|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Base class for transactions that modify a CGCSharedObjectCache and the database
//
//=============================================================================
#ifndef SHAREDOBJECTTRANSACTION_H
#define SHAREDOBJECTTRANSACTION_H
#ifdef _WIN32
#pragma once
#endif
#include <functional>
namespace GCSDK {
template < typename TSharedObject > struct SharedObjectContainsAuditEntryType { typedef char t_Yes[1]; typedef char t_No[2];
template < typename T > static t_Yes& Test( typename T::CAuditEntry * ); template < typename T > static t_No& Test( ... );
enum { kValue = sizeof( Test<TSharedObject>( NULL ) ) == sizeof( t_Yes ) }; };
//-----------------------------------------------------------------------------
// Purpose: Let's stop writing transactional code by hand everywhere!
//
// Core usage:
//
// - make a new instance, either starting a new SQL transaction or hooking
// into an existing open transaction.
//
// - call some combination of AddNewObject/RemoveObject to add newly-allocated
// objects or remove existing objects. If the types of objects being added/
// removed contain a linked audit data class, you're required to pass in
// a filled-out instance with the add/remove request.
//
// - modify some existing objects. You can either call ModifyObject directly
// or call one of the helper functions/macros (ie., ModifyObjectSch).
// Whatever changes get made here won't be visible anywhere outside this
// transaction object until a commit succeeds.
//
// - try to do a commit. If this succeeds, everything worked and memory has
// been updated to reflect DB changes (if any). If this fails, or if the
// transaction object gets destroyed with an open transaction, all queued
// SQL work will be dropped and no potential memory changes will happen.
//
// That was too long. What's a short version?:
//
// {
// CSharedObjectTransactionEx transaction( pSomeLockedSOCache, "Sample Tool Transaction" );
// transaction.RemoveObject( pToolItem, CEconItem::CAuditEntry( ... ) );
// transaction.RemoveObject( pToolTargetItem, CEconItem::CAuditEntry( ... ) );
// transaction.AddNewObject( pNewResultItem, CEconItem::CAuditEntry( ... ) );
// transaction.ModifyObjectSch( pEconGameAccount, unNumToolsUsed, pEconGameAccount->Obj().m_pEconGameAccount + 1 );
// Verify( transaction.BYieldingCommit() );
// }
//
// Guarantees this class makes:
//
// - if the initial state is correct and client code isn't malicious, a
// lock on the SO cache passed in will be maintained for the lifetime
// of the class.
//
// - externally, no changes will be visible on the GC or on cients until a
// commit attempt takes place. If the commit failures, no changes will
// take place in memory. If the commit succeeds, all memory changes will
// become visible "simultaneously" (no yields, but not atomic from a
// threading perspective.
//
// - this class will do the minimum amount of work possible to guarantee
// correct behavior. If you don't touch any networked objects, no network
// updates will be sent. If you don't touch any DB-backed objects, no DB
// work will be done.
//-----------------------------------------------------------------------------
class CSharedObjectTransactionEx { public: CSharedObjectTransactionEx( CGCSharedObjectCache *pLockedSOCache, const char *pszTransactionName );
~CSharedObjectTransactionEx();
// AddNewObject:
// Add a new object to this user's SO cache. If the type of this object supports audit entries, you're
// required to pass in a CAuditEntry of the appropriate type (ie., CEconItem::CAuditEntry). If your type
// doesn't support audit entries, and you're really sure that not auditing in the correct behavior, you
// call the single-argument version below. In both cases, it's illegal to pass in an object that's
// a raw CSharedObject pointer because then this code doesn't know what type of audit data to look for.
//
// It's possible to set up these functions using SFINAE so that the compiler will only see the appropriate
// version, but this way produces prettier error messages.
