|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include "incremental.h"
#include "lightmap.h"
static bool g_bFileError = false;
// -------------------------------------------------------------------------------- //
// Static helpers.
// -------------------------------------------------------------------------------- //
static bool CompareLights( dworldlight_t *a, dworldlight_t *b ) { static float flEpsilon = 1e-7;
bool a1 = VectorsAreEqual( a->origin, b->origin, flEpsilon ); bool a2 = VectorsAreEqual( a->intensity, b->intensity, 1.1f ); // intensities are huge numbers
bool a3 = VectorsAreEqual( a->normal, b->normal, flEpsilon ); bool a4 = fabs( a->constant_attn - b->constant_attn ) < flEpsilon; bool a5 = fabs( a->linear_attn - b->linear_attn ) < flEpsilon; bool a6 = fabs( a->quadratic_attn - b->quadratic_attn ) < flEpsilon; bool a7 = fabs( float( a->flags - b->flags ) ) < flEpsilon; bool a8 = fabs( a->stopdot - b->stopdot ) < flEpsilon; bool a9 = fabs( a->stopdot2 - b->stopdot2 ) < flEpsilon; bool a10 = fabs( a->exponent - b->exponent ) < flEpsilon; bool a11 = fabs( a->radius - b->radius ) < flEpsilon;
return a1 && a2 && a3 && a4 && a5 && a6 && a7 && a8 && a9 && a10 && a11; }
long FileOpen( char const *pFilename, bool bRead ) { g_bFileError = false; return (long)g_pFileSystem->Open( pFilename, bRead ? "rb" : "wb" ); }
void FileClose( long fp ) { if( fp ) g_pFileSystem->Close( (FILE*)fp ); }
// Returns true if there was an error reading from the file.
bool FileError() { return g_bFileError; }
static inline void FileRead( long fp, void *pOut, int size ) { if( g_bFileError || g_pFileSystem->Read( pOut, size, (FileHandle_t)fp ) != size ) { g_bFileError = true; memset( pOut, 0, size ); } }
template<class T> static inline void FileRead( long fp, T &out ) { FileRead( fp, &out, sizeof(out) ); }
static inline void FileWrite( long fp, void const *pData, int size ) { if( g_bFileError || g_pFileSystem->Write( pData, size, (FileHandle_t)fp ) != size ) { g_bFileError = true; } }
template<class T> static inline void FileWrite( long fp, T out ) { FileWrite( fp, &out, sizeof(out) ); }
IIncremental* GetIncremental() { static CIncremental inc; return &inc; }
// -------------------------------------------------------------------------------- //
// CIncremental.
// -------------------------------------------------------------------------------- //
CIncremental::CIncremental() { m_TotalMemory = 0; m_pIncrementalFilename = NULL; m_pBSPFilename = NULL; m_bSuccessfulRun = false; }
CIncremental::~CIncremental() { }
bool CIncremental::Init( char const *pBSPFilename, char const *pIncrementalFilename ) { m_pBSPFilename = pBSPFilename; m_pIncrementalFilename = pIncrementalFilename; return true; }
bool CIncremental::PrepareForLighting() { if( !m_pBSPFilename ) return false;
// Clear the touched faces list.
m_FacesTouched.SetSize( numfaces ); memset( m_FacesTouched.Base(), 0, numfaces );
// If we haven't done a complete successful run yet, then we either haven't
// loaded the lights, or a run was aborted and our lights are half-done so we
// should reload them.
if( !m_bSuccessfulRun ) LoadIncrementalFile();
// unmatched = a list of the lights we have
CUtlLinkedList<int,int> unmatched; for( int i=m_Lights.Head(); i != m_Lights.InvalidIndex(); i = m_Lights.Next(i) ) unmatched.AddToTail( i );
// Match the light lists and get rid of lights that we already have all the data for.
directlight_t *pNext; directlight_t **pPrev = &activelights; for( directlight_t *dl=activelights; dl != NULL; dl = pNext ) { pNext = dl->next;
//float flClosest = 3000000000;
//CIncLight *pClosest = 0;
// Look for this light in our light list.
int iNextUnmatched, iUnmatched; for( iUnmatched=unmatched.Head(); iUnmatched != unmatched.InvalidIndex(); iUnmatched = iNextUnmatched ) { iNextUnmatched = unmatched.Next( iUnmatched );
CIncLight *pLight = m_Lights[ unmatched[iUnmatched] ];
//float flTest = (pLight->m_Light.origin - dl->light.origin).Length();
//if( flTest < flClosest )
//{
// flClosest = flTest;
// pClosest = pLight;
//}
if( CompareLights( &dl->light, &pLight->m_Light ) ) { unmatched.Remove( iUnmatched );
// Ok, we have this light's data already, yay!
