|
|
// eccrypto.h - written and placed in the public domain by Wei Dai
//! \file eccrypto.h
//! \brief Classes and functions for Elliptic Curves over prime and binary fields
#ifndef CRYPTOPP_ECCRYPTO_H
#define CRYPTOPP_ECCRYPTO_H
#include "config.h"
#include "cryptlib.h"
#include "pubkey.h"
#include "integer.h"
#include "asn.h"
#include "hmac.h"
#include "sha.h"
#include "gfpcrypt.h"
#include "dh.h"
#include "mqv.h"
#include "ecp.h"
#include "ec2n.h"
NAMESPACE_BEGIN(CryptoPP)
//! Elliptic Curve Parameters
/*! This class corresponds to the ASN.1 sequence of the same name
in ANSI X9.62 (also SEC 1). */ template <class EC> class DL_GroupParameters_EC : public DL_GroupParametersImpl<EcPrecomputation<EC> > { typedef DL_GroupParameters_EC<EC> ThisClass;
public: typedef EC EllipticCurve; typedef typename EllipticCurve::Point Point; typedef Point Element; typedef IncompatibleCofactorMultiplication DefaultCofactorOption;
DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(false) {} DL_GroupParameters_EC(const OID &oid) : m_compress(false), m_encodeAsOID(false) {Initialize(oid);} DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero()) : m_compress(false), m_encodeAsOID(false) {Initialize(ec, G, n, k);} DL_GroupParameters_EC(BufferedTransformation &bt) : m_compress(false), m_encodeAsOID(false) {BERDecode(bt);}
void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero()) { this->m_groupPrecomputation.SetCurve(ec); this->SetSubgroupGenerator(G); m_n = n; m_k = k; } void Initialize(const OID &oid);
// NameValuePairs
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const; void AssignFrom(const NameValuePairs &source);
// GeneratibleCryptoMaterial interface
//! this implementation doesn't actually generate a curve, it just initializes the parameters with existing values
/*! parameters: (Curve, SubgroupGenerator, SubgroupOrder, Cofactor (optional)), or (GroupOID) */ void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
// DL_GroupParameters
const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;} DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;} const Integer & GetSubgroupOrder() const {return m_n;} Integer GetCofactor() const; bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const; bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const; bool FastSubgroupCheckAvailable() const {return false;} void EncodeElement(bool reversible, const Element &element, byte *encoded) const { if (reversible) GetCurve().EncodePoint(encoded, element, m_compress); else element.x.Encode(encoded, GetEncodedElementSize(false)); } virtual unsigned int GetEncodedElementSize(bool reversible) const { if (reversible) return GetCurve().EncodedPointSize(m_compress); else return GetCurve().GetField().MaxElementByteLength(); } Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const { Point result; if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true))) throw DL_BadElement(); if (checkForGroupMembership && !ValidateElement(1, result, NULL)) throw DL_BadElement(); return result; } Integer ConvertElementToInteger(const Element &element) const; Integer GetMaxExponent() const {return GetSubgroupOrder()-1;} bool IsIdentity(const Element &element) const {return element.identity;} void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "EC";}
// ASN1Key
OID GetAlgorithmID() const;
// used by MQV
Element MultiplyElements(const Element &a, const Element &b) const; Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
// non-inherited
// enumerate OIDs for recommended parameters, use OID() to get first one
static OID CRYPTOPP_API GetNextRecommendedParametersOID(const OID &oid);
void BERDecode(BufferedTransformation &bt); void DEREncode(BufferedTransformation &bt) const;
void SetPointCompression(bool compress) {m_compress = compress;} bool GetPointCompression() const {return m_compress;}
void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;} bool GetEncodeAsOID() const {return m_encodeAsOID;}
const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();}
bool operator==(const ThisClass &rhs) const {return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);}
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
const Point& GetBasePoint() const {return this->GetSubgroupGenerator();} const Integer& GetBasePointOrder() const {return this->GetSubgroupOrder();} void LoadRecommendedParameters(const OID &oid) {Initialize(oid);} #endif
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_GroupParameters_EC() {} #endif
protected: unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();} unsigned int ExponentLength() const {return m_n.ByteCount();}
OID m_oid; // set if parameters loaded from a recommended curve
Integer m_n; // order of base point
mutable Integer m_k; // cofactor
mutable bool m_compress, m_encodeAsOID; // presentation details
};
//! EC public key
template <class EC> class DL_PublicKey_EC : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> > { public: typedef typename EC::Point Element;
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Element &Q) {this->AccessGroupParameters() = params; this->SetPublicElement(Q);} void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q) {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
// X509PublicKey
