|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//===========================================================================//
#include "pch_materialsystem.h"
#define MATSYS_INTERNAL
#include "cmaterialsystem.h"
#include "colorspace.h"
#include "materialsystem/materialsystem_config.h"
#include "IHardwareConfigInternal.h"
#include "shadersystem.h"
#include "texturemanager.h"
#include "shaderlib/ShaderDLL.h"
#include "tier1/callqueue.h"
#include "vstdlib/jobthread.h"
#include "cmatnullrendercontext.h"
#include "filesystem/IQueuedLoader.h"
#include "datacache/idatacache.h"
#include "materialsystem/imaterialproxy.h"
#include "vstdlib/IKeyValuesSystem.h"
#include "ctexturecompositor.h"
#if defined( _X360 )
#include "xbox/xbox_console.h"
#include "xbox/xbox_win32stubs.h"
#endif
// NOTE: This must be the last file included!!!
#include "tier0/memdbgon.h"
#ifdef POSIX
#define _finite finite
#endif
// this is hooked into the engines convar
ConVar mat_debugalttab( "mat_debugalttab", "0", FCVAR_CHEAT );
ConVar mat_forcemanagedtextureintohardware( "mat_forcemanagedtextureintohardware", "1", FCVAR_HIDDEN | FCVAR_ALLOWED_IN_COMPETITIVE );
ConVar mat_supportflashlight( "mat_supportflashlight", "-1", FCVAR_HIDDEN, "0 - do not support flashlight (don't load flashlight shader combos), 1 - flashlight is supported" ); #ifdef OSX
#define CV_FRAME_SWAP_WORKAROUND_DEFAULT "1"
#else
#define CV_FRAME_SWAP_WORKAROUND_DEFAULT "0"
#endif
ConVar mat_texture_reload_frame_swap_workaround( "mat_texture_reload_frame_swap_workaround", CV_FRAME_SWAP_WORKAROUND_DEFAULT, FCVAR_INTERNAL_USE, "Workaround certain GL drivers holding unnecessary amounts of data when loading many materials by forcing synthetic frame swaps" );
// This ConVar allows us to skip ~40% of our map load time, but it doesn't work on GPUs older
// than ~2005. We set it automatically and don't expose it to players.
ConVar mat_requires_rt_alloc_first( "mat_requires_rt_alloc_first", "0", FCVAR_HIDDEN );
// Make sure this convar gets created before videocfg.lib is initialized, so it can be driven by dxsupport.cfg
static ConVar mat_tonemapping_occlusion_use_stencil( "mat_tonemapping_occlusion_use_stencil", "0" );
#ifdef DX_TO_GL_ABSTRACTION
// In GL mode, we currently require mat_dxlevel to be between 90-92
static ConVar mat_dxlevel( "mat_dxlevel", "92", 0, "", true, 90, true, 92, NULL ); #else
static ConVar mat_dxlevel( "mat_dxlevel", "0", 0, "Current DirectX Level. Competitive play requires at least mat_dxlevel 90", false, 0, false, 0, true, 90, false, 0, NULL ); #endif
IMaterialInternal *g_pErrorMaterial = NULL;
CreateInterfaceFn g_fnMatSystemConnectCreateInterface = NULL;
static int ReadListFromFile(CUtlVector<char*>* outReplacementMaterials, const char *pszPathName);
//#define PERF_TESTING 1
//-----------------------------------------------------------------------------
// Implementational structures
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Singleton instance exposed to the engine
//-----------------------------------------------------------------------------
CMaterialSystem g_MaterialSystem; EXPOSE_SINGLE_INTERFACE_GLOBALVAR( CMaterialSystem, IMaterialSystem, MATERIAL_SYSTEM_INTERFACE_VERSION, g_MaterialSystem );
// Expose this to the external shader DLLs
MaterialSystem_Config_t g_config; EXPOSE_SINGLE_INTERFACE_GLOBALVAR( MaterialSystem_Config_t, MaterialSystem_Config_t, MATERIALSYSTEM_CONFIG_VERSION, g_config );
//-----------------------------------------------------------------------------
CThreadFastMutex g_MatSysMutex;
//-----------------------------------------------------------------------------
// Purpose: additional materialsystem information, internal use only
//-----------------------------------------------------------------------------
#ifndef _X360
struct MaterialSystem_Config_Internal_t { int r_waterforceexpensive; }; MaterialSystem_Config_Internal_t g_config_internal; #endif
//-----------------------------------------------------------------------------
// Necessary to allow the shader DLLs to get ahold of IMaterialSystemHardwareConfig
//-----------------------------------------------------------------------------
IHardwareConfigInternal* g_pHWConfig = 0; static void *GetHardwareConfig() { if ( g_pHWConfig ) return (IMaterialSystemHardwareConfig*)g_pHWConfig;
// can't call QueryShaderAPI here because it calls a factory function
// and we end up in an infinite recursion
return NULL; } EXPOSE_INTERFACE_FN( GetHardwareConfig, IMaterialSystemHardwareConfig, MATERIALSYSTEM_HARDWARECONFIG_INTERFACE_VERSION );
//-----------------------------------------------------------------------------
// Necessary to allow the shader DLLs to get ahold of ICvar
//-----------------------------------------------------------------------------
static void *GetICVar() { return g_pCVar; } EXPOSE_INTERFACE_FN( GetICVar, ICVar, CVAR_INTERFACE_VERSION );
//-----------------------------------------------------------------------------
// Accessor to get at the material system
//-----------------------------------------------------------------------------
IMaterialSystemInternal *g_pInternalMaterialSystem = &g_MaterialSystem; IShaderUtil *g_pShaderUtil = &g_MaterialSystem;
#if defined(USE_SDL)
#include "appframework/ilaunchermgr.h"
ILauncherMgr *g_pLauncherMgr = NULL; // set in CMaterialSystem::Connect
#endif
//-----------------------------------------------------------------------------
// Factory used to get at internal interfaces (used by shaderapi + shader dlls)
//-----------------------------------------------------------------------------
void *ShaderFactory( const char *pName, int *pReturnCode ) { if (pReturnCode) { *pReturnCode = IFACE_OK; } if ( !Q_stricmp( pName, FILESYSTEM_INTERFACE_VERSION )) return g_pFullFileSystem;
if ( !Q_stricmp( pName, QUEUEDLOADER_INTERFACE_VERSION )) return g_pQueuedLoader;
if ( !Q_stricmp( pName, SHADER_UTIL_INTERFACE_VERSION )) return g_pShaderUtil;
#ifdef USE_SDL
if ( !Q_stricmp( pName, "SDLMgrInterface001" /*SDLMGR_INTERFACE_VERSION*/ )) return g_pLauncherMgr; #endif
void * pInterface = g_MaterialSystem.QueryInterface( pName ); if ( pInterface ) return pInterface;
if ( pReturnCode ) { *pReturnCode = IFACE_FAILED; } return NULL; }
//-----------------------------------------------------------------------------
// Resource preloading for materials.
//-----------------------------------------------------------------------------
class CResourcePreloadMaterial : public CResourcePreload { virtual bool CreateResource( const char *pName ) { IMaterial *pMaterial = g_MaterialSystem.FindMaterial( pName, TEXTURE_GROUP_WORLD, false ); IMaterialInternal *pMatInternal = static_cast< IMaterialInternal * >( pMaterial ); if ( pMatInternal ) { // always work with the realtime material internally
pMatInternal = pMatInternal->GetRealTimeVersion();
// tag these for later identification (prevents an unwanted purge)
pMatInternal->MarkAsPreloaded( true ); if ( !pMatInternal->IsErrorMaterial() ) { // force material's textures to create now
pMatInternal->Precache(); return true; } else { if ( IsPosix() ) { printf("\n ##### CResourcePreloadMaterial::CreateResource can't find material %s\n", pName); } } }
return false; }
//-----------------------------------------------------------------------------
// Called before queued loader i/o jobs are actually performed. Must free up memory
// to ensure i/o requests have enough memory to succeed. The materials that were
// touched by the CreateResource() are inhibited from purging (as is their textures,
// by virtue of ref counts), all others are candidates. The preloaded materials
// are by definition zero ref'd until owned by the normal loading process. Any material
// that stays zero ref'd is a candidate for the post load purge.
//-----------------------------------------------------------------------------
virtual void PurgeUnreferencedResources() { bool bSpew = ( g_pQueuedLoader->GetSpewDetail() & LOADER_DETAIL_PURGES ) != 0;
bool bDidUncacheMaterial = false; MaterialHandle_t hNext; for ( MaterialHandle_t hMaterial = g_MaterialSystem.FirstMaterial(); hMaterial != g_MaterialSystem.InvalidMaterial(); hMaterial = hNext ) { hNext = g_MaterialSystem.NextMaterial( hMaterial );
IMaterialInternal *pMatInternal = g_MaterialSystem.GetMaterialInternal( hMaterial ); Assert( pMatInternal->GetReferenceCount() >= 0 );
// preloaded materials are safe from this pre-purge
if ( !pMatInternal->IsPreloaded() ) { // undo any possible artifical ref count
pMatInternal->ArtificialRelease(); if ( pMatInternal->GetReferenceCount() <= 0 ) { if ( bSpew ) { Msg( "CResourcePreloadMaterial: Purging: %s (%d)\n", pMatInternal->GetName(), pMatInternal->GetReferenceCount() ); } bDidUncacheMaterial = true; pMatInternal->Uncache(); pMatInternal->DeleteIfUnreferenced(); } } else { // clear the bit
pMatInternal->MarkAsPreloaded( false ); } }
// purged materials unreference their textures
// purge any zero ref'd textures
TextureManager()->RemoveUnusedTextures();
// fixup any excluded textures, may cause some new batch requests
MaterialSystem()->UpdateExcludedTextures(); }
virtual void PurgeAll() { bool bSpew = ( g_pQueuedLoader->GetSpewDetail() & LOADER_DETAIL_PURGES ) != 0;
bool bDidUncacheMaterial = false; MaterialHandle_t hNext; for ( MaterialHandle_t hMaterial = g_MaterialSystem.FirstMaterial(); hMaterial != g_MaterialSystem.InvalidMaterial(); hMaterial = hNext ) { hNext = g_MaterialSystem.NextMaterial( hMaterial );
IMaterialInternal *pMatInternal = g_MaterialSystem.GetMaterialInternal( hMaterial ); Assert( pMatInternal->GetReferenceCount() >= 0 );
pMatInternal->MarkAsPreloaded( false ); // undo any possible artifical ref count
pMatInternal->ArtificialRelease(); if ( pMatInternal->GetReferenceCount() <= 0 ) { if ( bSpew ) { Msg( "CResourcePreloadMaterial: Purging: %s (%d)\n", pMatInternal->GetName(), pMatInternal->GetReferenceCount() ); } bDidUncacheMaterial = true; pMatInternal->Uncache(); pMatInternal->DeleteIfUnreferenced(); } }
// purged materials unreference their textures
// purge any zero ref'd textures
TextureManager()->RemoveUnusedTextures(); } };
static CResourcePreloadMaterial s_ResourcePreloadMaterial;
//-----------------------------------------------------------------------------
// Resource preloading for cubemaps.
