|
|
// modarith.h - written and placed in the public domain by Wei Dai
//! \file modarith.h
//! \brief Class file for performing modular arithmetic.
#ifndef CRYPTOPP_MODARITH_H
#define CRYPTOPP_MODARITH_H
// implementations are in integer.cpp
#include "cryptlib.h"
#include "integer.h"
#include "algebra.h"
#include "secblock.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<Integer>; CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<Integer>; CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<Integer>;
//! \class ModularArithmetic
//! \brief Ring of congruence classes modulo n
//! \note this implementation represents each congruence class as the smallest
//! non-negative integer in that class
class CRYPTOPP_DLL ModularArithmetic : public AbstractRing<Integer> { public:
typedef int RandomizationParameter; typedef Integer Element;
ModularArithmetic(const Integer &modulus = Integer::One()) : AbstractRing<Integer>(), m_modulus(modulus), m_result((word)0, modulus.reg.size()) {} ModularArithmetic(const ModularArithmetic &ma) : AbstractRing<Integer>(), m_modulus(ma.m_modulus), m_result((word)0, ma.m_modulus.reg.size()) {}
ModularArithmetic(BufferedTransformation &bt); // construct from BER encoded parameters
virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);}
void DEREncode(BufferedTransformation &bt) const;
void DEREncodeElement(BufferedTransformation &out, const Element &a) const; void BERDecodeElement(BufferedTransformation &in, Element &a) const;
const Integer& GetModulus() const {return m_modulus;} void SetModulus(const Integer &newModulus) {m_modulus = newModulus; m_result.reg.resize(m_modulus.reg.size());}
virtual bool IsMontgomeryRepresentation() const {return false;}
virtual Integer ConvertIn(const Integer &a) const {return a%m_modulus;}
virtual Integer ConvertOut(const Integer &a) const {return a;}
const Integer& Half(const Integer &a) const;
bool Equal(const Integer &a, const Integer &b) const {return a==b;}
const Integer& Identity() const {return Integer::Zero();}
const Integer& Add(const Integer &a, const Integer &b) const;
Integer& Accumulate(Integer &a, const Integer &b) const;
const Integer& Inverse(const Integer &a) const;
const Integer& Subtract(const Integer &a, const Integer &b) const;
Integer& Reduce(Integer &a, const Integer &b) const;
const Integer& Double(const Integer &a) const {return Add(a, a);}
const Integer& MultiplicativeIdentity() const {return Integer::One();}
const Integer& Multiply(const Integer &a, const Integer &b) const {return m_result1 = a*b%m_modulus;}
const Integer& Square(const Integer &a) const {return m_result1 = a.Squared()%m_modulus;}
bool IsUnit(const Integer &a) const {return Integer::Gcd(a, m_modulus).IsUnit();}
const Integer& MultiplicativeInverse(const Integer &a) const {return m_result1 = a.InverseMod(m_modulus);}
const Integer& Divide(const Integer &a, const Integer &b) const {return Multiply(a, MultiplicativeInverse(b));}
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const;
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
unsigned int MaxElementBitLength() const {return (m_modulus-1).BitCount();}
unsigned int MaxElementByteLength() const {return (m_modulus-1).ByteCount();}
Element RandomElement( RandomNumberGenerator &rng , const RandomizationParameter &ignore_for_now = 0 ) const // left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct
{ CRYPTOPP_UNUSED(ignore_for_now); return Element(rng, Integer::Zero(), m_modulus - Integer::One()) ; }
bool operator==(const ModularArithmetic &rhs) const {return m_modulus == rhs.m_modulus;}
static const RandomizationParameter DefaultRandomizationParameter ; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ModularArithmetic() {} #endif
protected: Integer m_modulus; mutable Integer m_result, m_result1;
};
// const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ;
//! \class MontgomeryRepresentation
//! \brief Performs modular arithmetic in Montgomery representation for increased speed
//! \details The Montgomery representation represents each congruence class <tt>[a]</tt> as
//! <tt>a*r%n</tt>, where r is a convenient power of 2.
class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic { public: MontgomeryRepresentation(const Integer &modulus); // modulus must be odd
virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);}
bool IsMontgomeryRepresentation() const {return true;}
Integer ConvertIn(const Integer &a) const {return (a<<(WORD_BITS*m_modulus.reg.size()))%m_modulus;}
Integer ConvertOut(const Integer &a) const;
const Integer& MultiplicativeIdentity() const {return m_result1 = Integer::Power2(WORD_BITS*m_modulus.reg.size())%m_modulus;}
const Integer& Multiply(const Integer &a, const Integer &b) const;
const Integer& Square(const Integer &a) const;
const Integer& MultiplicativeInverse(const Integer &a) const;
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const {return AbstractRing<Integer>::CascadeExponentiate(x, e1, y, e2);}
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const {AbstractRing<Integer>::SimultaneousExponentiate(results, base, exponents, exponentsCount);}
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~MontgomeryRepresentation() {} #endif
private: Integer m_u; mutable IntegerSecBlock m_workspace; };
NAMESPACE_END
#endif
|