|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================
#if defined( _WIN32 ) && !defined( _X360 )
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include "tier0/dbg.h"
#include "tier0/tslist.h"
#include "tier0/icommandline.h"
#include "vstdlib/jobthread.h"
#include "vstdlib/random.h"
#include "tier1/functors.h"
#include "tier1/fmtstr.h"
#include "tier1/utlvector.h"
#include "tier1/generichash.h"
#include "tier0/vprof.h"
#if defined( _X360 )
#include "xbox/xbox_win32stubs.h"
#endif
#include "tier0/memdbgon.h"
class CJobThread;
//-----------------------------------------------------------------------------
inline void ServiceJobAndRelease( CJob *pJob, int iThread = -1 ) { // TryLock() would only fail if another thread has entered
// Execute() or Abort()
if ( !pJob->IsFinished() && pJob->TryLock() ) { // ...service the request
pJob->SetServiceThread( iThread ); pJob->Execute(); pJob->Unlock(); } pJob->Release(); }
//-----------------------------------------------------------------------------
class ALIGN16 CJobQueue { public: CJobQueue() : m_nItems( 0 ), m_nMaxItems( INT_MAX ) { for ( int i = 0; i < ARRAYSIZE( m_pQueues ); i++ ) { m_pQueues[i] = new CTSQueue<CJob *>; } }
~CJobQueue() { for ( int i = 0; i < ARRAYSIZE( m_pQueues ); i++ ) { delete m_pQueues[i]; } }
int Count() { return m_nItems; }
int Count( JobPriority_t priority ) { return m_pQueues[priority]->Count(); }
CJob *PrePush() { if ( m_nItems >= m_nMaxItems ) { CJob *pOverflowJob; if ( Pop( &pOverflowJob ) ) { return pOverflowJob; } } return NULL; }
int Push( CJob *pJob, int iThread = -1 ) { pJob->AddRef();
CJob *pOverflowJob; int nOverflow = 0; while ( ( pOverflowJob = PrePush() ) != NULL ) { ServiceJobAndRelease( pJob ); nOverflow++; }
m_pQueues[pJob->GetPriority()]->PushItem( pJob );
m_mutex.Lock(); if ( ++m_nItems == 1 ) { m_JobAvailableEvent.Set(); } m_mutex.Unlock();
return nOverflow; }
bool Pop( CJob **ppJob ) { m_mutex.Lock(); if ( !m_nItems ) { m_mutex.Unlock(); *ppJob = NULL; return false; } if ( --m_nItems == 0 ) { m_JobAvailableEvent.Reset(); } m_mutex.Unlock();
for ( int i = JP_HIGH; i >= 0; --i ) { if ( m_pQueues[i]->PopItem( ppJob ) ) { return true; } }
AssertMsg( 0, "Expected at least one queue item" ); *ppJob = NULL; return false; }
CThreadEvent &GetEventHandle() { return m_JobAvailableEvent; }
void Flush() { // Only safe to call when system is suspended
m_mutex.Lock(); m_nItems = 0; m_JobAvailableEvent.Reset(); CJob *pJob; for ( int i = JP_HIGH; i >= 0; --i ) { while ( m_pQueues[i]->PopItem( &pJob ) ) { pJob->Abort(); pJob->Release(); } } m_mutex.Unlock(); }
private: CTSQueue<CJob *> *m_pQueues[JP_HIGH + 1]; int m_nItems; int m_nMaxItems; CThreadMutex m_mutex; CThreadManualEvent m_JobAvailableEvent;
} ALIGN16_POST;
//-----------------------------------------------------------------------------
//
// CThreadPool
//
//-----------------------------------------------------------------------------
class CThreadPool : public CRefCounted1<IThreadPool, CRefCountServiceMT> { public: CThreadPool(); ~CThreadPool();
//-----------------------------------------------------
// Thread functions
//-----------------------------------------------------
bool Start( const ThreadPoolStartParams_t &startParams = ThreadPoolStartParams_t() ) { return Start( startParams, NULL ); } bool Start( const ThreadPoolStartParams_t &startParams, const char *pszNameOverride ); bool Stop( int timeout = TT_INFINITE ); void Distribute( bool bDistribute = true, int *pAffinityTable = NULL );
//-----------------------------------------------------
// Functions for any thread
//-----------------------------------------------------
unsigned GetJobCount() { return m_nJobs; } int NumThreads(); int NumIdleThreads();
//-----------------------------------------------------
// Pause/resume processing jobs
//-----------------------------------------------------
int SuspendExecution(); int ResumeExecution();
//-----------------------------------------------------
// Offer the current thread to the pool
//-----------------------------------------------------
virtual int YieldWait( CThreadEvent **pEvents, int nEvents, bool bWaitAll = true, unsigned timeout = TT_INFINITE ); virtual int YieldWait( CJob **, int nJobs, bool bWaitAll = true, unsigned timeout = TT_INFINITE ); void Yield( unsigned timeout );
//-----------------------------------------------------
// Add a native job to the queue (master thread)
//-----------------------------------------------------
void AddJob( CJob * ); void InsertJobInQueue( CJob * );
//-----------------------------------------------------
// All threads execute pFunctor asap. Thread will either wake up
// and execute or execute pFunctor right after completing current job and
// before looking for another job.