//-----------------------------------------------------------------------------
class CResourcePreloadCubemap : public CResourcePreload { virtual bool CreateResource( const char *pName ) { ITexture *pTexture = g_MaterialSystem.FindTexture( pName, TEXTURE_GROUP_CUBE_MAP, true ); ITextureInternal *pTexInternal = static_cast< ITextureInternal * >( pTexture ); if ( pTexInternal ) { // There can be cubemaps that are unbound by materials. To prevent an unwanted purge,
// mark and increase the ref count. Otherwise the pre-purge discards these zero
// ref'd textures, and then the normal loading process hitches on the miss.
// The zombie cubemaps DO get discarded after the normal loading process completes
// if no material references them.
pTexInternal->MarkAsPreloaded( true ); pTexInternal->IncrementReferenceCount(); if ( !IsErrorTexture( pTexInternal ) ) { return true; } } return false; }
//-----------------------------------------------------------------------------
// All valid cubemaps should have been owned by their materials. Undo the preloaded
// cubemap locks. Any zero ref'd cubemaps will be purged by the normal loading path conclusion.
//-----------------------------------------------------------------------------
virtual void OnEndMapLoading( bool bAbort ) { int iIndex = -1; for ( ;; ) { ITextureInternal *pTexInternal; iIndex = TextureManager()->FindNext( iIndex, &pTexInternal ); if ( iIndex == -1 || !pTexInternal ) { // end of list
break; }
if ( pTexInternal->IsPreloaded() ) { // undo the artificial increase
pTexInternal->MarkAsPreloaded( false ); pTexInternal->DecrementReferenceCount(); } } } }; static CResourcePreloadCubemap s_ResourcePreloadCubemap;
//-----------------------------------------------------------------------------
// Creates the debugging materials
//-----------------------------------------------------------------------------
void CMaterialSystem::CreateDebugMaterials() { if ( !m_pDrawFlatMaterial ) { KeyValues *pVMTKeyValues = new KeyValues( "UnlitGeneric" ); pVMTKeyValues->SetInt( "$model", 1 ); pVMTKeyValues->SetFloat( "$decalscale", 0.05f ); pVMTKeyValues->SetString( "$basetexture", "error" ); // This is the "error texture"
g_pErrorMaterial = static_cast<IMaterialInternal*>(CreateMaterial( "___error.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "UnlitGeneric" ); pVMTKeyValues->SetInt( "$flat", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pDrawFlatMaterial = static_cast<IMaterialInternal*>(CreateMaterial( "___flat.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_NONE] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil0.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$clearcolor", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil1.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$clearalpha", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_ALPHA] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil2.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$clearcolor", 1 ); pVMTKeyValues->SetInt( "$clearalpha", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR_AND_ALPHA] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil3.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$cleardepth", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_DEPTH] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil4.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$cleardepth", 1 ); pVMTKeyValues->SetInt( "$clearcolor", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR_AND_DEPTH] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil5.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$cleardepth", 1 ); pVMTKeyValues->SetInt( "$clearalpha", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_ALPHA_AND_DEPTH] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil6.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$cleardepth", 1 ); pVMTKeyValues->SetInt( "$clearcolor", 1 ); pVMTKeyValues->SetInt( "$clearalpha", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR_AND_ALPHA_AND_DEPTH] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil7.vmt", pVMTKeyValues ))->GetRealTimeVersion();
if ( IsX360() ) { pVMTKeyValues = new KeyValues( "RenderTargetBlit_X360" ); m_pRenderTargetBlitMaterial = static_cast<IMaterialInternal*>(CreateMaterial( "___renderTargetBlit.vmt", pVMTKeyValues ))->GetRealTimeVersion(); }
ShaderSystem()->CreateDebugMaterials(); } }
//-----------------------------------------------------------------------------
// Creates compositor materials
//-----------------------------------------------------------------------------
void CMaterialSystem::CreateCompositorMaterials() { // precache composite materials
for ( int i = ECO_FirstPrecacheMaterial; i < ECO_LastPrecacheMaterial; i++ ) { const char *pszMaterial = GetCombinedMaterialName( ( ECombineOperation ) i ); if ( pszMaterial[ 0 ] == '\0' ) continue;
IMaterialInternal *pMatqf = assert_cast< IMaterialInternal* >( FindMaterial( pszMaterial, TEXTURE_GROUP_RUNTIME_COMPOSITE ) ); Assert( pMatqf ); Assert( !pMatqf->IsErrorMaterial() ); IMaterialInternal *pMatrt = pMatqf->GetRealTimeVersion(); Assert( pMatrt ); pMatrt->IncrementReferenceCount(); // Hold a ref.
m_pCompositorMaterials.AddToTail( pMatrt ); }
}
//-----------------------------------------------------------------------------
// Cleanup compositor materials
//-----------------------------------------------------------------------------
void CMaterialSystem::CleanUpCompositorMaterials() { FOR_EACH_VEC( m_pCompositorMaterials, i ) { if ( m_pCompositorMaterials[ i ] == NULL ) continue;
m_pCompositorMaterials[ i ]->DecrementReferenceCount(); RemoveMaterial( m_pCompositorMaterials[ i ] ); }
m_pCompositorMaterials.RemoveAll(); }
//-----------------------------------------------------------------------------
// Creates the debugging materials
//-----------------------------------------------------------------------------
void CMaterialSystem::CleanUpDebugMaterials() { if ( m_pDrawFlatMaterial ) { m_pDrawFlatMaterial->DecrementReferenceCount(); RemoveMaterial( m_pDrawFlatMaterial ); m_pDrawFlatMaterial = NULL;
for ( int i = BUFFER_CLEAR_NONE; i < BUFFER_CLEAR_TYPE_COUNT; ++i ) { m_pBufferClearObeyStencil[i]->DecrementReferenceCount(); RemoveMaterial( m_pBufferClearObeyStencil[i] ); m_pBufferClearObeyStencil[i] = NULL; }
if ( IsX360() ) { m_pRenderTargetBlitMaterial->DecrementReferenceCount(); RemoveMaterial( m_pRenderTargetBlitMaterial ); m_pRenderTargetBlitMaterial = NULL; }
ShaderSystem()->CleanUpDebugMaterials(); } }
void CMaterialSystem::CleanUpErrorMaterial() { // Destruction of g_pErrorMaterial is deferred until after CMaterialDict::Shutdown.
// The global g_pErrorMaterial is set to NULL so that IsErrorMaterial() will return false and
// RemoveMaterial() / DestroyMaterial() will delete it.
IMaterialInternal *pErrorMaterial = g_pErrorMaterial; g_pErrorMaterial = NULL; pErrorMaterial->DecrementReferenceCount(); RemoveMaterial( pErrorMaterial ); }
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CMaterialSystem::CMaterialSystem() { m_nRenderThreadID = 0xFFFFFFFF; m_hAsyncLoadFileCache = NULL; m_ShaderHInst = 0; m_pMaterialProxyFactory = NULL; m_nAdapter = 0; m_nAdapterFlags = 0; m_bRequestedEditorMaterials = false; m_bCanUseEditorMaterials = false; m_StandardTexturesAllocated = false; m_bInFrame = false; m_bThreadHasOwnership = false; m_ThreadOwnershipID = 0; m_pShaderDLL = NULL; m_FullbrightLightmapTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_FullbrightBumpedLightmapTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_BlackTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_FlatNormalTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_GreyTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_GreyAlphaZeroTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_WhiteTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_LinearToGammaTableTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_LinearToGammaIdentityTableTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_MaxDepthTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_bInStubMode = false; m_pForcedTextureLoadPathID = NULL; m_bAllocatingRenderTargets = false; m_pRenderContext.Set( &m_HardwareRenderContext ); m_iCurQueuedContext = 0; #if defined(DEDICATED)
m_bThreadingNotAvailable = true; m_bForcedSingleThreaded = true; m_bAllowQueuedRendering = false; #else
m_bThreadingNotAvailable = false; m_bForcedSingleThreaded = false; m_bAllowQueuedRendering = true; #endif
m_bGeneratedConfig = false; m_pActiveAsyncJob = NULL; m_pMatQueueThreadPool = NULL; m_IdealThreadMode = m_ThreadMode = MATERIAL_SINGLE_THREADED; m_nServiceThread = 0; m_nRenderTargetFrameBufferHeightOverride = m_nRenderTargetFrameBufferWidthOverride = 0;
m_bReplacementFilesValid = false; }
CMaterialSystem::~CMaterialSystem() { if (m_pShaderDLL) { delete[] m_pShaderDLL; } }
//-----------------------------------------------------------------------------
// Creates/destroys the shader implementation for the selected API
//-----------------------------------------------------------------------------
CreateInterfaceFn CMaterialSystem::CreateShaderAPI( char const* pShaderDLL ) { if ( !pShaderDLL ) return 0;
// Clean up the old shader
DestroyShaderAPI();
// Load the new shader
m_ShaderHInst = Sys_LoadModule( pShaderDLL );
// Error loading the shader
if ( !m_ShaderHInst ) return 0;
// Get our class factory methods...
return Sys_GetFactory( m_ShaderHInst ); }
void CMaterialSystem::DestroyShaderAPI() { if (m_ShaderHInst) { // NOTE: By unloading the library, this will destroy m_pShaderAPI
Sys_UnloadModule( m_ShaderHInst ); g_pShaderAPI = 0; g_pHWConfig = 0; g_pShaderShadow = 0; m_ShaderHInst = 0; } }
//-----------------------------------------------------------------------------
// Sets which shader we should be using. Has to be done before connect!
//-----------------------------------------------------------------------------
void CMaterialSystem::SetShaderAPI( char const *pShaderAPIDLL ) { if ( m_ShaderAPIFactory ) { Error( "Cannot set the shader API twice!\n" ); }
if ( !pShaderAPIDLL ) { pShaderAPIDLL = "shaderapidx9"; }
// m_pShaderDLL is needed to spew driver info
Assert( pShaderAPIDLL ); int len = Q_strlen( pShaderAPIDLL ) + 1; m_pShaderDLL = new char[len]; memcpy( m_pShaderDLL, pShaderAPIDLL, len );
m_ShaderAPIFactory = CreateShaderAPI( pShaderAPIDLL ); if ( !m_ShaderAPIFactory ) { DestroyShaderAPI(); } }
//-----------------------------------------------------------------------------
// Connect/disconnect
//-----------------------------------------------------------------------------
bool CMaterialSystem::Connect( CreateInterfaceFn factory ) { // __stop__();
if ( !factory ) return false;
if ( !BaseClass::Connect( factory ) ) return false;
if ( !g_pFullFileSystem ) { Warning( "The material system requires the filesystem to run!\n" ); return false; }
// Get at the interfaces exported by the shader DLL
g_pShaderDeviceMgr = (IShaderDeviceMgr*)m_ShaderAPIFactory( SHADER_DEVICE_MGR_INTERFACE_VERSION, 0 ); if ( !g_pShaderDeviceMgr ) return false; g_pHWConfig = (IHardwareConfigInternal*)m_ShaderAPIFactory( MATERIALSYSTEM_HARDWARECONFIG_INTERFACE_VERSION, 0 ); if ( !g_pHWConfig ) return false; #if !defined(DEDICATED)
#if defined( USE_SDL )
g_pLauncherMgr = (ILauncherMgr *)factory( "SDLMgrInterface001" /*SDL_MGR_INTERFACE_VERSION*/, NULL ); if ( !g_pLauncherMgr ) { return false; } #endif // USE_SDL
#endif // !DEDICATED
// FIXME: ShaderAPI, ShaderDevice, and ShaderShadow should only come in after setting mode
g_pShaderAPI = (IShaderAPI*)m_ShaderAPIFactory( SHADERAPI_INTERFACE_VERSION, 0 ); if ( !g_pShaderAPI ) return false; g_pShaderDevice = (IShaderDevice*)m_ShaderAPIFactory( SHADER_DEVICE_INTERFACE_VERSION, 0 ); if ( !g_pShaderDevice ) return false; g_pShaderShadow = (IShaderShadow*)m_ShaderAPIFactory( SHADERSHADOW_INTERFACE_VERSION, 0 ); if ( !g_pShaderShadow ) return false;
// Remember the factory for connect
g_fnMatSystemConnectCreateInterface = factory;
return g_pShaderDeviceMgr->Connect( ShaderFactory ); }
void CMaterialSystem::Disconnect() { // Forget the factory for connect
g_fnMatSystemConnectCreateInterface = NULL;
if ( g_pShaderDeviceMgr ) { g_pShaderDeviceMgr->Disconnect(); g_pShaderDeviceMgr = NULL;
// Unload the DLL
DestroyShaderAPI(); } g_pShaderAPI = NULL; g_pHWConfig = NULL; g_pShaderShadow = NULL; g_pShaderDevice = NULL; BaseClass::Disconnect(); }
//-----------------------------------------------------------------------------
// Used to enable editor materials. Must be called before Init.