// Add an object to this user's cache, conditional on the SQL transaction succeeding, including writing an
// audit entry to SQL explaining where this object came from.
template < typename TSharedObject > void AddNewObject( TSharedObject *pObject, const typename TSharedObject::CAuditEntry& audit ) { COMPILE_TIME_ASSERT( (!AreTypesIdentical<TSharedObject, CSharedObject>::kValue) ); COMPILE_TIME_ASSERT( SharedObjectContainsAuditEntryType<TSharedObject>::kValue );
m_bTransactionBuildSuccess &= BAddNewObjectInternal( pObject ); m_bTransactionBuildSuccess &= audit.BAddAuditEntryToTransaction( *m_pSQLAccess, pObject ); }
// Add an object to this user's cache, conditional on the SQL transaction succeeding, but don't write any
// audit data. In general, this is probably the wrong thing to do and you want to be making sure this object
// type supports writing audit data and then writing it.
template < typename TSharedObject > void AddNewObject( TSharedObject *pObject ) { COMPILE_TIME_ASSERT( (!AreTypesIdentical<TSharedObject, CSharedObject>::kValue) ); COMPILE_TIME_ASSERT( !SharedObjectContainsAuditEntryType<TSharedObject>::kValue );
m_bTransactionBuildSuccess &= BAddNewObjectInternal( pObject ); }
// This is a helper class purely to help VC will template type deduction. The real signature we want for the
// base ModifyObject function is:
//
// template < typename TSharedObject >
// void ModifyObject( TSharedObject *pObject, const std::function< bool( CSQLAccess&, CSharedObjectDirtyList&, TSharedObject * ) >& funcModifyAndAudit )
//
// ...but if we do do that, VC will complain that it doesn't know how to deduce the type for TSharedObject
// because of the second parameter. Instead, we make it deduce the type based on the first parameter, and then
// feed that type into this helper class to get the type for the second parameter.
template < typename TSharedObject > struct CSharedObjectModifyAndAuditFunction { typedef std::function< bool( CSQLAccess&, CSharedObjectDirtyList&, TSharedObject * ) > ModifyFunctionType; };
// ModifyObject: takes in
template < typename TSharedObject > void ModifyObject( TSharedObject *pObject, const typename CSharedObjectModifyAndAuditFunction<TSharedObject>::ModifyFunctionType& funcModifyAndAudit ) { COMPILE_TIME_ASSERT( (!AreTypesIdentical<TSharedObject, CSharedObject>::kValue) );
CSharedObject *pWritableObject = NULL; m_bTransactionBuildSuccess &= BTrackModifiedObjectInternal( pObject, &pWritableObject ); AssertMsg( !m_bTransactionBuildSuccess || pWritableObject != NULL, "Cannot be tracking state for an object but not having a writable version!" );
m_bTransactionBuildSuccess &= funcModifyAndAudit( *m_pSQLAccess, m_SODirtyList, assert_cast<TSharedObject *>( pWritableObject ) ); }
// ModifyObjectL() is a helper macro designed to behave like a function. It takes as parameters the original
// object you want to modify and the code you want to run on it, expressed as a lambda.
#define ModifyObjectL( obj_, modifyfunc_ ) \
ModifyObject( obj_, [=] ( CSQLAccess& sqlAccess, CSharedObjectDirtyList& SODirtyList, decltype( obj_ ) pWritableObject ) -> bool { modifyfunc_ } )
// ModifyObjectSch() is a helper macro designed to behave like a function. It takes as parameters the original
// object you want to modify, an identifier for the field you want to change, and the new value you want to
// change it to. Ex.:
//
// transaction.ModifyObjectSch( pLockedSOCache->GetGameAccount(), // type of internal object is used to look up field IDs
// unNextHalloweenGiftTime, // turns into "(obj).m_unNextHalloweenGiftTime" and "(type)::k_iField_unNextHalloweenGiftTime"
// CRTime::RTime32DateAdd( CRTime::RTime32TimeCur(), tf_halloween_min_minutes_between_drops_per_player.GetInt(), k_ETimeUnitMinute ) );
#define ModifyObjectSch( obj_, field_, newvalue_ ) \
