1[i][1] = pos1[i][1] + pos2[i][1] * s2; pos1[i][2] = pos1[i][2] + pos2[i][2] * s2; } else { QuaternionSM( s2, q2[i], q1[i], q1[i] );
// FIXME: are these correct?
pos1[i][0] = pos1[i][0] + pos2[i][0] * s2; pos1[i][1] = pos1[i][1] + pos2[i][1] * s2; pos1[i][2] = pos1[i][2] + pos2[i][2] * s2; } } } } else { for (i = 0; i <g_numbones; i++) { s2 = s * pseqdesc->weight[i]; // blend in based on this animations weights
if (s2 > 0.0) { s1 = 1.0 - s2;
if (g_bonetable[i].flags & BONE_FIXED_ALIGNMENT) { QuaternionSlerpNoAlign( q2[i], q1[i], s1, q3 ); } else { QuaternionSlerp( q2[i], q1[i], s1, q3 ); } q1[i][0] = q3[0]; q1[i][1] = q3[1]; q1[i][2] = q3[2]; q1[i][3] = q3[3]; pos1[i][0] = pos1[i][0] * s1 + pos2[i][0] * s2; pos1[i][1] = pos1[i][1] * s1 + pos2[i][1] * s2; pos1[i][2] = pos1[i][2] * s1 + pos2[i][2] * s2; } } } }
void CalcPoseSingle( Vector pos[], Quaternion q[], int sequence, float frame ) { s_sequence_t *pseqdesc = &g_sequence[sequence];
s_animation_t *panim = pseqdesc->panim[0][0];
// FIXME: is this modulo correct?
int iframe = ((int)frame) % panim->numframes;
for (int k = 0; k < g_numbones; k++) { // FIXME: this isn't doing a fractional frame
AngleQuaternion( panim->sanim[iframe][k].rot, q[k] ); pos[k] = panim->sanim[iframe][k].pos; } }
void AccumulateSeqLayers( Vector pos[], Quaternion q[], int sequence, float frame, float flWeight );
void AccumulatePose( Vector pos[], Quaternion q[], int sequence, float frame, float flWeight ) { Vector pos2[MAXSTUDIOBONES]; Quaternion q2[MAXSTUDIOBONES];
// printf("accumulate %s : %.1f\n", g_sequence[sequence].name, frame );
CalcPoseSingle( pos2, q2, sequence, frame );
SlerpBones( q, pos, sequence, q2, pos2, flWeight );
AccumulateSeqLayers( pos, q, sequence, frame, flWeight ); }
void AccumulateSeqLayers( Vector pos[], Quaternion q[], int sequence, float frame, float flWeight ) { s_sequence_t *pseqdesc = &g_sequence[sequence];
for (int i = 0; i < pseqdesc->numautolayers; i++) { s_autolayer_t *pLayer = &pseqdesc->autolayer[i];
float layerFrame = frame; float layerWeight = flWeight;
if (pLayer->start != pLayer->end) { float s = 1.0; float index;
if (!(pLayer->flags & STUDIO_AL_POSE)) { index = frame; } else { int iPose = pLayer->pose; if (iPose != -1) { index = 0; // undefined?
} else { index = 0; } }
if (index < pLayer->start) continue; if (index >= pLayer->end) continue;
if (index < pLayer->peak && pLayer->start != pLayer->peak) { s = (index - pLayer->start) / (pLayer->peak - pLayer->start); } else if (index > pLayer->tail && pLayer->end != pLayer->tail) { s = (pLayer->end - index) / (pLayer->end - pLayer->tail); }
if (pLayer->flags & STUDIO_AL_SPLINE) { s = 3 * s * s - 2 * s * s * s; }
if ((pLayer->flags & STUDIO_AL_XFADE) && (frame > pLayer->tail)) { layerWeight = ( s * flWeight ) / ( 1 - flWeight + s * flWeight ); } else if (pLayer->flags & STUDIO_AL_NOBLEND) { layerWeight = s; } else { layerWeight = flWeight * s; }
if (!(pLayer->flags & STUDIO_AL_POSE)) { layerFrame = ((frame - pLayer->start) / (pLayer->end - pLayer->start)) * (g_sequence[pLayer->sequence].panim[0][0]->numframes - 1); } else { layerFrame = (frame / g_sequence[sequence].panim[0][0]->numframes - 1) * (g_sequence[pLayer->sequence].panim[0][0]->numframes - 1); } }
AccumulatePose( pos, q, pLayer->sequence, layerFrame, layerWeight ); } }
void CalcSeqTransforms( int sequence, int frame, matrix3x4_t* pBoneToWorld ) { int k; Vector pos[MAXSTUDIOBONES]; Quaternion q[MAXSTUDIOBONES];
// CalcPoseSingle( pos, q, 0, 0 );
/*
for (k = 0; k < g_numbones; k++) { //AngleQuaternion( g_bonetable[k].rot, q[k] );
//pos[k] = g_bonetable[k].pos;
AngleQuaternion( g_bonetable[k].rot, q[k] ); pos[k] = g_bonetable[k].pos; } */
for (k = 0; k < g_numbones; k++) { //AngleQuaternion( g_bonetable[k].rot, q[k] );
//pos[k] = g_bonetable[k].pos;
AngleQuaternion( g_bonetable[k].rot, q[k] ); pos[k] = g_bonetable[k].pos; }
AccumulatePose( pos, q, sequence, frame, 1.0 );
for (k = 0; k < g_numbones; k++) { matrix3x4_t bonematrix;
QuaternionMatrix( q[k], pos[k], bonematrix );
if (g_bonetable[k].parent == -1) { MatrixCopy( bonematrix, pBoneToWorld[k] ); } else { ConcatTransforms (pBoneToWorld[g_bonetable[k].parent], bonematrix, pBoneToWorld[k]); } } }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CalcBonePos( s_animation_t *panimation, int frame, int bone, Vector &pos ) { matrix3x4_t boneToWorld[MAXSTUDIOSRCBONES]; // bone transformation matrix
CalcBoneTransforms( panimation, frame, boneToWorld );
pos.x = boneToWorld[bone][0][3]; pos.y = boneToWorld[bone][1][3]; pos.z = boneToWorld[bone][2][3]; }
#define SMALL_FLOAT 1e-12
// NOTE: This routine was taken (and modified) from NVidia's BlinnReflection demo
// Creates basis vectors, based on a vertex and index list.
// See the NVidia white paper 'GDC2K PerPixel Lighting' for a description
// of how this computation works
static void CalcTriangleTangentSpace( s_source_t *pSrc, int v1, int v2, int v3, Vector &sVect, Vector &tVect ) { /*
static bool firstTime = true; static FILE *fp = NULL; if( firstTime ) { firstTime = false; fp = fopen( "crap.out", "w" ); } */ Vector2D t0( pSrc->vertex[v1].texcoord[0], pSrc->vertex[v1].texcoord[1] ); Vector2D t1( pSrc->vertex[v2].texcoord[0], pSrc->vertex[v2].texcoord[1] ); Vector2D t2( pSrc->vertex[v3].texcoord[0], pSrc->vertex[v3].texcoord[1] ); Vector p0( pSrc->vertex[v1].position[0], pSrc->vertex[v1].position[1], pSrc->vertex[v1].position[2] ); Vector p1( pSrc->vertex[v2].position[0], pSrc->vertex[v2].position[1], pSrc->vertex[v2].position[2] ); Vector p2( pSrc->vertex[v3].position[0], pSrc->vertex[v3].position[1], pSrc->vertex[v3].position[2] ); CalcTriangleTangentSpace( p0, p1, p2, t0, t1, t2, sVect, tVect );
/*
// Calculate flat normal
Vector flatNormal; edge01 = p1 - p0; edge02 = p2 - p0; CrossProduct( edge02, edge01, flatNormal ); VectorNormalize( flatNormal ); // Get the average position
Vector avgPos = ( p0 + p1 + p2 ) / 3.0f;
// Draw the svect
Vector endS = avgPos + sVect * .2f; fprintf( fp, "2\n" ); fprintf( fp, "%f %f %f 1.0 0.0 0.0\n", endS[0], endS[1], endS[2] ); fprintf( fp, "%f %f %f 1.0 0.0 0.0\n", avgPos[0], avgPos[1], avgPos[2] ); // Draw the tvect
Vector endT = avgPos + tVect * .2f; fprintf( fp, "2\n" ); fprintf( fp, "%f %f %f 0.0 1.0 0.0\n", endT[0], endT[1], endT[2] ); fprintf( fp, "%f %f %f 0.0 1.0 0.0\n", avgPos[0], avgPos[1], avgPos[2] ); // Draw the normal
Vector endN = avgPos + flatNormal * .2f; fprintf( fp, "2\n" ); fprintf( fp, "%f %f %f 0.0 0.0 1.0\n", endN[0], endN[1], endN[2] ); fprintf( fp, "%f %f %f 0.0 0.0 1.0\n", avgPos[0], avgPos[1], avgPos[2] ); // Draw the wireframe of the triangle in white.
fprintf( fp, "2\n" ); fprintf( fp, "%f %f %f 1.0 1.0 1.0\n", p0[0], p0[1], p0[2] ); fprintf( fp, "%f %f %f 1.0 1.0 1.0\n", p1[0], p1[1], p1[2] ); fprintf( fp, "2\n" ); fprintf( fp, "%f %f %f 1.0 1.0 1.0\n", p1[0], p1[1], p1[2] ); fprintf( fp, "%f %f %f 1.0 1.0 1.0\n", p2[0], p2[1], p2[2] ); fprintf( fp, "2\n" ); fprintf( fp, "%f %f %f 1.0 1.0 1.0\n", p2[0], p2[1], p2[2] ); fprintf( fp, "%f %f %f 1.0 1.0 1.0\n", p0[0], p0[1], p0[2] );
// Draw a slightly shrunken version of the geometry to hide surfaces
Vector tmp0 = p0 - flatNormal * .1f; Vector tmp1 = p1 - flatNormal * .1f; Vector tmp2 = p2 - flatNormal * .1f; fprintf( fp, "3\n" ); fprintf( fp, "%f %f %f 0.1 0.1 0.1\n", tmp0[0], tmp0[1], tmp0[2] ); fprintf( fp, "%f %f %f 0.1 0.1 0.1\n", tmp1[0], tmp1[1], tmp1[2] ); fprintf( fp, "%f %f %f 0.1 0.1 0.1\n", tmp2[0], tmp2[1], tmp2[2] ); fflush( fp ); */ }
typedef CUtlVector<int> CIntVector;
void CalcModelTangentSpaces( s_source_t *pSrc ) { // Build a map from vertex to a list of triangles that share the vert.
int meshID; for( meshID = 0; meshID < pSrc->nummeshes; meshID++ ) { s_mesh_t *pMesh = &pSrc->mesh[pSrc->meshindex[meshID]]; CUtlVector<CIntVector> vertToTriMap; vertToTriMap.AddMultipleToTail( pMesh->numvertices ); int triID; for( triID = 0; triID < pMesh->numfaces; triID++ ) { s_face_t *pFace = &pSrc->face[triID + pMesh->faceoffset]; vertToTriMap[pFace->a].AddToTail( triID ); vertToTriMap[pFace->b].AddToTail( triID ); vertToTriMap[pFace->c].AddToTail( triID ); }
// Calculate the tangent space for each triangle.