// Get rid of it from the active light list.
*pPrev = dl->next; free( dl ); dl = 0; break; } }
//bool bTest=false;
//if(bTest)
// CompareLights( &dl->light, &pClosest->m_Light );
if( iUnmatched == unmatched.InvalidIndex() ) pPrev = &dl->next; }
// Remove any of our lights that were unmatched.
for( int iUnmatched=unmatched.Head(); iUnmatched != unmatched.InvalidIndex(); iUnmatched = unmatched.Next( iUnmatched ) ) { CIncLight *pLight = m_Lights[ unmatched[iUnmatched] ]; // First tag faces that it touched so they get recomposited.
for( unsigned short iFace=pLight->m_LightFaces.Head(); iFace != pLight->m_LightFaces.InvalidIndex(); iFace = pLight->m_LightFaces.Next( iFace ) ) { m_FacesTouched[ pLight->m_LightFaces[iFace]->m_FaceIndex ] = 1; } delete pLight; m_Lights.Remove( unmatched[iUnmatched] ); }
// Now add a light structure for each new light.
AddLightsForActiveLights(); return true; }
bool CIncremental::ReadIncrementalHeader( long fp, CIncrementalHeader *pHeader ) { int version; FileRead( fp, version ); if( version != INCREMENTALFILE_VERSION ) return false;
int nFaces; FileRead( fp, nFaces );
pHeader->m_FaceLightmapSizes.SetSize( nFaces ); FileRead( fp, pHeader->m_FaceLightmapSizes.Base(), sizeof(CIncrementalHeader::CLMSize) * nFaces );
return !FileError(); }
bool CIncremental::WriteIncrementalHeader( long fp ) { int version = INCREMENTALFILE_VERSION; FileWrite( fp, version );
int nFaces = numfaces; FileWrite( fp, nFaces );
CIncrementalHeader hdr; hdr.m_FaceLightmapSizes.SetSize( nFaces );
for( int i=0; i < nFaces; i++ ) { hdr.m_FaceLightmapSizes[i].m_Width = g_pFaces[i].m_LightmapTextureSizeInLuxels[0]; hdr.m_FaceLightmapSizes[i].m_Height = g_pFaces[i].m_LightmapTextureSizeInLuxels[1]; }
FileWrite( fp, hdr.m_FaceLightmapSizes.Base(), sizeof(CIncrementalHeader::CLMSize) * nFaces ); return !FileError(); }
bool CIncremental::IsIncrementalFileValid() { long fp = FileOpen( m_pIncrementalFilename, true ); if( !fp ) return false;
bool bValid = false; CIncrementalHeader hdr; if( ReadIncrementalHeader( fp, &hdr ) ) { // If the number of faces is the same and their lightmap sizes are the same,
// then this file is considered a legitimate incremental file.
if( hdr.m_FaceLightmapSizes.Count() == numfaces ) { int i; for( i=0; i < numfaces; i++ ) { if( hdr.m_FaceLightmapSizes[i].m_Width != g_pFaces[i].m_LightmapTextureSizeInLuxels[0] || hdr.m_FaceLightmapSizes[i].m_Height != g_pFaces[i].m_LightmapTextureSizeInLuxels[1] ) { break; } }
// Were all faces valid?
if( i == numfaces ) bValid = true; } }
FileClose( fp ); return bValid && !FileError(); }
void CIncremental::AddLightToFace( IncrementalLightID lightID, int iFace, int iSample, int lmSize, float dot, int iThread ) { // If we're not being used, don't do anything.
if( !m_pIncrementalFilename ) return;
CIncLight *pLight = m_Lights[lightID];
// Check for the 99.99% case in which the face already exists.
