|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include <stdio.h>
#include "convert.h"
#include "ivp_cache_object.hxx"
#include "coordsize.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#if 1
// game is in inches
vphysics_units_t g_PhysicsUnits = { METERS_PER_INCH, //float unitScaleMeters; // factor that converts game units to meters
1.0f / METERS_PER_INCH, //float unitScaleMetersInv; // factor that converts meters to game units
0.25f, // float globalCollisionTolerance; // global collision tolerance in game units
DIST_EPSILON, // float collisionSweepEpsilon; // collision sweep tests clip at this, must be the same as engine's DIST_EPSILON
1.0f/256.0f, // float collisionSweepIncrementalEpsilon; // near-zero test for incremental steps in collision sweep tests
}; #else
// game is in meters
vphysics_units_t g_PhysicsUnits = { 1.0f, //float unitScaleMeters; // factor that converts game units to meters
1.0f, //float unitScaleMetersInv; // factor that converts meters to game units
0.01f, // float globalCollisionTolerance; // global collision tolerance in game units
0.01f, // float collisionSweepEpsilon; // collision sweep tests clip at this, must be the same as engine's DIST_EPSILON
1e-4f, // float collisionSweepIncrementalEpsilon; // near-zero test for incremental steps in collision sweep tests
}; #endif
//-----------------------------------------------------------------------------
// HL to IVP conversions
//-----------------------------------------------------------------------------
void ConvertBoxToIVP( const Vector &mins, const Vector &maxs, Vector &outmins, Vector &outmaxs ) { float tmpZ;
tmpZ = mins.y; outmins.y = -HL2IVP(mins.z); outmins.z = HL2IVP(tmpZ); outmins.x = HL2IVP(mins.x); tmpZ = maxs.y; outmaxs.y = -HL2IVP(maxs.z); outmaxs.z = HL2IVP(tmpZ); outmaxs.x = HL2IVP(maxs.x);
tmpZ = outmaxs.y; outmaxs.y = outmins.y; outmins.y = tmpZ; }
void ConvertMatrixToIVP( const matrix3x4_t& matrix, IVP_U_Matrix &out ) { Vector forward, left, up;
forward.x = matrix[0][0]; forward.y = matrix[1][0]; forward.z = matrix[2][0];
left.x = matrix[0][1]; left.y = matrix[1][1]; left.z = matrix[2][1];
up.x = matrix[0][2]; up.y = matrix[1][2]; up.z = matrix[2][2];
up = -up;
IVP_U_Float_Point ivpForward, ivpLeft, ivpUp;
ConvertDirectionToIVP( forward, ivpForward ); ConvertDirectionToIVP( left, ivpLeft ); ConvertDirectionToIVP( up, ivpUp );
out.set_col( IVP_INDEX_X, &ivpForward ); out.set_col( IVP_INDEX_Z, &ivpLeft ); out.set_col( IVP_INDEX_Y, &ivpUp );
out.vv.k[0] = HL2IVP(matrix[0][3]); out.vv.k[1] = -HL2IVP(matrix[2][3]); out.vv.k[2] = HL2IVP(matrix[1][3]); }
void ConvertRotationToIVP( const QAngle& angles, IVP_U_Matrix3 &out ) { Vector forward, right, up; IVP_U_Float_Point ivpForward, ivpLeft, ivpUp; AngleVectors( angles, &forward, &right, &up ); // now this is left
right = -right;
up = -up; ConvertDirectionToIVP( forward, ivpForward ); ConvertDirectionToIVP( right, ivpLeft ); ConvertDirectionToIVP( up, ivpUp ); out.set_col( IVP_INDEX_X, &ivpForward ); out.set_col( IVP_INDEX_Z, &ivpLeft ); out.set_col( IVP_INDEX_Y, &ivpUp ); }