//-----------------------------------------------------
void ExecuteHighPriorityFunctor( CFunctor *pFunctor );
//-----------------------------------------------------
// Add an function object to the queue (master thread)
//-----------------------------------------------------
void AddFunctorInternal( CFunctor *, CJob ** = NULL, const char *pszDescription = NULL, unsigned flags = 0 );
//-----------------------------------------------------
// Remove a job from the queue (master thread)
//-----------------------------------------------------
virtual void ChangePriority( CJob *p, JobPriority_t priority );
//-----------------------------------------------------
// Bulk job manipulation (blocking)
//-----------------------------------------------------
int ExecuteToPriority( JobPriority_t toPriority, JobFilter_t pfnFilter = NULL ); int AbortAll();
virtual void Reserved1() {}
void WaitForIdle( bool bAll = true );
private: enum { IO_STACKSIZE = ( 64 * 1024 ), COMPUTATION_STACKSIZE = 0, };
//-----------------------------------------------------
//
//-----------------------------------------------------
CJob *PeekJob(); CJob *GetDummyJob();
//-----------------------------------------------------
// Thread functions
//-----------------------------------------------------
int Run();
private: friend class CJobThread;
CJobQueue m_SharedQueue; CInterlockedInt m_nIdleThreads; CUtlVector<CJobThread *> m_Threads; CUtlVector<CThreadEvent *> m_IdleEvents;
CThreadMutex m_SuspendMutex; int m_nSuspend; CInterlockedInt m_nJobs;
// Some jobs should only be executed on the threadpool thread(s). Ie: the rendering thread has the GL context
// and the main thread coming in and "helping" with jobs breaks that pretty nicely. This flag states that
// only the threadpool threads should execute these jobs.
bool m_bExecOnThreadPoolThreadsOnly; };
//-----------------------------------------------------------------------------
JOB_INTERFACE IThreadPool *CreateThreadPool() { return new CThreadPool; }
JOB_INTERFACE void DestroyThreadPool( IThreadPool *pPool ) { delete pPool; }
//-----------------------------------------------------------------------------
class CGlobalThreadPool : public CThreadPool { public: virtual bool Start( const ThreadPoolStartParams_t &startParamsIn ) { int nThreads = ( CommandLine()->ParmValue( "-threads", -1 ) - 1 ); ThreadPoolStartParams_t startParams = startParamsIn;
if ( nThreads >= 0 ) { startParams.nThreads = nThreads; } else { // Cap the GlobPool threads at 4.
startParams.nThreadsMax = 4; } return CThreadPool::Start( startParams, "Glob" ); }
virtual bool OnFinalRelease() { AssertMsg( 0, "Releasing global thread pool object!" ); return false; } };
//-----------------------------------------------------------------------------
class CJobThread : public CWorkerThread { public: CJobThread( CThreadPool *pOwner, int iThread ) : m_SharedQueue( pOwner->m_SharedQueue ), m_pOwner( pOwner ), m_iThread( iThread ) { }
CThreadEvent &GetIdleEvent() { return m_IdleEvent; }
CJobQueue &AccessDirectQueue() { return m_DirectQueue; }
private: unsigned Wait() { unsigned waitResult; tmZone( TELEMETRY_LEVEL0, TMZF_IDLE, "%s", __FUNCTION__ ); #ifdef WIN32
enum Event_t { CALL_FROM_MASTER, SHARED_QUEUE, DIRECT_QUEUE,
NUM_EVENTS };
HANDLE waitHandles[NUM_EVENTS]; waitHandles[CALL_FROM_MASTER] = GetCallHandle().GetHandle(); waitHandles[SHARED_QUEUE] = m_SharedQueue.GetEventHandle().GetHandle(); waitHandles[DIRECT_QUEUE] = m_DirectQueue.GetEventHandle().GetHandle(); #ifdef _DEBUG
while ( ( waitResult = WaitForMultipleObjects( ARRAYSIZE(waitHandles), waitHandles, FALSE, 10 ) ) == WAIT_TIMEOUT ) { waitResult = waitResult; // break here
} #else
waitResult = WaitForMultipleObjects( ARRAYSIZE(waitHandles), waitHandles, FALSE, INFINITE ); #endif
#else // !win32
bool bSet = false; int nWaitTime = 100;
while( !bSet ) { // Jobs are typically enqueued to the shared job queue so wait on it first.