//-----------------------------------------------------------------------------
void CMaterialSystem::EnableEditorMaterials() { m_bRequestedEditorMaterials = true; }
//-----------------------------------------------------------------------------
// Method to get at interfaces supported by the SHADDERAPI
//-----------------------------------------------------------------------------
void *CMaterialSystem::QueryShaderAPI( const char *pInterfaceName ) { // Returns various interfaces supported by the shader API dll
void *pInterface = NULL; if (m_ShaderAPIFactory) { pInterface = m_ShaderAPIFactory( pInterfaceName, NULL ); } return pInterface; }
//-----------------------------------------------------------------------------
// Method to get at different interfaces supported by the material system
//-----------------------------------------------------------------------------
void *CMaterialSystem::QueryInterface( const char *pInterfaceName ) { // Returns various interfaces supported by the shader API dll
void *pInterface = QueryShaderAPI( pInterfaceName ); if ( pInterface ) return pInterface;
CreateInterfaceFn factory = Sys_GetFactoryThis(); // This silly construction is necessary
return factory( pInterfaceName, NULL ); // to prevent the LTCG compiler from crashing.
}
//-----------------------------------------------------------------------------
// Must be called before Init(), if you're going to call it at all...
//-----------------------------------------------------------------------------
void CMaterialSystem::SetAdapter( int nAdapter, int nAdapterFlags ) { m_nAdapter = nAdapter; m_nAdapterFlags = nAdapterFlags; }
//-----------------------------------------------------------------------------
// Initializes the color correction terms
//-----------------------------------------------------------------------------
void CMaterialSystem::InitColorCorrection( ) { if ( ColorCorrectionSystem() ) { ColorCorrectionSystem()->Init(); } }
//-----------------------------------------------------------------------------
// Initialization + shutdown of the material system
//-----------------------------------------------------------------------------
InitReturnVal_t CMaterialSystem::Init() { InitReturnVal_t nRetVal = BaseClass::Init(); if ( nRetVal != INIT_OK ) return nRetVal;
// NOTE! : Overbright is 1.0 so that Hammer will work properly with the white bumped and unbumped lightmaps.
MathLib_Init( 2.2f, 2.2f, 0.0f, 2.0f );
g_pShaderDeviceMgr->SetAdapter( m_nAdapter, m_nAdapterFlags ); if ( g_pShaderDeviceMgr->Init( ) != INIT_OK ) { DestroyShaderAPI(); return INIT_FAILED; }
// Texture manager...
TextureManager()->Init( m_nAdapterFlags );
// Shader system!
ShaderSystem()->Init();
#if defined( WIN32 ) && !defined( _X360 )
// HACKHACK: <sigh> This horrible hack is possibly the only way to reliably detect an old
// version of hammer initializing the material system. We need to know this so that we set
// up the editor materials properly. If we don't do this, we never allocate the white lightmap,
// for example. We can remove this when we update the SDK!!
char szExeName[_MAX_PATH]; if ( ::GetModuleFileName( ( HINSTANCE )GetModuleHandle( NULL ), szExeName, sizeof( szExeName ) ) ) { char szRight[20]; Q_StrRight( szExeName, 11, szRight, sizeof( szRight ) ); if ( !Q_stricmp( szRight, "\\hammer.exe" ) ) { m_bRequestedEditorMaterials = true; } } #endif // WIN32
m_bCanUseEditorMaterials = m_bRequestedEditorMaterials;
InitColorCorrection();
// Set up debug materials...
CreateDebugMaterials();
#if !defined(DEDICATED)
CreateCompositorMaterials(); #endif
if ( IsX360() ) { g_pQueuedLoader->InstallLoader( RESOURCEPRELOAD_MATERIAL, &s_ResourcePreloadMaterial ); g_pQueuedLoader->InstallLoader( RESOURCEPRELOAD_CUBEMAP, &s_ResourcePreloadCubemap ); }
// Set up a default material system config
// GenerateConfigFromConfigKeyValues( &g_config, false );
// UpdateConfig( false );
// JAY: Added this command line parameter to force creating <32x32 mips
// to test for reported performance regressions on some systems
if ( CommandLine()->FindParm("-forceallmips") ) { extern bool g_bForceTextureAllMips; g_bForceTextureAllMips = true; }
#if defined(DEDICATED)
m_bThreadingNotAvailable = true; #else
for ( int i = 0; i < ARRAYSIZE( m_QueuedRenderContexts ); i++ ) { if ( !m_QueuedRenderContexts[i].IsInitialized() ) { if ( !m_QueuedRenderContexts[i].Init( this, &m_HardwareRenderContext ) ) { m_bThreadingNotAvailable = true; break; } } } #endif
return m_HardwareRenderContext.Init( this ); }
//-----------------------------------------------------------------------------
// For backwards compatability
//-----------------------------------------------------------------------------
static CreateInterfaceFn s_TempCVarFactory; static CreateInterfaceFn s_TempFileSystemFactory;
void* TempCreateInterface( const char *pName, int *pReturnCode ) { void *pRetVal = NULL;
if ( s_TempCVarFactory ) { pRetVal = s_TempCVarFactory( pName, pReturnCode ); if (pRetVal) return pRetVal; }
pRetVal = s_TempFileSystemFactory( pName, pReturnCode ); if (pRetVal) return pRetVal;
return NULL; }
//-----------------------------------------------------------------------------
// Initializes and shuts down the shader API
//-----------------------------------------------------------------------------
CreateInterfaceFn CMaterialSystem::Init( char const* pShaderAPIDLL, IMaterialProxyFactory *pMaterialProxyFactory, CreateInterfaceFn fileSystemFactory, CreateInterfaceFn cvarFactory ) { SetShaderAPI( pShaderAPIDLL );
s_TempCVarFactory = cvarFactory; s_TempFileSystemFactory = fileSystemFactory; if ( !Connect( TempCreateInterface ) ) return 0;
if (Init() != INIT_OK) return NULL;
// save the proxy factory
m_pMaterialProxyFactory = pMaterialProxyFactory;
return m_ShaderAPIFactory; }
void CMaterialSystem::Shutdown( ) { DestroyMatQueueThreadPool();
m_HardwareRenderContext.Shutdown();
// Clean up standard textures
ReleaseStandardTextures();
CleanUpCompositorMaterials();
// Clean up the debug materials
CleanUpDebugMaterials();
g_pMorphMgr->FreeMaterials(); g_pOcclusionQueryMgr->FreeOcclusionQueryObjects();
GetLightmaps()->Shutdown(); m_MaterialDict.Shutdown();
CleanUpErrorMaterial();
// Shader system!
ShaderSystem()->Shutdown();
// Texture manager...
TextureManager()->Shutdown();
if (g_pShaderDeviceMgr) { g_pShaderDeviceMgr->Shutdown(); }
BaseClass::Shutdown(); }
void CMaterialSystem::ModInit() { // Set up a default material system config
GenerateConfigFromConfigKeyValues( &g_config, false ); UpdateConfig( false );
// Shader system!
ShaderSystem()->ModInit(); }
void CMaterialSystem::ModShutdown() { // Shader system!
ShaderSystem()->ModShutdown();
// HACK - this is here to unhook ourselves from the client interface, since we're not actually notified when it happens
m_pMaterialProxyFactory = NULL; }
//-----------------------------------------------------------------------------
// Returns the current adapter in use
//-----------------------------------------------------------------------------
IMaterialSystemHardwareConfig *CMaterialSystem::GetHardwareConfig( const char *pVersion, int *returnCode ) { return ( IMaterialSystemHardwareConfig * )m_ShaderAPIFactory( pVersion, returnCode ); }
//-----------------------------------------------------------------------------
// Returns the current adapter in use
//-----------------------------------------------------------------------------
int CMaterialSystem::GetCurrentAdapter() const { return g_pShaderDevice->GetCurrentAdapter(); }
//-----------------------------------------------------------------------------
// Returns the device name for the current adapter
//-----------------------------------------------------------------------------
char *CMaterialSystem::GetDisplayDeviceName() const { return g_pShaderDevice->GetDisplayDeviceName(); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMaterialSystem::SetThreadMode( MaterialThreadMode_t nextThreadMode, int nServiceThread ) { m_IdealThreadMode = nextThreadMode; m_nServiceThread = nServiceThread; }
MaterialThreadMode_t CMaterialSystem::GetThreadMode() { return m_ThreadMode; }
bool CMaterialSystem::IsRenderThreadSafe( ) { return ( m_ThreadMode != MATERIAL_QUEUED_THREADED && ThreadInMainThread() ) || ( m_ThreadMode == MATERIAL_QUEUED_THREADED && m_nRenderThreadID == ThreadGetCurrentId() ); }
bool CMaterialSystem::AllowThreading( bool bAllow, int nServiceThread ) { #if defined(DEDICATED)
return false; #else
if ( CommandLine()->ParmValue( "-threads", 2 ) < 2 ) // if -threads specified on command line to restrict all the pools then obey and not turn on QMS
bAllow = false;
bool bOldAllow = m_bAllowQueuedRendering;
if ( GetCPUInformation()->m_nPhysicalProcessors >= 2 ) { m_bAllowQueuedRendering = bAllow; bool bQueued = m_IdealThreadMode != MATERIAL_SINGLE_THREADED; if ( bAllow && !bQueued ) { // go into queued mode
DevMsg( "Queued Material System: ENABLED!\n" ); SetThreadMode( MATERIAL_QUEUED_THREADED, nServiceThread ); } else if ( !bAllow && bQueued ) { // disabling queued mode just needs to stop the queuing of drawing
// but still allow other threaded access to the Material System
// flush the queue
DevMsg( "Queued Material System: DISABLED!\n" ); ForceSingleThreaded(); MaterialLock_t hMaterialLock = Lock(); SetThreadMode( MATERIAL_SINGLE_THREADED, -1 ); Unlock( hMaterialLock ); } } else { m_bAllowQueuedRendering = false; } return bOldAllow; #endif // !DEDICATED
} void CMaterialSystem::ExecuteQueued() { }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
IMatRenderContext *CMaterialSystem::GetRenderContext() { IMatRenderContext *pResult = m_pRenderContext.Get(); if ( !pResult ) { pResult = &m_HardwareRenderContext; m_pRenderContext.Set( &m_HardwareRenderContext ); } return RetAddRef( pResult ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
IMatRenderContext *CMaterialSystem::CreateRenderContext( MaterialContextType_t type ) { switch ( type ) { case MATERIAL_HARDWARE_CONTEXT: return NULL;
case MATERIAL_QUEUED_CONTEXT: { CMatQueuedRenderContext *pQueuedContext = new CMatQueuedRenderContext; pQueuedContext->Init( this, &m_HardwareRenderContext ); pQueuedContext->BeginQueue( &m_HardwareRenderContext ); return pQueuedContext;
}
case MATERIAL_NULL_CONTEXT: { CMatRenderContextBase *pNullContext = CreateNullRenderContext(); pNullContext->Init(); pNullContext->InitializeFrom( &m_HardwareRenderContext ); return pNullContext; } } Assert(0); return NULL; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
IMatRenderContext *CMaterialSystem::SetRenderContext( IMatRenderContext *pNewContext ) { IMatRenderContext *pOldContext = m_pRenderContext.Get(); if ( pNewContext ) { pNewContext->AddRef(); m_pRenderContext.Set( assert_cast<IMatRenderContextInternal *>(pNewContext) ); } else { m_pRenderContext.Set( NULL ); } return pOldContext; }
//-----------------------------------------------------------------------------
// Get/Set Material proxy factory
//-----------------------------------------------------------------------------
IMaterialProxyFactory* CMaterialSystem::GetMaterialProxyFactory() { return m_pMaterialProxyFactory; }
void CMaterialSystem::SetMaterialProxyFactory( IMaterialProxyFactory* pFactory ) { // Changing the factory requires an uncaching of all materials
// since the factory may contain different proxies
UncacheAllMaterials();
m_pMaterialProxyFactory = pFactory; }
//-----------------------------------------------------------------------------
// Can we use editor materials?