ModifyObjectL( obj_, \ { \ pWritableObject->Obj().m_ ## field_ = (newvalue_); \ SODirtyList.DirtyObjectField( pWritableObject, std::remove_reference< decltype( pWritableObject->Obj() ) >::type::k_iField_ ## field_ ); \ return true; \ } )
// ModifyObjectProto() is a helper macro designed to behave like a function. It takes as parameters the original
// object you want to modify, the field name in the message or the field you want to change, the identifier field
// ID (will be identical except for case/underscores), and the new value. Ex.:
//
// soTrans.ModifyObjectProto( pGameAccountClient, // type of internal object is used to look up field IDs
// preview_item_def, // turns into "(obj)->set_preview_item_def"
// PreviewItemDef, // turns into "(type)::kPreviewItemDefFieldNumber"
// 0 );
#define ModifyObjectProto( obj_, fieldfunc_, fieldname_, newvalue_ ) \
ModifyObjectL( obj_, \ { \ pWritableObject->Obj().set_ ## fieldfunc_( newvalue_ ); \ SODirtyList.DirtyObjectField( pWritableObject, std::remove_reference< decltype( pWritableObject->Obj() ) >::type::k ## fieldname_ ## FieldNumber ); \ return true; \ } )
// RemoveObject
template < typename TSharedObject > void RemoveObject( TSharedObject *pObject, const typename TSharedObject::CAuditEntry& audit ) { COMPILE_TIME_ASSERT( (!AreTypesIdentical<TSharedObject, CSharedObject>::kValue) ); COMPILE_TIME_ASSERT( SharedObjectContainsAuditEntryType<TSharedObject>::kValue );
m_bTransactionBuildSuccess &= BRemoveObjectInternal( pObject ); m_bTransactionBuildSuccess &= audit.BAddAuditEntryToTransaction( *m_pSQLAccess, pObject ); }
template < typename TSharedObject > void RemoveObject( CSharedObject *pObject ) { COMPILE_TIME_ASSERT( (!AreTypesIdentical<TSharedObject, CSharedObject>::kValue) ); COMPILE_TIME_ASSERT( !SharedObjectContainsAuditEntryType<TSharedObject>::kValue );
m_bTransactionBuildSuccess &= BRemoveObjectInternal( pObject ); }
template < class TSchType > void AddSQLRecord( const TSchType& sch ) { // We can't test for all types here because there's no compile-time list. This is
// mostly to demonstrate "seriously please don't call this with types that have
// CSharedObject wrappers".
COMPILE_TIME_ASSERT( (!AreTypesIdentical<TSchType, CSchItem>::kValue) ); COMPILE_TIME_ASSERT( (!AreTypesIdentical<TSchType, CSchItemAudit>::kValue) ); COMPILE_TIME_ASSERT( (!AreTypesIdentical<TSchType, CSchGameAccount>::kValue) );
// We're about to call a function with "Yielding" in the name and we aren't in a
// function with "Yielding" in the name, but we *are* in a transaction so we know
// we don't yield. We verify that assumption here.
DO_NOT_YIELD_THIS_SCOPE();
// Queue up the work for SQL as long as we're in a good state to do so.
m_bTransactionBuildSuccess &= BIsValidInternalState() ? m_pSQLAccess->BYieldingInsertRecord( &sch ) : false; }
template < class TSchType > void AddOrUpdateSQLRecord( TSchType& sch ) { // We can't test for all types here because there's no compile-time list. This is
// mostly to demonstrate "seriously please don't call this with types that have
// CSharedObject wrappers".
COMPILE_TIME_ASSERT( (!AreTypesIdentical<TSchType, CSchItem>::kValue) ); COMPILE_TIME_ASSERT( (!AreTypesIdentical<TSchType, CSchItemAudit>::kValue) ); COMPILE_TIME_ASSERT( (!AreTypesIdentical<TSchType, CSchGameAccount>::kValue) );
// We're about to call a function with "Yielding" in the name and we aren't in a
// function with "Yielding" in the name, but we *are* in a transaction so we know
// we don't yield. We verify that assumption here.
DO_NOT_YIELD_THIS_SCOPE();
// Queue up the work for SQL as long as we're in a good state to do so.
m_bTransactionBuildSuccess &= BIsValidInternalState() ? m_pSQLAccess->BYieldingInsertOrUpdateOnPK( &sch ) : false; }
// This is meant purely for interop with the SQL message queue and even then only as a temporary
// measure until we have a CSQLTransaction object we can pass around instead.