bSet = m_SharedQueue.GetEventHandle().Wait( nWaitTime ); if( !bSet ) bSet = m_DirectQueue.GetEventHandle().Wait( 10 ); if ( !bSet ) bSet = GetCallHandle().Wait( 0 ); }
if ( !bSet ) waitResult = WAIT_TIMEOUT; else waitResult = WAIT_OBJECT_0; #endif
return waitResult; }
int Run() {
// Wait for either a call from the master thread, or an item in the queue...
unsigned waitResult; bool bExit = false;
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
m_pOwner->m_nIdleThreads++; m_IdleEvent.Set(); while (!bExit && ( ( waitResult = Wait() ) != WAIT_FAILED ) ) { if ( PeekCall() ) { CFunctor *pFunctor = NULL; tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s PeekCall():%d", __FUNCTION__, GetCallParam() );
switch ( GetCallParam( &pFunctor ) ) { case TPM_EXIT: Reply( true ); bExit = TRUE; break;
case TPM_SUSPEND: Reply( true ); SuspendCooperative(); break;
case TPM_RUNFUNCTOR: if( pFunctor ) { ( *pFunctor )(); Reply( true ); } else { Assert( pFunctor ); Reply( false ); } break;
default: AssertMsg( 0, "Unknown call to thread" ); Reply( false ); break; } } else { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s !PeekCall()", __FUNCTION__ );
CJob *pJob; bool bTookJob = false; do { if ( !m_DirectQueue.Pop( &pJob) ) { if ( !m_SharedQueue.Pop( &pJob ) ) { // Nothing to process, return to wait state
break; } } if ( !bTookJob ) { m_IdleEvent.Reset(); m_pOwner->m_nIdleThreads--; bTookJob = true; } ServiceJobAndRelease( pJob, m_iThread ); m_pOwner->m_nJobs--; } while ( !PeekCall() );
if ( bTookJob ) { m_pOwner->m_nIdleThreads++; m_IdleEvent.Set(); } } } m_pOwner->m_nIdleThreads--; m_IdleEvent.Reset(); return 0; }
CJobQueue m_DirectQueue; CJobQueue & m_SharedQueue; CThreadPool * m_pOwner; CThreadManualEvent m_IdleEvent; int m_iThread; };
//-----------------------------------------------------------------------------
CGlobalThreadPool g_ThreadPool; IThreadPool *g_pThreadPool = &g_ThreadPool;
//-----------------------------------------------------------------------------
//
// CThreadPool
//
//-----------------------------------------------------------------------------
CThreadPool::CThreadPool() : m_nIdleThreads( 0 ), m_nJobs( 0 ), m_nSuspend( 0 ) { }
//---------------------------------------------------------
CThreadPool::~CThreadPool() { Stop(); }
//---------------------------------------------------------
//
//---------------------------------------------------------
int CThreadPool::NumThreads() { return m_Threads.Count(); }
//---------------------------------------------------------
//
//---------------------------------------------------------
int CThreadPool::NumIdleThreads() { return m_nIdleThreads; }
void CThreadPool::ExecuteHighPriorityFunctor( CFunctor *pFunctor ) { int i; for ( i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->CallWorker( TPM_RUNFUNCTOR, 0, false, pFunctor ); }
for ( i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->WaitForReply(); } }
//---------------------------------------------------------
// Pause/resume processing jobs
//---------------------------------------------------------
int CThreadPool::SuspendExecution() { AUTO_LOCK( m_SuspendMutex );
// If not already suspended
if ( m_nSuspend == 0 ) { // Make sure state is correct
int i; for ( i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->CallWorker( TPM_SUSPEND, 0 ); }
for ( i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->WaitForReply(); }
// Because worker must signal before suspending, we could reach
// here with the thread not actually suspended
for ( i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->BWaitForThreadSuspendCooperative(); } }
return m_nSuspend++; }
//---------------------------------------------------------
int CThreadPool::ResumeExecution() { AUTO_LOCK( m_SuspendMutex ); AssertMsg( m_nSuspend >= 1, "Attempted resume when not suspended"); int result = m_nSuspend--; if (m_nSuspend == 0 ) { for ( int i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->ResumeCooperative(); } } return result; }
//---------------------------------------------------------
void CThreadPool::WaitForIdle( bool bAll ) { ThreadWaitForEvents( m_IdleEvents.Count(), m_IdleEvents.Base(), bAll, 60000 ); }
//---------------------------------------------------------
int CThreadPool::YieldWait( CThreadEvent **pEvents, int nEvents, bool bWaitAll, unsigned timeout ) { tmZone( TELEMETRY_LEVEL0, TMZF_IDLE, "%s(%d) SPINNING %t", __FUNCTION__, timeout, tmSendCallStack( TELEMETRY_LEVEL0, 0 ) );
Assert( timeout == TT_INFINITE ); // unimplemented
int result; CJob *pJob; // Always wait for zero milliseconds initially, to let us process jobs on this thread.
