|
|
// simple.h - written and placed in the public domain by Wei Dai
//! \file simple.h
//! \brief Classes providing simple keying interfaces.
#ifndef CRYPTOPP_SIMPLE_H
#define CRYPTOPP_SIMPLE_H
#include "config.h"
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4127 4189)
#endif
#include "cryptlib.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
//! \class ClonableImpl
//! \brief Base class for identifying alogorithm
//! \tparam BASE base class from which to derive
//! \tparam DERIVED class which to clone
template <class DERIVED, class BASE> class CRYPTOPP_NO_VTABLE ClonableImpl : public BASE { public: Clonable * Clone() const {return new DERIVED(*static_cast<const DERIVED *>(this));} };
//! \class AlgorithmImpl
//! \brief Base class for identifying alogorithm
//! \tparam BASE an Algorithm derived class
//! \tparam ALGORITHM_INFO an Algorithm derived class
//! \details AlgorithmImpl provides StaticAlgorithmName from the template parameter BASE
template <class BASE, class ALGORITHM_INFO=BASE> class CRYPTOPP_NO_VTABLE AlgorithmImpl : public BASE { public: static std::string CRYPTOPP_API StaticAlgorithmName() {return ALGORITHM_INFO::StaticAlgorithmName();} std::string AlgorithmName() const {return ALGORITHM_INFO::StaticAlgorithmName();} };
//! \class InvalidKeyLength
//! \brief Exception thrown when an invalid key length is encountered
class CRYPTOPP_DLL InvalidKeyLength : public InvalidArgument { public: explicit InvalidKeyLength(const std::string &algorithm, size_t length) : InvalidArgument(algorithm + ": " + IntToString(length) + " is not a valid key length") {} };
//! \class InvalidRounds
//! \brief Exception thrown when an invalid number of rounds is encountered
class CRYPTOPP_DLL InvalidRounds : public InvalidArgument { public: explicit InvalidRounds(const std::string &algorithm, unsigned int rounds) : InvalidArgument(algorithm + ": " + IntToString(rounds) + " is not a valid number of rounds") {} };
// *****************************
//! \class Bufferless
//! \brief Base class for bufferless filters
//! \tparam T the class or type
template <class T> class CRYPTOPP_NO_VTABLE Bufferless : public T { public: bool IsolatedFlush(bool hardFlush, bool blocking) {CRYPTOPP_UNUSED(hardFlush); CRYPTOPP_UNUSED(blocking); return false;} };
//! \class Unflushable
//! \brief Base class for unflushable filters
//! \tparam T the class or type
template <class T> class CRYPTOPP_NO_VTABLE Unflushable : public T { public: bool Flush(bool completeFlush, int propagation=-1, bool blocking=true) {return ChannelFlush(DEFAULT_CHANNEL, completeFlush, propagation, blocking);} bool IsolatedFlush(bool hardFlush, bool blocking) {CRYPTOPP_UNUSED(hardFlush); CRYPTOPP_UNUSED(blocking); assert(false); return false;} bool ChannelFlush(const std::string &channel, bool hardFlush, int propagation=-1, bool blocking=true) { if (hardFlush && !InputBufferIsEmpty()) throw CannotFlush("Unflushable<T>: this object has buffered input that cannot be flushed"); else { BufferedTransformation *attached = this->AttachedTransformation(); return attached && propagation ? attached->ChannelFlush(channel, hardFlush, propagation-1, blocking) : false; } }
protected: virtual bool InputBufferIsEmpty() const {return false;} };
//! \class InputRejecting
//! \brief Base class for input rejecting filters
//! \tparam T the class or type
//! \details T should be a BufferedTransformation derived class
template <class T> class CRYPTOPP_NO_VTABLE InputRejecting : public T { public: struct InputRejected : public NotImplemented {InputRejected() : NotImplemented("BufferedTransformation: this object doesn't allow input") {}};
//! \name INPUT
//@{
//! \brief Input a byte array for processing
//! \param inString the byte array to process
//! \param length the size of the string, in bytes
//! \param messageEnd means how many filters to signal MessageEnd() to, including this one
//! \param blocking specifies whether the object should block when processing input
//! \throws InputRejected
//! \returns the number of bytes that remain in the block (i.e., bytes not processed)
//! \details Internally, the default implmentation throws InputRejected.