void ConvertRotationToIVP( const QAngle& angles, IVP_U_Quat &out ) { IVP_U_Matrix3 tmp; ConvertRotationToIVP( angles, tmp ); out.set_quaternion( &tmp ); }
//-----------------------------------------------------------------------------
// IVP to HL conversions
//-----------------------------------------------------------------------------
void ConvertMatrixToHL( const IVP_U_Matrix &in, matrix3x4_t& output ) { #if 1
// copy the row vectors over, swapping z & -y. Also, negate output z
output[0][0] = in.get_elem(0, 0); output[0][2] = -in.get_elem(0, 1); output[0][1] = in.get_elem(0, 2);
output[1][0] = in.get_elem(2, 0); output[1][2] = -in.get_elem(2, 1); output[1][1] = in.get_elem(2, 2);
output[2][0] = -in.get_elem(1, 0); output[2][2] = in.get_elem(1, 1); output[2][1] = -in.get_elem(1, 2);
#else
// this code is conceptually simpler, but the above is smaller/faster
Vector forward, left, up; IVP_U_Float_Point out;
in.get_col( IVP_INDEX_X, &out ); ConvertDirectionToHL( out, forward ); in.get_col( IVP_INDEX_Z, &out ); ConvertDirectionToHL( out, left); in.get_col( IVP_INDEX_Y, &out ); ConvertDirectionToHL( out, up ); up = -up;
output[0][0] = forward.x; output[1][0] = forward.y; output[2][0] = forward.z;
output[0][1] = left.x; output[1][1] = left.y; output[2][1] = left.z;
output[0][2] = up.x; output[1][2] = up.y; output[2][2] = up.z; #endif
output[0][3] = IVP2HL(in.vv.k[0]); output[1][3] = IVP2HL(in.vv.k[2]); output[2][3] = -IVP2HL(in.vv.k[1]); }
void ConvertRotationToHL( const IVP_U_Matrix3 &in, QAngle& angles ) { IVP_U_Float_Point out; Vector forward, right, up;
in.get_col( IVP_INDEX_X, &out ); ConvertDirectionToHL( out, forward ); in.get_col( IVP_INDEX_Z, &out ); ConvertDirectionToHL( out, right ); in.get_col( IVP_INDEX_Y, &out ); ConvertDirectionToHL( out, up );
float xyDist = sqrt( forward[0] * forward[0] + forward[1] * forward[1] ); // enough here to get angles?
if ( xyDist > 0.001 ) { // (yaw) y = ATAN( forward.y, forward.x ); -- in our space, forward is the X axis
angles[1] = RAD2DEG( atan2( forward[1], forward[0] ) );
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
angles[0] = RAD2DEG( atan2( -forward[2], xyDist ) );
// (roll) z = ATAN( -right.z, up.z );
angles[2] = RAD2DEG( atan2( -right[2], up[2] ) ) + 180; } else // forward is mostly Z, gimbal lock
{ // (yaw) y = ATAN( -right.x, right.y ); -- forward is mostly z, so use right for yaw
angles[1] = RAD2DEG( atan2( right[0], -right[1] ) );
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
angles[0] = RAD2DEG( atan2( -forward[2], xyDist ) );
// Assume no roll in this case as one degree of freedom has been lost (i.e. yaw == roll)
angles[2] = 180; } }
void ConvertRotationToHL( const IVP_U_Quat &in, QAngle& angles ) { IVP_U_Matrix3 tmp; in.set_matrix( &tmp ); ConvertRotationToHL( tmp, angles ); }
// utiltiy code
void TransformIVPToLocal( IVP_U_Point &point, IVP_Real_Object *pObject, bool translate ) { IVP_U_Point tmp = point; TransformIVPToLocal( tmp, point, pObject, translate ); }
void TransformLocalToIVP( IVP_U_Point &point, IVP_Real_Object *pObject, bool translate ) { IVP_U_Point tmp = point; TransformLocalToIVP( tmp, point, pObject, translate ); }
// UNDONE: use IVP_Cache_Object instead? Measure perf differences.