timeout = 0; while ( ( result = ThreadWaitForEvents( nEvents, pEvents, bWaitAll, timeout ) ) == WAIT_TIMEOUT ) { if ( !m_bExecOnThreadPoolThreadsOnly && m_SharedQueue.Pop( &pJob ) ) { ServiceJobAndRelease( pJob ); m_nJobs--; } else { // Since there are no jobs for the main thread set the timeout to infinite.
// The only disadvantage to this is that if a job thread creates a new job
// then the main thread will not be available to pick it up, but if that
// is a problem you can just create more worker threads. Debugging test runs
// of TF2 suggests that jobs are only ever added from the main thread which
// means that there is no disadvantage.
// Waiting on the events instead of busy spinning has multiple advantages.
// It avoids wasting CPU time/electricity, it makes it more obvious in profiles
// when the main thread is idle versus busy, and it allows ready thread analysis
// in xperf to find out what woke up a waiting thread.
// It also avoids unnecessary CPU starvation -- seen on customer traces of TF2.
timeout = TT_INFINITE; } } return result; }
//---------------------------------------------------------
int CThreadPool::YieldWait( CJob **ppJobs, int nJobs, bool bWaitAll, unsigned timeout ) { CUtlVectorFixed<CThreadEvent *, 64> handles; if ( nJobs > handles.NumAllocated() - 2 ) { return TW_FAILED; }
for ( int i = 0; i < nJobs; i++ ) { handles.AddToTail( ppJobs[i]->AccessEvent() ); }
return YieldWait( handles.Base(), handles.Count(), bWaitAll, timeout); }
//---------------------------------------------------------
void CThreadPool::Yield( unsigned timeout ) { // @MULTICORE (toml 10/24/2006): not implemented
Assert( ThreadInMainThread() ); if ( !ThreadInMainThread() ) { ThreadSleep( timeout ); return; } ThreadSleep( timeout ); }
//---------------------------------------------------------
// Add a job to the queue
//---------------------------------------------------------
void CThreadPool::AddJob( CJob *pJob ) { if ( !pJob ) { return; }
if ( pJob->m_ThreadPoolData != JOB_NO_DATA ) { Warning( "Cannot add a thread job already committed to another thread pool\n" ); return; }
if ( m_Threads.Count() == 0 ) { // So only threadpool jobs are supposed to execute the jobs, but there are no threadpool threads?
Assert( !m_bExecOnThreadPoolThreadsOnly );
pJob->Execute(); return; }
int flags = pJob->GetFlags();
if ( !m_bExecOnThreadPoolThreadsOnly && ( ( flags & ( JF_IO | JF_QUEUE ) ) == 0 ) /* @TBD && !m_queue.Count() */ ) { if ( !NumIdleThreads() ) { pJob->Execute(); return; } pJob->SetPriority( JP_HIGH ); }
if ( !pJob->CanExecute() ) { // Already handled
ExecuteOnce( Warning( "Attempted to add job to job queue that has already been completed\n" ) ); return; }
pJob->m_pThreadPool = this; pJob->m_status = JOB_STATUS_PENDING; InsertJobInQueue( pJob ); ++m_nJobs; }
//---------------------------------------------------------
//
//---------------------------------------------------------
void CThreadPool::InsertJobInQueue( CJob *pJob ) { CJobQueue *pQueue;
if ( !( pJob->GetFlags() & JF_SERIAL ) ) { int iThread = pJob->GetServiceThread(); if ( iThread == -1 || !m_Threads.IsValidIndex( iThread ) ) { pQueue = &m_SharedQueue; } else { pQueue = &(m_Threads[iThread]->AccessDirectQueue()); } } else { pQueue = &(m_Threads[0]->AccessDirectQueue()); }
m_nJobs -= pQueue->Push( pJob ); }
//---------------------------------------------------------
// Add an function object to the queue (master thread)
//---------------------------------------------------------
void CThreadPool::AddFunctorInternal( CFunctor *pFunctor, CJob **ppJob, const char *pszDescription, unsigned flags ) { // Note: assumes caller has handled refcount