CUtlVector<Vector> triSVect; CUtlVector<Vector> triTVect; triSVect.AddMultipleToTail( pMesh->numfaces ); triTVect.AddMultipleToTail( pMesh->numfaces ); for( triID = 0; triID < pMesh->numfaces; triID++ ) { s_face_t *pFace = &pSrc->face[triID + pMesh->faceoffset]; CalcTriangleTangentSpace( pSrc, pMesh->vertexoffset + pFace->a, pMesh->vertexoffset + pFace->b, pMesh->vertexoffset + pFace->c, triSVect[triID], triTVect[triID] ); }
// calculate an average tangent space for each vertex.
int vertID; for( vertID = 0; vertID < pMesh->numvertices; vertID++ ) { const Vector &normal = pSrc->vertex[vertID+pMesh->vertexoffset].normal; Vector4D &finalSVect = pSrc->vertex[vertID+pMesh->vertexoffset].tangentS; Vector sVect, tVect;
sVect.Init( 0.0f, 0.0f, 0.0f ); tVect.Init( 0.0f, 0.0f, 0.0f ); for( triID = 0; triID < vertToTriMap[vertID].Size(); triID++ ) { sVect += triSVect[vertToTriMap[vertID][triID]]; tVect += triTVect[vertToTriMap[vertID][triID]]; }
// In the case of zbrush, everything needs to be treated as smooth.
if( g_bZBrush ) { int vertID2; Vector vertPos1( pSrc->vertex[vertID].position[0], pSrc->vertex[vertID].position[1], pSrc->vertex[vertID].position[2] ); for( vertID2 = 0; vertID2 < pMesh->numvertices; vertID2++ ) { if( vertID2 == vertID ) { continue; } Vector vertPos2( pSrc->vertex[vertID2].position[0], pSrc->vertex[vertID2].position[1], pSrc->vertex[vertID2].position[2] ); if( vertPos1 == vertPos2 ) { int triID2; for( triID2 = 0; triID2 < vertToTriMap[vertID2].Size(); triID2++ ) { sVect += triSVect[vertToTriMap[vertID2][triID2]]; tVect += triTVect[vertToTriMap[vertID2][triID2]]; } } } }
// make an orthonormal system.
// need to check if we are left or right handed.
Vector tmpVect; CrossProduct( sVect, tVect, tmpVect ); bool leftHanded = DotProduct( tmpVect, normal ) < 0.0f; if( !leftHanded ) { CrossProduct( normal, sVect, tVect ); CrossProduct( tVect, normal, sVect ); VectorNormalize( sVect ); VectorNormalize( tVect ); finalSVect[0] = sVect[0]; finalSVect[1] = sVect[1]; finalSVect[2] = sVect[2]; finalSVect[3] = 1.0f; } else { CrossProduct( sVect, normal, tVect ); CrossProduct( normal, tVect, sVect ); VectorNormalize( sVect ); VectorNormalize( tVect ); finalSVect[0] = sVect[0]; finalSVect[1] = sVect[1]; finalSVect[2] = sVect[2]; finalSVect[3] = -1.0f; } } } }
//-----------------------------------------------------------------------------
// Generate a model vertex from a source vertex
//-----------------------------------------------------------------------------
static void InitRemappedVertex( s_source_t *pSource, matrix3x4_t *pDestBoneToWorld, const s_vertexinfo_t &srcVertex, s_vertexinfo_t &dstVertex ) { Vector tmp1, tmp2, vdest, ndest;
memcpy( &dstVertex, &srcVertex, sizeof(s_vertexinfo_t) ); dstVertex.boneweight.numbones = 0;
vdest.Init(); ndest.Init();
int n; for ( n = 0; n < srcVertex.boneweight.numbones; n++ ) { // src bone
int q = srcVertex.boneweight.bone[n];
// mapping to global bone
int k = pSource->boneLocalToGlobal[q]; if ( k == -1 ) { VectorCopy( srcVertex.position, vdest ); VectorCopy( srcVertex.normal, ndest ); break; // printf("%s:%s (%d) missing global\n", psource->filename, psource->localBone[q].name, q );
}
// If the global bone is already in the list, then this vertex
// contains influences from multiple local bones which have been collapsed
// into a single global bone
int m; for ( m = 0; m < dstVertex.boneweight.numbones; m++ ) { if ( k == dstVertex.boneweight.bone[m] ) { // bone got collapsed out
dstVertex.boneweight.weight[m] += srcVertex.boneweight.weight[n]; break; } } if ( m == dstVertex.boneweight.numbones ) { // add new bone
dstVertex.boneweight.bone[m] = k; dstVertex.boneweight.weight[m] = srcVertex.boneweight.weight[n]; dstVertex.boneweight.numbones++; }
// convert vertex into original models' bone local space
VectorITransform( srcVertex.position, pDestBoneToWorld[k], tmp1 ); // convert that into global world space using stardard pose
VectorTransform( tmp1, g_bonetable[k].boneToPose, tmp2 ); // accumulate
VectorMA( vdest, srcVertex.boneweight.weight[n], tmp2, vdest );
// convert normal into original models' bone local space
VectorIRotate( srcVertex.normal, pDestBoneToWorld[k], tmp1 ); // convert that into global world space using stardard pose
VectorRotate( tmp1, g_bonetable[k].boneToPose, tmp2 ); // accumulate
VectorMA( ndest, srcVertex.boneweight.weight[n], tmp2, ndest ); }
// printf("%d %.2f %.2f %.2f\n", j, vdest.x, vdest.y, vdest.z );
// save, normalize
VectorCopy( vdest, dstVertex.position ); VectorNormalize( ndest ); VectorCopy( ndest, dstVertex.normal );
// FIXME: Remapping will whack tangentS. Need to recompute tangents after remapping
}
//-----------------------------------------------------------------------------
// When read off disk, s_source_t contains bone indices local to the source
// we need to make the bone indices use the global bone list
//-----------------------------------------------------------------------------
void RemapVerticesToGlobalBones( ) { matrix3x4_t srcBoneToWorld[MAXSTUDIOSRCBONES]; matrix3x4_t destBoneToWorld[MAXSTUDIOSRCBONES];
for (int i = 0; i < g_numsources; i++) { s_source_t *pSource = g_source[i]; if ( !pSource->vertex ) continue;
s_sourceanim_t *pSourceAnim = FindSourceAnim( pSource, "BindPose" ); if ( !pSourceAnim ) { pSourceAnim = &pSource->m_Animations[0]; } BuildRawTransforms( pSource, pSourceAnim->animationname, 0, srcBoneToWorld ); TranslateAnimations( pSource, srcBoneToWorld, destBoneToWorld ); pSource->m_GlobalVertices.AddMultipleToTail( pSource->numvertices );
for ( int j = 0; j < pSource->numvertices; j++ ) { InitRemappedVertex( pSource, destBoneToWorld, pSource->vertex[j], pSource->m_GlobalVertices[j] ); } } }
//-----------------------------------------------------------------------------
// Links bone controllers
//-----------------------------------------------------------------------------
static void FindAutolayers() { int i; for (i = 0; i < g_sequence.Count(); i++) { int k; for (k = 0; k < g_sequence[i].numautolayers; k++) { int j; for ( j = 0; j < g_sequence.Count(); j++) { if (stricmp( g_sequence[i].autolayer[k].name, g_sequence[j].name) == 0) { g_sequence[i].autolayer[k].sequence = j; break; } } if (j == g_sequence.Count()) { MdlError( "sequence \"%s\" cannot find autolayer sequence \"%s\"\n", g_sequence[i].name, g_sequence[i].autolayer[k].name ); } } } }
//-----------------------------------------------------------------------------
// Links bone controllers
//-----------------------------------------------------------------------------
static void LinkBoneControllers() { for (int i = 0; i < g_numbonecontrollers; i++) { int j = findGlobalBone( g_bonecontroller[i].name ); if (j == -1) { MdlError("unknown g_bonecontroller link '%s'\n", g_bonecontroller[i].name ); } g_bonecontroller[i].bone = j; } }
//-----------------------------------------------------------------------------
// Links screen aligned bones
//-----------------------------------------------------------------------------
static void TagScreenAlignedBones() { for (int i = 0; i < g_numscreenalignedbones; i++) { int j = findGlobalBone( g_screenalignedbone[i].name ); if (j == -1) { MdlError("unknown g_screenalignedbone link '%s'\n", g_screenalignedbone[i].name ); }
g_bonetable[j].flags |= g_screenalignedbone[i].flags; printf("tagging bone: %s as screen aligned (index %i, flags:%x)\n", g_bonetable[j].name, j, g_bonetable[j].flags ); } }
//-----------------------------------------------------------------------------
// Links attachments
//-----------------------------------------------------------------------------
static void LinkAttachments() { int i, j, k;
// attachments may be connected to bones that can be optimized out
// so search through all the sources and move to a valid location
matrix3x4_t boneToPose; matrix3x4_t world; matrix3x4_t poseToBone;
for (i = 0; i < g_numattachments; i++) { bool found = false; // search through known bones
for (k = 0; k < g_numbones; k++) { if ( !stricmp( g_attachment[i].bonename, g_bonetable[k].name )) { g_attachment[i].bone = k; MatrixCopy( g_bonetable[k].boneToPose, boneToPose ); MatrixInvert( boneToPose, poseToBone ); // printf("%s : %d\n", g_bonetable[k].name, k );
found = true; break; } }
if (!found) { // search all the loaded sources for the first occurance of the named bone
for (j = 0; j < g_numsources && !found; j++) { for (k = 0; k < g_source[j]->numbones && !found; k++) { if ( !stricmp( g_attachment[i].bonename, g_source[j]->localBone[k].name ) ) { MatrixCopy( g_source[j]->boneToPose[k], boneToPose );