//-----------------------------------------------------------------------------
bool CMaterialSystem::CanUseEditorMaterials() const { return m_bCanUseEditorMaterials; }
//-----------------------------------------------------------------------------
// Methods related to mode setting...
//-----------------------------------------------------------------------------
// Gets the number of adapters...
int CMaterialSystem::GetDisplayAdapterCount() const { return g_pShaderDeviceMgr->GetAdapterCount( ); }
// Returns info about each adapter
void CMaterialSystem::GetDisplayAdapterInfo( int adapter, MaterialAdapterInfo_t& info ) const { g_pShaderDeviceMgr->GetAdapterInfo( adapter, info ); }
// Returns the number of modes
int CMaterialSystem::GetModeCount( int adapter ) const { return g_pShaderDeviceMgr->GetModeCount( adapter ); }
//-----------------------------------------------------------------------------
// Compatability function, should go away eventually
//-----------------------------------------------------------------------------
static void ConvertModeStruct( ShaderDeviceInfo_t *pMode, const MaterialSystem_Config_t &config ) { pMode->m_DisplayMode.m_nWidth = config.m_VideoMode.m_Width; pMode->m_DisplayMode.m_nHeight = config.m_VideoMode.m_Height; pMode->m_DisplayMode.m_Format = config.m_VideoMode.m_Format; pMode->m_DisplayMode.m_nRefreshRateNumerator = config.m_VideoMode.m_RefreshRate; pMode->m_DisplayMode.m_nRefreshRateDenominator = config.m_VideoMode.m_RefreshRate ? 1 : 0; pMode->m_nBackBufferCount = 1; pMode->m_nAASamples = config.m_nAASamples; pMode->m_nAAQuality = config.m_nAAQuality; pMode->m_nDXLevel = MAX( ABSOLUTE_MINIMUM_DXLEVEL, config.dxSupportLevel ); pMode->m_nWindowedSizeLimitWidth = (int)config.m_WindowedSizeLimitWidth; pMode->m_nWindowedSizeLimitHeight = (int)config.m_WindowedSizeLimitHeight;
pMode->m_bWindowed = config.Windowed(); pMode->m_bResizing = config.Resizing(); pMode->m_bUseStencil = config.Stencil(); pMode->m_bLimitWindowedSize = config.LimitWindowedSize(); pMode->m_bWaitForVSync = config.WaitForVSync(); pMode->m_bScaleToOutputResolution = config.ScaleToOutputResolution(); pMode->m_bUsingMultipleWindows = config.UsingMultipleWindows(); }
static void ConvertModeStruct( MaterialVideoMode_t *pMode, const ShaderDisplayMode_t &info ) { pMode->m_Width = info.m_nWidth; pMode->m_Height = info.m_nHeight; pMode->m_Format = info.m_Format; pMode->m_RefreshRate = info.m_nRefreshRateDenominator ? ( info.m_nRefreshRateNumerator / info.m_nRefreshRateDenominator ) : 0; }
//-----------------------------------------------------------------------------
// Returns mode information..
//-----------------------------------------------------------------------------
void CMaterialSystem::GetModeInfo( int nAdapter, int nMode, MaterialVideoMode_t& info ) const { ShaderDisplayMode_t shaderInfo; g_pShaderDeviceMgr->GetModeInfo( &shaderInfo, nAdapter, nMode ); ConvertModeStruct( &info, shaderInfo ); }
//-----------------------------------------------------------------------------
// Returns the mode info for the current display device
//-----------------------------------------------------------------------------
void CMaterialSystem::GetDisplayMode( MaterialVideoMode_t& info ) const { ShaderDisplayMode_t shaderInfo; g_pShaderDeviceMgr->GetCurrentModeInfo( &shaderInfo, m_nAdapter ); ConvertModeStruct( &info, shaderInfo ); }
void CMaterialSystem::ForceSingleThreaded() { if ( !ThreadInMainThread() ) { Error("Can't force single thread from within thread!\n"); } if ( GetThreadMode() != MATERIAL_SINGLE_THREADED ) { if ( m_pActiveAsyncJob && !m_pActiveAsyncJob->IsFinished() ) { m_pActiveAsyncJob->WaitForFinish(); } SafeRelease( m_pActiveAsyncJob );
ThreadRelease();
g_pShaderAPI->EnableShaderShaderMutex( false ); m_HardwareRenderContext.InitializeFrom(&m_QueuedRenderContexts[m_iCurQueuedContext]); m_pRenderContext.Set( &m_HardwareRenderContext ); for ( int i = 0; i < ARRAYSIZE( m_QueuedRenderContexts ); i++ ) { Assert( m_QueuedRenderContexts[i].IsInitialized() ); m_QueuedRenderContexts[i].EndQueue(true); } if( mat_debugalttab.GetBool() ) { Warning("Forcing queued mode off!\n"); }
// NOTE: Must happen after EndQueue or proxies get bound again, which is bad.
m_ThreadMode = MATERIAL_SINGLE_THREADED;
m_bForcedSingleThreaded = true; } }
//-----------------------------------------------------------------------------
// Sets the mode...
//-----------------------------------------------------------------------------
bool CMaterialSystem::SetMode( void* hwnd, const MaterialSystem_Config_t &config ) { Assert( m_bGeneratedConfig );
ForceSingleThreaded();
ShaderDeviceInfo_t info; ConvertModeStruct( &info, config );
bool bPreviouslyUsingGraphics = g_pShaderDevice->IsUsingGraphics(); if( config.m_nVRModeAdapter != -1 && config.m_nVRModeAdapter < GetDisplayAdapterCount() && !bPreviouslyUsingGraphics ) { // if this is init-time, we need to override the adapter with the
// VR mode adapter
m_nAdapter = config.m_nVRModeAdapter; }
bool bOk = g_pShaderAPI->SetMode( hwnd, m_nAdapter, info ); if ( !bOk ) return false; #if defined( USE_SDL )
uint width = info.m_DisplayMode.m_nWidth; uint height = info.m_DisplayMode.m_nHeight; g_pLauncherMgr->RenderedSize( width, height, true ); // true = set
#endif
TextureManager()->FreeStandardRenderTargets(); TextureManager()->AllocateStandardRenderTargets();
// FIXME: There's gotta be a better way of doing this?
// After the first mode set, make sure to download any textures created
// before the first mode set. After the first mode set, all textures
// will be reloaded via the reaquireresources call. Same goes for procedural materials
if ( !bPreviouslyUsingGraphics ) { if ( IsPC() ) { TextureManager()->RestoreRenderTargets(); TextureManager()->RestoreNonRenderTargetTextures(); if ( MaterialSystem()->CanUseEditorMaterials() ) { // We are in Hammer. Allocate these here since we aren't going to allocate
// lightmaps.
// HACK!
// NOTE! : Overbright is 1.0 so that Hammer will work properly with the white bumped and unbumped lightmaps.
MathLib_Init( 2.2f, 2.2f, 0.0f, OVERBRIGHT ); }
AllocateStandardTextures(); TextureManager()->WarmTextureCache(); }
if ( IsX360() ) { // shaderapi was not viable at init time, it is now
TextureManager()->ReloadTextures(); AllocateStandardTextures(); } }
g_pShaderDevice->SetHardwareGammaRamp( config.m_fMonitorGamma, config.m_fGammaTVRangeMin, config.m_fGammaTVRangeMax, config.m_fGammaTVExponent, config.m_bGammaTVEnabled );
// Copy over that state which isn't stored currently in convars
g_config.m_VideoMode = config.m_VideoMode; g_config.SetFlag( MATSYS_VIDCFG_FLAGS_WINDOWED, config.Windowed() ); g_config.SetFlag( MATSYS_VIDCFG_FLAGS_STENCIL, config.Stencil() ); g_config.SetFlag( MATSYS_VIDCFG_FLAGS_VR_MODE, config.VRMode() ); WriteConfigIntoConVars( config );
extern void SetupDirtyDiskReportFunc(); SetupDirtyDiskReportFunc();
return true; }
// Creates/ destroys a child window
bool CMaterialSystem::AddView( void* hwnd ) { return g_pShaderDevice->AddView( hwnd ); }
void CMaterialSystem::RemoveView( void* hwnd ) { g_pShaderDevice->RemoveView( hwnd ); }
// Activates a view
void CMaterialSystem::SetView( void* hwnd ) { g_pShaderDevice->SetView( hwnd ); }
//-----------------------------------------------------------------------------
// Installs a function to be called when we need to release vertex buffers
//-----------------------------------------------------------------------------
void CMaterialSystem::AddReleaseFunc( MaterialBufferReleaseFunc_t func ) { // Shouldn't have two copies in our list
Assert( m_ReleaseFunc.Find( func ) == -1 ); m_ReleaseFunc.AddToTail( func ); }
void CMaterialSystem::RemoveReleaseFunc( MaterialBufferReleaseFunc_t func ) { int i = m_ReleaseFunc.Find( func ); if( i != -1 ) m_ReleaseFunc.Remove(i); }
//-----------------------------------------------------------------------------
// Installs a function to be called when we need to restore vertex buffers
//-----------------------------------------------------------------------------
void CMaterialSystem::AddRestoreFunc( MaterialBufferRestoreFunc_t func ) { // Shouldn't have two copies in our list
Assert( m_RestoreFunc.Find( func ) == -1 ); m_RestoreFunc.AddToTail( func ); }
void CMaterialSystem::RemoveRestoreFunc( MaterialBufferRestoreFunc_t func ) { int i = m_RestoreFunc.Find( func ); Assert( i != -1 ); m_RestoreFunc.Remove(i); }
//-----------------------------------------------------------------------------
// Called by the shader API when it's just about to lose video memory
//-----------------------------------------------------------------------------
void CMaterialSystem::ReleaseShaderObjects() { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: CMaterialSystem::ReleaseShaderObjects\n" ); }
m_HardwareRenderContext.OnReleaseShaderObjects();
g_pOcclusionQueryMgr->FreeOcclusionQueryObjects(); TextureManager()->ReleaseTextures(); ReleaseStandardTextures(); GetLightmaps()->ReleaseLightmapPages(); for (int i = 0; i < m_ReleaseFunc.Count(); ++i) { m_ReleaseFunc[i](); } }
void CMaterialSystem::RestoreShaderObjects( CreateInterfaceFn shaderFactory, int nChangeFlags ) { if ( shaderFactory ) { g_pShaderAPI = (IShaderAPI*)shaderFactory( SHADERAPI_INTERFACE_VERSION, NULL ); g_pShaderDevice = (IShaderDevice*)shaderFactory( SHADER_DEVICE_INTERFACE_VERSION, NULL ); g_pShaderShadow = (IShaderShadow*)shaderFactory( SHADERSHADOW_INTERFACE_VERSION, NULL ); }
for( MaterialHandle_t i = m_MaterialDict.FirstMaterial(); i != m_MaterialDict.InvalidMaterial(); i = m_MaterialDict.NextMaterial( i ) ) { IMaterialInternal *pMat = m_MaterialDict.GetMaterialInternal( i ); if ( pMat ) pMat->ReportVarChanged( NULL ); }
if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: CMaterialSystem::RestoreShaderObjects\n" ); } // Shader API sets this to the max value the card supports when it resets
// the state, so restore this value.
