|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Memory allocation!
//
// $NoKeywords: $
//=============================================================================//
#include "pch_tier0.h"
#if !defined(STEAM) && !defined(NO_MALLOC_OVERRIDE)
#if defined( _WIN32 ) && !defined( _X360 )
#define WIN_32_LEAN_AND_MEAN
#include <windows.h>
#define VA_COMMIT_FLAGS MEM_COMMIT
#define VA_RESERVE_FLAGS MEM_RESERVE
#elif defined( _X360 )
#undef Verify
#define VA_COMMIT_FLAGS (MEM_COMMIT|MEM_NOZERO|MEM_LARGE_PAGES)
#define VA_RESERVE_FLAGS (MEM_RESERVE|MEM_LARGE_PAGES)
#endif
#include <malloc.h>
#include "tier0/valve_minmax_off.h" // GCC 4.2.2 headers screw up our min/max defs.
#include <algorithm>
#include "tier0/valve_minmax_on.h" // GCC 4.2.2 headers screw up our min/max defs.
#include "tier0/dbg.h"
#include "tier0/memalloc.h"
#include "tier0/threadtools.h"
#include "mem_helpers.h"
#include "memstd.h"
#ifdef _X360
#include "xbox/xbox_console.h"
#endif
// Force on redirecting all allocations to the process heap on Win64,
// which currently means the GC. This is to make AppVerifier more effective
// at catching memory stomps.
#if defined( _WIN64 )
#define FORCE_PROCESS_HEAP
#elif defined( _WIN32 )
// Define this to force using the OS Heap* functions for allocations. This is useful
// in conjunction with AppVerifier/PageHeap in order to find memory problems, and
// also allows ETW/xperf tracing to be used to record allocations.
// Normally the command-line option -processheap can be used instead.
//#define FORCE_PROCESS_HEAP
#define ALLOW_PROCESS_HEAP
#endif
// Track this to decide how to handle out-of-memory.
static bool s_bPageHeapEnabled = false;
#ifdef TIME_ALLOC
CAverageCycleCounter g_MallocCounter; CAverageCycleCounter g_ReallocCounter; CAverageCycleCounter g_FreeCounter;
#define PrintOne( name ) \
Msg("%-48s: %6.4f avg (%8.1f total, %7.3f peak, %5d iters)\n", \ #name, \
g_##name##Counter.GetAverageMilliseconds(), \ g_##name##Counter.GetTotalMilliseconds(), \ g_##name##Counter.GetPeakMilliseconds(), \ g_##name##Counter.GetIters() ); \ memset( &g_##name##Counter, 0, sizeof(g_##name##Counter) )
void PrintAllocTimes() { PrintOne( Malloc ); PrintOne( Realloc ); PrintOne( Free ); }
#define PROFILE_ALLOC(name) CAverageTimeMarker name##_ATM( &g_##name##Counter )
#else
#define PROFILE_ALLOC( name ) ((void)0)
#define PrintAllocTimes() ((void)0)
#endif
#if _MSC_VER < 1400 && defined( MSVC ) && !defined(_STATIC_LINKED) && (defined(_DEBUG) || defined(USE_MEM_DEBUG))
void *operator new( unsigned int nSize, int nBlockUse, const char *pFileName, int nLine ) { return ::operator new( nSize ); }
void *operator new[] ( unsigned int nSize, int nBlockUse, const char *pFileName, int nLine ) { return ::operator new[]( nSize ); } #endif
#if (!defined(_DEBUG) && !defined(USE_MEM_DEBUG))
// Support for CHeapMemAlloc for easy switching to using the process heap.
#ifdef ALLOW_PROCESS_HEAP
// Round a size up to a multiple of 4 KB to aid in calculating how much
// memory is required if full pageheap is enabled.
static size_t RoundUpToPage( size_t nSize ) { nSize += 0xFFF; nSize &= ~0xFFF; return nSize; }
// Convenience function to deal with the necessary type-casting
static void InterlockedAddSizeT( size_t volatile *Addend, size_t Value ) { #ifdef PLATFORM_WINDOWS_PC32
COMPILE_TIME_ASSERT( sizeof( size_t ) == sizeof( int32 ) ); InterlockedExchangeAdd( ( LONG* )Addend, LONG( Value ) ); #else
InterlockedExchangeAdd64( ( LONGLONG* )Addend, LONGLONG( Value ) ); #endif
}
class CHeapMemAlloc : public IMemAlloc { public: CHeapMemAlloc() { // Make sure that we return 64-bit addresses in 64-bit builds.
ReserveBottomMemory();
// Do all allocations with the shared process heap so that we can still
// allocate from one DLL and free in another.
m_heap = GetProcessHeap(); }
void Init( bool bZeroMemory ) { m_HeapFlags = bZeroMemory ? HEAP_ZERO_MEMORY : 0;
// Can't use Msg here because it isn't necessarily initialized yet.
if ( s_bPageHeapEnabled ) { OutputDebugStringA("PageHeap is on. Memory use will be larger than normal.\n" ); } else { OutputDebugStringA("PageHeap is off. Memory use will be normal.\n" ); } if( bZeroMemory ) { OutputDebugStringA( " HEAP_ZERO_MEMORY is specified.\n" ); } }
// Release versions
virtual void *Alloc( size_t nSize ) { // Ensure that the constructor has run already. Poorly defined
// order of construction can result in the allocator being used
// before it is constructed. Which could be bad.
if ( !m_heap ) __debugbreak(); void* pMem = HeapAlloc( m_heap, m_HeapFlags, nSize ); if ( pMem ) { InterlockedAddSizeT( &m_nOutstandingBytes, nSize ); InterlockedAddSizeT( &m_nOutstandingPageHeapBytes, RoundUpToPage( nSize ) ); InterlockedIncrement( &m_nOutstandingAllocations ); InterlockedIncrement( &m_nLifetimeAllocations ); } else if ( nSize ) { // Having PageHeap enabled leads to lots of allocation failures. These
// then lead to crashes. In order to avoid confusion about the cause of
// these crashes, halt immediately on allocation failures.
__debugbreak(); InterlockedIncrement( &m_nAllocFailures ); }
return pMem; } virtual void *Realloc( void *pMem, size_t nSize ) { // If you pass zero to HeapReAlloc then it fails (with GetLastError() saying S_OK!)
// so only call HeapReAlloc if pMem is non-zero.
if ( pMem ) { if ( !nSize ) { // Call the regular free function.
Free( pMem ); return 0; } size_t nOldSize = HeapSize( m_heap, 0, pMem ); void* pNewMem = HeapReAlloc( m_heap, m_HeapFlags, pMem, nSize );
// If we successfully allocated the requested memory (zero counts as
// success if we requested zero bytes) then update the counters for the
// change.
if ( pNewMem ) { InterlockedAddSizeT( &m_nOutstandingBytes, nSize - nOldSize ); InterlockedAddSizeT( &m_nOutstandingPageHeapBytes, RoundUpToPage( nSize ) ); InterlockedAddSizeT( &m_nOutstandingPageHeapBytes, 0 - RoundUpToPage( nOldSize ) ); // Outstanding allocation count isn't affected by Realloc, but
// lifetime allocation count is.