// check to make sure that this bone is actually referenced in the output model
// if not, try parent bone until we find a referenced bone in this chain
while (k != -1 && g_source[j]->boneGlobalToLocal[g_source[j]->boneLocalToGlobal[k]] != k) { k = g_source[j]->localBone[k].parent; } if (k == -1) { MdlError( "unable to find valid bone for attachment %s:%s\n", g_attachment[i].name, g_attachment[i].bonename ); }
MatrixInvert( g_source[j]->boneToPose[k], poseToBone ); g_attachment[i].bone = g_source[j]->boneLocalToGlobal[k]; found = true; } } } }
if (!found) { MdlError("unknown attachment link '%s'\n", g_attachment[i].bonename ); } // printf("%s: %s / %s\n", g_attachment[i].name, g_attachment[i].bonename, g_bonetable[g_attachment[i].bone].name );
if (g_attachment[i].type & IS_ABSOLUTE) { MatrixCopy( g_attachment[i].local, world ); } else { ConcatTransforms( boneToPose, g_attachment[i].local, world ); }
ConcatTransforms( poseToBone, world, g_attachment[i].local ); }
// flag all bones used by attachments
for (i = 0; i < g_numattachments; i++) { j = g_attachment[i].bone; while (j != -1) { g_bonetable[j].flags |= BONE_USED_BY_ATTACHMENT; j = g_bonetable[j].parent; } } }
//-----------------------------------------------------------------------------
// Links mouths
//-----------------------------------------------------------------------------
static void LinkMouths() { for (int i = 0; i < g_nummouths; i++) { int j; for ( j = 0; j < g_numbones; j++) { if (g_mouth[i].bonename[0] && stricmp( g_mouth[i].bonename, g_bonetable[j].name) == 0) break; } if (j >= g_numbones) { MdlError("unknown mouth link '%s'\n", g_mouth[i].bonename ); } g_mouth[i].bone = j; } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
static float CalcPoseParameterValue( int control, RadianEuler &angle, Vector &pos ) { switch( control ) { case STUDIO_X: return pos.x; case STUDIO_Y: return pos.y; case STUDIO_Z: return pos.z; case STUDIO_XR: return RAD2DEG( angle.x ); case STUDIO_YR: return RAD2DEG( angle.y ); case STUDIO_ZR: return RAD2DEG( angle.z ); } return 0.0; }
static void CalcPoseParameters( void ) { int i; matrix3x4_t boneToWorld[MAXSTUDIOBONES]; RadianEuler angles; Vector pos;
for (i = 0; i < g_sequence.Count(); i++) { s_sequence_t *pseq = &g_sequence[i];
for (int iPose = 0; iPose < 2; iPose++) { if (pseq->groupsize[iPose] > 1) { if (pseq->paramattachment[iPose] != -1) { int j0 = pseq->paramindex[iPose]; int n0 = pseq->paramattachment[iPose]; int k0 = g_attachment[n0].bone;
matrix3x4_t boneToWorldRel; matrix3x4_t boneToWorldMid; matrix3x4_t worldToBoneMid; matrix3x4_t boneRel;
// printf("%s\n", pseq->name );
if (pseq->paramanim == NULL) { pseq->paramanim = g_panimation[0]; }
if (pseq->paramcompanim == NULL) { pseq->paramcompanim = pseq->paramanim; }
// calculate what "zero" looks like to the attachment
CalcBoneTransforms( pseq->paramanim, 0, boneToWorld ); ConcatTransforms( boneToWorld[k0], g_attachment[n0].local, boneToWorldMid ); MatrixAngles( boneToWorldMid, angles, pos ); // printf("%s : %s : %6.2f %6.2f %6.2f : %6.2f %6.2f %6.2f\n", pseq->name, g_pose[j0].name, RAD2DEG( angles.x ), RAD2DEG( angles.y ), RAD2DEG( angles.z ), pos.x, pos.y, pos.z );
MatrixInvert( boneToWorldMid, worldToBoneMid );
if ( g_verbose ) { printf("%s : %s", pseq->name, g_pose[j0].name ); }
// for 2D animation, figure out what opposite row/column to use
// FIXME: make these 2D instead of 2 1D!
int m[2]; bool found = false; if (pseq->paramcenter != NULL) { for (int i0 = 0; !found && i0 < pseq->groupsize[0]; i0++) { for (int i1 = 0; !found && i1 < pseq->groupsize[1]; i1++) { if (pseq->panim[i0][i1] == pseq->paramcenter) { m[0] = i0; m[1] = i1; found = true; } } } } if (!found) { m[1-iPose] = (pseq->groupsize[1-iPose]) / 2; }
// find changes to attachment
for (m[iPose] = 0; m[iPose] < pseq->groupsize[iPose]; m[iPose]++) { CalcBoneTransforms( pseq->panim[m[0]][m[1]], pseq->paramcompanim, 0, boneToWorld ); ConcatTransforms( boneToWorld[k0], g_attachment[n0].local, boneToWorldRel ); ConcatTransforms( worldToBoneMid, boneToWorldRel, boneRel ); MatrixAngles( boneRel, angles, pos ); // printf("%6.2f %6.2f %6.2f : %6.2f %6.2f %6.2f\n", RAD2DEG( angles.x ), RAD2DEG( angles.y ), RAD2DEG( angles.z ), pos.x, pos.y, pos.z );
float v = CalcPoseParameterValue( pseq->paramcontrol[iPose], angles, pos );
if ( g_verbose ) { printf(" %6.2f", v ); }
if (iPose == 0) { pseq->param0[m[iPose]] = v; } else { pseq->param1[m[iPose]] = v; }
// pseq->param1[i0][i1] = CalcPoseParameterValue( pseq->paramcontrol[1], angles, pos );
if (m[iPose] == 0) { pseq->paramstart[iPose] = (iPose == 0) ? pseq->param0[m[iPose]] : pseq->param1[m[iPose]]; } if (m[iPose] == pseq->groupsize[iPose] - 1) { pseq->paramend[iPose] = (iPose == 0) ? pseq->param0[m[iPose]] : pseq->param1[m[iPose]]; } }
if ( g_verbose ) { printf("\n"); }
if (fabs( pseq->paramstart[iPose] - pseq->paramend[iPose]) < 0.01 ) { MdlError( "calcblend failed in %s\n", pseq->name ); }
g_pose[j0].min = min( g_pose[j0].min, pseq->paramstart[iPose] ); g_pose[j0].max = max( g_pose[j0].max, pseq->paramstart[iPose] ); g_pose[j0].min = min( g_pose[j0].min, pseq->paramend[iPose] ); g_pose[j0].max = max( g_pose[j0].max, pseq->paramend[iPose] ); } else {
for (int m = 0; m < pseq->groupsize[iPose]; m++) { float f = (m / (float)(pseq->groupsize[iPose] - 1.0)); if (iPose == 0) { pseq->param0[m] = pseq->paramstart[iPose] * (1.0 - f) + pseq->paramend[iPose] * f; } else { pseq->param1[m] = pseq->paramstart[iPose] * (1.0 - f) + pseq->paramend[iPose] * f; } } } } } } // exit(0);
}
//-----------------------------------------------------------------------------
// Link ikchains
//-----------------------------------------------------------------------------
static void LinkIKChains( ) { int i, k;
// create IK links
for (i = 0; i < g_numikchains; i++) { g_ikchain[i].numlinks = 3;
k = findGlobalBone( g_ikchain[i].bonename ); if (k == -1) { MdlError("unknown bone '%s' in ikchain '%s'\n", g_ikchain[i].bonename, g_ikchain[i].name ); } g_ikchain[i].link[2].bone = k; g_bonetable[k].flags |= BONE_USED_BY_ATTACHMENT;
k = g_bonetable[k].parent; if (k == -1) { MdlError("ikchain '%s' too close to root, no parent knee/elbow\n", g_ikchain[i].name ); } g_ikchain[i].link[1].bone = k; g_bonetable[k].flags |= BONE_USED_BY_ATTACHMENT;
k = g_bonetable[k].parent; if (k == -1) { MdlError("ikchain '%s' too close to root, no parent hip/shoulder\n", g_ikchain[i].name ); } g_ikchain[i].link[0].bone = k; g_bonetable[k].flags |= BONE_USED_BY_ATTACHMENT;
// FIXME: search for toes
} }
//-----------------------------------------------------------------------------
// Link ikchains
//-----------------------------------------------------------------------------
static void LinkIKLocks( ) { int i, j;
// create IK links
for (i = 0; i < g_numikautoplaylocks; i++) { for (j = 0; j < g_numikchains; j++) { if (stricmp( g_ikchain[j].name, g_ikautoplaylock[i].name) == 0) { break; } } if (j == g_numikchains) { MdlError("unknown chain '%s' in ikautoplaylock\n", g_ikautoplaylock[i].name ); }
g_ikautoplaylock[i].chain = j; }
int k;
for (k = 0; k < g_sequence.Count(); k++) { for (i = 0; i < g_sequence[k].numiklocks; i++) { for (j = 0; j < g_numikchains; j++) { if (stricmp( g_ikchain[j].name, g_sequence[k].iklock[i].name) == 0) { break; } } if (j == g_numikchains) { MdlError("unknown chain '%s' in sequence iklock\n", g_sequence[k].iklock[i].name ); }
g_sequence[k].iklock[i].chain = j; } } }
//-----------------------------------------------------------------------------
// Process IK links
//-----------------------------------------------------------------------------
s_ikrule_t *FindPrevIKRule( s_animation_t *panim, int iRule ) { int i, j;
s_ikrule_t *pRule = &panim->ikrule[iRule];
for (i = 1; i < panim->numikrules; i++) { j = ( iRule - i + panim->numikrules) % panim->numikrules; if (panim->ikrule[j].chain == pRule->chain) return &panim->ikrule[j]; } return pRule; }
s_ikrule_t *FindNextIKRule( s_animation_t *panim, int iRule ) { int i, j;
s_ikrule_t *pRule = &panim->ikrule[iRule];
for (i = 1; i < panim->numikrules; i++) { j = (iRule + i ) % panim->numikrules; if (panim->ikrule[j].chain == pRule->chain) return &panim->ikrule[j]; } return pRule; }
//-----------------------------------------------------------------------------
// Purpose: don't allow bones to change their length if they're predefined.