g_pShaderAPI->SetAnisotropicLevel( GetCurrentConfigForVideoCard().m_nForceAnisotropicLevel );
// NOTE: render targets must be restored first, then vb/ibs, then managed textures
// FIXME: Gotta restore lightmap pages + standard textures before restore funcs are called
// because they use them both.
TextureManager()->RestoreRenderTargets(); AllocateStandardTextures(); GetLightmaps()->RestoreLightmapPages(); g_pOcclusionQueryMgr->AllocOcclusionQueryObjects(); for (int i = 0; i < m_RestoreFunc.Count(); ++i) { m_RestoreFunc[i]( nChangeFlags ); } TextureManager()->RestoreNonRenderTargetTextures( ); }
//-----------------------------------------------------------------------------
// Use this to spew information about the 3D layer
//-----------------------------------------------------------------------------
void CMaterialSystem::SpewDriverInfo() const { Warning( "ShaderAPI: %s\n", m_pShaderDLL ); g_pShaderDevice->SpewDriverInfo(); }
//-----------------------------------------------------------------------------
// Color converting blitter
//-----------------------------------------------------------------------------
bool CMaterialSystem::ConvertImageFormat( unsigned char *src, enum ImageFormat srcImageFormat, unsigned char *dst, enum ImageFormat dstImageFormat, int width, int height, int srcStride, int dstStride ) { return ImageLoader::ConvertImageFormat( src, srcImageFormat, dst, dstImageFormat, width, height, srcStride, dstStride ); }
//-----------------------------------------------------------------------------
// Figures out the amount of memory needed by a bitmap
//-----------------------------------------------------------------------------
int CMaterialSystem::GetMemRequired( int width, int height, int depth, ImageFormat format, bool mipmap ) { return ImageLoader::GetMemRequired( width, height, depth, format, mipmap ); }
//-----------------------------------------------------------------------------
// Method to allow clients access to the MaterialSystem_Config
//-----------------------------------------------------------------------------
MaterialSystem_Config_t& CMaterialSystem::GetConfig() { //hushed Assert( m_bGeneratedConfig );
return g_config; }
//-----------------------------------------------------------------------------
// Gets image format info
//-----------------------------------------------------------------------------
ImageFormatInfo_t const& CMaterialSystem::ImageFormatInfo( ImageFormat fmt) const { return ImageLoader::ImageFormatInfo(fmt); }
//-----------------------------------------------------------------------------
// Reads keyvalues for information
//-----------------------------------------------------------------------------
static void ReadInt( KeyValues *pGroup, const char *pName, int nDefaultVal, int nUndefinedVal, int *pDest ) { *pDest = pGroup->GetInt( pName, nDefaultVal ); // Warning( "\t%s = %d\n", pName, *pDest );
Assert( *pDest != nUndefinedVal ); }
static void ReadFlt( KeyValues *pGroup, const char *pName, float flDefaultVal, float flUndefinedVal, float *pDest ) { *pDest = pGroup->GetFloat( pName, flDefaultVal ); // Warning( "\t%s = %f\n", pName, *pDest );
Assert( *pDest != flUndefinedVal ); }
static void LoadFlags( KeyValues *pGroup, const char *pName, bool bDefaultValue, unsigned int nFlag, unsigned int *pFlags ) { int nValue = pGroup->GetInt( pName, bDefaultValue ? 1 : 0 ); // Warning( "\t%s = %s\n", pName, nValue ? "true" : "false" );
if ( nValue ) { *pFlags |= nFlag; } }
#define ASPECT_4x3 0
#define ASPECT_16x9 1
#define ASPECT_16x10 2
//-----------------------------------------------------------------------------
// Purpose: aspect ratio mappings (for normal/widescreen combo)
//-----------------------------------------------------------------------------
struct RatioToAspectMode_t { int nAspectCode; float flAspectRatio; };
RatioToAspectMode_t g_RatioToAspectModes[] = { { ASPECT_4x3, 4.0f / 3.0f }, { ASPECT_16x9, 16.0f / 9.0f }, { ASPECT_16x10, 16.0f / 10.0f }, { ASPECT_16x10, 1.0f }, };
//-----------------------------------------------------------------------------
// Purpose: returns the aspect ratio mode number for the given resolution
//-----------------------------------------------------------------------------
int GetScreenAspectMode( int width, int height ) { float flAspectRatio = (float)width / (float)height;
// Just find the closest ratio
float flClosestAspectRatioDist = 99999.0f; int nClosestAspectCode = ASPECT_4x3; for ( int i = 0; i < ARRAYSIZE(g_RatioToAspectModes); i++ ) { float flDist = fabs( g_RatioToAspectModes[i].flAspectRatio - flAspectRatio ); if ( flDist < flClosestAspectRatioDist ) { flClosestAspectRatioDist = flDist; nClosestAspectCode = g_RatioToAspectModes[i].nAspectCode; } }
return nClosestAspectCode; }
// Heuristic similar to one we put into L4D
bool BetterResolution( int nRecommendedNumPixels, int nBestNumPixels, int nNewNumPixels ) { float flRecommendedNumPixels = (float) nRecommendedNumPixels; float flBestNumPixels = (float) nBestNumPixels; float flNewNumPixels = (float) nNewNumPixels;
// Give ourselves a little head room
float flTooBig = flRecommendedNumPixels * 1.1f;
// If our best is too big and the new resolution is no bigger, pick it
if ( ( flBestNumPixels > flTooBig ) && ( flNewNumPixels < flBestNumPixels ) ) return true;
// Don't allow resolutions which are too big
if ( flNewNumPixels > flTooBig ) return false;
// Finally, just check for nearness to desired number of pixels
float flDelta = fabs( flRecommendedNumPixels - flNewNumPixels ); float flBestDelta = fabs( flRecommendedNumPixels - flBestNumPixels ); if ( flDelta >= flBestDelta ) return false;
return true; }
//-----------------------------------------------------------------------------
// This is called when the config changes
//-----------------------------------------------------------------------------
void CMaterialSystem::GenerateConfigFromConfigKeyValues( MaterialSystem_Config_t *pConfig, bool bOverwriteCommandLineValues ) { if ( !g_pShaderDeviceMgr || !pConfig ) return;
// Look for the default recommended dx support level
MaterialAdapterInfo_t adapterInfo; g_pShaderDeviceMgr->GetAdapterInfo( m_nAdapter, adapterInfo );
pConfig->dxSupportLevel = MAX( ABSOLUTE_MINIMUM_DXLEVEL, adapterInfo.m_nDXSupportLevel ); KeyValues *pKeyValues = new KeyValues( "config" ); if ( !GetRecommendedConfigurationInfo( pConfig->dxSupportLevel, pKeyValues ) ) { pKeyValues->deleteThis(); return; }
pConfig->m_Flags = 0;
#ifdef LINUX
uint width = 0; uint height = 0; uint refreshHz = 0; // Not used
#ifdef USE_SDL
// query backbuffer size (window size whether FS or windowed)
if( g_pLauncherMgr ) { g_pLauncherMgr->GetNativeDisplayInfo( -1, width, height, refreshHz ); } #endif
pConfig->m_VideoMode.m_Width = width; pConfig->m_VideoMode.m_Height = height;
#else
// Get the recommended resolution from dxsupport.cfg, this assumes a 4:3 aspect ratio
int nRecommendedWidth, nRecommendedHeight; ReadInt( pKeyValues, "DefaultRes", 640, -1, &nRecommendedWidth ); nRecommendedHeight = ( nRecommendedWidth * 3 ) / 4; int nRecommendedPixels = nRecommendedHeight * nRecommendedWidth;
// Get the desktop resolution and aspect ratio
ShaderDisplayMode_t displayMode; g_pShaderDeviceMgr->GetCurrentModeInfo( &displayMode, 0 ); int nCurrentScreenAspect = GetScreenAspectMode( displayMode.m_nWidth, displayMode.m_nHeight );
// Let's see what the device supports and pick the most appropriate mode
g_pShaderDeviceMgr->GetModeInfo( &displayMode, 0, 0 ); int nBestMode, nBestWidth, nBestHeight; nBestMode = nBestWidth = nBestHeight = -1; int nBestPixels = displayMode.m_nHeight * displayMode.m_nWidth;
int nNumVideoModes = g_pShaderDeviceMgr->GetModeCount( 0 );
// Pick the resolution with the right aspect ratio which matches the recommended resolution most closely
for ( int i=0; i<nNumVideoModes; i++ ) { g_pShaderDeviceMgr->GetModeInfo( &displayMode, 0, i );
if ( nCurrentScreenAspect == GetScreenAspectMode( displayMode.m_nWidth, displayMode.m_nHeight ) ) { int nNumPixels = displayMode.m_nWidth * displayMode.m_nHeight;
// Initially select the first mode we find of the correct aspect ratio for the display
if ( ( nBestMode == -1) || BetterResolution( nRecommendedPixels, nBestPixels, nNumPixels ) ) { nBestMode = i; nBestPixels = nNumPixels; nBestWidth = displayMode.m_nWidth; nBestHeight = displayMode.m_nHeight; } } }
// We found a good mode
if ( nBestMode != -1 ) { pConfig->m_VideoMode.m_Width = nBestWidth; pConfig->m_VideoMode.m_Height = nBestHeight; } else // Fall back to 4:3 mode from the cfg file. This should never happen
{ pConfig->m_VideoMode.m_Width = nRecommendedWidth; pConfig->m_VideoMode.m_Height = nRecommendedHeight; }
#if defined( _X360 )
pConfig->m_VideoMode.m_Width = GetSystemMetrics( SM_CXSCREEN ); pConfig->m_VideoMode.m_Height = GetSystemMetrics( SM_CYSCREEN ); #endif
pKeyValues->deleteThis();
#endif // LINUX
WriteConfigurationInfoToConVars( bOverwriteCommandLineValues ); m_bGeneratedConfig = true; }
//-----------------------------------------------------------------------------
// If mat_proxy goes to 0, we need to reload all materials, because their shader
// params might have been messed with.