InterlockedIncrement( &m_nLifetimeAllocations ); } else { // Having PageHeap enabled leads to lots of allocation failures. These
// then lead to crashes. In order to avoid confusion about the cause of
// these crashes, halt immediately on allocation failures.
__debugbreak(); InterlockedIncrement( &m_nAllocFailures ); } return pNewMem; }
// Call the regular alloc function.
return Alloc( nSize ); } virtual void Free( void *pMem ) { if ( pMem ) { size_t nOldSize = HeapSize( m_heap, 0, pMem ); InterlockedAddSizeT( &m_nOutstandingBytes, 0 - nOldSize ); InterlockedAddSizeT( &m_nOutstandingPageHeapBytes, 0 - RoundUpToPage( nOldSize ) ); InterlockedDecrement( &m_nOutstandingAllocations ); HeapFree( m_heap, 0, pMem ); } } virtual void *Expand_NoLongerSupported( void *pMem, size_t nSize ) { return 0; }
// Debug versions
virtual void *Alloc( size_t nSize, const char *pFileName, int nLine ) { return Alloc( nSize ); } virtual void *Realloc( void *pMem, size_t nSize, const char *pFileName, int nLine ) { return Realloc(pMem, nSize); } virtual void Free( void *pMem, const char *pFileName, int nLine ) { Free( pMem ); } virtual void *Expand_NoLongerSupported( void *pMem, size_t nSize, const char *pFileName, int nLine ) { return 0; }
#ifdef MEMALLOC_SUPPORTS_ALIGNED_ALLOCATIONS
// Not currently implemented
#error
#endif
virtual void *RegionAlloc( int region, size_t nSize ) { __debugbreak(); return 0; } virtual void *RegionAlloc( int region, size_t nSize, const char *pFileName, int nLine ) { __debugbreak(); return 0; }
// Returns size of a particular allocation
// If zero is returned then return the total size of allocated memory.
virtual size_t GetSize( void *pMem ) { if ( !pMem ) { return m_nOutstandingBytes; } return HeapSize( m_heap, 0, pMem ); }
// Force file + line information for an allocation
virtual void PushAllocDbgInfo( const char *pFileName, int nLine ) {} virtual void PopAllocDbgInfo() {}
virtual long CrtSetBreakAlloc( long lNewBreakAlloc ) { return 0; } virtual int CrtSetReportMode( int nReportType, int nReportMode ) { return 0; } virtual int CrtIsValidHeapPointer( const void *pMem ) { return 0; } virtual int CrtIsValidPointer( const void *pMem, unsigned int size, int access ) { return 0; } virtual int CrtCheckMemory( void ) { return 0; } virtual int CrtSetDbgFlag( int nNewFlag ) { return 0; } virtual void CrtMemCheckpoint( _CrtMemState *pState ) {} virtual void* CrtSetReportFile( int nRptType, void* hFile ) { return 0; } virtual void* CrtSetReportHook( void* pfnNewHook ) { return 0; } virtual int CrtDbgReport( int nRptType, const char * szFile, int nLine, const char * szModule, const char * pMsg ) { return 0; } virtual int heapchk() { return -2/*_HEAPOK*/; }
virtual void DumpStats() { const size_t MB = 1024 * 1024; Msg( "Sorry -- no stats saved to file memstats.txt when the heap allocator is enabled.\n" ); // Print requested memory.
Msg( "%u MB allocated.\n", ( unsigned )( m_nOutstandingBytes / MB ) ); // Print memory after rounding up to pages.
Msg( "%u MB assuming maximum PageHeap overhead.\n", ( unsigned )( m_nOutstandingPageHeapBytes / MB )); // Print memory after adding in reserved page after every allocation. Do 64-bit calculations
// because the pageHeap required memory can easily go over 4 GB.
__int64 pageHeapBytes = m_nOutstandingPageHeapBytes + m_nOutstandingAllocations * 4096LL; Msg( "%u MB address space used assuming maximum PageHeap overhead.\n", ( unsigned )( pageHeapBytes / MB )); Msg( "%u outstanding allocations (%d delta).\n", ( unsigned )m_nOutstandingAllocations, ( int )( m_nOutstandingAllocations - m_nOldOutstandingAllocations ) ); Msg( "%u lifetime allocations (%u delta).\n", ( unsigned )m_nLifetimeAllocations, ( unsigned )( m_nLifetimeAllocations - m_nOldLifetimeAllocations ) ); Msg( "%u allocation failures.\n", ( unsigned )m_nAllocFailures );
// Update the numbers on outstanding and lifetime allocation counts so
// that we can print out deltas.
m_nOldOutstandingAllocations = m_nOutstandingAllocations; m_nOldLifetimeAllocations = m_nLifetimeAllocations; } virtual void DumpStatsFileBase( char const *pchFileBase ) {} virtual size_t ComputeMemoryUsedBy( char const *pchSubStr ) { return 0; } virtual void GlobalMemoryStatus( size_t *pUsedMemory, size_t *pFreeMemory ) {}
virtual bool IsDebugHeap() { return false; }
virtual uint32 GetDebugInfoSize() { return 0; } virtual void SaveDebugInfo( void *pvDebugInfo ) { } virtual void RestoreDebugInfo( const void *pvDebugInfo ) {} virtual void InitDebugInfo( void *pvDebugInfo, const char *pchRootFileName, int nLine ) {}
virtual void GetActualDbgInfo( const char *&pFileName, int &nLine ) {} virtual void RegisterAllocation( const char *pFileName, int nLine, int nLogicalSize, int nActualSize, unsigned nTime ) {} virtual void RegisterDeallocation( const char *pFileName, int nLine, int nLogicalSize, int nActualSize, unsigned nTime ) {}
virtual int GetVersion() { return MEMALLOC_VERSION; }
virtual void OutOfMemory( size_t nBytesAttempted = 0 ) {}
virtual void CompactHeap() {} virtual void CompactIncremental() {}
virtual MemAllocFailHandler_t SetAllocFailHandler( MemAllocFailHandler_t pfnMemAllocFailHandler ) { return 0; }
void DumpBlockStats( void *p ) {}
#if defined( _MEMTEST )
// Not currently implemented
#error
#endif
virtual size_t MemoryAllocFailed() { return 0; }
private: // Handle to the process heap.
HANDLE m_heap; uint32 m_HeapFlags;
// Total outstanding bytes allocated.
volatile size_t m_nOutstandingBytes;
// Total outstanding committed bytes assuming that all allocations are
// put on individual 4-KB pages (true when using full PageHeap from
// App Verifier).
volatile size_t m_nOutstandingPageHeapBytes;
// Total outstanding allocations. With PageHeap enabled each allocation
// requires an extra 4-KB page of address space.
volatile LONG m_nOutstandingAllocations; LONG m_nOldOutstandingAllocations;
// Total allocations without subtracting freed memory.
volatile LONG m_nLifetimeAllocations; LONG m_nOldLifetimeAllocations;
// Total number of allocation failures.
volatile LONG m_nAllocFailures; };
#endif //ALLOW_PROCESS_HEAP
//-----------------------------------------------------------------------------
// Singletons...