CJob *pJob = new CFunctorJob( pFunctor, pszDescription );
pJob->SetFlags( flags );
AddJob( pJob );
if ( ppJob ) { *ppJob = pJob; } else { pJob->Release(); } }
//---------------------------------------------------------
// Remove a job from the queue
//---------------------------------------------------------
void CThreadPool::ChangePriority( CJob *pJob, JobPriority_t priority ) { // Right now, only support upping the priority
if ( pJob->GetPriority() < priority ) { pJob->SetPriority( priority ); m_SharedQueue.Push( pJob ); } else { ExecuteOnce( if ( pJob->GetPriority() != priority ) DevMsg( "CThreadPool::RemoveJob not implemented right now" ) ); }
}
//---------------------------------------------------------
// Execute to a specified priority
//---------------------------------------------------------
int CThreadPool::ExecuteToPriority( JobPriority_t iToPriority, JobFilter_t pfnFilter ) { SuspendExecution();
CJob *pJob; int nExecuted = 0; int i; int nJobsTotal = GetJobCount(); CUtlVector<CJob *> jobsToPutBack;
for ( int iCurPriority = JP_HIGH; iCurPriority >= iToPriority; --iCurPriority ) { for ( i = 0; i < m_Threads.Count(); i++ ) { CJobQueue &queue = m_Threads[i]->AccessDirectQueue(); while ( queue.Count( (JobPriority_t)iCurPriority ) ) { queue.Pop( &pJob ); if ( pfnFilter && !(*pfnFilter)( pJob ) ) { if ( pJob->CanExecute() ) { jobsToPutBack.EnsureCapacity( nJobsTotal ); jobsToPutBack.AddToTail( pJob ); } else { m_nJobs--; pJob->Release(); // an already serviced job in queue, may as well ditch it (as in, main thread probably force executed)
} continue; } ServiceJobAndRelease( pJob ); m_nJobs--; nExecuted++; }
}
while ( m_SharedQueue.Count( (JobPriority_t)iCurPriority ) ) { m_SharedQueue.Pop( &pJob ); if ( pfnFilter && !(*pfnFilter)( pJob ) ) { if ( pJob->CanExecute() ) { jobsToPutBack.EnsureCapacity( nJobsTotal ); jobsToPutBack.AddToTail( pJob ); } else { m_nJobs--; pJob->Release(); // see above
} continue; }
ServiceJobAndRelease( pJob ); m_nJobs--; nExecuted++; } }
for ( i = 0; i < jobsToPutBack.Count(); i++ ) { InsertJobInQueue( jobsToPutBack[i] ); jobsToPutBack[i]->Release(); }
ResumeExecution();
return nExecuted; }
//---------------------------------------------------------
//
//---------------------------------------------------------
int CThreadPool::AbortAll() { SuspendExecution(); CJob *pJob;
int iAborted = 0; while ( m_SharedQueue.Pop( &pJob ) ) { pJob->Abort(); pJob->Release(); iAborted++; }
for ( int i = 0; i < m_Threads.Count(); i++ ) { CJobQueue &queue = m_Threads[i]->AccessDirectQueue(); while ( queue.Pop( &pJob ) ) { pJob->Abort(); pJob->Release(); iAborted++; }
}
m_nJobs = 0;
ResumeExecution();
return iAborted; }
//---------------------------------------------------------
// CThreadPool thread functions
//---------------------------------------------------------
bool CThreadPool::Start( const ThreadPoolStartParams_t &startParams, const char *pszName ) { int nThreads = startParams.nThreads;
m_bExecOnThreadPoolThreadsOnly = startParams.bExecOnThreadPoolThreadsOnly;
if ( nThreads < 0 ) { const CPUInformation &ci = *GetCPUInformation(); if ( startParams.bIOThreads ) { nThreads = ci.m_nLogicalProcessors; } else { nThreads = ( ci.m_nLogicalProcessors / (( ci.m_bHT ) ? 2 : 1) ) - 1; // One per
if ( IsPC() ) { if ( nThreads > 3 ) { DevMsg( "Defaulting to limit of 3 worker threads, use -threads on command line if want more\n" ); // Current >4 processor configs don't really work so well, probably due to cache issues? (toml 7/12/2007)
nThreads = 3; } } }