// go through all the animations and reset them, but move anything on an ikchain back to where it was.
//-----------------------------------------------------------------------------
static void LockBoneLengths() { int i, j, k;
int n;
if (!g_bLockBoneLengths) return;
Vector origLocalPos[MAXSTUDIOBONES];
// find original lengths
for (k = 0; k < g_numbones; k++) { MatrixPosition( g_bonetable[k].rawLocalOriginal, origLocalPos[k] );
if ( g_verbose ) { Vector prev, delta; MatrixPosition( g_bonetable[k].rawLocal, prev ); delta = prev - origLocalPos[k]; printf("%s - %f %f %f\n", g_bonetable[k].name, delta.x, delta.y, delta.z ); } }
for (i = 0; i < g_numani; i++) { s_animation_t *panim = g_panimation[i];
if (panim->flags & STUDIO_DELTA) continue;
for (j = 0; j < panim->numframes; j++) { matrix3x4_t boneToWorldOriginal[MAXSTUDIOBONES]; matrix3x4_t boneToWorld[MAXSTUDIOBONES];
// calc original transformations
CalcBoneTransforms( panim, j, boneToWorldOriginal );
// force bones back to original lengths
for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].parent != -1) { //Vector delta = panim->sanim[j][k].pos - origLocalPos[k];
//printf("%f %f %f\n", delta.x, delta.y, delta.z );
panim->sanim[j][k].pos = origLocalPos[k]; } }
// calc new transformations
CalcBoneTransforms( panim, j, boneToWorld );
for (n = 0; n < g_numikchains; n++) { if (panim->weight[g_ikchain[n].link[2].bone] > 0) { Vector worldPos; MatrixPosition( boneToWorldOriginal[g_ikchain[n].link[2].bone], worldPos );
Studio_SolveIK( g_ikchain[n].link[0].bone, g_ikchain[n].link[1].bone, g_ikchain[n].link[2].bone, worldPos, boneToWorld );
solveBone( panim, j, g_ikchain[n].link[0].bone, boneToWorld ); solveBone( panim, j, g_ikchain[n].link[1].bone, boneToWorld ); solveBone( panim, j, g_ikchain[n].link[2].bone, boneToWorld ); } } } } }
//-----------------------------------------------------------------------------
// Purpose: go through all the IK rules and calculate the animated path the IK'd
// end point moves relative to its IK target.
//-----------------------------------------------------------------------------
static void ProcessIKRules( ) { int i, j, k;
// copy source animations
for (i = 0; i < g_numani; i++) { s_animation_t *panim = g_panimation[i]; const char *pAnimationName = g_panimation[i]->animationname; s_sourceanim_t *pSourceAnim = FindSourceAnim( panim->source, pAnimationName );
for (j = 0; j < panim->numcmds; j++) { if ( panim->cmds[j].cmd == CMD_IKFIXUP ) { fixupIKErrors( panim, panim->cmds[j].u.ikfixup.pRule ); }
if (panim->cmds[j].cmd != CMD_IKRULE) continue;
if (panim->numikrules >= MAXSTUDIOIKRULES) { MdlError("Too many IK rules in %s (%s)\n", panim->name, panim->filename ); } s_ikrule_t *pRule = &panim->ikrule[panim->numikrules++];
// make a copy of the rule;
*pRule = *panim->cmds[j].u.ikrule.pRule; }
for (j = 0; j < panim->numikrules; j++) { s_ikrule_t *pRule = &panim->ikrule[j];
if (pRule->start == 0 && pRule->peak == 0 && pRule->tail == 0 && pRule->end == 0) { pRule->tail = panim->numframes - 1; pRule->end = panim->numframes - 1; }
if (pRule->start != -1 && pRule->peak == -1 && pRule->tail == -1 && pRule->end != -1) { pRule->peak = (pRule->start + pRule->end) / 2; pRule->tail = (pRule->start + pRule->end) / 2; }
if (pRule->start != -1 && pRule->peak == -1 && pRule->tail != -1) { pRule->peak = (pRule->start + pRule->tail) / 2; }
if (pRule->peak != -1 && pRule->tail == -1 && pRule->end != -1) { pRule->tail = (pRule->peak + pRule->end) / 2; }
if (pRule->peak == -1) { pRule->start = 0; pRule->peak = 0; }
if (pRule->tail == -1) { pRule->tail = panim->numframes - 1; pRule->end = panim->numframes - 1; }
if (pRule->contact == -1) { pRule->contact = pRule->peak; }
// huh, make up start and end numbers
if (pRule->start == -1) { s_ikrule_t *pPrev = FindPrevIKRule( panim, j );
if (pPrev->slot == pRule->slot) { if (pRule->peak < pPrev->tail) { pRule->start = pRule->peak + (pPrev->tail - pRule->peak) / 2; } else { pRule->start = pRule->peak + (pPrev->tail - pRule->peak + panim->numframes - 1) / 2; } pRule->start = (pRule->start + panim->numframes / 2) % (panim->numframes - 1); pPrev->end = (pRule->start + panim->numframes - 1) % (panim->numframes - 1); } else { pRule->start = pPrev->tail; pPrev->end = pRule->peak; } // printf("%s : %d (%d) : %d %d %d %d\n", panim->name, pRule->chain, panim->numframes - 1, pRule->start, pRule->peak, pRule->tail, pRule->end );
}
// huh, make up start and end numbers
if (pRule->end == -1) { s_ikrule_t *pNext = FindNextIKRule( panim, j );
if (pNext->slot == pRule->slot) { if (pNext->peak < pRule->tail) { pNext->start = pNext->peak + (pRule->tail - pNext->peak) / 2; } else { pNext->start = pNext->peak + (pRule->tail - pNext->peak + panim->numframes - 1) / 2; } pNext->start = (pNext->start + panim->numframes / 2) % (panim->numframes - 1); pRule->end = (pNext->start + panim->numframes - 1) % (panim->numframes - 1); } else { pNext->start = pRule->tail; pRule->end = pNext->peak; } // printf("%s : %d (%d) : %d %d %d %d\n", panim->name, pRule->chain, panim->numframes - 1, pRule->start, pRule->peak, pRule->tail, pRule->end );
}
// check for wrapping
if (pRule->peak < pRule->start) { pRule->peak += panim->numframes - 1; } if (pRule->tail < pRule->peak) { pRule->tail += panim->numframes - 1; } if (pRule->end < pRule->tail) { pRule->end += panim->numframes - 1; } if (pRule->contact < pRule->start) { pRule->contact += panim->numframes - 1; }
/*
printf("%s : %d (%d) : %d %d %d %d : %s\n", panim->name, pRule->chain, panim->numframes - 1, pRule->start, pRule->peak, pRule->tail, pRule->end, pRule->usesequence ? "usesequence" : pRule->usesource ? "source" : "" ); */
pRule->errorData.numerror = pRule->end - pRule->start + 1; if (pRule->end >= panim->numframes) pRule->errorData.numerror = pRule->errorData.numerror + 2;
pRule->errorData.pError = (s_streamdata_t *)kalloc( pRule->errorData.numerror, sizeof( s_streamdata_t ));
int n = 0;
if (pRule->usesequence) { // FIXME: bah, this is horrendously hacky, add a damn back pointer
for (n = 0; n < g_sequence.Count(); n++) { if (g_sequence[n].panim[0][0] == panim) break; } }
switch( pRule->type ) { case IK_SELF: { matrix3x4_t boneToWorld[MAXSTUDIOBONES]; matrix3x4_t worldToBone; matrix3x4_t local;
if (strlen(pRule->bonename) == 0) { pRule->bone = -1; } else {
pRule->bone = findGlobalBone( pRule->bonename ); if (pRule->bone == -1) { MdlError("unknown bone '%s' in ikrule\n", pRule->bonename ); } }
for (k = 0; k < pRule->errorData.numerror; k++) { if (pRule->usesequence) { CalcSeqTransforms( n, k + pRule->start, boneToWorld ); } else if (pRule->usesource) { matrix3x4_t srcBoneToWorld[MAXSTUDIOSRCBONES]; BuildRawTransforms( panim->source, pAnimationName, k + pRule->start + panim->startframe - pSourceAnim->startframe, panim->scale, panim->adjust, panim->rotation, panim->flags, srcBoneToWorld ); TranslateAnimations( panim->source, srcBoneToWorld, boneToWorld ); } else { CalcBoneTransforms( panim, k + pRule->start, boneToWorld ); }
if (pRule->bone != -1) { MatrixInvert( boneToWorld[pRule->bone], worldToBone ); ConcatTransforms( worldToBone, boneToWorld[g_ikchain[pRule->chain].link[2].bone], local ); } else { MatrixCopy( boneToWorld[g_ikchain[pRule->chain].link[2].bone], local ); }
MatrixAngles( local, pRule->errorData.pError[k].q, pRule->errorData.pError[k].pos );
/*
QAngle ang; QuaternionAngles( pRule->errorData.pError[k].q, ang ); printf("%d %.1f %.1f %.1f : %.1f %.1f %.1f\n", k, pRule->errorData.pError[k].pos.x, pRule->errorData.pError[k].pos.y, pRule->errorData.pError[k].pos.z, ang.x, ang.y, ang.z ); */ } } break; case IK_WORLD: break; case IK_ATTACHMENT: { matrix3x4_t boneToWorld[MAXSTUDIOBONES]; matrix3x4_t worldToBone; matrix3x4_t local;
int bone = g_ikchain[pRule->chain].link[2].bone; CalcBoneTransforms( panim, pRule->contact, boneToWorld ); // FIXME: add in motion
// pRule->pos = footfall;
// pRule->q = RadianEuler( 0, 0, 0 );
if (strlen(pRule->bonename) == 0) { if (pRule->bone != -1) { pRule->bone = bone; } } else { pRule->bone = findGlobalBone( pRule->bonename ); if (pRule->bone == -1) { MdlError("unknown bone '%s' in ikrule\n", pRule->bonename ); } }
if (pRule->bone != -1) { // FIXME: look for local bones...