//-----------------------------------------------------------------------------
#pragma warning( disable:4074 ) // warning C4074: initializers put in compiler reserved initialization area
#pragma init_seg( compiler )
static CStdMemAlloc s_StdMemAlloc CONSTRUCT_EARLY;
#ifndef TIER0_VALIDATE_HEAP
IMemAlloc *g_pMemAlloc = &s_StdMemAlloc; #else
IMemAlloc *g_pActualAlloc = &s_StdMemAlloc; #endif
#if defined(ALLOW_PROCESS_HEAP) && !defined(TIER0_VALIDATE_HEAP)
void EnableHeapMemAlloc( bool bZeroMemory ) { // Place this here to guarantee it is constructed
// before we call Init.
static CHeapMemAlloc s_HeapMemAlloc; static bool s_initCalled = false;
if ( !s_initCalled ) { s_HeapMemAlloc.Init( bZeroMemory ); g_pMemAlloc = &s_HeapMemAlloc; s_initCalled = true; } }
// Check whether PageHeap (part of App Verifier) has been enabled for this process.
// It specifically checks whether it was enabled by the EnableAppVerifier.bat
// batch file. This can be used to automatically enable -processheap when
// App Verifier is in use.
static bool IsPageHeapEnabled( bool& bETWHeapEnabled ) { // Assume false.
bool result = false; bETWHeapEnabled = false;
// First we get the application's name so we can look in the registry
// for App Verifier settings.
HMODULE exeHandle = GetModuleHandle( 0 ); if ( exeHandle ) { char appName[ MAX_PATH ]; if ( GetModuleFileNameA( exeHandle, appName, ARRAYSIZE( appName ) ) ) { // Guarantee null-termination -- not guaranteed on Windows XP!
appName[ ARRAYSIZE( appName ) - 1 ] = 0; // Find the file part of the name.
const char* pFilePart = strrchr( appName, '\\' ); if ( pFilePart ) { ++pFilePart; size_t len = strlen( pFilePart ); if ( len > 0 && pFilePart[ len - 1 ] == ' ' ) { OutputDebugStringA( "Trailing space on executable name! This will cause Application Verifier and ETW Heap tracing to fail!\n" ); DebuggerBreakIfDebugging(); }
// Generate the key name for App Verifier settings for this process.
char regPathName[ MAX_PATH ]; _snprintf( regPathName, ARRAYSIZE( regPathName ), "Software\\Microsoft\\Windows NT\\CurrentVersion\\Image File Execution Options\\%s", pFilePart ); regPathName[ ARRAYSIZE( regPathName ) - 1 ] = 0;
HKEY key; LONG regResult = RegOpenKeyA( HKEY_LOCAL_MACHINE, regPathName, &key ); if ( regResult == ERROR_SUCCESS ) { // If PageHeapFlags exists then that means that App Verifier is enabled
// for this application. The StackTraceDatabaseSizeInMB is only
// set by Valve's enabling batch file so this indicates that
// a developer at Valve is using App Verifier.
if ( RegQueryValueExA( key, "StackTraceDatabaseSizeInMB", 0, NULL, NULL, NULL ) == ERROR_SUCCESS && RegQueryValueExA( key, "PageHeapFlags", 0, NULL, NULL, NULL) == ERROR_SUCCESS ) { result = true; }
if ( RegQueryValueExA( key, "TracingFlags", 0, NULL, NULL, NULL) == ERROR_SUCCESS ) bETWHeapEnabled = true;
RegCloseKey( key ); } } } }
return result; }
// Check for various allocator overrides such as -processheap and -reservelowmem.
// Returns true if -processheap is enabled, by a command line switch or other method.
bool CheckWindowsAllocSettings( const char* upperCommandLine ) { // Are we doing ETW heap profiling?
bool bETWHeapEnabled = false; s_bPageHeapEnabled = IsPageHeapEnabled( bETWHeapEnabled );
// Should we reserve the bottom 4 GB of RAM in order to flush out pointer
// truncation bugs? This helps ensure 64-bit compatibility.
// However this needs to be off by default to avoid causing compatibility problems,
// with Steam detours and other systems. It should also be disabled when PageHeap
// is on because for some reason the combination turns into 4 GB of working set, which
// can easily cause problems.
if ( strstr( upperCommandLine, "-RESERVELOWMEM" ) && !s_bPageHeapEnabled ) ReserveBottomMemory();
// Uninitialized data, including pointers, is often set to 0xFFEEFFEE.
// If we reserve that block of memory then we can turn these pointer
// dereferences into crashes a little bit earlier and more reliably.
// We don't really care whether this allocation succeeds, but it's
// worth trying. Note that we do this in all cases -- whether we are using
// -processheap or not.
VirtualAlloc( (void*)0xFFEEFFEE, 1, MEM_RESERVE, PAGE_NOACCESS );
// Enable application termination (breakpoint) on heap corruption. This is
// better than trying to patch it up and continue, both from a security and
// a bug-finding point of view. Do this always on Windows since the heap is
// used by video drivers and other in-proc components.
//HeapSetInformation( NULL, HeapEnableTerminationOnCorruption, NULL, 0 );
// The HeapEnableTerminationOnCorruption requires a recent platform SDK,
// so fake it up.
#if defined(PLATFORM_WINDOWS_PC)
HeapSetInformation( NULL, (HEAP_INFORMATION_CLASS)1, NULL, 0 ); #endif
bool bZeroMemory = false; bool bProcessHeap = false; // Should we force using the process heap? This is handy for gathering memory
// statistics with ETW/xperf. When using App Verifier -processheap is automatically
// turned on.
if ( strstr( upperCommandLine, "-PROCESSHEAP" ) ) { bProcessHeap = true; bZeroMemory = !!strstr( upperCommandLine, "-PROCESSHEAPZEROMEM" ); }
// Unless specifically disabled, turn on -processheap if pageheap or ETWHeap tracing
// are enabled.
if ( !strstr( upperCommandLine, "-NOPROCESSHEAP" ) && ( s_bPageHeapEnabled || bETWHeapEnabled ) ) bProcessHeap = true;
if ( bProcessHeap ) { // Now all allocations will go through the system heap.
EnableHeapMemAlloc( bZeroMemory ); }
return bProcessHeap; }
class CInitGlobalMemAllocPtr { public: CInitGlobalMemAllocPtr() { char *pStr = (char*)Plat_GetCommandLineA(); if ( pStr ) { char tempStr[512]; strncpy( tempStr, pStr, sizeof( tempStr ) - 1 ); tempStr[ sizeof( tempStr ) - 1 ] = 0; _strupr( tempStr );
CheckWindowsAllocSettings( tempStr ); } #if defined(FORCE_PROCESS_HEAP)
// This may cause EnableHeapMemAlloc to be called twice, but that's okay.