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size); void DEREncodePublicKey(BufferedTransformation &bt) const; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_PublicKey_EC() {} #endif
};
//! EC private key
template <class EC> class DL_PrivateKey_EC : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> > { public: typedef typename EC::Point Element;
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Integer &x) {this->AccessGroupParameters() = params; this->SetPrivateExponent(x);} void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x) {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);} void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> ¶ms) {this->GenerateRandom(rng, params);} void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n) {this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
// PKCS8PrivateKey
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size); void DEREncodePrivateKey(BufferedTransformation &bt) const; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_PrivateKey_EC() {} #endif
};
//! Elliptic Curve Diffie-Hellman, AKA <a href="http://www.weidai.com/scan-mirror/ka.html#ECDH">ECDH</a>
template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption> struct ECDH { typedef DH_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECDH() {} #endif
};
/// Elliptic Curve Menezes-Qu-Vanstone, AKA <a href="http://www.weidai.com/scan-mirror/ka.html#ECMQV">ECMQV</a>
template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption> struct ECMQV { typedef MQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECMQV() {} #endif
};
//! EC keys
template <class EC> struct DL_Keys_EC { typedef DL_PublicKey_EC<EC> PublicKey; typedef DL_PrivateKey_EC<EC> PrivateKey; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_Keys_EC() {} #endif
};
template <class EC, class H> struct ECDSA;
//! ECDSA keys
template <class EC> struct DL_Keys_ECDSA { typedef DL_PublicKey_EC<EC> PublicKey; typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC>, ECDSA<EC, SHA256> > PrivateKey; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_Keys_ECDSA() {} #endif
};
//! ECDSA algorithm
template <class EC> class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA<typename EC::Point> { public: static const char * CRYPTOPP_API StaticAlgorithmName() {return "ECDSA";} #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_Algorithm_ECDSA() {} #endif
};
//! ECNR algorithm
template <class EC> class DL_Algorithm_ECNR : public DL_Algorithm_NR<typename EC::Point> { public: static const char * CRYPTOPP_API StaticAlgorithmName() {return "ECNR";} #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_Algorithm_ECNR() {} #endif
};
//! <a href="http://www.weidai.com/scan-mirror/sig.html#ECDSA">ECDSA</a>
template <class EC, class H> struct ECDSA : public DL_SS<DL_Keys_ECDSA<EC>, DL_Algorithm_ECDSA<EC>, DL_SignatureMessageEncodingMethod_DSA, H> { #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECDSA() {} #endif
};
//! ECNR
template <class EC, class H = SHA> struct ECNR : public DL_SS<DL_Keys_EC<EC>, DL_Algorithm_ECNR<EC>, DL_SignatureMessageEncodingMethod_NR, H> { #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECNR() {} #endif
};
//! Elliptic Curve Integrated Encryption Scheme, AKA <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">ECIES</a>
/*! Default to (NoCofactorMultiplication and DHAES_MODE = false) for compatibilty with SEC1 and Crypto++ 4.2.
The combination of (IncompatibleCofactorMultiplication and DHAES_MODE = true) is recommended for best efficiency and security. */ template <class EC, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = false> struct ECIES : public DL_ES< DL_Keys_EC<EC>, DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>, DL_KeyDerivationAlgorithm_P1363<typename EC::Point, DHAES_MODE, P1363_KDF2<SHA1> >, DL_EncryptionAlgorithm_Xor<HMAC<SHA1>, DHAES_MODE>, ECIES<EC> > { static std::string CRYPTOPP_API StaticAlgorithmName() {return "ECIES";} // TODO: fix this after name is standardized
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECIES() {} #endif
#if (CRYPTOPP_GCC_VERSION >= 40500) || (CRYPTOPP_CLANG_VERSION >= 30000)
} __attribute__((deprecated ("ECIES will be changing in the near future due to (1) an implementation bug and (2) an interop issue."))); #elif (CRYPTOPP_GCC_VERSION )
} __attribute__((deprecated)); #else
}; #endif
NAMESPACE_END
#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
#include "eccrypto.cpp"
#endif
NAMESPACE_BEGIN(CryptoPP)
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<ECP>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<EC2N>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<ECP> >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<EC2N> >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<ECP>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<EC2N>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<ECP> >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<EC2N> >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<ECP>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<EC2N>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<ECP::Point>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<EC2N::Point>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<ECP>, ECDSA<ECP, SHA256> >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC2N>, ECDSA<EC2N, SHA256> >;