CalcBoneTransforms( panim, pRule->contact, boneToWorld ); MatrixAngles( boneToWorld[pRule->bone], pRule->q, pRule->pos ); }
#if 0
printf("%d %.1f %.1f %.1f\n", pRule->peak, pRule->pos.x, pRule->pos.y, pRule->pos.z ); #endif
for (k = 0; k < pRule->errorData.numerror; k++) { int t = k + pRule->start;
if (pRule->usesequence) { CalcSeqTransforms( n, t, boneToWorld ); } else if (pRule->usesource) { matrix3x4_t srcBoneToWorld[MAXSTUDIOSRCBONES]; BuildRawTransforms( panim->source, pAnimationName, t + panim->startframe - pSourceAnim->startframe, srcBoneToWorld ); TranslateAnimations( panim->source, srcBoneToWorld, boneToWorld ); } else { CalcBoneTransforms( panim, t, boneToWorld ); }
Vector pos = pRule->pos + calcMovement( panim, t, pRule->contact );
// printf("%2d : %2d : %4.2f %6.1f %6.1f %6.1f\n", k, t, s, pos.x, pos.y, pos.z );
AngleMatrix( pRule->q, pos, local ); MatrixInvert( local, worldToBone );
// calc position error
ConcatTransforms( worldToBone, boneToWorld[bone], local ); MatrixAngles( local, pRule->errorData.pError[k].q, pRule->errorData.pError[k].pos );
#if 0
QAngle ang; QuaternionAngles( pRule->errorData.pError[k].q, ang ); printf("%d %.1f %.1f %.1f : %.1f %.1f %.1f\n", k + pRule->start, pRule->errorData.pError[k].pos.x, pRule->errorData.pError[k].pos.y, pRule->errorData.pError[k].pos.z, ang.x, ang.y, ang.z ); #endif
} } break; case IK_GROUND: { matrix3x4_t boneToWorld[MAXSTUDIOBONES]; matrix3x4_t worldToBone; matrix3x4_t local;
int bone = g_ikchain[pRule->chain].link[2].bone;
if (pRule->usesequence) { CalcSeqTransforms( n, pRule->contact, boneToWorld ); } else if (pRule->usesource) { matrix3x4_t srcBoneToWorld[MAXSTUDIOSRCBONES]; BuildRawTransforms( panim->source, pAnimationName, pRule->contact + panim->startframe - pSourceAnim->startframe, panim->scale, panim->adjust, panim->rotation, panim->flags, srcBoneToWorld ); TranslateAnimations( panim->source, srcBoneToWorld, boneToWorld ); } else { CalcBoneTransforms( panim, pRule->contact, boneToWorld ); }
// FIXME: add in motion
Vector footfall; VectorTransform( g_ikchain[pRule->chain].center, boneToWorld[bone], footfall ); footfall.z = pRule->floor;
AngleMatrix( RadianEuler( 0, 0, 0 ), footfall, local ); MatrixInvert( local, worldToBone );
pRule->pos = footfall; pRule->q = RadianEuler( 0, 0, 0 ); #if 0
printf("%d %.1f %.1f %.1f\n", pRule->peak, pRule->pos.x, pRule->pos.y, pRule->pos.z ); #endif
float s; for (k = 0; k < pRule->errorData.numerror; k++) { int t = k + pRule->start; /*
if (t > pRule->end) { t = t - (panim->numframes - 1); } */
if (pRule->usesequence) { CalcSeqTransforms( n, t, boneToWorld ); } else if (pRule->usesource) { matrix3x4_t srcBoneToWorld[MAXSTUDIOSRCBONES]; BuildRawTransforms( panim->source, pAnimationName, pRule->contact + panim->startframe - pSourceAnim->startframe, panim->scale, panim->adjust, panim->rotation, panim->flags, srcBoneToWorld ); TranslateAnimations( panim->source, srcBoneToWorld, boneToWorld ); } else { CalcBoneTransforms( panim, t, boneToWorld ); } Vector pos = pRule->pos + calcMovement( panim, t, pRule->contact ); s = 0.0;
Vector cur; VectorTransform( g_ikchain[pRule->chain].center, boneToWorld[bone], cur ); cur.z = pos.z;
if (t < pRule->start || t >= pRule->end) { // s = (float)(t - pRule->start) / (pRule->peak - pRule->start);
// pos = startPos * (1 - s) + pos * s;
pos = cur; } else if (t < pRule->peak) { s = (float)(pRule->peak - t) / (pRule->peak - pRule->start); s = 3 * s * s - 2 * s * s * s; pos = pos * (1 - s) + cur * s; } else if (t > pRule->tail) { s = (float)(t - pRule->tail) / (pRule->end - pRule->tail); s = 3 * s * s - 2 * s * s * s; pos = pos * (1 - s) + cur * s; //pos = endPos - calcMovement( panim, t, pRule->tail );
}
//MatrixPosition( boneToWorld[bone], pos );
//pos.z = pRule->floor;
// printf("%2d : %2d : %4.2f %6.1f %6.1f %6.1f\n", k, t, s, pos.x, pos.y, pos.z );
AngleMatrix( pRule->q, pos, local ); MatrixInvert( local, worldToBone );
// calc position error
ConcatTransforms( worldToBone, boneToWorld[bone], local ); MatrixAngles( local, pRule->errorData.pError[k].q, pRule->errorData.pError[k].pos );
#if 0
QAngle ang; QuaternionAngles( pRule->errorData.pError[k].q, ang ); printf("%d %.1f %.1f %.1f : %.1f %.1f %.1f\n", k + pRule->start, pRule->errorData.pError[k].pos.x, pRule->errorData.pError[k].pos.y, pRule->errorData.pError[k].pos.z, ang.x, ang.y, ang.z ); #endif
} } break; case IK_RELEASE: case IK_UNLATCH: break; } }
if ((panim->flags & STUDIO_DELTA) || panim->noAutoIK) continue;
// auto release ik chains that are moved but not referenced and have no explicit rules
int count[16];
for (j = 0; j < g_numikchains; j++) { count[j] = 0; }
for (j = 0; j < panim->numikrules; j++) { count[panim->ikrule[j].chain]++; }
for (j = 0; j < g_numikchains; j++) { if (count[j] == 0 && panim->weight[g_ikchain[j].link[2].bone] > 0.0) { // printf("%s - %s\n", panim->name, g_ikchain[j].name );
k = panim->numikrules++; panim->ikrule[k].chain = j; panim->ikrule[k].slot = j; panim->ikrule[k].type = IK_RELEASE; panim->ikrule[k].start = 0; panim->ikrule[k].peak = 0; panim->ikrule[k].tail = panim->numframes - 1; panim->ikrule[k].end = panim->numframes - 1; } } } // exit(0);
// realign IK across multiple animations
for (i = 0; i < g_sequence.Count(); i++) { for (j = 0; j < g_sequence[i].groupsize[0]; j++) { for (k = 0; k < g_sequence[i].groupsize[1]; k++) { g_sequence[i].numikrules = max( g_sequence[i].numikrules, g_sequence[i].panim[j][k]->numikrules ); } }
// check for mismatched ik rules
s_animation_t *panim1 = g_sequence[i].panim[0][0]; for (j = 0; j < g_sequence[i].groupsize[0]; j++) { for (k = 0; k < g_sequence[i].groupsize[1]; k++) { s_animation_t *panim2 = g_sequence[i].panim[j][k]; if (panim1->numikrules != panim2->numikrules) { MdlError( "%s - mismatched number of IK rules: \"%s\" \"%s\"\n", g_sequence[i].name, panim1->name, panim2->name ); } for (int n = 0; n < panim1->numikrules; n++) { if ((panim1->ikrule[n].type != panim2->ikrule[n].type) || (panim1->ikrule[n].chain != panim2->ikrule[n].chain) || (panim1->ikrule[n].slot != panim2->ikrule[n].slot)) { MdlError( "%s - mismatched IK rule %d: \n\"%s\" : %d %d %d\n\"%s\" : %d %d %d\n", g_sequence[i].name, n, panim1->name, panim1->ikrule[n].type, panim1->ikrule[n].chain, panim1->ikrule[n].slot, panim2->name, panim2->ikrule[n].type, panim2->ikrule[n].chain, panim2->ikrule[n].slot ); } } } }
// FIXME: this doesn't check alignment!!!
