|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $Header: $
// $NoKeywords: $
//=============================================================================//
#ifndef FLOAT_BM_H
#define FLOAT_BM_H
#ifdef _WIN32
#pragma once
#endif
#include <tier0/platform.h>
#include "tier0/dbg.h"
#include <mathlib/mathlib.h>
struct PixRGBAF { float Red; float Green; float Blue; float Alpha; };
struct PixRGBA8 { unsigned char Red; unsigned char Green; unsigned char Blue; unsigned char Alpha; };
inline PixRGBAF PixRGBA8_to_F( PixRGBA8 const &x ) { PixRGBAF f; f.Red = x.Red / 255.f; f.Green = x.Green / 255.f; f.Blue = x.Blue / 255.f; f.Alpha = x.Alpha / 255.f; return f; }
inline PixRGBA8 PixRGBAF_to_8( PixRGBAF const &f ) { PixRGBA8 x; x.Red = max( 0.f, min( 255.f,255.f*f.Red ) ); x.Green = max( 0.f, min( 255.f,255.f*f.Green ) ); x.Blue = max( 0.f, min( 255.f,255.f*f.Blue ) ); x.Alpha = max( 0.f, min( 255.f,255.f*f.Alpha ) ); return x; }
#define SPFLAGS_MAXGRADIENT 1
// bit flag options for ComputeSelfShadowedBumpmapFromHeightInAlphaChannel:
#define SSBUMP_OPTION_NONDIRECTIONAL 1 // generate ambient occlusion only
#define SSBUMP_MOD2X_DETAIL_TEXTURE 2 // scale so that a flat unshadowed
// value is 0.5, and bake rgb luminance
// in.
class FloatBitMap_t { public: int Width, Height; // bitmap dimensions
float *RGBAData; // actual data
FloatBitMap_t(void) // empty one
{ Width=Height=0; RGBAData=0; }
FloatBitMap_t(int width, int height); // make one and allocate space
FloatBitMap_t(char const *filename); // read one from a file (tga or pfm)
FloatBitMap_t(FloatBitMap_t const *orig); // quantize one to 8 bits
bool WriteTGAFile(char const *filename) const;
bool LoadFromPFM(char const *filename); // load from floating point pixmap (.pfm) file
bool WritePFM(char const *filename); // save to floating point pixmap (.pfm) file
void InitializeWithRandomPixelsFromAnotherFloatBM(FloatBitMap_t const &other);
inline float & Pixel(int x, int y, int comp) const { Assert((x>=0) && (x<Width)); Assert((y>=0) && (y<Height)); return RGBAData[4*(x+Width*y)+comp]; }
inline float & PixelWrapped(int x, int y, int comp) const { // like Pixel except wraps around to other side
if (x < 0) x+=Width; else if (x>= Width) x -= Width;
if ( y < 0 ) y+=Height; else if ( y >= Height ) y -= Height;
return RGBAData[4*(x+Width*y)+comp]; }
inline float & PixelClamped(int x, int y, int comp) const { // like Pixel except wraps around to other side
x=clamp(x,0,Width-1); y=clamp(y,0,Height-1); return RGBAData[4*(x+Width*y)+comp]; }
inline float & Alpha(int x, int y) const { Assert((x>=0) && (x<Width)); Assert((y>=0) && (y<Height)); return RGBAData[3+4*(x+Width*y)]; }
// look up a pixel value with bilinear interpolation
float InterpolatedPixel(float x, float y, int comp) const;
inline PixRGBAF PixelRGBAF(int x, int y) const { Assert((x>=0) && (x<Width)); Assert((y>=0) && (y<Height));
PixRGBAF RetPix; int RGBoffset= 4*(x+Width*y); RetPix.Red= RGBAData[RGBoffset+0]; RetPix.Green= RGBAData[RGBoffset+1]; RetPix.Blue= RGBAData[RGBoffset+2]; RetPix.Alpha= RGBAData[RGBoffset+3];
return RetPix; }
inline void WritePixelRGBAF(int x, int y, PixRGBAF value) const { Assert((x>=0) && (x<Width)); Assert((y>=0) && (y<Height));
int RGBoffset= 4*(x+Width*y); RGBAData[RGBoffset+0]= value.Red; RGBAData[RGBoffset+1]= value.Green; RGBAData[RGBoffset+2]= value.Blue; RGBAData[RGBoffset+3]= value.Alpha;
}
inline void WritePixel(int x, int y, int comp, float value) { Assert((x>=0) && (x<Width)); Assert((y>=0) && (y<Height)); RGBAData[4*(x+Width*y)+comp]= value; }
// paste, performing boundary matching. Alpha channel can be used to make
// brush shape irregular
void SmartPaste(FloatBitMap_t const &brush, int xofs, int yofs, uint32 flags);
// force to be tileable using poisson formula
void MakeTileable(void);
void ReSize(int NewXSize, int NewYSize);
// find the bounds of the area that has non-zero alpha.
void GetAlphaBounds(int &minx, int &miny, int &maxx,int &maxy);
// Solve the poisson equation for an image. The alpha channel of the image controls which
// pixels are "modifiable", and can be used to set boundary conditions. Alpha=0 means the pixel
// is locked. deltas are in the order [(x,y)-(x,y-1),(x,y)-(x-1,y),(x,y)-(x+1,y),(x,y)-(x,y+1)
void Poisson(FloatBitMap_t *deltas[4], int n_iters, uint32 flags // SPF_xxx
);
FloatBitMap_t *QuarterSize(void) const; // get a new one downsampled
FloatBitMap_t *QuarterSizeBlocky(void) const; // get a new one downsampled
FloatBitMap_t *QuarterSizeWithGaussian(void) const; // downsample 2x using a gaussian
void RaiseToPower(float pow); void ScaleGradients(void); void Logize(void); // pix=log(1+pix)
void UnLogize(void); // pix=exp(pix)-1
// compress to 8 bits converts the hdr texture to an 8 bit texture, encoding a scale factor
// in the alpha channel. upon return, the original pixel can be (approximately) recovered
// by the formula rgb*alpha*overbright.