NAMESPACE_END
#endif
#ifndef CRYPTOPP_ECCRYPTO_H
#define CRYPTOPP_ECCRYPTO_H
/*! \file
*/
#include "cryptlib.h"
#include "pubkey.h"
#include "integer.h"
#include "asn.h"
#include "hmac.h"
#include "sha.h"
#include "gfpcrypt.h"
#include "dh.h"
#include "mqv.h"
#include "ecp.h"
#include "ec2n.h"
NAMESPACE_BEGIN(CryptoPP)
//! Elliptic Curve Parameters
/*! This class corresponds to the ASN.1 sequence of the same name
in ANSI X9.62 (also SEC 1). */ template <class EC> class DL_GroupParameters_EC : public DL_GroupParametersImpl<EcPrecomputation<EC> > { typedef DL_GroupParameters_EC<EC> ThisClass;
public: typedef EC EllipticCurve; typedef typename EllipticCurve::Point Point; typedef Point Element; typedef IncompatibleCofactorMultiplication DefaultCofactorOption;
DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(false) {} DL_GroupParameters_EC(const OID &oid) : m_compress(false), m_encodeAsOID(false) {Initialize(oid);} DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero()) : m_compress(false), m_encodeAsOID(false) {Initialize(ec, G, n, k);} DL_GroupParameters_EC(BufferedTransformation &bt) : m_compress(false), m_encodeAsOID(false) {BERDecode(bt);}
void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero()) { this->m_groupPrecomputation.SetCurve(ec); this->SetSubgroupGenerator(G); m_n = n; m_k = k; } void Initialize(const OID &oid);
// NameValuePairs
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const; void AssignFrom(const NameValuePairs &source);
// GeneratibleCryptoMaterial interface
//! this implementation doesn't actually generate a curve, it just initializes the parameters with existing values
/*! parameters: (Curve, SubgroupGenerator, SubgroupOrder, Cofactor (optional)), or (GroupOID) */ void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
// DL_GroupParameters
const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;} DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;} const Integer & GetSubgroupOrder() const {return m_n;} Integer GetCofactor() const; bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const; bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const; bool FastSubgroupCheckAvailable() const {return false;} void EncodeElement(bool reversible, const Element &element, byte *encoded) const { if (reversible) GetCurve().EncodePoint(encoded, element, m_compress); else element.x.Encode(encoded, GetEncodedElementSize(false)); } virtual unsigned int GetEncodedElementSize(bool reversible) const { if (reversible) return GetCurve().EncodedPointSize(m_compress); else return GetCurve().GetField().MaxElementByteLength(); } Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const { Point result; if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true))) throw DL_BadElement(); if (checkForGroupMembership && !ValidateElement(1, result, NULL)) throw DL_BadElement(); return result; } Integer ConvertElementToInteger(const Element &element) const; Integer GetMaxExponent() const {return GetSubgroupOrder()-1;} bool IsIdentity(const Element &element) const {return element.identity;} void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "EC";}
// ASN1Key
OID GetAlgorithmID() const;
// used by MQV
Element MultiplyElements(const Element &a, const Element &b) const; Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
// non-inherited
// enumerate OIDs for recommended parameters, use OID() to get first one
static OID CRYPTOPP_API GetNextRecommendedParametersOID(const OID &oid);
void BERDecode(BufferedTransformation &bt); void DEREncode(BufferedTransformation &bt) const;
void SetPointCompression(bool compress) {m_compress = compress;} bool GetPointCompression() const {return m_compress;}
void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;} bool GetEncodeAsOID() const {return m_encodeAsOID;}
const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();}
bool operator==(const ThisClass &rhs) const {return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);}
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
const Point& GetBasePoint() const {return this->GetSubgroupGenerator();} const Integer& GetBasePointOrder() const {return this->GetSubgroupOrder();} void LoadRecommendedParameters(const OID &oid) {Initialize(oid);} #endif
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_GroupParameters_EC() {} #endif
protected: unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();} unsigned int ExponentLength() const {return m_n.ByteCount();}
OID m_oid; // set if parameters loaded from a recommended curve
Integer m_n; // order of base point
mutable Integer m_k; // cofactor
mutable bool m_compress, m_encodeAsOID; // presentation details
};
//! EC public key
template <class EC> class DL_PublicKey_EC : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> > { public: typedef typename EC::Point Element;
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Element &Q) {this->AccessGroupParameters() = params; this->SetPublicElement(Q);} void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q) {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
// X509PublicKey
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size); void DEREncodePublicKey(BufferedTransformation &bt) const; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_PublicKey_EC() {} #endif