for (j = 0; j < g_sequence[i].groupsize[0]; j++) { for (k = 0; k < g_sequence[i].groupsize[1]; k++) { for (int n = 0; n < g_sequence[i].panim[j][k]->numikrules; n++) { g_sequence[i].panim[j][k]->ikrule[n].index = n; } } } } }
//-----------------------------------------------------------------------------
// CompressAnimations
//-----------------------------------------------------------------------------
static void CompressAnimations( ) { int i, j, k, n, m;
// find scales for all bones
for (j = 0; j < g_numbones; j++) { // printf("%s : ", g_bonetable[j].name );
for (k = 0; k < 6; k++) { float minv, maxv, scale; float total_minv, total_maxv;
if (k < 3) { minv = -128.0; maxv = 128.0; total_maxv = total_minv = g_bonetable[j].pos[k]; } else { minv = -M_PI / 8.0; maxv = M_PI / 8.0; total_maxv = total_minv = g_bonetable[j].rot[k-3]; }
for (i = 0; i < g_numani; i++) { for (n = 0; n < g_panimation[i]->numframes; n++) { float v = 0.0f; switch(k) { case 0: case 1: case 2: if (g_panimation[i]->flags & STUDIO_DELTA) { v = g_panimation[i]->sanim[n][j].pos[k]; } else { v = ( g_panimation[i]->sanim[n][j].pos[k] - g_bonetable[j].pos[k] );
if (g_panimation[i]->sanim[n][j].pos[k] < total_minv) total_minv = g_panimation[i]->sanim[n][j].pos[k]; if (g_panimation[i]->sanim[n][j].pos[k] > total_maxv) total_maxv = g_panimation[i]->sanim[n][j].pos[k]; } break; case 3: case 4: case 5: if (g_panimation[i]->flags & STUDIO_DELTA) { v = g_panimation[i]->sanim[n][j].rot[k-3]; } else { v = ( g_panimation[i]->sanim[n][j].rot[k-3] - g_bonetable[j].rot[k-3] ); } while (v >= M_PI) v -= M_PI * 2; while (v < -M_PI) v += M_PI * 2; break; } if (v < minv) minv = v; if (v > maxv) maxv = v; } } if (minv < maxv) { if (-minv> maxv) { scale = minv / -32768.0; } else { scale = maxv / 32767; } } else { scale = 1.0 / 32.0; } switch(k) { case 0: case 1: case 2: g_bonetable[j].posscale[k] = scale; g_bonetable[j].posrange[k] = total_maxv - total_minv; break; case 3: case 4: case 5: // printf("(%.1f %.1f)", RAD2DEG(minv), RAD2DEG(maxv) );
// printf("(%.1f)", RAD2DEG(maxv-minv) );
g_bonetable[j].rotscale[k-3] = scale; break; } // printf("%.0f ", 1.0 / scale );
} // printf("\n" );
}
// reduce animations
for (i = 0; i < g_numani; i++) { s_animation_t *panim = g_panimation[i]; s_source_t *psource = panim->source;
if (g_bCheckLengths) { printf("%s\n", panim->name ); }
// setup animation interior sections
int iSectionFrames = panim->numframes; if ( panim->numframes >= g_minSectionFrameLimit ) { iSectionFrames = g_sectionFrames; panim->sectionframes = g_sectionFrames; panim->numsections = (int)(panim->numframes / panim->sectionframes) + 2; } else { panim->sectionframes = 0; panim->numsections = 1; }
for (int w = 0; w < panim->numsections; w++) { int iStartFrame = w * iSectionFrames; int iEndFrame = (w + 1) * iSectionFrames;
iStartFrame = min( iStartFrame, panim->numframes - 1 ); iEndFrame = min( iEndFrame, panim->numframes - 1 );
// printf("%s : %d %d\n", panim->name, iStartFrame, iEndFrame );
for (j = 0; j < g_numbones; j++) { for (k = 0; k < 6; k++) { panim->anim[w][j].num[k] = 0; panim->anim[w][j].data[k] = NULL; }
// skip bones that are always procedural
if (g_bonetable[j].flags & BONE_ALWAYS_PROCEDURAL) { // panim->weight[j] = 0.0;
continue; }
// skip bones that have no influence
if (panim->weight[j] < 0.001) continue;
float checkmin[6], checkmax[6]; for (k = 0; k < 6; k++) { checkmin[k] = 9999; checkmax[k] = -9999; }
for (k = 0; k < 6; k++) { mstudioanimvalue_t *pcount, *pvalue; float v; short value[MAXSTUDIOANIMFRAMES]; mstudioanimvalue_t data[MAXSTUDIOANIMFRAMES];
// find deltas from default pose
for (n = 0; n <= iEndFrame - iStartFrame; n++) { s_bone_t *psrcdata = &panim->sanim[n+iStartFrame][j]; switch(k) { case 0: /* X Position */ case 1: /* Y Position */ case 2: /* Z Position */ if (panim->flags & STUDIO_DELTA) { value[n] = psrcdata->pos[k] / g_bonetable[j].posscale[k]; // pre-scale pos delta since format only has room for "overall" weight
float r = panim->posweight[j] / panim->weight[j]; value[n] *= r; } else { value[n] = ( psrcdata->pos[k] - g_bonetable[j].pos[k] ) / g_bonetable[j].posscale[k]; }
checkmin[k] = min( value[n] * g_bonetable[j].posscale[k], checkmin[k] ); checkmax[k] = max( value[n] * g_bonetable[j].posscale[k], checkmax[k] ); break; case 3: /* X Rotation */ case 4: /* Y Rotation */ case 5: /* Z Rotation */ if (panim->flags & STUDIO_DELTA) { v = psrcdata->rot[k-3]; } else { v = ( psrcdata->rot[k-3] - g_bonetable[j].rot[k-3] ); }
while (v >= M_PI) v -= M_PI * 2; while (v < -M_PI) v += M_PI * 2;
checkmin[k] = min( v, checkmin[k] ); checkmax[k] = max( v, checkmax[k] ); value[n] = v / g_bonetable[j].rotscale[k-3]; break; } } if (n == 0) MdlError("no animation frames: \"%s\"\n", psource->filename );
// FIXME: this compression algorithm needs work
// initialize animation RLE block
memset( data, 0, sizeof( data ) ); pcount = data; pvalue = pcount + 1;
pcount->num.valid = 1; pcount->num.total = 1; pvalue->value = value[0]; pvalue++;
// build a RLE of deltas from the default pose
for (m = 1; m < n; m++) { if (pcount->num.total == 255) { // chain too long, force a new entry
pcount = pvalue; pvalue = pcount + 1; pcount->num.valid++; pvalue->value = value[m]; pvalue++; } // insert value if they're not equal,
// or if we're not on a run and the run is less than 3 units
else if ((value[m] != value[m-1]) || ((pcount->num.total == pcount->num.valid) && ((m < n - 1) && value[m] != value[m+1]))) { if (pcount->num.total != pcount->num.valid) { //if (j == 0) printf("%d:%d ", pcount->num.valid, pcount->num.total );
pcount = pvalue; pvalue = pcount + 1; } pcount->num.valid++; pvalue->value = value[m]; pvalue++; } pcount->num.total++; } //if (j == 0) printf("%d:%d\n", pcount->num.valid, pcount->num.total );
panim->anim[w][j].num[k] = pvalue - data; if (panim->anim[w][j].num[k] == 2 && value[0] == 0) { panim->anim[w][j].num[k] = 0; } else { panim->anim[w][j].data[k] = (mstudioanimvalue_t *)kalloc( pvalue - data, sizeof( mstudioanimvalue_t ) ); memmove( panim->anim[w][j].data[k], data, (pvalue - data) * sizeof( mstudioanimvalue_t ) ); } // printf("%d(%d) ", g_source[i]->panim[q]->numanim[j][k], n );
}
if (g_bCheckLengths) { char *tmp[6] = { "X", "Y", "Z", "XR", "YR", "ZR" }; n = 0; for (k = 0; k < 3; k++) { if (checkmin[k] != 0) { if (n == 0) printf("%s :", g_bonetable[j].name ); printf("%s(%.1f: %.1f %.1f) ", tmp[k], g_bonetable[j].pos[k], checkmin[k], checkmax[k] ); n = 1; } } if (n) printf("\n"); } } }
if (panim->numsections == 1) { panim->sectionframes = 0; } } }
//-----------------------------------------------------------------------------
// Compress a single animation stream
//-----------------------------------------------------------------------------
static void CompressSingle( s_animationstream_t *pStream ) { int k, n, m;
if (pStream->numerror == 0) return;
// printf("%s : ", g_bonetable[j].name );
for (k = 0; k < 6; k++) { float minv, maxv, scale; RadianEuler ang;
if (k < 3) { minv = -128.0; maxv = 128.0; } else { minv = -M_PI / 8.0; maxv = M_PI / 8.0; }
for (n = 0; n < pStream->numerror; n++) { float v = 0.0f; switch(k) { case 0: case 1: case 2: v = pStream->pError[n].pos[k]; break; case 3: case 4: case 5: QuaternionAngles( pStream->pError[n].q, ang ); v = ang[k-3]; while (v >= M_PI) v -= M_PI * 2; while (v < -M_PI) v += M_PI * 2; break; } if (v < minv) minv = v; if (v > maxv) maxv = v; } // printf("%f %f\n", minv, maxv );
if (minv < maxv) { if (-minv> maxv) { scale = minv / -32768.0; } else { scale = maxv / 32767; } } else { scale = 1.0 / 32.0; }
pStream->scale[k] = scale; mstudioanimvalue_t *pcount, *pvalue; float v; short value[MAXSTUDIOANIMFRAMES]; mstudioanimvalue_t data[MAXSTUDIOANIMFRAMES];
// find deltas from default pose
for (n = 0; n < pStream->numerror; n++) { switch(k) { case 0: /* X Position */ case 1: /* Y Position */ case 2: /* Z Position */ value[n] = pStream->pError[n].pos[k] / pStream->scale[k]; break; case 3: /* X Rotation */ case 4: /* Y Rotation */ case 5: /* Z Rotation */ QuaternionAngles( pStream->pError[n].q, ang ); v = ang[k-3]; while (v >= M_PI) v -= M_PI * 2; while (v < -M_PI) v += M_PI * 2; value[n] = v / pStream->scale[k]; break; } }
// initialize animation RLE block
pStream->numanim[k] = 0;
memset( data, 0, sizeof( data ) ); pcount = data; pvalue = pcount + 1;
pcount->num.valid = 1; pcount->num.total = 1; pvalue->value = value[0]; pvalue++;
// build a RLE of deltas from the default pose
for (m = 1; m < n; m++) { if (pcount->num.total == 255) { // chain too long, force a new entry
pcount = pvalue; pvalue = pcount + 1; pcount->num.valid++; pvalue->value = value[m]; pvalue++; } // insert value if they're not equal,
// or if we're not on a run and the run is less than 3 units
else if ((value[m] != value[m-1]) || ((pcount->num.total == pcount->num.valid) && ((m < n - 1) && value[m] != value[m+1]))) { if (pcount->num.total != pcount->num.valid) { //if (j == 0) printf("%d:%d ", pcount->num.valid, pcount->num.total );
pcount = pvalue; pvalue = pcount + 1; } pcount->num.valid++; pvalue->value = value[m]; pvalue++; } pcount->num.total++; } //if (j == 0) printf("%d:%d\n", pcount->num.valid, pcount->num.total );
pStream->numanim[k] = pvalue - data; pStream->anim[k] = (mstudioanimvalue_t *)kalloc( pvalue - data, sizeof( mstudioanimvalue_t ) ); memmove( pStream->anim[k], data, (pvalue - data) * sizeof( mstudioanimvalue_t ) ); // printf("%d (%d) : %d\n", pRule->numanim[k], n, pRule->errorData.numerror );
} }
//-----------------------------------------------------------------------------
// Compress all the IK data
//-----------------------------------------------------------------------------
static void CompressIKErrors( ) { int i, j;
// find scales for all bones
for (i = 0; i < g_numani; i++) { for (j = 0; j < g_panimation[i]->numikrules; j++) { s_ikrule_t *pRule = &g_panimation[i]->ikrule[j];
if (pRule->errorData.numerror == 0) continue;
CompressSingle( &pRule->errorData ); } } }
//-----------------------------------------------------------------------------
// Compress all the Local Hierarchy data