CLightFace *pFace; if( pLight->m_pCachedFaces[iThread] && pLight->m_pCachedFaces[iThread]->m_FaceIndex == iFace ) { pFace = pLight->m_pCachedFaces[iThread]; } else { bool bNew; EnterCriticalSection( &pLight->m_CS ); pFace = pLight->FindOrCreateLightFace( iFace, lmSize, &bNew ); LeaveCriticalSection( &pLight->m_CS );
pLight->m_pCachedFaces[iThread] = pFace;
if( bNew ) m_TotalMemory += pFace->m_LightValues.Count() * sizeof( pFace->m_LightValues[0] ); }
// Add this into the light's data.
pFace->m_LightValues[iSample].m_Dot = dot; }
unsigned short DecodeCharOrShort( CUtlBuffer *pIn ) { unsigned short val = pIn->GetUnsignedChar(); if( val & 0x80 ) { val = ((val & 0x7F) << 8) | pIn->GetUnsignedChar(); }
return val; }
void EncodeCharOrShort( CUtlBuffer *pBuf, unsigned short val ) { if( (val & 0xFF80) == 0 ) { pBuf->PutUnsignedChar( (unsigned char)val ); } else { if( val > 32767 ) val = 32767;
pBuf->PutUnsignedChar( (val >> 8) | 0x80 ); pBuf->PutUnsignedChar( val & 0xFF ); } }
void DecompressLightData( CUtlBuffer *pIn, CUtlVector<CLightValue> *pOut ) { int iOut = 0; while( pIn->TellGet() < pIn->TellPut() ) { unsigned char runLength = pIn->GetUnsignedChar(); unsigned short usVal = DecodeCharOrShort( pIn );
while( runLength > 0 ) { --runLength;
pOut->Element(iOut).m_Dot = usVal; ++iOut; } } }
#ifdef _WIN32
#pragma warning (disable:4701)
#endif
void CompressLightData( CLightValue const *pValues, int nValues, CUtlBuffer *pBuf ) { unsigned char runLength=0; unsigned short flLastValue;
for( int i=0; i < nValues; i++ ) { unsigned short flCurValue = (unsigned short)pValues[i].m_Dot;
if( i == 0 ) { flLastValue = flCurValue; runLength = 1; } else if( flCurValue == flLastValue && runLength < 255 ) { ++runLength; } else { pBuf->PutUnsignedChar( runLength ); EncodeCharOrShort( pBuf, flLastValue );
flLastValue = flCurValue; runLength = 1; } }
// Write the end..
if( runLength ) { pBuf->PutUnsignedChar( runLength ); EncodeCharOrShort( pBuf, flLastValue ); } }
#ifdef _WIN32
#pragma warning (default:4701)
#endif
void MultiplyValues( CUtlVector<CLightValue> &values, float scale ) { for( int i=0; i < values.Count(); i++ ) values[i].m_Dot *= scale; }
void CIncremental::FinishFace( IncrementalLightID lightID, int iFace, int iThread ) { CIncLight *pLight = m_Lights[lightID];
// Check for the 99.99% case in which the face already exists.
CLightFace *pFace; if( pLight->m_pCachedFaces[iThread] && pLight->m_pCachedFaces[iThread]->m_FaceIndex == iFace ) { pFace = pLight->m_pCachedFaces[iThread];
// Compress the data.
MultiplyValues( pFace->m_LightValues, pLight->m_flMaxIntensity ); pFace->m_CompressedData.SeekPut( CUtlBuffer::SEEK_HEAD, 0 ); CompressLightData( pFace->m_LightValues.Base(), pFace->m_LightValues.Count(), &pFace->m_CompressedData );
#if 0
// test decompression
CUtlVector<CLightValue> test; test.SetSize( 2048 ); pFace->m_CompressedData.SeekGet( CUtlBuffer::SEEK_HEAD, 0 ); DecompressLightData( &pFace->m_CompressedData, &test ); #endif
if( pFace->m_CompressedData.TellPut() == 0 ) { // No contribution.. delete this face from the light.