EnableHeapMemAlloc( false ); #endif
} }; CInitGlobalMemAllocPtr sg_InitGlobalMemAllocPtr; #endif
#ifdef _WIN32
//-----------------------------------------------------------------------------
// Small block heap (multi-pool)
//-----------------------------------------------------------------------------
#ifndef NO_SBH
#ifdef ALLOW_NOSBH
static bool g_UsingSBH = true; #define UsingSBH() g_UsingSBH
#else
#define UsingSBH() true
#endif
#else
#define UsingSBH() false
#endif
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template <typename T> inline T MemAlign( T val, size_t alignment ) { return (T)( ( (size_t)val + alignment - 1 ) & ~( alignment - 1 ) ); } //-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CSmallBlockPool::Init( unsigned nBlockSize, byte *pBase, unsigned initialCommit ) { if ( !( nBlockSize % MIN_SBH_ALIGN == 0 && nBlockSize >= MIN_SBH_BLOCK && nBlockSize >= sizeof(TSLNodeBase_t) ) ) DebuggerBreak();
m_nBlockSize = nBlockSize; m_pCommitLimit = m_pNextAlloc = m_pBase = pBase; m_pAllocLimit = m_pBase + MAX_POOL_REGION;
if ( initialCommit ) { initialCommit = MemAlign( initialCommit, SBH_PAGE_SIZE ); if ( !VirtualAlloc( m_pCommitLimit, initialCommit, VA_COMMIT_FLAGS, PAGE_READWRITE ) ) { Assert( 0 ); return; } m_pCommitLimit += initialCommit; } }
size_t CSmallBlockPool::GetBlockSize() { return m_nBlockSize; }
bool CSmallBlockPool::IsOwner( void *p ) { return ( p >= m_pBase && p < m_pAllocLimit ); }
void *CSmallBlockPool::Alloc() { void *pResult = m_FreeList.Pop(); if ( !pResult ) { int nBlockSize = m_nBlockSize; byte *pCommitLimit; byte *pNextAlloc; for (;;) { pCommitLimit = m_pCommitLimit; pNextAlloc = m_pNextAlloc; if ( pNextAlloc + nBlockSize <= pCommitLimit ) { if ( m_pNextAlloc.AssignIf( pNextAlloc, pNextAlloc + m_nBlockSize ) ) { pResult = pNextAlloc; break; } } else { AUTO_LOCK( m_CommitMutex ); if ( pCommitLimit == m_pCommitLimit ) { if ( pCommitLimit + COMMIT_SIZE <= m_pAllocLimit ) { if ( !VirtualAlloc( pCommitLimit, COMMIT_SIZE, VA_COMMIT_FLAGS, PAGE_READWRITE ) ) { Assert( 0 ); return NULL; }
m_pCommitLimit = pCommitLimit + COMMIT_SIZE; } else { return NULL; } } } } } return pResult; }
void CSmallBlockPool::Free( void *p ) { Assert( IsOwner( p ) );
m_FreeList.Push( p ); }
// Count the free blocks.
int CSmallBlockPool::CountFreeBlocks() { return m_FreeList.Count(); }
// Size of committed memory managed by this heap:
int CSmallBlockPool::GetCommittedSize() { unsigned totalSize = (unsigned)m_pCommitLimit - (unsigned)m_pBase; Assert( 0 != m_nBlockSize );
return totalSize; }
// Return the total blocks memory is committed for in the heap
int CSmallBlockPool::CountCommittedBlocks() { return GetCommittedSize() / GetBlockSize(); }
// Count the number of allocated blocks in the heap:
int CSmallBlockPool::CountAllocatedBlocks() { return CountCommittedBlocks( ) - ( CountFreeBlocks( ) + ( m_pCommitLimit - (byte *)m_pNextAlloc ) / GetBlockSize() ); }
int CSmallBlockPool::Compact() { int nBytesFreed = 0; if ( m_FreeList.Count() ) { int i; int nFree = CountFreeBlocks(); FreeBlock_t **pSortArray = (FreeBlock_t **)malloc( nFree * sizeof(FreeBlock_t *) ); // can't use new because will reenter
if ( !pSortArray ) { return 0; }
i = 0; while ( i < nFree ) { pSortArray[i++] = m_FreeList.Pop(); }
std::sort( pSortArray, pSortArray + nFree );
byte *pOldNextAlloc = m_pNextAlloc;
for ( i = nFree - 1; i >= 0; i-- ) { if ( (byte *)pSortArray[i] == m_pNextAlloc - m_nBlockSize ) { pSortArray[i] = NULL; m_pNextAlloc -= m_nBlockSize; } else { break; } }
if ( pOldNextAlloc != m_pNextAlloc ) { byte *pNewCommitLimit = MemAlign( (byte *)m_pNextAlloc, SBH_PAGE_SIZE ); if ( pNewCommitLimit < m_pCommitLimit ) { nBytesFreed = m_pCommitLimit - pNewCommitLimit; VirtualFree( pNewCommitLimit, nBytesFreed, MEM_DECOMMIT ); m_pCommitLimit = pNewCommitLimit; } }
if ( pSortArray[0] ) { for ( i = 0; i < nFree ; i++ ) { if ( !pSortArray[i] ) { break; } m_FreeList.Push( pSortArray[i] ); } }
free( pSortArray ); }
return nBytesFreed; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
#define GetInitialCommitForPool( i ) 0
CSmallBlockHeap::CSmallBlockHeap() { // Make sure that we return 64-bit addresses in 64-bit builds.
ReserveBottomMemory();
if ( !UsingSBH() ) { return; }
m_pBase = (byte *)VirtualAlloc( NULL, NUM_POOLS * MAX_POOL_REGION, VA_RESERVE_FLAGS, PAGE_NOACCESS ); m_pLimit = m_pBase + NUM_POOLS * MAX_POOL_REGION;
// Build a lookup table used to find the correct pool based on size
const int MAX_TABLE = MAX_SBH_BLOCK >> 2; int i = 0; int nBytesElement = 0; byte *pCurBase = m_pBase; CSmallBlockPool *pCurPool = NULL; int iCurPool = 0;
#if _M_X64
// Blocks sized 0 - 256 are in pools in increments of 16
for ( ; i < 64 && i < MAX_TABLE; i++ ) { if ( (i + 1) % 4 == 1) { nBytesElement += 16; pCurPool = &m_Pools[iCurPool]; pCurPool->Init( nBytesElement, pCurBase, GetInitialCommitForPool(iCurPool) ); iCurPool++; m_PoolLookup[i] = pCurPool; pCurBase += MAX_POOL_REGION; } else { m_PoolLookup[i] = pCurPool; } } #else
// Blocks sized 0 - 128 are in pools in increments of 8
for ( ; i < 32; i++ ) { if ( (i + 1) % 2 == 1) { nBytesElement += 8; pCurPool = &m_Pools[iCurPool]; pCurPool->Init( nBytesElement, pCurBase, GetInitialCommitForPool(iCurPool) ); iCurPool++; m_PoolLookup[i] = pCurPool; pCurBase += MAX_POOL_REGION; } else { m_PoolLookup[i] = pCurPool; } }
// Blocks sized 129 - 256 are in pools in increments of 16
for ( ; i < 64; i++ ) { if ( (i + 1) % 4 == 1) { nBytesElement += 16; pCurPool = &m_Pools[iCurPool]; pCurPool->Init( nBytesElement, pCurBase, GetInitialCommitForPool(iCurPool) ); iCurPool++; m_PoolLookup[i] = pCurPool; pCurBase += MAX_POOL_REGION; } else { m_PoolLookup[i] = pCurPool; } } #endif
// Blocks sized 257 - 512 are in pools in increments of 32
for ( ; i < 128; i++ ) { if ( (i + 1) % 8 == 1) { nBytesElement += 32; pCurPool = &m_Pools[iCurPool]; pCurPool->Init( nBytesElement, pCurBase, GetInitialCommitForPool(iCurPool) ); iCurPool++; m_PoolLookup[i] = pCurPool; pCurBase += MAX_POOL_REGION; } else { m_PoolLookup[i] = pCurPool; } }
// Blocks sized 513 - 768 are in pools in increments of 64