//-----------------------------------------------------------------------------
static void MatProxyCallback( IConVar *pConVar, const char *old, float flOldValue ) { ConVarRef var( pConVar ); int oldVal = (int)flOldValue; if ( var.GetInt() == 0 && oldVal != 0 ) { g_MaterialSystem.ReloadMaterials(); } }
//-----------------------------------------------------------------------------
// Convars that control the config record
//-----------------------------------------------------------------------------
static ConVar mat_vsync( "mat_vsync", "0", FCVAR_ALLOWED_IN_COMPETITIVE, "Force sync to vertical retrace", true, 0.0, true, 1.0 ); static ConVar mat_forcehardwaresync( "mat_forcehardwaresync", IsPC() ? "1" : "0", FCVAR_ALLOWED_IN_COMPETITIVE );
// Texture-related
static ConVar mat_trilinear( "mat_trilinear", "0", FCVAR_ALLOWED_IN_COMPETITIVE ); #ifdef _X360 // The code that reads this out of moddefaults.txt is #if'd out for the 360, so force aniso to 2 here.
static ConVar mat_forceaniso( "mat_forceaniso", "2", FCVAR_ARCHIVE ); // 0 = Bilinear, 1 = Trilinear, 2+ = Aniso
#elif defined ( OSX )
static ConVar mat_forceaniso( "mat_forceaniso", "1", FCVAR_ARCHIVE, "Filtering level", true, 0, true, 8 ); // 0 = Bilinear, 1 = Trilinear, 2+ = Aniso
#else
static ConVar mat_forceaniso( "mat_forceaniso", "1", FCVAR_ARCHIVE ); // 0 = Bilinear, 1 = Trilinear, 2+ = Aniso
#endif
static ConVar mat_filterlightmaps( "mat_filterlightmaps", "1" ); static ConVar mat_filtertextures( "mat_filtertextures", "1" ); static ConVar mat_mipmaptextures( "mat_mipmaptextures", "1" ); static ConVar mat_vrmode_adapter( "mat_vrmode_adapter", "-1" );
static void mat_showmiplevels_Callback_f( IConVar *var, const char *pOldValue, float flOldValue ) { // turn off texture filtering if we are showing mip levels.
mat_filtertextures.SetValue( ( ( ConVar * )var )->GetInt() == 0 ); } // Debugging textures
static ConVar mat_showmiplevels( "mat_showmiplevels", "0", FCVAR_CHEAT, "color-code miplevels 2: normalmaps, 1: everything else", mat_showmiplevels_Callback_f );
static ConVar mat_specular( "mat_specular", "1", FCVAR_ALLOWED_IN_COMPETITIVE, "Enable/Disable specularity for perf testing. Will cause a material reload upon change." ); static ConVar mat_bumpmap( "mat_bumpmap", "1", FCVAR_ALLOWED_IN_COMPETITIVE ); static ConVar mat_phong( "mat_phong", "1" ); static ConVar mat_parallaxmap( "mat_parallaxmap", "1", FCVAR_HIDDEN | FCVAR_ALLOWED_IN_COMPETITIVE ); static ConVar mat_reducefillrate( "mat_reducefillrate", "0", FCVAR_ALLOWED_IN_COMPETITIVE );
#if defined( OSX ) && !defined( STAGING_ONLY ) && !defined( _DEBUG )
// OSX users are currently running OOM. We limit them to texture quality high here, which avoids the problem while we come up with a real solution.
static ConVar mat_picmip( "mat_picmip", "1", FCVAR_ARCHIVE, "", true, 0, true, 4 ); #else
static ConVar mat_picmip( "mat_picmip", "0", FCVAR_ARCHIVE, "", true, -1, true, 4 ); #endif
static ConVar mat_slopescaledepthbias_normal( "mat_slopescaledepthbias_normal", "0.0f", FCVAR_CHEAT ); static ConVar mat_depthbias_normal( "mat_depthbias_normal", "0.0f", FCVAR_CHEAT | FCVAR_ALLOWED_IN_COMPETITIVE ); static ConVar mat_slopescaledepthbias_decal( "mat_slopescaledepthbias_decal", "-0.5", FCVAR_CHEAT ); // Reciprocals of these biases sent to API
static ConVar mat_depthbias_decal( "mat_depthbias_decal", "-262144", FCVAR_CHEAT | FCVAR_ALLOWED_IN_COMPETITIVE ); //
static ConVar mat_slopescaledepthbias_shadowmap( "mat_slopescaledepthbias_shadowmap", "16", FCVAR_CHEAT ); static ConVar mat_depthbias_shadowmap( "mat_depthbias_shadowmap", "0.0005", FCVAR_CHEAT );
static ConVar mat_monitorgamma( "mat_monitorgamma", "2.2", FCVAR_ARCHIVE, "monitor gamma (typically 2.2 for CRT and 1.7 for LCD)", true, 1.6f, true, 2.6f ); static ConVar mat_monitorgamma_tv_range_min( "mat_monitorgamma_tv_range_min", "16" ); static ConVar mat_monitorgamma_tv_range_max( "mat_monitorgamma_tv_range_max", "255" ); // TV's generally have a 2.5 gamma, so we need to convert our 2.2 frame buffer into a 2.5 frame buffer for display on a TV
static ConVar mat_monitorgamma_tv_exp( "mat_monitorgamma_tv_exp", "2.5", 0, "", true, 1.0f, true, 4.0f ); #ifdef _X360
static ConVar mat_monitorgamma_tv_enabled( "mat_monitorgamma_tv_enabled", "1", FCVAR_ARCHIVE, "" ); #else
static ConVar mat_monitorgamma_tv_enabled( "mat_monitorgamma_tv_enabled", "0", FCVAR_ARCHIVE, "" ); #endif
static ConVar mat_antialias( "mat_antialias", "0", FCVAR_ARCHIVE ); static ConVar mat_aaquality( "mat_aaquality", "0", FCVAR_ARCHIVE ); static ConVar mat_diffuse( "mat_diffuse", "1", FCVAR_CHEAT ); //=============================================================================
// HPE_BEGIN:
// [Forrest] Make this a cheat variable because low res textures makes enemy
// players and bullet impacts stand out more.
//=============================================================================
static ConVar mat_showlowresimage( "mat_showlowresimage", "0", FCVAR_CHEAT ); //=============================================================================
// HPE_END
//=============================================================================
static ConVar mat_fullbright( "mat_fullbright","0", FCVAR_CHEAT ); static ConVar mat_normalmaps( "mat_normalmaps", "0", FCVAR_CHEAT ); static ConVar mat_measurefillrate( "mat_measurefillrate", "0", FCVAR_CHEAT ); static ConVar mat_fillrate( "mat_fillrate", "0", FCVAR_CHEAT ); static ConVar mat_reversedepth( "mat_reversedepth", "0", FCVAR_CHEAT ); #ifdef DX_TO_GL_ABSTRACTION
static ConVar mat_bufferprimitives( "mat_bufferprimitives", "0" ); // I'm not seeing any benefit speed wise for buffered primitives on GLM/POSIX (checked via TF2 timedemo) - default to zero
#else
static ConVar mat_bufferprimitives( "mat_bufferprimitives", "1" ); #endif
static ConVar mat_drawflat( "mat_drawflat","0", FCVAR_CHEAT ); static ConVar mat_softwarelighting( "mat_softwarelighting", "0", FCVAR_ALLOWED_IN_COMPETITIVE ); static ConVar mat_proxy( "mat_proxy", "0", FCVAR_CHEAT, "", MatProxyCallback ); static ConVar mat_norendering( "mat_norendering", "0", FCVAR_CHEAT ); static ConVar mat_compressedtextures( "mat_compressedtextures", "1" ); static ConVar mat_fastspecular( "mat_fastspecular", "1", 0, "Enable/Disable specularity for visual testing. Will not reload materials and will not affect perf." ); static ConVar mat_fastnobump( "mat_fastnobump", "0", FCVAR_CHEAT ); // Binds 1-texel normal map for quick internal testing
// These are not controlled by the material system, but are limited by settings in the material system
static ConVar r_shadowrendertotexture( "r_shadowrendertotexture", "0", FCVAR_ARCHIVE ); static ConVar r_flashlightdepthtexture( "r_flashlightdepthtexture", "1" ); #ifndef _X360
static ConVar r_waterforceexpensive( "r_waterforceexpensive", "0", FCVAR_ARCHIVE ); #endif
static ConVar r_waterforcereflectentities( "r_waterforcereflectentities", "0", FCVAR_ALLOWED_IN_COMPETITIVE ); static ConVar mat_motion_blur_enabled( "mat_motion_blur_enabled", "0", FCVAR_ARCHIVE );
uint32 g_nDebugVarsSignature = 0;
//-----------------------------------------------------------------------------
// This is called when the config changes
//-----------------------------------------------------------------------------
void CMaterialSystem::ReadConfigFromConVars( MaterialSystem_Config_t *pConfig ) { if ( !g_pCVar ) return;
// video panel config items
#ifndef CSS_PERF_TEST
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_NO_WAIT_FOR_VSYNC, !mat_vsync.GetBool() ); #endif
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_FORCE_TRILINEAR, mat_trilinear.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_SPECULAR, !mat_specular.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_BUMPMAP, !mat_bumpmap.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_PHONG, !mat_phong.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_ENABLE_PARALLAX_MAPPING, mat_parallaxmap.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_REDUCE_FILLRATE, mat_reducefillrate.GetBool() ); pConfig->m_nForceAnisotropicLevel = max( mat_forceaniso.GetInt(), 1 ); pConfig->dxSupportLevel = MAX( ABSOLUTE_MINIMUM_DXLEVEL, mat_dxlevel.GetInt() ); pConfig->skipMipLevels = mat_picmip.GetInt(); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_FORCE_HWSYNC, mat_forcehardwaresync.GetBool() ); pConfig->m_SlopeScaleDepthBias_Decal = mat_slopescaledepthbias_decal.GetFloat(); pConfig->m_DepthBias_Decal = mat_depthbias_decal.GetFloat(); pConfig->m_SlopeScaleDepthBias_Normal = mat_slopescaledepthbias_normal.GetFloat(); pConfig->m_DepthBias_Normal = mat_depthbias_normal.GetFloat(); pConfig->m_SlopeScaleDepthBias_ShadowMap = mat_slopescaledepthbias_shadowmap.GetFloat(); pConfig->m_DepthBias_ShadowMap = mat_depthbias_shadowmap.GetFloat();
pConfig->m_fMonitorGamma = mat_monitorgamma.GetFloat(); pConfig->m_fGammaTVRangeMin = mat_monitorgamma_tv_range_min.GetFloat(); pConfig->m_fGammaTVRangeMax = mat_monitorgamma_tv_range_max.GetFloat(); pConfig->m_fGammaTVExponent = mat_monitorgamma_tv_exp.GetFloat(); pConfig->m_bGammaTVEnabled = mat_monitorgamma_tv_enabled.GetBool();
pConfig->m_nAASamples = mat_antialias.GetInt(); pConfig->m_nAAQuality = mat_aaquality.GetInt(); pConfig->bShowDiffuse = mat_diffuse.GetInt() ? true : false; // pConfig->bAllowCheats = false; // hack
pConfig->bShowNormalMap = mat_normalmaps.GetInt() ? true : false; pConfig->bShowLowResImage = mat_showlowresimage.GetInt() ? true : false; pConfig->bMeasureFillRate = mat_measurefillrate.GetInt() ? true : false; pConfig->bVisualizeFillRate = mat_fillrate.GetInt() ? true : false; pConfig->bFilterLightmaps = mat_filterlightmaps.GetInt() ? true : false; pConfig->bFilterTextures = mat_filtertextures.GetInt() ? true : false; pConfig->bMipMapTextures = mat_mipmaptextures.GetInt() ? true : false; pConfig->nShowMipLevels = mat_showmiplevels.GetInt(); pConfig->bReverseDepth = mat_reversedepth.GetInt() ? true : false; pConfig->bBufferPrimitives = mat_bufferprimitives.GetInt() ? true : false; pConfig->bDrawFlat = mat_drawflat.GetInt() ? true : false; pConfig->bSoftwareLighting = mat_softwarelighting.GetInt() ? true : false; pConfig->proxiesTestMode = mat_proxy.GetInt(); pConfig->m_bSuppressRendering = mat_norendering.GetInt() != 0; pConfig->bCompressedTextures = mat_compressedtextures.GetBool(); pConfig->bShowSpecular = mat_fastspecular.GetInt() ? true : false; pConfig->nFullbright = mat_fullbright.GetInt(); pConfig->m_bFastNoBump = mat_fastnobump.GetInt() != 0; pConfig->m_bMotionBlur = mat_motion_blur_enabled.GetBool(); pConfig->m_bSupportFlashlight = mat_supportflashlight.GetInt() != 0; pConfig->m_bShadowDepthTexture = r_flashlightdepthtexture.GetBool();
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_ENABLE_HDR, HardwareConfig() && HardwareConfig()->GetHDREnabled() );
// Render-to-texture shadows are disabled for dxlevel 70 because of material issues
if ( pConfig->dxSupportLevel < 80 ) { r_shadowrendertotexture.SetValue( 0 ); #ifndef _X360
r_waterforceexpensive.SetValue( 0 ); #endif
r_waterforcereflectentities.SetValue( 0 ); } if ( pConfig->dxSupportLevel < 90 ) { mat_requires_rt_alloc_first.SetValue( 1 ); r_flashlightdepthtexture.SetValue( 0 ); mat_motion_blur_enabled.SetValue( 0 ); pConfig->m_bShadowDepthTexture = false; pConfig->m_bMotionBlur = false; pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_ENABLE_HDR, false ); }
// VR mode adapter will generally be -1 if VR mode is not disabled
pConfig->m_nVRModeAdapter = mat_vrmode_adapter.GetInt(); if( pConfig->m_nVRModeAdapter != -1 ) { // we must always be windowed in the config in VR mode
// so that we will start up on the main display. Once
// VR overrides the adapter the only place we can go
// full screen is on the HMD.