EnterCriticalSection( &pLight->m_CS ); pLight->m_LightFaces.Remove( pFace->m_LightFacesIndex ); delete pFace; LeaveCriticalSection( &pLight->m_CS ); } else { // Discard the uncompressed data.
pFace->m_LightValues.Purge(); m_FacesTouched[ pFace->m_FaceIndex ] = 1; } } }
bool CIncremental::Finalize() { // If we're not being used, don't do anything.
if( !m_pIncrementalFilename || !m_pBSPFilename ) return false;
CUtlVector<CFaceLightList> faceLights; LinkLightsToFaces( faceLights ); Vector faceLight[(MAX_LIGHTMAP_DIM_WITHOUT_BORDER+2) * (MAX_LIGHTMAP_DIM_WITHOUT_BORDER+2)]; CUtlVector<CLightValue> faceLightValues; faceLightValues.SetSize( (MAX_LIGHTMAP_DIM_WITHOUT_BORDER+2) * (MAX_LIGHTMAP_DIM_WITHOUT_BORDER+2) );
// Only update the faces we've touched.
for( int facenum = 0; facenum < numfaces; facenum++ ) { if( !m_FacesTouched[facenum] || !faceLights[facenum].Count() ) continue;
int w = g_pFaces[facenum].m_LightmapTextureSizeInLuxels[0]+1; int h = g_pFaces[facenum].m_LightmapTextureSizeInLuxels[1]+1; int nLuxels = w * h; assert( nLuxels <= sizeof(faceLight) / sizeof(faceLight[0]) );
// Clear the lighting for this face.
memset( faceLight, 0, nLuxels * sizeof(Vector) );
// Composite all the light contributions.
for( int iFace=0; iFace < faceLights[facenum].Count(); iFace++ ) { CLightFace *pFace = faceLights[facenum][iFace]; pFace->m_CompressedData.SeekGet( CUtlBuffer::SEEK_HEAD, 0 ); DecompressLightData( &pFace->m_CompressedData, &faceLightValues );
for( int iSample=0; iSample < nLuxels; iSample++ ) { float flDot = faceLightValues[iSample].m_Dot; if( flDot ) { VectorMA( faceLight[iSample], flDot / pFace->m_pLight->m_flMaxIntensity, pFace->m_pLight->m_Light.intensity, faceLight[iSample] ); } } }
// Convert to the floating-point representation in the BSP file.
Vector *pSrc = faceLight; unsigned char *pDest = &(*pdlightdata)[ g_pFaces[facenum].lightofs ];
for( int iSample=0; iSample < nLuxels; iSample++ ) { VectorToColorRGBExp32( *pSrc, *( ColorRGBExp32 *)pDest ); pDest += 4; pSrc++; } } m_bSuccessfulRun = true; return true; }
void CIncremental::GetFacesTouched( CUtlVector<unsigned char> &touched ) { touched.CopyArray( m_FacesTouched.Base(), m_FacesTouched.Count() ); }
bool CIncremental::Serialize() { if( !SaveIncrementalFile() ) return false;
WriteBSPFile( (char*)m_pBSPFilename ); return true; }
void CIncremental::Term() { m_Lights.PurgeAndDeleteElements(); m_TotalMemory = 0; }
void CIncremental::AddLightsForActiveLights() { // Create our lights.
for( directlight_t *dl=activelights; dl != NULL; dl = dl->next ) { CIncLight *pLight = new CIncLight; dl->m_IncrementalID = m_Lights.AddToTail( pLight );
// Copy the light information.
pLight->m_Light = dl->light; pLight->m_flMaxIntensity = max( dl->light.intensity[0], max( dl->light.intensity[1], dl->light.intensity[2] ) ); } }
bool CIncremental::LoadIncrementalFile() { Term();
if( !IsIncrementalFileValid() ) return false;
long fp = FileOpen( m_pIncrementalFilename, true ); if( !fp ) return false;
// Read the header.