if ( ( startParams.nThreadsMax >= 0 ) && ( nThreads > startParams.nThreadsMax ) ) { nThreads = startParams.nThreadsMax; } }
if ( nThreads <= 0 ) { return true; }
int nStackSize = startParams.nStackSize;
if ( nStackSize < 0 ) { if ( startParams.bIOThreads ) { nStackSize = IO_STACKSIZE; } else { nStackSize = COMPUTATION_STACKSIZE; } }
int priority = startParams.iThreadPriority;
if ( priority == SHRT_MIN ) { if ( startParams.bIOThreads ) { priority = THREAD_PRIORITY_HIGHEST; } else { priority = ThreadGetPriority(); } }
bool bDistribute; if ( startParams.fDistribute != TRS_NONE ) { bDistribute = ( startParams.fDistribute == TRS_TRUE ); } else { bDistribute = !startParams.bIOThreads; }
//--------------------------------------------------------
m_Threads.EnsureCapacity( nThreads ); m_IdleEvents.EnsureCapacity( nThreads );
if ( !pszName ) { pszName = ( startParams.bIOThreads ) ? "IOJobX" : "CmpJobX"; } while ( nThreads-- ) { int iThread = m_Threads.AddToTail(); m_IdleEvents.AddToTail(); m_Threads[iThread] = new CJobThread( this, iThread ); m_IdleEvents[iThread] = &m_Threads[iThread]->GetIdleEvent(); m_Threads[iThread]->SetName( CFmtStr( "%s%d", pszName, iThread ) ); m_Threads[iThread]->Start( nStackSize ); m_Threads[iThread]->GetIdleEvent().Wait(); #ifdef WIN32
ThreadSetPriority( (ThreadHandle_t)m_Threads[iThread]->GetThreadHandle(), priority ); #endif
}
Distribute( bDistribute, startParams.bUseAffinityTable ? (int *)startParams.iAffinityTable : NULL );
return true; }
//---------------------------------------------------------
void CThreadPool::Distribute( bool bDistribute, int *pAffinityTable ) { if ( bDistribute ) { const CPUInformation &ci = *GetCPUInformation(); int nHwThreadsPer = (( ci.m_bHT ) ? 2 : 1); if ( ci.m_nLogicalProcessors > 1 ) { if ( !pAffinityTable ) { #if defined( IS_WINDOWS_PC )
// no affinity table, distribution is cycled across all available
HINSTANCE hInst = LoadLibrary( "kernel32.dll" ); if ( hInst ) { typedef DWORD (WINAPI *SetThreadIdealProcessorFn)(ThreadHandle_t hThread, DWORD dwIdealProcessor); SetThreadIdealProcessorFn Thread_SetIdealProcessor = (SetThreadIdealProcessorFn)GetProcAddress( hInst, "SetThreadIdealProcessor" ); if ( Thread_SetIdealProcessor ) { ThreadHandle_t hMainThread = ThreadGetCurrentHandle(); Thread_SetIdealProcessor( hMainThread, 0 ); int iProc = 0; for ( int i = 0; i < m_Threads.Count(); i++ ) { iProc += nHwThreadsPer; if ( iProc >= ci.m_nLogicalProcessors ) { iProc %= ci.m_nLogicalProcessors; if ( nHwThreadsPer > 1 ) { iProc = ( iProc + 1 ) % nHwThreadsPer; } } Thread_SetIdealProcessor((ThreadHandle_t)m_Threads[i]->GetThreadHandle(), iProc); } } FreeLibrary( hInst ); } #else
// no affinity table, distribution is cycled across all available
int iProc = 0; for ( int i = 0; i < m_Threads.Count(); i++ ) { iProc += nHwThreadsPer; if ( iProc >= ci.m_nLogicalProcessors ) { iProc %= ci.m_nLogicalProcessors; if ( nHwThreadsPer > 1 ) { iProc = ( iProc + 1 ) % nHwThreadsPer; } } #ifdef WIN32
ThreadSetAffinity( (ThreadHandle_t)m_Threads[i]->GetThreadHandle(), 1 << iProc ); #endif
} #endif
} else { // distribution is from affinity table
for ( int i = 0; i < m_Threads.Count(); i++ ) { #ifdef WIN32
ThreadSetAffinity( (ThreadHandle_t)m_Threads[i]->GetThreadHandle(), pAffinityTable[i] ); #endif
} } } } else { #ifdef WIN32
DWORD_PTR dwProcessAffinity, dwSystemAffinity; if ( GetProcessAffinityMask( GetCurrentProcess(), &dwProcessAffinity, &dwSystemAffinity ) ) { for ( int i = 0; i < m_Threads.Count(); i++ ) { ThreadSetAffinity( (ThreadHandle_t)m_Threads[i]->GetThreadHandle(), dwProcessAffinity ); } } #endif
} }
//---------------------------------------------------------