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_WINDOWED, true ); } }
//-----------------------------------------------------------------------------
// Was the convar specified on the command-line?
//-----------------------------------------------------------------------------
static bool WasConVarSpecifiedOnCommandLine( const char *pConfigName ) { // mat_dxlevel cannot be used on the command-line. Use -dxlevel instead.
if ( !Q_stricmp( pConfigName, "mat_dxlevel" ) ) return false;
return ( g_pCVar->GetCommandLineValue( pConfigName ) != NULL); }
static const char *pConvarsAllowedInDXSupport[]={ "cl_detaildist", "cl_detailfade", "cl_ejectbrass", "dsp_off", "dsp_slow_cpu", "mat_antialias", "mat_aaquality", "mat_bumpmap", "mat_colorcorrection", "mat_depthbias_decal", "mat_depthbias_normal", "mat_disable_ps_patch", "mat_forceaniso", "mat_forcehardwaresync", "mat_forcemanagedtextureintohardware", "mat_hdr_level", "mat_parallaxmap", "mat_picmip", "mat_reducefillrate", "mat_reduceparticles", "mat_slopescaledepthbias_decal", "mat_slopescaledepthbias_normal", "mat_softwarelighting", "mat_specular", "mat_trilinear", "mat_vsync", "props_break_max_pieces", "r_VehicleViewDampen", "r_decal_cullsize", "r_dopixelvisibility", "r_drawdetailprops", "r_drawflecks", "r_drawmodeldecals", "r_dynamic", "r_lightcache_zbuffercache", "r_fastzreject", "r_overlayfademax", "r_overlayfademin", "r_rootlod", "r_screenfademaxsize", "r_screenfademinsize", "r_shadowrendertotexture", "r_shadows", "r_waterforceexpensive", "r_waterforcereflectentities", "sv_alternateticks", "mat_dxlevel", "mat_fallbackEyeRefract20", "r_shader_srgb", "mat_motion_blur_enabled", "r_flashlightdepthtexture", "mat_disablehwmorph", "r_portal_stencil_depth", "cl_blobbyshadows", "r_flex", "r_drawropes", "props_break_max_pieces", "cl_ragdoll_fade_time", "cl_ragdoll_forcefade", "tf_impactwatertimeenable", "fx_drawimpactdebris", "fx_drawimpactdust", "fx_drawmetalspark", "mem_min_heapsize", "mem_max_heapsize", "mem_max_heapsize_dedicated", "snd_spatialize_roundrobin", "snd_cull_duplicates", "cl_particle_retire_cost", "mat_phong" };
//-----------------------------------------------------------------------------
// Write dxsupport info to configvars
//-----------------------------------------------------------------------------
void CMaterialSystem::WriteConfigurationInfoToConVars( bool bOverwriteCommandLineValues ) { if ( !g_pCVar ) return;
KeyValues *pKeyValues = new KeyValues( "config" ); if ( !GetRecommendedConfigurationInfo( g_config.dxSupportLevel, pKeyValues ) ) { pKeyValues->deleteThis(); return; }
for( KeyValues *pKey = pKeyValues->GetFirstSubKey(); pKey; pKey = pKey->GetNextKey() ) { const char *pConfigName = pKey->GetName(); if ( Q_strnicmp( pConfigName, "convar.", 7 )) continue;
pConfigName += 7; // check if legal
bool bLegalVar = false; for(int i=0; i< NELEMS( pConvarsAllowedInDXSupport ) ; i++) { if (! stricmp( pConvarsAllowedInDXSupport[i], pConfigName ) ) { bLegalVar = true; break; } } if (! bLegalVar ) { Msg(" Bad convar found in dxsupport - %s\n", pConfigName ); continue; }
if ( bOverwriteCommandLineValues || !WasConVarSpecifiedOnCommandLine( pConfigName ) ) { ConVar *pConVar = g_pCVar->FindVar( pConfigName ); if ( !pConVar ) { // NOTE: This is essential for dealing with convars that
// are not specified in either the app that uses the materialsystem
// or the materialsystem itself
// Yes, this causes a memory leak. Too bad!
int nLen = Q_strlen( pConfigName ) + 1; char *pString = new char[nLen]; Q_strncpy( pString, pConfigName, nLen );
// Actually, we need two memory leaks, or we lose the default string.
int nDefaultLen = Q_strlen( pKey->GetString() ) + 1; char *pDefaultString = new char[nDefaultLen]; Q_strncpy( pDefaultString, pKey->GetString(), nDefaultLen );
pConVar = new ConVar( pString, pDefaultString ); } pConVar->SetValue( pKey->GetString() ); } }
pKeyValues->deleteThis(); }
//-----------------------------------------------------------------------------
// This is called when the config changes
//-----------------------------------------------------------------------------
void CMaterialSystem::WriteConfigIntoConVars( const MaterialSystem_Config_t &config ) { if ( !g_pCVar ) return;
mat_vsync.SetValue( config.WaitForVSync() ); mat_trilinear.SetValue( config.ForceTrilinear() ); mat_specular.SetValue( config.UseSpecular() ); mat_bumpmap.SetValue( config.UseBumpmapping() ); mat_phong.SetValue( config.UsePhong() ); mat_parallaxmap.SetValue( config.UseParallaxMapping() ); mat_reducefillrate.SetValue( config.ReduceFillrate() ); mat_forceaniso.SetValue( config.m_nForceAnisotropicLevel ); mat_dxlevel.SetValue( MAX( ABSOLUTE_MINIMUM_DXLEVEL, config.dxSupportLevel ) ); mat_picmip.SetValue( config.skipMipLevels ); mat_forcehardwaresync.SetValue( config.ForceHWSync() ); mat_slopescaledepthbias_normal.SetValue( config.m_SlopeScaleDepthBias_Normal ); mat_depthbias_normal.SetValue( config.m_DepthBias_Normal ); mat_slopescaledepthbias_decal.SetValue( config.m_SlopeScaleDepthBias_Decal ); mat_depthbias_decal.SetValue( config.m_DepthBias_Decal ); mat_slopescaledepthbias_shadowmap.SetValue( config.m_SlopeScaleDepthBias_ShadowMap ); mat_depthbias_shadowmap.SetValue( config.m_DepthBias_ShadowMap );
mat_monitorgamma.SetValue( config.m_fMonitorGamma ); mat_monitorgamma_tv_range_min.SetValue( config.m_fGammaTVRangeMin ); mat_monitorgamma_tv_range_max.SetValue( config.m_fGammaTVRangeMax ); mat_monitorgamma_tv_exp.SetValue( config.m_fGammaTVExponent ); mat_monitorgamma_tv_enabled.SetValue( config.m_bGammaTVEnabled );
mat_antialias.SetValue( config.m_nAASamples ); mat_aaquality.SetValue( config.m_nAAQuality ); mat_diffuse.SetValue( config.bShowDiffuse ? 1 : 0 ); // config.bAllowCheats = false; // hack
mat_normalmaps.SetValue( config.bShowNormalMap ? 1 : 0 ); mat_showlowresimage.SetValue( config.bShowLowResImage ? 1 : 0 ); mat_measurefillrate.SetValue( config.bMeasureFillRate ? 1 : 0 ); mat_fillrate.SetValue( config.bVisualizeFillRate ? 1 : 0 ); mat_filterlightmaps.SetValue( config.bFilterLightmaps ? 1 : 0 ); mat_filtertextures.SetValue( config.bFilterTextures ? 1 : 0 ); mat_mipmaptextures.SetValue( config.bMipMapTextures ? 1 : 0 ); mat_showmiplevels.SetValue( config.nShowMipLevels ); mat_reversedepth.SetValue( config.bReverseDepth ? 1 : 0 ); mat_bufferprimitives.SetValue( config.bBufferPrimitives ? 1 : 0 ); mat_drawflat.SetValue( config.bDrawFlat ? 1 : 0 ); mat_softwarelighting.SetValue( config.bSoftwareLighting ? 1 : 0 ); mat_proxy.SetValue( config.proxiesTestMode ); mat_norendering.SetValue( config.m_bSuppressRendering ? 1 : 0 ); mat_compressedtextures.SetValue( config.bCompressedTextures ? 1 : 0 ); mat_fastspecular.SetValue( config.bShowSpecular ? 1 : 0 ); mat_fullbright.SetValue( config.nFullbright ); mat_fastnobump.SetValue( config.m_bFastNoBump ? 1 : 0 ); bool hdre = config.HDREnabled(); HardwareConfig()->SetHDREnabled( hdre ); r_flashlightdepthtexture.SetValue( config.m_bShadowDepthTexture ? 1 : 0 ); mat_motion_blur_enabled.SetValue( config.m_bMotionBlur ? 1 : 0 ); mat_supportflashlight.SetValue( config.m_bSupportFlashlight ? 1 : 0 ); }
//-----------------------------------------------------------------------------
// This is called constantly to catch for config changes
//-----------------------------------------------------------------------------
bool CMaterialSystem::OverrideConfig( const MaterialSystem_Config_t &_config, bool forceUpdate ) { Assert( m_bGeneratedConfig ); if ( memcmp( &_config, &g_config, sizeof(_config) ) == 0 ) { return false; }
MaterialLock_t hLock = Lock(); MaterialSystem_Config_t config = _config;
bool bRedownloadLightmaps = false; bool bRedownloadTextures = false; bool recomputeSnapshots = false; bool dxSupportLevelChanged = false; bool bReloadMaterials = false; bool bResetAnisotropy = false; bool bSetStandardVertexShaderConstants = false; bool bMonitorGammaChanged = false; bool bVideoModeChange = false; bool bResetTextureFilter = false; bool bForceAltTab = false;
// internal config settings
#ifndef _X360
MaterialSystem_Config_Internal_t config_internal; config_internal.r_waterforceexpensive = r_waterforceexpensive.GetInt(); #endif
if ( !g_pShaderDevice->IsUsingGraphics() ) { g_config = config; #ifndef _X360
g_config_internal = config_internal; #endif
// Shouldn't call this more than once.