for ( ; i < 192; i++ ) { if ( (i + 1) % 16 == 1) { nBytesElement += 64; pCurPool = &m_Pools[iCurPool]; pCurPool->Init( nBytesElement, pCurBase, GetInitialCommitForPool(iCurPool) ); iCurPool++; m_PoolLookup[i] = pCurPool; pCurBase += MAX_POOL_REGION; } else { m_PoolLookup[i] = pCurPool; } }
// Blocks sized 769 - 1024 are in pools in increments of 128
for ( ; i < 256; i++ ) { if ( (i + 1) % 32 == 1) { nBytesElement += 128; pCurPool = &m_Pools[iCurPool]; pCurPool->Init( nBytesElement, pCurBase, GetInitialCommitForPool(iCurPool) ); iCurPool++; m_PoolLookup[i] = pCurPool; pCurBase += MAX_POOL_REGION; } else { m_PoolLookup[i] = pCurPool; } }
// Blocks sized 1025 - 2048 are in pools in increments of 256
for ( ; i < MAX_TABLE; i++ ) { if ( (i + 1) % 64 == 1) { nBytesElement += 256; pCurPool = &m_Pools[iCurPool]; pCurPool->Init( nBytesElement, pCurBase, GetInitialCommitForPool(iCurPool) ); iCurPool++; m_PoolLookup[i] = pCurPool; pCurBase += MAX_POOL_REGION; } else { m_PoolLookup[i] = pCurPool; } }
Assert( iCurPool == NUM_POOLS ); }
bool CSmallBlockHeap::ShouldUse( size_t nBytes ) { return ( UsingSBH() && nBytes <= MAX_SBH_BLOCK ); }
bool CSmallBlockHeap::IsOwner( void * p ) { return ( UsingSBH() && p >= m_pBase && p < m_pLimit ); }
void *CSmallBlockHeap::Alloc( size_t nBytes ) { if ( nBytes == 0) { nBytes = 1; } Assert( ShouldUse( nBytes ) ); CSmallBlockPool *pPool = FindPool( nBytes ); void *p = pPool->Alloc(); if ( p ) { return p; }
if ( s_StdMemAlloc.CallAllocFailHandler( nBytes ) >= nBytes ) { p = pPool->Alloc(); if ( p ) { return p; } }
void *pRet = malloc( nBytes ); if ( !pRet ) { s_StdMemAlloc.SetCRTAllocFailed( nBytes ); } return pRet; }
void *CSmallBlockHeap::Realloc( void *p, size_t nBytes ) { if ( nBytes == 0) { nBytes = 1; }
CSmallBlockPool *pOldPool = FindPool( p ); CSmallBlockPool *pNewPool = ( ShouldUse( nBytes ) ) ? FindPool( nBytes ) : NULL;
if ( pOldPool == pNewPool ) { return p; }
void *pNewBlock = NULL;
if ( pNewPool ) { pNewBlock = pNewPool->Alloc();
if ( !pNewBlock ) { if ( s_StdMemAlloc.CallAllocFailHandler( nBytes ) >= nBytes ) { pNewBlock = pNewPool->Alloc(); } } }
if ( !pNewBlock ) { pNewBlock = malloc( nBytes ); if ( !pNewBlock ) { s_StdMemAlloc.SetCRTAllocFailed( nBytes ); } }
if ( pNewBlock ) { int nBytesCopy = min( nBytes, pOldPool->GetBlockSize() ); memcpy( pNewBlock, p, nBytesCopy ); }
pOldPool->Free( p );
return pNewBlock; }
void CSmallBlockHeap::Free( void *p ) { CSmallBlockPool *pPool = FindPool( p ); pPool->Free( p ); }
size_t CSmallBlockHeap::GetSize( void *p ) { CSmallBlockPool *pPool = FindPool( p ); return pPool->GetBlockSize(); }
void CSmallBlockHeap::DumpStats( FILE *pFile ) { bool bSpew = true;
if ( pFile ) { for ( int i = 0; i < NUM_POOLS; i++ ) { // output for vxconsole parsing
fprintf( pFile, "Pool %i: Size: %llu Allocated: %i Free: %i Committed: %i CommittedSize: %i\n", i, (uint64)m_Pools[i].GetBlockSize(), m_Pools[i].CountAllocatedBlocks(), m_Pools[i].CountFreeBlocks(), m_Pools[i].CountCommittedBlocks(), m_Pools[i].GetCommittedSize() ); } bSpew = false; }
if ( bSpew ) { unsigned bytesCommitted = 0; unsigned bytesAllocated = 0;
for ( int i = 0; i < NUM_POOLS; i++ ) { Msg( "Pool %i: (size: %llu) blocks: allocated:%i free:%i committed:%i (committed size:%u kb)\n",i, (uint64)m_Pools[i].GetBlockSize(),m_Pools[i].CountAllocatedBlocks(), m_Pools[i].CountFreeBlocks(),m_Pools[i].CountCommittedBlocks(), m_Pools[i].GetCommittedSize() / 1024);
bytesCommitted += m_Pools[i].GetCommittedSize(); bytesAllocated += ( m_Pools[i].CountAllocatedBlocks() * m_Pools[i].GetBlockSize() ); }
Msg( "Totals: Committed:%u kb Allocated:%u kb\n", bytesCommitted / 1024, bytesAllocated / 1024 ); } }
int CSmallBlockHeap::Compact() { int nBytesFreed = 0; for( int i = 0; i < NUM_POOLS; i++ ) { nBytesFreed += m_Pools[i].Compact(); } return nBytesFreed; }
CSmallBlockPool *CSmallBlockHeap::FindPool( size_t nBytes ) { return m_PoolLookup[(nBytes - 1) >> 2]; }
CSmallBlockPool *CSmallBlockHeap::FindPool( void *p ) { size_t i = ((byte *)p - m_pBase) / MAX_POOL_REGION; return &m_Pools[i]; }
#endif
#if USE_PHYSICAL_SMALL_BLOCK_HEAP
CX360SmallBlockPool *CX360SmallBlockPool::gm_AddressToPool[BYTES_X360_SBH/PAGESIZE_X360_SBH]; byte *CX360SmallBlockPool::gm_pPhysicalBlock; byte *CX360SmallBlockPool::gm_pPhysicalBase; byte *CX360SmallBlockPool::gm_pPhysicalLimit;
void CX360SmallBlockPool::Init( unsigned nBlockSize ) { if ( !gm_pPhysicalBlock ) { gm_pPhysicalBase = (byte *)XPhysicalAlloc( BYTES_X360_SBH, MAXULONG_PTR, 4096, PAGE_READWRITE | MEM_16MB_PAGES ); gm_pPhysicalLimit = gm_pPhysicalBase + BYTES_X360_SBH; gm_pPhysicalBlock = gm_pPhysicalBase; }
if ( !( nBlockSize % MIN_SBH_ALIGN == 0 && nBlockSize >= MIN_SBH_BLOCK && nBlockSize >= sizeof(TSLNodeBase_t) ) ) DebuggerBreak();
m_nBlockSize = nBlockSize; m_pCurBlockEnd = m_pNextAlloc = NULL; m_CommittedSize = 0; }
size_t CX360SmallBlockPool::GetBlockSize() { return m_nBlockSize; }
bool CX360SmallBlockPool::IsOwner( void *p ) { return ( FindPool( p ) == this ); }
void *CX360SmallBlockPool::Alloc() { void *pResult = m_FreeList.Pop(); if ( !pResult ) { if ( !m_pNextAlloc && gm_pPhysicalBlock >= gm_pPhysicalLimit ) { return NULL; }
int nBlockSize = m_nBlockSize; byte *pCurBlockEnd; byte *pNextAlloc; for (;;) { pCurBlockEnd = m_pCurBlockEnd; pNextAlloc = m_pNextAlloc; if ( pNextAlloc + nBlockSize <= pCurBlockEnd ) { if ( m_pNextAlloc.AssignIf( pNextAlloc, pNextAlloc + m_nBlockSize ) ) { pResult = pNextAlloc; break; } } else { AUTO_LOCK( m_CommitMutex );
if ( pCurBlockEnd == m_pCurBlockEnd ) { for (;;) { if ( gm_pPhysicalBlock >= gm_pPhysicalLimit ) { m_pCurBlockEnd = m_pNextAlloc = NULL; return NULL; } byte *pPhysicalBlock = gm_pPhysicalBlock; if ( ThreadInterlockedAssignPointerIf( (void **)&gm_pPhysicalBlock, (void *)(pPhysicalBlock + PAGESIZE_X360_SBH), (void *)pPhysicalBlock ) ) { int index = (size_t)((byte *)pPhysicalBlock - gm_pPhysicalBase) / PAGESIZE_X360_SBH; gm_AddressToPool[index] = this; m_pNextAlloc = pPhysicalBlock; m_CommittedSize += PAGESIZE_X360_SBH; __sync(); m_pCurBlockEnd = pPhysicalBlock + PAGESIZE_X360_SBH; break; } } } } } } return pResult; }
void CX360SmallBlockPool::Free( void *p ) { Assert( IsOwner( p ) );
m_FreeList.Push( p ); }
// Count the free blocks.