bool CThreadPool::Stop( int timeout ) { for ( int i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->CallWorker( TPM_EXIT ); }
for ( int i = 0; i < m_Threads.Count(); ++i ) { while( m_Threads[i]->IsAlive() ) { ThreadSleep( 0 ); } delete m_Threads[i]; }
m_nJobs = 0; m_SharedQueue.Flush(); m_nIdleThreads = 0; m_Threads.RemoveAll(); m_IdleEvents.RemoveAll();
return true; }
//---------------------------------------------------------
CJob *CThreadPool::GetDummyJob() { class CDummyJob : public CJob { public: CDummyJob() { Execute(); }
virtual JobStatus_t DoExecute() { return JOB_OK; } };
static CDummyJob dummyJob;
dummyJob.AddRef(); return &dummyJob; }
//-----------------------------------------------------------------------------
namespace ThreadPoolTest { int g_iSleep;
CThreadEvent g_done; int g_nTotalToComplete; CThreadPool *g_pTestThreadPool;
class CCountJob : public CJob { public: virtual JobStatus_t DoExecute() { m_nCount++; ThreadPause(); if ( g_iSleep >= 0) ThreadSleep( g_iSleep ); if ( bDoWork ) { byte pMemory[1024]; int i; for ( i = 0; i < 1024; i++ ) { pMemory[i] = rand(); } for ( i = 0; i < 50; i++ ) { sqrt( (float)HashBlock( pMemory, 1024 ) + HashBlock( pMemory, 1024 ) + 10.0 ); } bDoWork = false; } if ( m_nCount == g_nTotalToComplete ) g_done.Set(); return 0; }
static CInterlockedInt m_nCount; bool bDoWork; }; CInterlockedInt CCountJob::m_nCount; int g_nTotalAtFinish;
void Test( bool bDistribute, bool bSleep = true, bool bFinishExecute = false, bool bDoWork = false ) { for ( int bInterleavePushPop = 0; bInterleavePushPop < 2; bInterleavePushPop++ ) { for ( g_iSleep = -10; g_iSleep <= 10; g_iSleep += 10 ) { Msg( "ThreadPoolTest: Testing! Sleep %d, interleave %d \n", g_iSleep, bInterleavePushPop ); int nMaxThreads = ( IsX360() ) ? 6 : 8; int nIncrement = ( IsX360() ) ? 1 : 2; for ( int i = 1; i <= nMaxThreads; i += nIncrement ) { CCountJob::m_nCount = 0; g_nTotalAtFinish = 0; ThreadPoolStartParams_t params; params.nThreads = i; params.fDistribute = ( bDistribute) ? TRS_TRUE : TRS_FALSE; g_pTestThreadPool->Start( params, "Tst" ); if ( !bInterleavePushPop ) { g_pTestThreadPool->SuspendExecution(); }
CCountJob jobs[4000]; g_nTotalToComplete = ARRAYSIZE(jobs);
CFastTimer timer, suspendTimer;
suspendTimer.Start(); timer.Start(); for ( int j = 0; j < ARRAYSIZE(jobs); j++ ) { jobs[j].SetFlags( JF_QUEUE ); jobs[j].bDoWork = bDoWork; g_pTestThreadPool->AddJob( &jobs[j] ); if ( bSleep && j % 16 == 0 ) { ThreadSleep( 0 ); } } if ( !bInterleavePushPop ) { g_pTestThreadPool->ResumeExecution(); } if ( bFinishExecute && g_iSleep <= 1 ) { g_done.Wait(); } g_nTotalAtFinish = CCountJob::m_nCount; timer.End(); g_pTestThreadPool->SuspendExecution(); suspendTimer.End(); g_pTestThreadPool->ResumeExecution(); g_pTestThreadPool->Stop(); g_done.Reset();
int counts[8] = { 0 }; for ( int j = 0; j < ARRAYSIZE(jobs); j++ ) { if ( jobs[j].GetServiceThread() != -1 ) { counts[jobs[j].GetServiceThread()]++; jobs[j].ClearServiceThread(); } }
Msg( "ThreadPoolTest: %d threads -- %d (%d) jobs processed in %fms, %fms to suspend (%f/%f) [%d, %d, %d, %d, %d, %d, %d, %d]\n", i, g_nTotalAtFinish, (int)CCountJob::m_nCount, timer.GetDuration().GetMillisecondsF(), suspendTimer.GetDuration().GetMillisecondsF() - timer.GetDuration().GetMillisecondsF(), timer.GetDuration().GetMillisecondsF() / (float)CCountJob::m_nCount, (suspendTimer.GetDuration().GetMillisecondsF())/(float)g_nTotalAtFinish, counts[0], counts[1], counts[2], counts[3], counts[4], counts[5], counts[6], counts[7] ); } } } }
bool g_bOutputError; volatile int g_ReadyToExecute; CInterlockedInt g_nReady;