};
//! EC private key
template <class EC> class DL_PrivateKey_EC : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> > { public: typedef typename EC::Point Element;
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Integer &x) {this->AccessGroupParameters() = params; this->SetPrivateExponent(x);} void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x) {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);} void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> ¶ms) {this->GenerateRandom(rng, params);} void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n) {this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
// PKCS8PrivateKey
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size); void DEREncodePrivateKey(BufferedTransformation &bt) const; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_PrivateKey_EC() {} #endif
};
//! Elliptic Curve Diffie-Hellman, AKA <a href="http://www.weidai.com/scan-mirror/ka.html#ECDH">ECDH</a>
template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption> struct ECDH { typedef DH_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECDH() {} #endif
};
/// Elliptic Curve Menezes-Qu-Vanstone, AKA <a href="http://www.weidai.com/scan-mirror/ka.html#ECMQV">ECMQV</a>
template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption> struct ECMQV { typedef MQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECMQV() {} #endif
};
//! EC keys
template <class EC> struct DL_Keys_EC { typedef DL_PublicKey_EC<EC> PublicKey; typedef DL_PrivateKey_EC<EC> PrivateKey; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_Keys_EC() {} #endif
};
template <class EC, class H> struct ECDSA;
//! ECDSA keys
template <class EC> struct DL_Keys_ECDSA { typedef DL_PublicKey_EC<EC> PublicKey; typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC>, ECDSA<EC, SHA256> > PrivateKey; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_Keys_ECDSA() {} #endif
};
//! ECDSA algorithm
template <class EC> class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA<typename EC::Point> { public: static const char * CRYPTOPP_API StaticAlgorithmName() {return "ECDSA";} #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_Algorithm_ECDSA() {} #endif
};
//! ECNR algorithm
template <class EC> class DL_Algorithm_ECNR : public DL_Algorithm_NR<typename EC::Point> { public: static const char * CRYPTOPP_API StaticAlgorithmName() {return "ECNR";} #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_Algorithm_ECNR() {} #endif
};
//! <a href="http://www.weidai.com/scan-mirror/sig.html#ECDSA">ECDSA</a>
template <class EC, class H> struct ECDSA : public DL_SS<DL_Keys_ECDSA<EC>, DL_Algorithm_ECDSA<EC>, DL_SignatureMessageEncodingMethod_DSA, H> { #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECDSA() {} #endif
};
//! ECNR
template <class EC, class H = SHA> struct ECNR : public DL_SS<DL_Keys_EC<EC>, DL_Algorithm_ECNR<EC>, DL_SignatureMessageEncodingMethod_NR, H> { #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECNR() {} #endif
};
//! Elliptic Curve Integrated Encryption Scheme, AKA <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">ECIES</a>
/*! Default to (NoCofactorMultiplication and DHAES_MODE = false) for compatibilty with SEC1 and Crypto++ 4.2.
The combination of (IncompatibleCofactorMultiplication and DHAES_MODE = true) is recommended for best efficiency and security. */ template <class EC, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = false> struct ECIES : public DL_ES< DL_Keys_EC<EC>, DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>, DL_KeyDerivationAlgorithm_P1363<typename EC::Point, DHAES_MODE, P1363_KDF2<SHA1> >, DL_EncryptionAlgorithm_Xor<HMAC<SHA1>, DHAES_MODE>, ECIES<EC> > { static std::string CRYPTOPP_API StaticAlgorithmName() {return "ECIES";} // TODO: fix this after name is standardized
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECIES() {} #endif
#if (CRYPTOPP_GCC_VERSION >= 40300) || (CRYPTOPP_CLANG_VERSION >= 20800)
} __attribute__((deprecated ("ECIES will be changing in the near future due to (1) an implementation bug and (2) an interop issue"))); #elif (CRYPTOPP_GCC_VERSION)
} __attribute__((deprecated)); #else
}; #endif
NAMESPACE_END
#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
#include "eccrypto.cpp"
#endif
NAMESPACE_BEGIN(CryptoPP)
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<ECP>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<EC2N>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<ECP> >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<EC2N> >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<ECP>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<EC2N>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<ECP> >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<EC2N> >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<ECP>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<EC2N>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<ECP::Point>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<EC2N::Point>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<ECP>, ECDSA<ECP, SHA256> >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC2N>, ECDSA<EC2N, SHA256> >;
NAMESPACE_END
#endif
|