// this function performs special numerical optimization on the texture to minimize the error
// when using bilinear filtering to read the texture.
void CompressTo8Bits(float overbright); // decompress a bitmap converted by CompressTo8Bits
void Uncompress(float overbright);
Vector AverageColor(void); // average rgb value of all pixels
float BrightestColor(void); // highest vector magnitude
void Clear(float r, float g, float b, float alpha); // set all pixels to speicifed values (0..1 nominal)
void ScaleRGB(float scale_factor); // for all pixels, r,g,b*=scale_factor
// given a bitmap with height stored in the alpha channel, generate vector positions and normals
void ComputeVertexPositionsAndNormals( float flHeightScale, Vector **ppPosOut, Vector **ppNormalOut ) const;
// generate a normal map with height stored in alpha. uses hl2 tangent basis to support baked
// self shadowing. the bump scale maps the height of a pixel relative to the edges of the
// pixel. This function may take a while - many millions of rays may be traced. applications
// using this method need to link w/ raytrace.lib
FloatBitMap_t *ComputeSelfShadowedBumpmapFromHeightInAlphaChannel( float bump_scale, int nrays_to_trace_per_pixel=100, uint32 nOptionFlags = 0 // SSBUMP_OPTION_XXX
) const;
// generate a conventional normal map from a source with height stored in alpha.
FloatBitMap_t *ComputeBumpmapFromHeightInAlphaChannel( float bump_scale ) const ;
// bilateral (edge preserving) smoothing filter. edge_threshold_value defines the difference in
// values over which filtering will not occur. Each channel is filtered independently. large
// radii will run slow, since the bilateral filter is neither separable, nor is it a
// convolution that can be done via fft.
void TileableBilateralFilter( int radius_in_pixels, float edge_threshold_value );
~FloatBitMap_t();
void AllocateRGB(int w, int h) { if (RGBAData) delete[] RGBAData; RGBAData=new float[w*h*4]; Width=w; Height=h; } };
// a FloatCubeMap_t holds the floating point bitmaps for 6 faces of a cube map
class FloatCubeMap_t { public: FloatBitMap_t face_maps[6];
FloatCubeMap_t(int xfsize, int yfsize) { // make an empty one with face dimensions xfsize x yfsize
for(int f=0;f<6;f++) face_maps[f].AllocateRGB(xfsize,yfsize); }
// load basenamebk,pfm, basenamedn.pfm, basenameft.pfm, ...
FloatCubeMap_t(char const *basename);
// save basenamebk,pfm, basenamedn.pfm, basenameft.pfm, ...
void WritePFMs(char const *basename);
Vector AverageColor(void) { Vector ret(0,0,0); int nfaces=0; for(int f=0;f<6;f++) if (face_maps[f].RGBAData) { nfaces++; ret+=face_maps[f].AverageColor(); } if (nfaces) ret*=(1.0/nfaces); return ret; }
float BrightestColor(void) { float ret=0.0; int nfaces=0; for(int f=0;f<6;f++) if (face_maps[f].RGBAData) { nfaces++; ret=max(ret,face_maps[f].BrightestColor()); } return ret; }
// resample a cubemap to one of possibly a lower resolution, using a given phong exponent.
// dot-product weighting will be used for the filtering operation.
void Resample(FloatCubeMap_t &dest, float flPhongExponent);
// returns the normalized direciton vector through a given pixel of a given face
Vector PixelDirection(int face, int x, int y);
// returns the direction vector throught the center of a cubemap face
Vector FaceNormal( int nFaceNumber ); };
static inline float FLerp(float f1, float f2, float t) { return f1+(f2-f1)*t; }
// Image Pyramid class.
#define MAX_IMAGE_PYRAMID_LEVELS 16 // up to 64kx64k
enum ImagePyramidMode_t { PYRAMID_MODE_GAUSSIAN, };
class FloatImagePyramid_t { public: int m_nLevels; FloatBitMap_t *m_pLevels[MAX_IMAGE_PYRAMID_LEVELS]; // level 0 is highest res
FloatImagePyramid_t(void) { m_nLevels=0; memset(m_pLevels,0,sizeof(m_pLevels)); }
// build one. clones data from src for level 0.
FloatImagePyramid_t(FloatBitMap_t const &src, ImagePyramidMode_t mode);
// read or write a Pixel from a given level. All coordinates are specified in the same domain as the base level.
float &Pixel(int x, int y, int component, int level) const;
FloatBitMap_t *Level(int lvl) const { Assert(lvl<m_nLevels); Assert(lvl<ARRAYSIZE(m_pLevels)); return m_pLevels[lvl]; } // rebuild all levels above the specified level
void ReconstructLowerResolutionLevels(int starting_level);
~FloatImagePyramid_t(void);
void WriteTGAs(char const *basename) const; // outputs name_00.tga, name_01.tga,...
};
#endif
|