int CX360SmallBlockPool::CountFreeBlocks() { return m_FreeList.Count(); }
// Size of committed memory managed by this heap:
int CX360SmallBlockPool::GetCommittedSize() { return m_CommittedSize; }
// Return the total blocks memory is committed for in the heap
int CX360SmallBlockPool::CountCommittedBlocks() { return GetCommittedSize() / GetBlockSize(); }
// Count the number of allocated blocks in the heap:
int CX360SmallBlockPool::CountAllocatedBlocks() { int nBytesPossible = ( m_pNextAlloc ) ? ( m_pCurBlockEnd - (byte *)m_pNextAlloc ) : 0; return CountCommittedBlocks( ) - ( CountFreeBlocks( ) + nBytesPossible / GetBlockSize() ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
#define GetInitialCommitForPool( i ) 0
CX360SmallBlockHeap::CX360SmallBlockHeap() { if ( !UsingSBH() ) { return; }
// Build a lookup table used to find the correct pool based on size
const int MAX_TABLE = MAX_SBH_BLOCK >> 2; int i = 0; int nBytesElement = 0; CX360SmallBlockPool *pCurPool = NULL; int iCurPool = 0;
// Blocks sized 0 - 128 are in pools in increments of 8
for ( ; i < 32; i++ ) { if ( (i + 1) % 2 == 1) { nBytesElement += 8; pCurPool = &m_Pools[iCurPool]; pCurPool->Init( nBytesElement ); iCurPool++; m_PoolLookup[i] = pCurPool; } else { m_PoolLookup[i] = pCurPool; } }
// Blocks sized 129 - 256 are in pools in increments of 16
for ( ; i < 64; i++ ) { if ( (i + 1) % 4 == 1) { nBytesElement += 16; pCurPool = &m_Pools[iCurPool]; pCurPool->Init( nBytesElement ); iCurPool++; m_PoolLookup[i] = pCurPool; } else { m_PoolLookup[i] = pCurPool; } }
// Blocks sized 257 - 512 are in pools in increments of 32
for ( ; i < 128; i++ ) { if ( (i + 1) % 8 == 1) { nBytesElement += 32; pCurPool = &m_Pools[iCurPool]; pCurPool->Init( nBytesElement ); iCurPool++; m_PoolLookup[i] = pCurPool; } else { m_PoolLookup[i] = pCurPool; } }
// Blocks sized 513 - 768 are in pools in increments of 64
for ( ; i < 192; i++ ) { if ( (i + 1) % 16 == 1) { nBytesElement += 64; pCurPool = &m_Pools[iCurPool]; pCurPool->Init( nBytesElement ); iCurPool++; m_PoolLookup[i] = pCurPool; } else { m_PoolLookup[i] = pCurPool; } }
// Blocks sized 769 - 1024 are in pools in increments of 128
for ( ; i < 256; i++ ) { if ( (i + 1) % 32 == 1) { nBytesElement += 128; pCurPool = &m_Pools[iCurPool]; pCurPool->Init( nBytesElement ); iCurPool++; m_PoolLookup[i] = pCurPool; } else { m_PoolLookup[i] = pCurPool; } }
// Blocks sized 1025 - 2048 are in pools in increments of 256
for ( ; i < MAX_TABLE; i++ ) { if ( (i + 1) % 64 == 1) { nBytesElement += 256; pCurPool = &m_Pools[iCurPool]; pCurPool->Init( nBytesElement ); iCurPool++; m_PoolLookup[i] = pCurPool; } else { m_PoolLookup[i] = pCurPool; } }
Assert( iCurPool == NUM_POOLS ); }
bool CX360SmallBlockHeap::ShouldUse( size_t nBytes ) { return ( UsingSBH() && nBytes <= MAX_SBH_BLOCK ); }
bool CX360SmallBlockHeap::IsOwner( void * p ) { int index = (size_t)((byte *)p - CX360SmallBlockPool::gm_pPhysicalBase) / PAGESIZE_X360_SBH; return ( UsingSBH() && ( index >= 0 && index < ARRAYSIZE(CX360SmallBlockPool::gm_AddressToPool) ) ); }
void *CX360SmallBlockHeap::Alloc( size_t nBytes ) { if ( nBytes == 0) { nBytes = 1; } Assert( ShouldUse( nBytes ) ); CX360SmallBlockPool *pPool = FindPool( nBytes );
void *p = pPool->Alloc(); if ( p ) { return p; }
return GetStandardSBH()->Alloc( nBytes ); }
void *CX360SmallBlockHeap::Realloc( void *p, size_t nBytes ) { if ( nBytes == 0) { nBytes = 1; }
CX360SmallBlockPool *pOldPool = FindPool( p ); CX360SmallBlockPool *pNewPool = ( ShouldUse( nBytes ) ) ? FindPool( nBytes ) : NULL;
if ( pOldPool == pNewPool ) { return p; }
void *pNewBlock = NULL;
if ( pNewPool ) { pNewBlock = pNewPool->Alloc();
if ( !pNewBlock ) { pNewBlock = GetStandardSBH()->Alloc( nBytes ); } }
if ( !pNewBlock ) { pNewBlock = malloc( nBytes ); }
if ( pNewBlock ) { int nBytesCopy = min( nBytes, pOldPool->GetBlockSize() ); memcpy( pNewBlock, p, nBytesCopy ); }
pOldPool->Free( p );
return pNewBlock; }
void CX360SmallBlockHeap::Free( void *p ) { CX360SmallBlockPool *pPool = FindPool( p ); pPool->Free( p ); }
size_t CX360SmallBlockHeap::GetSize( void *p ) { CX360SmallBlockPool *pPool = FindPool( p ); return pPool->GetBlockSize(); }
void CX360SmallBlockHeap::DumpStats( FILE *pFile ) { bool bSpew = true;
if ( pFile ) { for( int i = 0; i < NUM_POOLS; i++ ) { // output for vxconsole parsing
fprintf( pFile, "Pool %i: Size: %u Allocated: %i Free: %i Committed: %i CommittedSize: %i\n", i, m_Pools[i].GetBlockSize(), m_Pools[i].CountAllocatedBlocks(), m_Pools[i].CountFreeBlocks(), m_Pools[i].CountCommittedBlocks(), m_Pools[i].GetCommittedSize() ); } bSpew = false; }
if ( bSpew ) { unsigned bytesCommitted = 0; unsigned bytesAllocated = 0;
for( int i = 0; i < NUM_POOLS; i++ ) { bytesCommitted += m_Pools[i].GetCommittedSize(); bytesAllocated += ( m_Pools[i].CountAllocatedBlocks() * m_Pools[i].GetBlockSize() ); }
Msg( "Totals: Committed:%u kb Allocated:%u kb\n", bytesCommitted / 1024, bytesAllocated / 1024 ); } }
CSmallBlockHeap *CX360SmallBlockHeap::GetStandardSBH() { return &(GET_OUTER( CStdMemAlloc, m_LargePageSmallBlockHeap )->m_SmallBlockHeap); }
CX360SmallBlockPool *CX360SmallBlockHeap::FindPool( size_t nBytes ) { return m_PoolLookup[(nBytes - 1) >> 2]; }