//-----------------------------------------------------------------------------
static void CompressLocalHierarchy( ) { int i, j;
// find scales for all bones
for (i = 0; i < g_numani; i++) { for (j = 0; j < g_panimation[i]->numlocalhierarchy; j++) { s_localhierarchy_t *pRule = &g_panimation[i]->localhierarchy[j];
if (pRule->localData.numerror == 0) continue;
CompressSingle( &pRule->localData ); } } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
struct BonePriority_s { int m_nGlobalBoneId; float m_nGlobalBoneWeight; };
//-----------------------------------------------------------------------------
// Sort by bone weight
//-----------------------------------------------------------------------------
int compareBonePriority( const void *a, const void *b ) { return reinterpret_cast< const BonePriority_s * >( a )->m_nGlobalBoneWeight < reinterpret_cast< const BonePriority_s * >( b )->m_nGlobalBoneWeight ? -1 : reinterpret_cast< const BonePriority_s * >( a )->m_nGlobalBoneWeight > reinterpret_cast< const BonePriority_s * >( b )->m_nGlobalBoneWeight ? 1 : 0; };
//-----------------------------------------------------------------------------
// Dump A $definebone line, ensuring any parents are already dumped
//-----------------------------------------------------------------------------
void DumpDefineBone( int nBoneId, bool *pBoneDumpedList ) { Assert( nBoneId < g_numbones );
if ( pBoneDumpedList[ nBoneId ] ) return;
const s_bonetable_t &bone = g_bonetable[ nBoneId ];
// Ensure the parent bone is dumped before the child
if ( bone.parent >= 0 ) { DumpDefineBone( bone.parent, pBoneDumpedList ); }
printf( "$definebone " );
printf( "\"%s\" ", bone.name ); if ( bone.parent != -1 ) { printf( "\"%s\" ", g_bonetable[ bone.parent ].name ); } else { printf( "\"\" " ); }
Vector pos; QAngle angles;
pos = bone.pos; angles.Init( RAD2DEG( bone.rot.y ), RAD2DEG( bone.rot.z ), RAD2DEG( bone.rot.x ) ); printf( "%f %f %f %f %f %f", pos.x, pos.y, pos.z, angles.x, angles.y, angles.z );
MatrixAngles( bone.srcRealign, angles, pos ); printf( " %f %f %f %f %f %f", pos.x, pos.y, pos.z, angles.x, angles.y, angles.z );
printf( "\n" );
pBoneDumpedList[ nBoneId ] = true; }
//-----------------------------------------------------------------------------
// Dump a $definebones .qci file with the bones in an optimal order
// i.e. Bones that are removed or replaced in LODs are later in the list
// bones that are used all of the time are at the top of the list
//-----------------------------------------------------------------------------
void DumpDefineBones() { BonePriority_s *pBonePriorityList = reinterpret_cast< BonePriority_s * >( stackalloc( g_numbones * sizeof( BonePriority_s ) ) );
for ( int i = 0; i < g_numbones; ++i ) { BonePriority_s &bonePriority = pBonePriorityList[ i ]; bonePriority.m_nGlobalBoneId = i; bonePriority.m_nGlobalBoneWeight = 0.0f; }
for ( int i = 0; i < g_ScriptLODs.Count(); ++i ) { const LodScriptData_t &scriptLOD = g_ScriptLODs[ i ];
for ( int j = 0; j < scriptLOD.boneReplacements.Count(); ++j ) { // Ignore Shadow LOD
if ( scriptLOD.switchValue <= 0.0f ) continue;
const int nBoneId = findGlobalBone( scriptLOD.boneReplacements[ j ].GetSrcName() ); if ( nBoneId < 0 ) { Warning( "Can't Find BoneReplacement Bone %s\n", scriptLOD.boneReplacements[ j ].GetSrcName() ); continue; }
pBonePriorityList[ nBoneId ].m_nGlobalBoneWeight += scriptLOD.switchValue; } }
// bones used by hitboxes and attachments should always go first since they're used by the server
for ( int i = 0; i < g_numbones; ++i ) { if ( g_bonetable[i].flags & (BONE_USED_BY_HITBOX | BONE_USED_BY_ATTACHMENT | BONE_USED_BY_BONE_MERGE )) { pBonePriorityList[ i ].m_nGlobalBoneWeight = -1.0f; } }
qsort( pBonePriorityList, g_numbones, sizeof( BonePriority_s ), compareBonePriority );
bool *pBoneDumpedList = reinterpret_cast< bool * >( stackalloc( g_numbones * sizeof( bool ) ) ); memset( pBoneDumpedList, 0, g_numbones * sizeof( bool ) );
for (int i = 0; i < g_numbones; i++) { const BonePriority_s &bonePriority = pBonePriorityList[ i ]; const int nBoneId = bonePriority.m_nGlobalBoneId;
if (g_bonetable[ nBoneId ].flags & BONE_ALWAYS_PROCEDURAL) { pBoneDumpedList[ nBoneId ] = true; continue; }
DumpDefineBone( nBoneId, pBoneDumpedList ); } }
void ReLinkAttachments() { int i; int j; int k;
// relink per-model attachments, eyeballs
for (i = 0; i < g_nummodelsbeforeLOD; i++) { s_source_t *psource = g_model[i]->source; for (j = 0; j < g_model[i]->numattachments; j++) { k = findGlobalBone( g_model[i]->attachment[j].bonename ); if (k == -1) { MdlError("unknown model attachment link '%s'\n", g_model[i]->attachment[j].bonename ); } g_model[i]->attachment[j].bone = j; }
for (j = 0; j < g_model[i]->numeyeballs; j++) { g_model[i]->eyeball[j].bone = psource->boneLocalToGlobal[g_model[i]->eyeball[j].bone]; } } }
void CheckEyeballSetup() {
for (int i = 0; i < g_nummodelsbeforeLOD; i++) { for (int j = 0; j < g_model[i]->numeyeballs; j++) { s_eyeball_t *peyeball = &g_model[i]->eyeball[j]; if (peyeball->upperlidflexdesc == -1) { // MdlWarning( "eyeball %s missing upperlid data\n", peyeball->name );
int dummy = Add_Flexdesc( "dummy_eyelid" );
peyeball->upperlidflexdesc = dummy; peyeball->upperflexdesc[0] = dummy; peyeball->uppertarget[0] = -1; peyeball->upperflexdesc[1] = dummy; peyeball->uppertarget[1] = 0; peyeball->upperflexdesc[2] = dummy; peyeball->uppertarget[2] = 1; }
if (peyeball->lowerlidflexdesc == -1) { // MdlWarning( "eyeball %s missing lower data\n", peyeball->name );
int dummy = Add_Flexdesc( "dummy_eyelid" );
peyeball->lowerlidflexdesc = dummy; peyeball->lowerflexdesc[0] = dummy; peyeball->lowertarget[0] = -1; peyeball->lowerflexdesc[1] = dummy; peyeball->lowertarget[1] = 0; peyeball->lowerflexdesc[2] = dummy; peyeball->lowertarget[2] = 1; } } }
}
void SetupHitBoxes() { int i; int j; int k; int n;
// set hitgroups
for (k = 0; k < g_numbones; k++) { g_bonetable[k].group = -9999; } for (j = 0; j < g_numhitgroups; j++) { k = findGlobalBone( g_hitgroup[j].name ); if (k != -1) { g_bonetable[k].group = g_hitgroup[j].group; } else { MdlError( "cannot find bone %s for hitgroup %d\n", g_hitgroup[j].name, g_hitgroup[j].group ); } } for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].group == -9999) { if (g_bonetable[k].parent != -1) g_bonetable[k].group = g_bonetable[g_bonetable[k].parent].group; else g_bonetable[k].group = 0; } }
if ( g_hitboxsets.Size() == 0 ) { int index = g_hitboxsets.AddToTail();
s_hitboxset *set = &g_hitboxsets[ index ]; memset( set, 0, sizeof( *set) ); strcpy( set->hitboxsetname, "default" );
gflags |= STUDIOHDR_FLAGS_AUTOGENERATED_HITBOX;
// find intersection box volume for each bone
for (k = 0; k < g_numbones; k++) { for (j = 0; j < 3; j++) { if (g_bUseBoneInBBox) { g_bonetable[k].bmin[j] = 0.0; g_bonetable[k].bmax[j] = 0.0; } else { g_bonetable[k].bmin[j] = 9999.0; g_bonetable[k].bmax[j] = -9999.0; } } } // try all the connect vertices
for (i = 0; i < g_nummodelsbeforeLOD; i++) { s_loddata_t *pLodData = g_model[i]->m_pLodData; if ( !pLodData ) continue;
Vector p; for (j = 0; j < pLodData->numvertices; j++) { for (n = 0; n < pLodData->vertex[j].boneweight.numbones; n++) { k = pLodData->vertex[j].boneweight.bone[n]; VectorITransform( pLodData->vertex[j].position, g_bonetable[k].boneToPose, p );
if (p[0] < g_bonetable[k].bmin[0]) g_bonetable[k].bmin[0] = p[0]; if (p[1] < g_bonetable[k].bmin[1]) g_bonetable[k].bmin[1] = p[1]; if (p[2] < g_bonetable[k].bmin[2]) g_bonetable[k].bmin[2] = p[2]; if (p[0] > g_bonetable[k].bmax[0]) g_bonetable[k].bmax[0] = p[0]; if (p[1] > g_bonetable[k].bmax[1]) g_bonetable[k].bmax[1] = p[1]; if (p[2] > g_bonetable[k].bmax[2]) g_bonetable[k].bmax[2] = p[2]; } } } // add in all your children as well
for (k = 0; k < g_numbones; k++) { if ((j = g_bonetable[k].parent) != -1) { if (g_bonetable[k].pos[0] < g_bonetable[j].bmin[0]) g_bonetable[j].bmin[0] = g_bonetable[k].pos[0]; if (g_bonetable[k].pos[1] < g_bonetable[j].bmin[1]) g_bonetable[j].bmin[1] = g_bonetable[k].pos[1]; if (g_bonetable[k].pos[2] < g_bonetable[j].bmin[2]) g_bonetable[j].bmin[2] = g_bonetable[k].pos[2]; if (g_bonetable[k].pos[0] > g_bonetable[j].bmax[0]) g_bonetable[j].bmax[0] = g_bonetable[k].pos[0]; if (g_bonetable[k].pos[1] > g_bonetable[j].bmax[1]) g_bonetable[j].bmax[1] = g_bonetable[k].pos[1]; if (g_bonetable[k].pos[2] > g_bonetable[j].bmax[2]) g_bonetable[j].bmax[2] = g_bonetable[k].pos[2]; } }
for (k = 0; k < g_numbones; k++) { if (g_bonetable[k].bmin[0] < g_bonetable[k].bmax[0] - 1 && g_bonetable[k].bmin[1] < g_bonetable[k].bmax[1] - 1 && g_bonetable[k].bmin[2] < g_bonetable[k].bmax[2] - 1) { set->hitbox[set->numhitboxes].bone = k; set->hitbox[set->numhitboxes].group = g_bonetable[k].group; VectorCopy( g_bonetable[k].bmin, set->hitbox[set->numhitboxes].bmin ); VectorCopy( g_bonetable[k].bmax, set->hitbox[set->numhitboxes].bmax );
if (dump_hboxes) { printf("$hbox %d \"%s\" %.2f %.2f %.2f %.2f %.2f %.2f\n", set->hitbox[set->numhitboxes].group, g_bonetable[set->hitbox[set->numhitboxes].bone].name, set->hitbox[set->numhitboxes].bmin[0], set->hitbox[set->numhitboxes].bmin[1], set->hitbox[set->numhitboxes].bmin[2], set->hitbox[set->numhitboxes].bmax[0], set->hitbox[set->numhitboxes].bmax[1], set->hitbox[set->numhitboxes].bmax[2] );
} set->numhitboxes++; } } } else { gflags &= ~STUDIOHDR_FLAGS_AUTOGENERATED_HITBOX;
for (int s = 0; s < g_hitboxsets.Size(); s++ ) { s_hitboxset *set = &g_hitboxsets[ s ];
for (j = 0; j < set->numhitboxes; j++) { k = findGlobalBone( set->hitbox[j].name ); if (k != -1) { set->hitbox[j].bone = k; } else { MdlError( "cannot find bone %s for bbox\n", set->hitbox[j].name ); } } } }
for (int s = 0; s < g_hitboxsets.Size(); s++ ) { s_hitboxset *set = &g_hitboxsets[ s ];
// flag all bones used by hitboxes
for (j = 0; j < set->numhitboxes; j++) { k = set->hitbox[j].bone; while (k != -1) { g_bonetable[k].flags |= BONE_USED_BY_HITBOX; k = g_bonetable[k].parent; } } } }
void SetupFullBoneRenderBounds( CUtlVector<CBoneRenderBounds> &boneRenderBounds ) { boneRenderBounds.SetSize( g_numbones );
// First, add the ones already calculated from vertices.