CIncrementalHeader hdr; if( !ReadIncrementalHeader( fp, &hdr ) ) { FileClose( fp ); return false; }
// Read the lights.
int nLights; FileRead( fp, nLights ); for( int iLight=0; iLight < nLights; iLight++ ) { CIncLight *pLight = new CIncLight; m_Lights.AddToTail( pLight );
FileRead( fp, pLight->m_Light ); pLight->m_flMaxIntensity = max( pLight->m_Light.intensity.x, max( pLight->m_Light.intensity.y, pLight->m_Light.intensity.z ) );
int nFaces; FileRead( fp, nFaces ); assert( nFaces < 70000 );
for( int iFace=0; iFace < nFaces; iFace++ ) { CLightFace *pFace = new CLightFace; pLight->m_LightFaces.AddToTail( pFace );
pFace->m_pLight = pLight; FileRead( fp, pFace->m_FaceIndex );
int dataSize; FileRead( fp, dataSize );
pFace->m_CompressedData.SeekPut( CUtlBuffer::SEEK_HEAD, 0 ); while( dataSize ) { --dataSize; unsigned char ucData; FileRead( fp, ucData );
pFace->m_CompressedData.PutUnsignedChar( ucData ); } } }
FileClose( fp ); return !FileError(); }
bool CIncremental::SaveIncrementalFile() { long fp = FileOpen( m_pIncrementalFilename, false ); if( !fp ) return false;
if( !WriteIncrementalHeader( fp ) ) { FileClose( fp ); return false; }
// Write the lights.
int nLights = m_Lights.Count(); FileWrite( fp, nLights ); for( int iLight=m_Lights.Head(); iLight != m_Lights.InvalidIndex(); iLight = m_Lights.Next( iLight ) ) { CIncLight *pLight = m_Lights[iLight]; FileWrite( fp, pLight->m_Light );
int nFaces = pLight->m_LightFaces.Count(); FileWrite( fp, nFaces ); for( int iFace=pLight->m_LightFaces.Head(); iFace != pLight->m_LightFaces.InvalidIndex(); iFace = pLight->m_LightFaces.Next( iFace ) ) { CLightFace *pFace = pLight->m_LightFaces[iFace];
FileWrite( fp, pFace->m_FaceIndex ); int dataSize = pFace->m_CompressedData.TellPut(); FileWrite( fp, dataSize );
pFace->m_CompressedData.SeekGet( CUtlBuffer::SEEK_HEAD, 0 ); while( dataSize ) { --dataSize; FileWrite( fp, pFace->m_CompressedData.GetUnsignedChar() ); } } }
FileClose( fp ); return !FileError(); }
void CIncremental::LinkLightsToFaces( CUtlVector<CFaceLightList> &faceLights ) { faceLights.SetSize( numfaces ); for( int iLight=m_Lights.Head(); iLight != m_Lights.InvalidIndex(); iLight = m_Lights.Next( iLight ) ) { CIncLight *pLight = m_Lights[iLight];
for( int iFace=pLight->m_LightFaces.Head(); iFace != pLight->m_LightFaces.InvalidIndex(); iFace = pLight->m_LightFaces.Next( iFace ) ) { CLightFace *pFace = pLight->m_LightFaces[iFace];
if( m_FacesTouched[pFace->m_FaceIndex] ) faceLights[ pFace->m_FaceIndex ].AddToTail( pFace ); } } }
// ------------------------------------------------------------------ //
// CIncLight
// ------------------------------------------------------------------ //
CIncLight::CIncLight() { memset( m_pCachedFaces, 0, sizeof(m_pCachedFaces) ); InitializeCriticalSection( &m_CS ); }
CIncLight::~CIncLight() { m_LightFaces.PurgeAndDeleteElements(); DeleteCriticalSection( &m_CS ); }
CLightFace* CIncLight::FindOrCreateLightFace( int iFace, int lmSize, bool *bNew ) { if( bNew ) *bNew = false;
// Look for it.
for( int i=m_LightFaces.Head(); i != m_LightFaces.InvalidIndex(); i=m_LightFaces.Next(i) ) { CLightFace *pFace = m_LightFaces[i];
if( pFace->m_FaceIndex == iFace ) { assert( pFace->m_LightValues.Count() == lmSize ); return pFace; } }
// Ok, create one.
CLightFace *pFace = new CLightFace; pFace->m_LightFacesIndex = m_LightFaces.AddToTail( pFace ); pFace->m_pLight = this; pFace->m_FaceIndex = iFace; pFace->m_LightValues.SetSize( lmSize ); memset( pFace->m_LightValues.Base(), 0, sizeof( CLightValue ) * lmSize );
if( bNew ) *bNew = true;
return pFace; }
|