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) {CRYPTOPP_UNUSED(inString); CRYPTOPP_UNUSED(length); CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking); throw InputRejected();} //@}
//! \name SIGNALS
//@{
bool IsolatedFlush(bool hardFlush, bool blocking) {CRYPTOPP_UNUSED(hardFlush); CRYPTOPP_UNUSED(blocking); return false;} bool IsolatedMessageSeriesEnd(bool blocking) {CRYPTOPP_UNUSED(blocking); throw InputRejected();} size_t ChannelPut2(const std::string &channel, const byte *inString, size_t length, int messageEnd, bool blocking) {CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(inString); CRYPTOPP_UNUSED(length); CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking); throw InputRejected();} bool ChannelMessageSeriesEnd(const std::string& channel, int messageEnd, bool blocking) {CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking); throw InputRejected();} //@}
};
//! \class CustomFlushPropagation
//! \brief Provides interface for custom flush signals
//! \tparam T the class or type
//! \details T should be a BufferedTransformation derived class
template <class T> class CRYPTOPP_NO_VTABLE CustomFlushPropagation : public T { public: //! \name SIGNALS
//@{
virtual bool Flush(bool hardFlush, int propagation=-1, bool blocking=true) =0; //@}
private: bool IsolatedFlush(bool hardFlush, bool blocking) {CRYPTOPP_UNUSED(hardFlush); CRYPTOPP_UNUSED(blocking); assert(false); return false;} };
//! \class CustomSignalPropagation
//! \brief Provides interface for initialization of derived filters
//! \tparam T the class or type
//! \details T should be a BufferedTransformation derived class
template <class T> class CRYPTOPP_NO_VTABLE CustomSignalPropagation : public CustomFlushPropagation<T> { public: virtual void Initialize(const NameValuePairs ¶meters=g_nullNameValuePairs, int propagation=-1) =0;
private: void IsolatedInitialize(const NameValuePairs ¶meters) {CRYPTOPP_UNUSED(parameters); assert(false);} };
//! \class Multichannel
//! \brief Provides multiple channels support for custom flush signal processing
//! \tparam T the class or type
//! \details T should be a BufferedTransformation derived class
template <class T> class CRYPTOPP_NO_VTABLE Multichannel : public CustomFlushPropagation<T> { public: bool Flush(bool hardFlush, int propagation=-1, bool blocking=true) {return this->ChannelFlush(DEFAULT_CHANNEL, hardFlush, propagation, blocking);} bool MessageSeriesEnd(int propagation=-1, bool blocking=true) {return this->ChannelMessageSeriesEnd(DEFAULT_CHANNEL, propagation, blocking);} byte * CreatePutSpace(size_t &size) {return this->ChannelCreatePutSpace(DEFAULT_CHANNEL, size);} size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) {return this->ChannelPut2(DEFAULT_CHANNEL, inString, length, messageEnd, blocking);} size_t PutModifiable2(byte *inString, size_t length, int messageEnd, bool blocking) {return this->ChannelPutModifiable2(DEFAULT_CHANNEL, inString, length, messageEnd, blocking);}
// void ChannelMessageSeriesEnd(const std::string &channel, int propagation=-1)
// {PropagateMessageSeriesEnd(propagation, channel);}
byte * ChannelCreatePutSpace(const std::string &channel, size_t &size) {CRYPTOPP_UNUSED(channel); size = 0; return NULL;} bool ChannelPutModifiable(const std::string &channel, byte *inString, size_t length) {this->ChannelPut(channel, inString, length); return false;}
virtual size_t ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking) =0; size_t ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking) {return ChannelPut2(channel, begin, length, messageEnd, blocking);}
virtual bool ChannelFlush(const std::string &channel, bool hardFlush, int propagation=-1, bool blocking=true) =0; };
//! \class AutoSignaling
//! \brief Provides auto signaling support
//! \tparam T the class or type
//! \details T should be a BufferedTransformation derived class
template <class T> class CRYPTOPP_NO_VTABLE AutoSignaling : public T { public: AutoSignaling(int propagation=-1) : m_autoSignalPropagation(propagation) {}
void SetAutoSignalPropagation(int propagation) {m_autoSignalPropagation = propagation;} int GetAutoSignalPropagation() const {return m_autoSignalPropagation;}
private: int m_autoSignalPropagation; };
//! \class Store
//! \brief Acts as a Source for pre-existing, static data
//! \tparam T the class or type
//! \details A BufferedTransformation that only contains pre-existing data as "output"
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Store : public AutoSignaling<InputRejecting<BufferedTransformation> > { public: Store() : m_messageEnd(false) {}
void IsolatedInitialize(const NameValuePairs ¶meters) { m_messageEnd = false; StoreInitialize(parameters); }
unsigned int NumberOfMessages() const {return m_messageEnd ? 0 : 1;} bool GetNextMessage(); unsigned int CopyMessagesTo(BufferedTransformation &target, unsigned int count=UINT_MAX, const std::string &channel=DEFAULT_CHANNEL) const;
protected: virtual void StoreInitialize(const NameValuePairs ¶meters) =0;
bool m_messageEnd; };
//! \class Sink
//! \brief Implementation of BufferedTransformation's attachment interface
//! \details Sink is a cornerstone of the Pipeline trinitiy. Data flows from
//! Sources, through Filters, and then terminates in Sinks. The difference
//! between a Source and Filter is a Source \a pumps data, while a Filter does
//! not. The difference between a Filter and a Sink is a Filter allows an
//! attached transformation, while a Sink does not.
//! \details A Sink doesnot produce any retrievable output.
//! \details See the discussion of BufferedTransformation in cryptlib.h for
//! more details.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Sink : public BufferedTransformation { public: size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) {CRYPTOPP_UNUSED(target); CRYPTOPP_UNUSED(transferBytes); CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(blocking); transferBytes = 0; return 0;} size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const {CRYPTOPP_UNUSED(target); CRYPTOPP_UNUSED(begin); CRYPTOPP_UNUSED(end); CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(blocking); return 0;} };
//! \class BitBucket
//! \brief Acts as an input discarding Filter or Sink
//! \tparam T the class or type
//! \details The BitBucket discards all input and returns 0 to the caller
//! to indicate all data was processed.
class CRYPTOPP_DLL BitBucket : public Bufferless<Sink> { public: std::string AlgorithmName() const {return "BitBucket";} void IsolatedInitialize(const NameValuePairs ¶ms) {CRYPTOPP_UNUSED(params);} size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) {CRYPTOPP_UNUSED(inString); CRYPTOPP_UNUSED(length); CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking); return 0;} };
NAMESPACE_END
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
#endif
|