CX360SmallBlockPool *CX360SmallBlockHeap::FindPool( void *p ) { return CX360SmallBlockPool::FindPool( p ); }
#endif
//-----------------------------------------------------------------------------
// Release versions
//-----------------------------------------------------------------------------
void *CStdMemAlloc::Alloc( size_t nSize ) { PROFILE_ALLOC(Malloc); void *pMem;
#ifdef _WIN32
#ifdef USE_PHYSICAL_SMALL_BLOCK_HEAP
if ( m_LargePageSmallBlockHeap.ShouldUse( nSize ) ) { pMem = m_LargePageSmallBlockHeap.Alloc( nSize ); ApplyMemoryInitializations( pMem, nSize ); return pMem; } #endif
if ( m_SmallBlockHeap.ShouldUse( nSize ) ) { pMem = m_SmallBlockHeap.Alloc( nSize ); ApplyMemoryInitializations( pMem, nSize ); return pMem; }
#endif
pMem = malloc( nSize ); ApplyMemoryInitializations( pMem, nSize ); if ( !pMem ) { SetCRTAllocFailed( nSize ); } return pMem; }
void *CStdMemAlloc::Realloc( void *pMem, size_t nSize ) { if ( !pMem ) { return Alloc( nSize ); }
PROFILE_ALLOC(Realloc);
#ifdef MEM_SBH_ENABLED
#ifdef USE_PHYSICAL_SMALL_BLOCK_HEAP
if ( m_LargePageSmallBlockHeap.IsOwner( pMem ) ) { return m_LargePageSmallBlockHeap.Realloc( pMem, nSize ); } #endif
if ( m_SmallBlockHeap.IsOwner( pMem ) ) { return m_SmallBlockHeap.Realloc( pMem, nSize ); } #endif
void *pRet = realloc( pMem, nSize ); if ( !pRet ) { SetCRTAllocFailed( nSize ); } return pRet; }
void CStdMemAlloc::Free( void *pMem ) { if ( !pMem ) { return; }
PROFILE_ALLOC(Free);
#ifdef MEM_SBH_ENABLED
#ifdef USE_PHYSICAL_SMALL_BLOCK_HEAP
if ( m_LargePageSmallBlockHeap.IsOwner( pMem ) ) { m_LargePageSmallBlockHeap.Free( pMem ); return; } #endif
if ( m_SmallBlockHeap.IsOwner( pMem ) ) { m_SmallBlockHeap.Free( pMem ); return; } #endif
free( pMem ); }
void *CStdMemAlloc::Expand_NoLongerSupported( void *pMem, size_t nSize ) { return NULL; }
//-----------------------------------------------------------------------------
// Debug versions
//-----------------------------------------------------------------------------
void *CStdMemAlloc::Alloc( size_t nSize, const char *pFileName, int nLine ) { return CStdMemAlloc::Alloc( nSize ); }
void *CStdMemAlloc::Realloc( void *pMem, size_t nSize, const char *pFileName, int nLine ) { return CStdMemAlloc::Realloc( pMem, nSize ); }
void CStdMemAlloc::Free( void *pMem, const char *pFileName, int nLine ) { CStdMemAlloc::Free( pMem ); }
void *CStdMemAlloc::Expand_NoLongerSupported( void *pMem, size_t nSize, const char *pFileName, int nLine ) { return NULL; }
#if defined (LINUX)
#include <malloc.h>
#elif defined (OSX)
#define malloc_usable_size( ptr ) malloc_size( ptr )
extern "C" { extern size_t malloc_size( const void *ptr ); } #endif
//-----------------------------------------------------------------------------
// Returns size of a particular allocation
//-----------------------------------------------------------------------------
size_t CStdMemAlloc::GetSize( void *pMem ) { #ifdef MEM_SBH_ENABLED
if ( !pMem ) return CalcHeapUsed(); else { #ifdef USE_PHYSICAL_SMALL_BLOCK_HEAP
if ( m_LargePageSmallBlockHeap.IsOwner( pMem ) ) { return m_LargePageSmallBlockHeap.GetSize( pMem ); } #endif
if ( m_SmallBlockHeap.IsOwner( pMem ) ) { return m_SmallBlockHeap.GetSize( pMem ); } return _msize( pMem ); } #else
return malloc_usable_size( pMem ); #endif
}
//-----------------------------------------------------------------------------
// Force file + line information for an allocation
//-----------------------------------------------------------------------------
void CStdMemAlloc::PushAllocDbgInfo( const char *pFileName, int nLine ) { }
void CStdMemAlloc::PopAllocDbgInfo() { }
//-----------------------------------------------------------------------------
// FIXME: Remove when we make our own heap! Crt stuff we're currently using
//-----------------------------------------------------------------------------
long CStdMemAlloc::CrtSetBreakAlloc( long lNewBreakAlloc ) { return 0; }
int CStdMemAlloc::CrtSetReportMode( int nReportType, int nReportMode ) { return 0; }
int CStdMemAlloc::CrtIsValidHeapPointer( const void *pMem ) { return 1; }
int CStdMemAlloc::CrtIsValidPointer( const void *pMem, unsigned int size, int access ) { return 1; }
int CStdMemAlloc::CrtCheckMemory( void ) { return 1; }
int CStdMemAlloc::CrtSetDbgFlag( int nNewFlag ) { return 0; }
void CStdMemAlloc::CrtMemCheckpoint( _CrtMemState *pState ) { }
// FIXME: Remove when we have our own allocator
void* CStdMemAlloc::CrtSetReportFile( int nRptType, void* hFile ) { return 0; }
void* CStdMemAlloc::CrtSetReportHook( void* pfnNewHook ) { return 0; }
int CStdMemAlloc::CrtDbgReport( int nRptType, const char * szFile, int nLine, const char * szModule, const char * pMsg ) { return 0; }
int CStdMemAlloc::heapchk() { #ifdef _WIN32
return _HEAPOK; #else
return 1; #endif
}
void CStdMemAlloc::DumpStats() { DumpStatsFileBase( "memstats" ); }
void CStdMemAlloc::DumpStatsFileBase( char const *pchFileBase ) { #ifdef _WIN32
char filename[ 512 ]; _snprintf( filename, sizeof( filename ) - 1, ( IsX360() ) ? "D:\\%s.txt" : "%s.txt", pchFileBase ); filename[ sizeof( filename ) - 1 ] = 0; FILE *pFile = fopen( filename, "wt" ); #ifdef USE_PHYSICAL_SMALL_BLOCK_HEAP
fprintf( pFile, "X360 Large Page SBH:\n" ); m_LargePageSmallBlockHeap.DumpStats(pFile); #endif