for ( int i=0; i < g_numbones; i++ ) { CBoneRenderBounds *pOut = &boneRenderBounds[i]; pOut->m_Mins = g_bonetable[i].bmin; pOut->m_Maxs = g_bonetable[i].bmax; }
// Note: shared animation files will need to include the hitboxes or else their sequence
// boxes won't use this stuff.
// Now add hitboxes.
for ( int i=0; i < g_hitboxsets.Count(); i++ ) { const s_hitboxset *pSet = &g_hitboxsets[i]; for ( int k=0; k < pSet->numhitboxes; k++ ) { const s_bbox_t *pIn = &pSet->hitbox[k];
if ( pIn->bone >= 0 ) { CBoneRenderBounds *pOut = &boneRenderBounds[pIn->bone]; VectorMin( pIn->bmin, pOut->m_Mins, pOut->m_Mins ); VectorMax( pIn->bmax, pOut->m_Maxs, pOut->m_Maxs ); } } } }
void CalcSequenceBoundingBoxes() { int i; int j; int k; int n; int m;
CUtlVector<CBoneRenderBounds> boneRenderBounds; SetupFullBoneRenderBounds( boneRenderBounds );
// find bounding box for each g_sequence
for (i = 0; i < g_numani; i++) { Vector bmin, bmax; // find intersection box volume for each bone
for (j = 0; j < 3; j++) { bmin[j] = 9999.0; bmax[j] = -9999.0; }
for (j = 0; j < g_panimation[i]->numframes; j++) { matrix3x4_t bonetransform[MAXSTUDIOBONES]; // bone transformation matrix
matrix3x4_t posetransform[MAXSTUDIOBONES]; // bone transformation matrix
matrix3x4_t bonematrix; // local transformation matrix
Vector pos;
CalcBoneTransforms( g_panimation[i], j, bonetransform );
for (k = 0; k < g_numbones; k++) { MatrixInvert( g_bonetable[k].boneToPose, bonematrix ); ConcatTransforms (bonetransform[k], bonematrix, posetransform[k]); }
// include hitboxes as well.
for (k = 0; k < g_numbones; k++) { Vector tmpMin, tmpMax; TransformAABB( bonetransform[k], boneRenderBounds[k].m_Mins, boneRenderBounds[k].m_Maxs, tmpMin, tmpMax ); VectorMin( tmpMin, bmin, bmin ); VectorMax( tmpMax, bmax, bmax ); }
// include vertices
for (k = 0; k < g_nummodelsbeforeLOD; k++) { s_loddata_t *pLodData = g_model[k]->m_pLodData;
// skip blank empty model
if ( !pLodData ) continue;
for (n = 0; n < pLodData->numvertices; n++) { Vector tmp; pos = Vector( 0, 0, 0 ); for (m = 0; m < pLodData->vertex[n].boneweight.numbones; m++) { VectorTransform( pLodData->vertex[n].position, posetransform[pLodData->vertex[n].boneweight.bone[m]], tmp ); // bug: should use all bones!
VectorMA( pos, pLodData->vertex[n].boneweight.weight[m], tmp, pos ); }
VectorMin( pos, bmin, bmin ); VectorMax( pos, bmax, bmax ); } } }
if (bmin.x < g_vecMinWorldspace.x || bmin.y < g_vecMinWorldspace.y || bmin.z < g_vecMinWorldspace.z || bmax.x > g_vecMaxWorldspace.x || bmax.y > g_vecMaxWorldspace.y || bmax.z > g_vecMaxWorldspace.z) { MdlWarning("%s : bounding box out of range : %.0f %.0f %.0f : %.0f %.0f %.0f\n", g_panimation[i]->name, bmin.x, bmin.y, bmin.z, bmax.z, bmax.y, bmax.z );
VectorMax( bmin, g_vecMinWorldspace, bmin ); VectorMin( bmax, g_vecMaxWorldspace, bmax ); }
VectorCopy( bmin, g_panimation[i]->bmin ); VectorCopy( bmax, g_panimation[i]->bmax );
/*
printf("%s : %.0f %.0f %.0f %.0f %.0f %.0f\n", g_panimation[i]->name, bmin[0], bmax[0], bmin[1], bmax[1], bmin[2], bmax[2] ); */
// printf("%s %.2f\n", g_sequence[i].name, g_sequence[i].panim[0]->pos[9][0][0] / g_bonetable[9].pos[0] );
}
for (i = 0; i < g_sequence.Count(); i++) { Vector bmin, bmax; // find intersection box volume for each bone
for (j = 0; j < 3; j++) { bmin[j] = 9999.0; bmax[j] = -9999.0; }
for (j = 0; j < g_sequence[i].groupsize[0]; j++) { for (k = 0; k < g_sequence[i].groupsize[1]; k++) { s_animation_t *panim = g_sequence[i].panim[j][k];
if (panim->bmin[0] < bmin[0]) bmin[0] = panim->bmin[0]; if (panim->bmin[1] < bmin[1]) bmin[1] = panim->bmin[1]; if (panim->bmin[2] < bmin[2]) bmin[2] = panim->bmin[2]; if (panim->bmax[0] > bmax[0]) bmax[0] = panim->bmax[0]; if (panim->bmax[1] > bmax[1]) bmax[1] = panim->bmax[1]; if (panim->bmax[2] > bmax[2]) bmax[2] = panim->bmax[2]; } }
VectorCopy( bmin, g_sequence[i].bmin ); VectorCopy( bmax, g_sequence[i].bmax ); } }
void SetIlluminationPosition() { // find center of domain
if (!illumpositionset) { // Only use the 0th sequence; that should be the idle sequence
VectorFill( illumposition, 0 ); if (g_sequence.Count() != 0) { VectorAdd( g_sequence[0].bmin, g_sequence[0].bmax, illumposition ); illumposition *= 0.5f; } illumpositionset = true; } }
void SimplifyModel() { if (g_sequence.Count() == 0 && g_numincludemodels == 0) { MdlError( "model has no sequences\n"); }
// have to load the lod sources before remapping bones so that the remap
// happens for all LODs.
LoadLODSources();
RemapBones();
LinkIKChains();
LinkIKLocks();
RealignBones();
ConvertBoneTreeCollapsesToReplaceBones();
// export bones
if (g_definebones) { DumpDefineBones(); exit( 0 ); }
// translate:
// replacebone "bone0" "bone1"
// replacebone "bone1" "bone2"
// replacebone "bone2" "bone3"
// to:
// replacebone "bone0" "bone3"
// replacebone "bone1" "bone3"
// replacebone "bone2" "bone3"
FixupReplacedBones();
RemapVerticesToGlobalBones();
if (g_bCenterBonesOnVerts) { CenterBonesOnVerts(); } // remap lods to root, building aggregate final pools
// mark bones used by an lod
UnifyLODs(); if ( g_bPrintBones ) { printf( "Hardware bone usage:\n" ); } SpewBoneUsageStats();
MarkParentBoneLODs();
if ( g_bPrintBones ) { printf( "CPU bone usage:\n" ); } SpewBoneUsageStats();
RemapAnimations();
processAnimations();
limitBoneRotations();
limitIKChainLength();
RemapProceduralBones();
MakeTransitions(); RemapVertexAnimations(); RemapVertexAnimationsNewVersion();
FindAutolayers();
// link bonecontrollers
LinkBoneControllers();
// link screen aligned bones
TagScreenAlignedBones();
// link attachments
LinkAttachments();
// link mouths
LinkMouths();
// procedural bone needs to propogate its bone usage up its chain
// ensures runtime sets up dependent bone hierarchy
MarkProceduralBoneChain();
LockBoneLengths();
ProcessIKRules();
CompressIKErrors( );
CompressLocalHierarchy( );
CalcPoseParameters();
ReLinkAttachments();
CheckEyeballSetup();
SetupHitBoxes();
CompressAnimations( );
CalcSequenceBoundingBoxes();
SetIlluminationPosition();
if ( g_bBuildPreview ) { gflags |= STUDIOHDR_FLAGS_BUILT_IN_PREVIEW_MODE; } }
|