class CExecuteTestJob : public CJob { public: virtual JobStatus_t DoExecute() { byte pMemory[1024]; int i; for ( i = 0; i < 1024; i++ ) { pMemory[i] = rand(); } for ( i = 0; i < 50; i++ ) { sqrt( (float)HashBlock( pMemory, 1024 ) + HashBlock( pMemory, 1024 ) + 10.0 ); } if ( AccessEvent()->Check() || IsFinished() ) { if ( !g_bOutputError ) { Msg( "Forced execute test failed!\n" ); DebuggerBreakIfDebugging(); } } return 0; } };
class CExecuteTestExecuteJob : public CJob { public: virtual JobStatus_t DoExecute() { bool bAbort = ( RandomInt( 1, 10 ) == 1 ); g_nReady++; while ( !g_ReadyToExecute ) { ThreadPause(); }
if ( !bAbort ) m_pTestJob->Execute(); else m_pTestJob->Abort(); g_nReady--; return 0; }
CExecuteTestJob *m_pTestJob; };
void TestForcedExecute() { Msg( "TestForcedExecute\n" ); for ( int tests = 0; tests < 30; tests++ ) { for ( int i = 1; i <= 5; i += 2 ) { g_nReady = 0; ThreadPoolStartParams_t params; params.nThreads = i; params.fDistribute = TRS_TRUE; g_pTestThreadPool->Start( params, "Tst" );
static CExecuteTestJob jobs[4000]; for ( int j = 0; j < ARRAYSIZE(jobs); j++ ) { g_ReadyToExecute = false; for ( int k = 0; k < i; k++ ) { CExecuteTestExecuteJob *pJob = new CExecuteTestExecuteJob; pJob->SetFlags( JF_QUEUE ); pJob->m_pTestJob = &jobs[j]; g_pTestThreadPool->AddJob( pJob ); pJob->Release(); } while ( g_nReady < i ) { ThreadPause(); } g_ReadyToExecute = true; ThreadSleep(); jobs[j].Execute(); while ( g_nReady > 0 ) { ThreadPause(); } } g_pTestThreadPool->Stop(); } } Msg( "TestForcedExecute DONE\n" ); }
} // namespace ThreadPoolTest
void RunThreadPoolTests() { CThreadPool pool; ThreadPoolTest::g_pTestThreadPool = &pool; RunTSQueueTests(10000); RunTSListTests(10000);
#ifdef _WIN32
DWORD_PTR mask1 = 0; --mask1; DWORD_PTR mask2 = 0; --mask2; GetProcessAffinityMask( GetCurrentProcess(), &mask1, &mask2 ); #else
int32 mask1=-1; #endif
Msg( "ThreadPoolTest: Job distribution speed\n" ); for ( int i = 0; i < 2; i++ ) { bool bToCompletion = ( i % 2 != 0 ); if ( !IsX360() ) { Msg( "ThreadPoolTest: Non-distribute\n" ); ThreadPoolTest::Test( false, true, bToCompletion ); }
Msg( "ThreadPoolTest: Distribute\n" ); ThreadPoolTest::Test( true, true, bToCompletion );
Msg( "ThreadPoolTest: One core\n" ); ThreadSetAffinity( 0, 1 ); ThreadPoolTest::Test( false, true, bToCompletion ); ThreadSetAffinity( 0, mask1 );
Msg( "ThreadPoolTest: NO Sleep\n" ); ThreadPoolTest::Test( false, false, bToCompletion );
Msg( "ThreadPoolTest: Distribute\n" ); ThreadPoolTest::Test( true, false, bToCompletion );
Msg( "ThreadPoolTest: One core\n" ); ThreadSetAffinity( 0, 1 ); ThreadPoolTest::Test( false, false, bToCompletion ); ThreadSetAffinity( 0, mask1 ); }
Msg( "ThreadPoolTest: Jobs doing work\n" ); for ( int i = 0; i < 2; i++ ) { bool bToCompletion = true;// = ( i % 2 != 0 );
if ( !IsX360() ) { Msg( "ThreadPoolTest: Non-distribute\n" ); ThreadPoolTest::Test( false, true, bToCompletion, true ); }
Msg( "ThreadPoolTest: Distribute\n" ); ThreadPoolTest::Test( true, true, bToCompletion, true );
Msg( "ThreadPoolTest: One core\n" ); ThreadSetAffinity( 0, 1 ); ThreadPoolTest::Test( false, true, bToCompletion, true ); ThreadSetAffinity( 0, mask1 );
Msg( "ThreadPoolTest: NO Sleep\n" ); ThreadPoolTest::Test( false, false, bToCompletion, true );
Msg( "ThreadPoolTest: Distribute\n" ); ThreadPoolTest::Test( true, false, bToCompletion, true );
Msg( "ThreadPoolTest: One core\n" ); ThreadSetAffinity( 0, 1 ); ThreadPoolTest::Test( false, false, bToCompletion, true ); ThreadSetAffinity( 0, mask1 ); } #ifdef _WIN32
GetProcessAffinityMask( GetCurrentProcess(), &mask1, &mask2 ); #endif
ThreadPoolTest::TestForcedExecute(); }
|