|
|
// mersenne.h - written and placed in public domain by Jeffrey Walton.
// Copyright assigned to Crypto++ project.
//! \file
//! \brief Class file for Mersenne Twister
//! \note Suitable for Monte Carlo simulations, and not cryptographic use
#ifndef CRYPTOPP_MERSENNE_TWISTER_H
#define CRYPTOPP_MERSENNE_TWISTER_H
#include "cryptlib.h"
#include "secblock.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
//! \class MersenneTwister
//! \brief Mersenne Twister class for Monte-Carlo simulations
//! \tparam K Magic constant
//! \tparam M Period parameter
//! \tparam N Size of the state vector
//! \tparam F Multiplier constant
//! \tparam S Sefault seed
//! \details Provides the MersenneTwister implementation. The class is a header-only implementation.
//! \warning MersenneTwister is suitable for simulations, where uniformaly distrubuted numbers are
//! required quickly. It should not be used for cryptographic purposes.
template <unsigned int K, unsigned int M, unsigned int N, unsigned int F, unsigned long S> class MersenneTwister : public RandomNumberGenerator { public: //! \brief Construct a Mersenne Twister
//! \param seed 32-bit seed
//! \details Defaults to template parameter S due to changing algorithm
//! parameters over time
MersenneTwister(unsigned long seed = S) : m_seed(seed), m_idx(N) { m_state[0] = seed; for (unsigned int i = 1; i < N+1; i++) m_state[i] = word32(F * (m_state[i-1] ^ (m_state[i-1] >> 30)) + i); }
//! \brief Generate random array of bytes
//! \param output byte buffer
//! \param size length of the buffer, in bytes
//! \details Bytes are written to output in big endian order. If output length
//! is not a multiple of word32, then unused bytes are not accumulated for subsequent
//! calls to GenerateBlock. Rather, the unused tail bytes are discarded, and the
//! stream is continued at the next word32 boundary from the state array.
void GenerateBlock(byte *output, size_t size) { // Handle word32 size blocks
word32 temp; for (size_t i=0; i < size/4; i++, output += 4) { #if defined(CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS) && defined(IS_LITTLE_ENDIAN)
*((word32*)output) = ByteReverse(NextMersenneWord()); #elif defined(CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS)
*((word32*)output) = NextMersenneWord(); #else
temp = NextMersenneWord(); output[3] = CRYPTOPP_GET_BYTE_AS_BYTE(temp, 0); output[2] = CRYPTOPP_GET_BYTE_AS_BYTE(temp, 1); output[1] = CRYPTOPP_GET_BYTE_AS_BYTE(temp, 2); output[0] = CRYPTOPP_GET_BYTE_AS_BYTE(temp, 3); #endif
} // No tail bytes
if (size%4 == 0) { // Wipe temp
*((volatile word32*)&temp) = 0; return; } // Handle tail bytes
temp = NextMersenneWord(); switch (size%4) { case 3: output[2] = CRYPTOPP_GET_BYTE_AS_BYTE(temp, 1); /* fall through */ case 2: output[1] = CRYPTOPP_GET_BYTE_AS_BYTE(temp, 2); /* fall through */ case 1: output[0] = CRYPTOPP_GET_BYTE_AS_BYTE(temp, 3); break;
default: assert(0); ;; } // Wipe temp
*((volatile word32*)&temp) = 0; } //! \brief Generate a random 32-bit word in the range min to max, inclusive
//! \returns random 32-bit word in the range min to max, inclusive
//! \details If the 32-bit candidate is not within the range, then it is discarded
//! and a new candidate is used.
word32 GenerateWord32(word32 min=0, word32 max=0xffffffffL) { const word32 range = max-min; if (range == 0xffffffffL) return NextMersenneWord(); const int maxBits = BitPrecision(range); word32 value;
do{ value = Crop(NextMersenneWord(), maxBits); } while (value > range);
return value+min; } //! \brief Generate and discard n bytes
//! \param n the number of bytes to discard, rounded up to a <tt>word32</tt> size
//! \details If n is not a multiple of <tt>word32</tt>, then unused bytes are
//! not accumulated for subsequent calls to GenerateBlock. Rather, the unused
//! tail bytes are discarded, and the stream is continued at the next
//! <tt>word32</tt> boundary from the state array.
void DiscardBytes(size_t n) { for(size_t i=0; i < RoundUpToMultipleOf(n, 4U); i++) NextMersenneWord(); } protected:
//! \brief Returns the next 32-bit word from the state array
//! \returns the next 32-bit word from the state array
//! \details fetches the next word frm the state array, performs bit operations on
//! it, and then returns the value to the caller.
word32 NextMersenneWord() { if (m_idx >= N) { Twist(); } word32 temp = m_state[m_idx++];
temp ^= (temp >> 11); temp ^= (temp << 7) & 0x9D2C5680; // 0x9D2C5680 (2636928640)
temp ^= (temp << 15) & 0xEFC60000; // 0xEFC60000 (4022730752)
return temp ^ (temp >> 18); }
//! \brief Performs the twist operaton on the state array
void Twist() { static const unsigned long magic[2]={0x0UL, K}; word32 kk, temp;
assert(N >= M); for (kk=0;kk<N-M;kk++) { temp = (m_state[kk] & 0x80000000)|(m_state[kk+1] & 0x7FFFFFFF); m_state[kk] = m_state[kk+M] ^ (temp >> 1) ^ magic[temp & 0x1UL]; } for (;kk<N-1;kk++) { temp = (m_state[kk] & 0x80000000)|(m_state[kk+1] & 0x7FFFFFFF); m_state[kk] = m_state[kk+(M-N)] ^ (temp >> 1) ^ magic[temp & 0x1UL]; } temp = (m_state[N-1] & 0x80000000)|(m_state[0] & 0x7FFFFFFF); m_state[N-1] = m_state[M-1] ^ (temp >> 1) ^ magic[temp & 0x1UL]; // Reset index
m_idx = 0; // Wipe temp
*((volatile word32*)&temp) = 0; }
private:
//! \brief 32-bit word state array of size N
FixedSizeSecBlock<word32, N+1> m_state; //! \brief the value used to seed the generator
unsigned int m_seed; //! \brief the current index into the state array
unsigned int m_idx; };
//! \brief Original MT19937 generator provided in the ACM paper.
//! \details Also see http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf; uses 4537 as default initial seed.
typedef MersenneTwister<0x9908B0DF /*2567483615*/, 397, 624, 0x10DCD /*69069*/, 4537> MT19937;
//! \brief Updated MT19937 generator adapted to provide an array for initialization.
//! \details Also see http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html; uses 5489 as default initial seed.
//! \note Use this generator when interoperating with C++11's mt19937 class.
typedef MersenneTwister<0x9908B0DF /*2567483615*/, 397, 624, 0x6C078965 /*1812433253*/, 5489> MT19937ar;
NAMESPACE_END
#endif // CRYPTOPP_MERSENNE_TWISTER_H
|