CSQLAccess& GetSQLTransactionForSQLMsgQueue() { return *m_pSQLAccess; }
// slow! but fine for current uses
template < class TSharedObject > const TSharedObject *FindTypedSharedObject( const CSharedObject &soIndex ) const { return assert_cast<TSharedObject *>( InternalFindSharedObject( pSOCache, soIndex ) ); }
// Take all the work we queued up for SQL and try to commit it to the DB. If that works, take all
// of our memory changes and copy them over. From the outside, this will either move *all* memory
// changes to our cache over at once, or not touch any in-memory structures at all.
MUST_CHECK_RETURN bool BYieldingCommit();
// Cancel this transaction completely -- this will empty the queue of whatever SQL work we may have
// done and also free up the memory we used to track modified object state, etc. Once this function
// gets called, it's illegal to call any other functions on this transaction object except the
// destructor.
void Rollback();
private: // State validation. Non-const because may set internal error state.
bool BIsValidInternalState(); bool BIsValidInput( const CSharedObject *pObject );
const char *GetInternalTransactionDesc() const { return m_pSQLAccess->PchTransactionName(); }
template < typename tCommitInfo > const tCommitInfo *InternalFindCommitInfo( const CSharedObject *pObject, const CUtlVector<tCommitInfo>& vec ) const { FOR_EACH_VEC( vec, i ) { if ( vec[i].m_pObject == pObject ) return &vec[i]; }
return NULL; }
const CSharedObject *InternalFindSharedObject( CGCSharedObjectCache *pSOCache, const CSharedObject& soIndex ) const;
// Will return NULL if pre-commit operations/checks were successful, or a pointer to a descriptive error string if
// pre-commit failed.
const char *InternalPreCommit();
bool BAddNewObjectInternal( CSharedObject *pObject ); bool BTrackModifiedObjectInternal( CSharedObject *pObject, CSharedObject **out_ppWritableObject ); bool BRemoveObjectInternal( CSharedObject *pObject );
friend class CTrustedHelper_OutputAndSetErrorState; void SetErrorState() { m_bTransactionBuildSuccess = false; }
private: CGCSharedObjectCache *m_pLockedSOCache; // we don't do any locking ourself, but verify that the lock is held during construction/modification
CSharedObjectDirtyList m_SODirtyList;
CSQLAccess *m_pSQLAccess; // our access to SQL -- may point to our inline instance or may point to an external object if we're hitching on an already-existing transaction
bool m_bTransactionBuildSuccess;
CSQLAccess m_sqlAccessInternal;
struct CreateOrDestroyCommitInfo_t { CreateOrDestroyCommitInfo_t( CSharedObject *pObject ) : m_pObject( pObject ) { Assert( m_pObject ); }
CSharedObject *m_pObject; };
struct ModifyCommitInfo_t { ModifyCommitInfo_t( CSharedObject *pWriteableObject, CSharedObject *pOriginalCopy ) : m_pWriteableObject( pWriteableObject ) , m_pObject( pOriginalCopy ) { }
CSharedObject *m_pWriteableObject; // scratch/memory-writable copy while transaction is open
CSharedObject *m_pObject; // original copy
};
CUtlVector<CreateOrDestroyCommitInfo_t> m_vecObjects_Added; CUtlVector<CreateOrDestroyCommitInfo_t> m_vecObjects_Removed; CUtlVector<ModifyCommitInfo_t> m_vecObjects_Modified; };
class CSharedObjectTransaction { public:
/**
* Constructor that will begin a transaction * @param sqlAccess * @param pName */ CSharedObjectTransaction( CSQLAccess &sqlAccess, const char *pName );
/**
* Destructor */ ~CSharedObjectTransaction();
/**
* Adds an object that exists in the given CGCSharedObjectCache to be managed in this transaction. * Call this before making any modifications to the object * @param pSOCache the owner CGCSharedObjectCache * @param pObject the object that will be modified */ void AddManagedObject( CGCSharedObjectCache *pSOCache, CSharedObject *pObject );
/**
* Adds a brand new object to the given CGCSharedObjectCache * @param pSOCache the owner CGCSharedObjectCache * @param pObject the newly created object */ void AddNewObject( CGCSharedObjectCache *pSOCache, CSharedObject *pObject );
/**
* Removes an existing object from the CGCSharedObjectCache * @param pSOCache the owner CGCSharedObjectCache * @param pObject the object to be removed from the CGCSharedObjectCache */ void RemoveObject( CGCSharedObjectCache *pSOCache, CSharedObject *pObject );