fprintf( pFile, "\nSBH:\n" ); m_SmallBlockHeap.DumpStats(pFile); // Dump statistics to small block heap
#if defined( _X360 ) && !defined( _RETAIL )
XBX_rMemDump( filename ); #endif
fclose( pFile ); #endif
}
void CStdMemAlloc::GlobalMemoryStatus( size_t *pUsedMemory, size_t *pFreeMemory ) { if ( !pUsedMemory || !pFreeMemory ) return;
#if defined ( _X360 )
// GlobalMemoryStatus tells us how much physical memory is free
MEMORYSTATUS stat; ::GlobalMemoryStatus( &stat ); *pFreeMemory = stat.dwAvailPhys;
// NOTE: we do not count free memory inside our small block heaps, as this could be misleading
// (even with lots of SBH memory free, a single allocation over 2kb can still fail)
#if defined( USE_DLMALLOC )
// Account for free memory contained within DLMalloc
for ( int i = 0; i < ARRAYSIZE( g_AllocRegions ); i++ ) { mallinfo info = mspace_mallinfo( g_AllocRegions[ i ] ); *pFreeMemory += info.fordblks; } #endif
// Used is total minus free (discount the 32MB system reservation)
*pUsedMemory = ( stat.dwTotalPhys - 32*1024*1024 ) - *pFreeMemory;
#else
// no data
*pFreeMemory = 0; *pUsedMemory = 0;
#endif
}
void CStdMemAlloc::CompactHeap() { #if !defined( NO_SBH ) && defined( _WIN32 )
int nBytesRecovered = m_SmallBlockHeap.Compact(); Msg( "Compact freed %d bytes\n", nBytesRecovered ); #endif
}
MemAllocFailHandler_t CStdMemAlloc::SetAllocFailHandler( MemAllocFailHandler_t pfnMemAllocFailHandler ) { MemAllocFailHandler_t pfnPrevious = m_pfnFailHandler; m_pfnFailHandler = pfnMemAllocFailHandler; return pfnPrevious; }
size_t CStdMemAlloc::DefaultFailHandler( size_t nBytes ) { if ( IsX360() && !IsRetail() ) { #ifdef _X360
ExecuteOnce( { char buffer[256]; _snprintf( buffer, sizeof( buffer ), "***** Memory pool overflow, attempted allocation size: %u ****\n", nBytes ); XBX_OutputDebugString( buffer ); } ); #endif
}
return 0; }
#if defined( _MEMTEST )
void CStdMemAlloc::void SetStatsExtraInfo( const char *pMapName, const char *pComment ) { } #endif
void CStdMemAlloc::SetCRTAllocFailed( size_t nSize ) { m_sMemoryAllocFailed = nSize;
MemAllocOOMError( nSize ); }
size_t CStdMemAlloc::MemoryAllocFailed() { return m_sMemoryAllocFailed; }
#endif
void ReserveBottomMemory() { // If we are running a 64-bit build then reserve all addresses below the
// 4 GB line to push as many pointers as possible above the line.
#ifdef PLATFORM_WINDOWS_PC64
// Avoid the cost of calling this multiple times.
static bool s_initialized = false; if ( s_initialized ) return; s_initialized = true;
// If AppVerifier is enabled then memory reservations get turned into committed
// memory in the working set. This means that ReserveBottomMemory() can end
// up adding almost 4 GB to the working set, which is a significant problem if
// you run many processes in parallel. Therefore, if vfbasics.dll (part of AppVerifier)
// is loaded, don't do the reservation.
HMODULE vfBasicsDLL = GetModuleHandle( "vfbasics.dll" ); if ( vfBasicsDLL ) return;
// Start by reserving large blocks of memory. When those reservations
// have exhausted the bottom 4 GB then halve the size and try again.
// The granularity for reserving address space is 64 KB so if we wanted
// to reserve every single page we would need to continue down to 64 KB.
// However stopping at 1 MB is sufficient because it prevents the Windows
// heap (and dlmalloc and the small block heap) from grabbing address space
// from the bottom 4 GB, while still allowing Steam to allocate a few pages
// for setting up detours.
const size_t LOW_MEM_LINE = 0x100000000LL; size_t totalReservation = 0; size_t numVAllocs = 0; size_t numHeapAllocs = 0; for ( size_t blockSize = 256 * 1024 * 1024; blockSize >= 1024 * 1024; blockSize /= 2 ) { for (;;) { void* p = VirtualAlloc( 0, blockSize, MEM_RESERVE, PAGE_NOACCESS ); if ( !p ) break;
if ( (size_t)p >= LOW_MEM_LINE ) { // We don't need this memory, so release it completely.
VirtualFree( p, 0, MEM_RELEASE ); break; }
totalReservation += blockSize; ++numVAllocs; } }
// Now repeat the same process but making heap allocations, to use up the
// already committed heap blocks that are below the 4 GB line. Now we start
// with 64-KB allocations and proceed down to 16-byte allocations.
HANDLE heap = GetProcessHeap(); for ( size_t blockSize = 64 * 1024; blockSize >= 16; blockSize /= 2 ) { for (;;) { void* p = HeapAlloc( heap, 0, blockSize ); if ( !p ) break;
if ( (size_t)p >= LOW_MEM_LINE ) { // We don't need this memory, so release it completely.
HeapFree( heap, 0, p ); break; }
totalReservation += blockSize; ++numHeapAllocs; } }
// Print diagnostics showing how many allocations we had to make in order to
// reserve all of low memory. In one test run it took 55 virtual allocs and
// 85 heap allocs. Note that since the process may have multiple heaps (each
// CRT seems to have its own) there is likely to be a few MB of address space
// that was previously reserved and is available to be handed out by some allocators.
//char buffer[1000];
//sprintf_s( buffer, "Reserved %1.3f MB (%d vallocs, %d heap allocs) to keep allocations out of low-memory.\n",
// totalReservation / (1024 * 1024.0), (int)numVAllocs, (int)numHeapAllocs );
// Can't use Msg here because it isn't necessarily initialized yet.
//OutputDebugString( buffer );
#endif
}
#endif // STEAM
|