#define USE_CACHE_OBJECT 0
//-----------------------------------------------------------------------------
// Purpose: This is ONLY for use by the routines below. It's not reentrant!!!
// No threads or recursive calls!
//-----------------------------------------------------------------------------
#if USE_CACHE_OBJECT
#else
static const IVP_U_Matrix *GetTmpObjectMatrix( IVP_Real_Object *pObject ) { static IVP_U_Matrix coreShiftMatrix; const IVP_U_Matrix *pOut = pObject->get_core()->get_m_world_f_core_PSI();
if ( !pObject->flags.shift_core_f_object_is_zero ) { coreShiftMatrix.set_matrix( pOut ); coreShiftMatrix.vmult4( pObject->get_shift_core_f_object(), &coreShiftMatrix.vv ); return &coreShiftMatrix; } return pOut; } #endif
void TransformIVPToLocal( const IVP_U_Point &pointIn, IVP_U_Point &pointOut, IVP_Real_Object *pObject, bool translate ) { #if USE_CACHE_OBJECT
IVP_Cache_Object *cache = pObject->get_cache_object_no_lock();
if ( translate ) { cache->transform_position_to_object_coords( &pointIn, &pointOut ); } else { cache->transform_vector_to_object_coords( &pointIn, &pointOut ); } #else
const IVP_U_Matrix *pMatrix = GetTmpObjectMatrix( pObject ); if ( translate ) { pMatrix->inline_vimult4( &pointIn, &pointOut ); } else { pMatrix->inline_vimult3( &pointIn, &pointOut ); } #endif
}
void TransformLocalToIVP( const IVP_U_Point &pointIn, IVP_U_Point &pointOut, IVP_Real_Object *pObject, bool translate ) { #if USE_CACHE_OBJECT
IVP_Cache_Object *cache = pObject->get_cache_object_no_lock();
if ( translate ) { IVP_U_Float_Point floatPointIn; floatPointIn.set( &pointIn ); cache->transform_position_to_world_coords( &floatPointIn, &pointOut ); } else { cache->transform_vector_to_world_coords( &pointIn, &pointOut ); } #else
const IVP_U_Matrix *pMatrix = GetTmpObjectMatrix( pObject );
if ( translate ) { pMatrix->inline_vmult4( &pointIn, &pointOut ); } else { pMatrix->inline_vmult3( &pointIn, &pointOut ); } #endif
}
void TransformLocalToIVP( const IVP_U_Float_Point &pointIn, IVP_U_Point &pointOut, IVP_Real_Object *pObject, bool translate ) { #if USE_CACHE_OBJECT
IVP_Cache_Object *cache = pObject->get_cache_object_no_lock();
if ( translate ) { cache->transform_position_to_world_coords( &pointIn, &pointOut ); } else { IVP_U_Point doublePointIn; doublePointIn.set( &pointIn ); cache->transform_vector_to_world_coords( &doublePointIn, &pointOut ); } #else
const IVP_U_Matrix *pMatrix = GetTmpObjectMatrix( pObject ); IVP_U_Float_Point out;
if ( translate ) { pMatrix->inline_vmult4( &pointIn, &out ); } else { pMatrix->inline_vmult3( &pointIn, &out ); } pointOut.set( &out ); #endif
}
void TransformLocalToIVP( const IVP_U_Float_Point &pointIn, IVP_U_Float_Point &pointOut, IVP_Real_Object *pObject, bool translate ) { IVP_U_Point tmpOut; TransformLocalToIVP( pointIn, tmpOut, pObject, translate ); pointOut.set( &tmpOut ); }
static char axisMap[] = {0,2,1,3};
int ConvertCoordinateAxisToIVP( int axisIndex ) { return axisIndex < 4 ? axisMap[axisIndex] : 0; }
int ConvertCoordinateAxisToHL( int axisIndex ) { return axisIndex < 4 ? axisMap[axisIndex] : 0; }
|