/**
* Marks in the transaction that the object was modified. The object must have been previously added via * the AddManagedObject() call in order for the object to be marked dirty. If the object is new to the * CGCSharedObjectCache, then calling this will return false (which is not necessarily an error) * * @param pObject the object that will be modified * @param unFieldIdx the field that was changed */ void ModifiedObject( CGCSharedObjectCache *pSOCache, CSharedObject *pObject, uint32 unFieldIdx );
/**
* @param pSOCache * @param soIndex * @return the CSharedObject that matches either in the CGCSharedObjectCache or to be added */ template < class T > T *FindTypedSharedObject( CGCSharedObjectCache *pSOCache, const CSharedObject &soIndex ) { return assert_cast<T *>( FindSharedObject( pSOCache, soIndex ) ); }
/**
* Rolls back any changes made to the objects in-memory and in the database * * This function should not be made virtual -- it's called from within the destructor. */ void Rollback();
/**
* Commits any changes to the database and also to memory * @return true if successful, false otherwise */ bool BYieldingCommit( bool bAllowEmpty = false );
/**
* @return GCSDK::CSQLAccess associated with this transaction */ CSQLAccess &GetSQLAccess() { return m_sqlAccess; }
/**
* Fetch name of transaction for debugging purposes * @return the string passed to the constructor */ const char *PchName() const;
private:
/**
* @param pSOCache * @param soIndex * @return the CSharedObject that matches either in the list of currently-modified objects or the list * or of new objects we added; this will not search in the base SO cache */ CSharedObject *FindSharedObject( CGCSharedObjectCache *pSOCache, const CSharedObject &soIndex );
/**
* Reverts all in-memory modifications and deletes all newly created objects. * * This function should not be made virtual -- it's called from within the destructor. */ void Undo();
/**
* Set an error string to describe an error we encountered building this transaction. Setting this * will cause the transaction to fail. */ void SetError( const char *pszNewError ) { AssertMsg( pszNewError && ( pszNewError[0] != '\0' ), "Invalid NULL/empty error set in CSharedObjectTransaction::SetError()! This will have the effect of clearing the error state, which is unsupported." ); m_sErrorDesc = pszNewError; }
/**
* Clear our error string if we have one. This will allow transactions to succeed and so is only intended * to be done when the transaction itself has either completed (no either to begin with) or emptied (clean * slate). */ void ClearError() { Assert( m_vecObjects_Added.Count() == 0 ); Assert( m_vecObjects_Removed.Count() == 0 ); Assert( m_vecObjects_Modified.Count() == 0 ); m_sErrorDesc.Clear(); }
/**
* Get access to the string describing what, if any, the last error we encountered was. Will return * NULL if no errors have been encountered. */ const char *GetError() const { return m_sErrorDesc.IsEmpty() ? NULL : m_sErrorDesc.String(); }
struct undoinfo_t { CSharedObject *pObject; CGCSharedObjectCache *pSOCache; CSharedObject *pOriginalCopy;
bool operator==( const undoinfo_t& other ) const { return other.pObject == pObject && other.pSOCache == pSOCache && other.pOriginalCopy == pOriginalCopy; } };
// Wraps the common check to make sure these pointers are valid and that the cache is locked. This is non-const
// because it can call SetError().
bool AssertValidInput( const CGCSharedObjectCache *pSOCache, const CSharedObject *pObject, const char *pszContext );
// Finds the object in the given vector (using simple pointer compare)
undoinfo_t *FindObjectInVector( const CSharedObject *pObject, CUtlVector<undoinfo_t> &vec ) const;
// variables
CUtlVector< undoinfo_t > m_vecObjects_Added; CUtlVector< undoinfo_t > m_vecObjects_Removed; CUtlVector< undoinfo_t > m_vecObjects_Modified; CSQLAccess &m_sqlAccess;
// internal error state
CUtlString m_sErrorDesc; // will be non-empty if we've encountered an error at some point building this transaction
}; // class CSharedObjectTransaction
}; // namespace GCSDK
#endif // SHAREDOBJECTTRANSACTION_H
|