ColorSpace::SetGamma( 2.2f, 2.2f, OVERBRIGHT, g_config.bAllowCheats, false ); Unlock( hLock ); return bRedownloadLightmaps; }
// set the default state since we might be changing the number of
// texture units, etc. (i.e. we don't want to leave unit 2 in overbright mode
// if it isn't going to be reset upon each SetDefaultState because there is
// effectively only one texture unit.)
g_pShaderAPI->SetDefaultState(); // toggle dx emulation level
if ( config.dxSupportLevel != g_config.dxSupportLevel ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: Setting dxSupportLevelChanged, bResetAnisotropy, and bReloadMaterials because new dxlevel = %d and old dxlevel = %d\n", ( int )config.dxSupportLevel, g_config.dxSupportLevel ); } dxSupportLevelChanged = true; bResetAnisotropy = true;
// Necessary for DXSupportLevelChanged to work
g_config.dxSupportLevel = config.dxSupportLevel;
// This will reset config to match whatever the dxlevel wants
// and slam to convars to match
g_pShaderAPI->DXSupportLevelChanged( ); WriteConfigurationInfoToConVars(); ReadConfigFromConVars( &config ); bReloadMaterials = true; }
if ( config.HDREnabled() != g_config.HDREnabled() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: Setting forceUpdate, bReloadMaterials, and bForceAltTab because new hdr level = %d and old hdr level = %d\n", ( int )config.HDREnabled(), g_config.HDREnabled() ); }
forceUpdate = true; bReloadMaterials = true; bForceAltTab = true; }
if ( config.ShadowDepthTexture() != g_config.ShadowDepthTexture() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: Setting forceUpdate, bReloadMaterials and recomputeSnapshots (ShadowDepthTexture changed: %d -> %d)\n", g_config.ShadowDepthTexture() ? 1 : 0, config.ShadowDepthTexture() ? 1 : 0 ); }
forceUpdate = true; bReloadMaterials = true; recomputeSnapshots = true; }
if ( config.VRMode() != g_config.VRMode() || config.m_nVRModeAdapter != g_config.m_nVRModeAdapter ) { bVideoModeChange = true; }
// Don't use compressed textures for the moment if we don't support them
if ( HardwareConfig() && !HardwareConfig()->SupportsCompressedTextures() ) { config.bCompressedTextures = false; }
if ( forceUpdate ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: forceUpdate is true, therefore setting recomputeSnapshots, bRedownloadLightmaps, bRedownloadTextures, bResetAnisotropy, and bSetStandardVertexShaderConstants\n" ); } GetLightmaps()->EnableLightmapFiltering( config.bFilterLightmaps ); recomputeSnapshots = true; bRedownloadLightmaps = true; bRedownloadTextures = true; bResetAnisotropy = true; bSetStandardVertexShaderConstants = true; }
// toggle bump mapping
if ( config.UseBumpmapping() != g_config.UseBumpmapping() || config.UsePhong() != g_config.UsePhong() ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: forceUpdate is true, therefore setting recomputeSnapshots, bRedownloadLightmaps, bRedownloadTextures, bResetAnisotropy, and bSetStandardVertexShaderConstants\n" ); } recomputeSnapshots = true; bReloadMaterials = true; bResetAnisotropy = true; } // toggle specularity
if ( config.UseSpecular() != g_config.UseSpecular() ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new usespecular=%d, old usespecular=%d, setting recomputeSnapshots, bReloadMaterials, and bResetAnisotropy\n", ( int )config.UseSpecular(), ( int )g_config.UseSpecular() ); } recomputeSnapshots = true; bReloadMaterials = true; bResetAnisotropy = true; } // toggle parallax mapping
if ( config.UseParallaxMapping() != g_config.UseParallaxMapping() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new UseParallaxMapping=%d, old UseParallaxMapping=%d, setting bReloadMaterials\n", ( int )config.UseParallaxMapping(), ( int )g_config.UseParallaxMapping() ); } bReloadMaterials = true; } // Reload materials if we want reduced fillrate
if ( config.ReduceFillrate() != g_config.ReduceFillrate() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new ReduceFillrate=%d, old ReduceFillrate=%d, setting bReloadMaterials\n", ( int )config.ReduceFillrate(), ( int )g_config.ReduceFillrate() ); } bReloadMaterials = true; }
// toggle reverse depth
if ( config.bReverseDepth != g_config.bReverseDepth ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new ReduceFillrate=%d, old ReduceFillrate=%d, setting bReloadMaterials\n", ( int )config.ReduceFillrate(), ( int )g_config.ReduceFillrate() ); } recomputeSnapshots = true; bResetAnisotropy = true; }
// toggle no transparency
if ( config.bNoTransparency != g_config.bNoTransparency ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new bNoTransparency=%d, old bNoTransparency=%d, setting recomputeSnapshots and bResetAnisotropy\n", ( int )config.bNoTransparency, ( int )g_config.bNoTransparency ); } recomputeSnapshots = true; bResetAnisotropy = true; }
// toggle lightmap filtering
if ( config.bFilterLightmaps != g_config.bFilterLightmaps ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new bFilterLightmaps=%d, old bFilterLightmaps=%d, setting EnableLightmapFiltering\n", ( int )config.bFilterLightmaps, ( int )g_config.bFilterLightmaps ); } GetLightmaps()->EnableLightmapFiltering( config.bFilterLightmaps ); } // toggle software lighting
if ( config.bSoftwareLighting != g_config.bSoftwareLighting ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new bSoftwareLighting=%d, old bSoftwareLighting=%d, setting bReloadMaterials\n", ( int )config.bFilterLightmaps, ( int )g_config.bFilterLightmaps ); } bReloadMaterials = true; }
#ifndef _X360
if ( config_internal.r_waterforceexpensive != g_config_internal.r_waterforceexpensive ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new r_waterforceexpensive=%d, old r_waterforceexpensive=%d, setting bReloadMaterials\n", ( int )config_internal.r_waterforceexpensive, ( int )g_config_internal.r_waterforceexpensive ); } bReloadMaterials = true; } #endif
// generic things that cause us to redownload lightmaps
if ( config.bAllowCheats != g_config.bAllowCheats ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new bAllowCheats=%d, old bAllowCheats=%d, setting bRedownloadLightmaps\n", ( int )config.bAllowCheats, ( int )g_config.bAllowCheats ); } bRedownloadLightmaps = true; }
// generic things that cause us to redownload textures
if ( config.bAllowCheats != g_config.bAllowCheats || config.skipMipLevels != g_config.skipMipLevels || config.nShowMipLevels != g_config.nShowMipLevels || ((config.bCompressedTextures != g_config.bCompressedTextures) && HardwareConfig()->SupportsCompressedTextures())|| config.bShowLowResImage != g_config.bShowLowResImage ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: setting bRedownloadTextures, recomputeSnapshots, and bResetAnisotropy\n" ); } bRedownloadTextures = true; recomputeSnapshots = true; bResetAnisotropy = true; }
if ( config.ForceTrilinear() != g_config.ForceTrilinear() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new forcetrilinear: %d, old forcetrilinear: %d, setting bResetTextureFilter\n", ( int )config.ForceTrilinear(), ( int )g_config.ForceTrilinear() ); } bResetTextureFilter = true; }
if ( config.m_nForceAnisotropicLevel != g_config.m_nForceAnisotropicLevel ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new m_nForceAnisotropicLevel: %d, old m_nForceAnisotropicLevel: %d, setting bResetAnisotropy and bResetTextureFilter\n", ( int )config.ForceTrilinear(), ( int )g_config.ForceTrilinear() ); } bResetAnisotropy = true; bResetTextureFilter = true; }
if ( config.m_fMonitorGamma != g_config.m_fMonitorGamma || config.m_fGammaTVRangeMin != g_config.m_fGammaTVRangeMin || config.m_fGammaTVRangeMax != g_config.m_fGammaTVRangeMax || config.m_fGammaTVExponent != g_config.m_fGammaTVExponent || config.m_bGammaTVEnabled != g_config.m_bGammaTVEnabled ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new monitorgamma: %f, old monitorgamma: %f, setting bMonitorGammaChanged\n", config.m_fMonitorGamma, g_config.m_fMonitorGamma ); } bMonitorGammaChanged = true; }
if ( config.m_VideoMode.m_Width != g_config.m_VideoMode.m_Width || config.m_VideoMode.m_Height != g_config.m_VideoMode.m_Height || config.m_VideoMode.m_RefreshRate != g_config.m_VideoMode.m_RefreshRate || config.m_nAASamples != g_config.m_nAASamples || config.m_nAAQuality != g_config.m_nAAQuality || config.Windowed() != g_config.Windowed() || config.Stencil() != g_config.Stencil() ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: video mode changed for one of various reasons\n" ); } bVideoModeChange = true; }
// toggle wait for vsync
// In GL, we just check this and it's just a function call--no need for device shenanigans.
#if !defined( DX_TO_GL_ABSTRACTION )
if ( (IsX360() || !config.Windowed()) && (config.WaitForVSync() != g_config.WaitForVSync()) ) { # if ( !defined( _X360 ) )
{ if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: video mode changed due to toggle of wait for vsync\n" ); } bVideoModeChange = true; } # else
{ g_pShaderAPI->EnableVSync_360( config.WaitForVSync() ); } # endif
} #endif
g_config = config; #ifndef _X360
g_config_internal = config_internal; #endif
if ( dxSupportLevelChanged ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: dx support level changed, clearing snapshots\n" ); } // All snapshots have basically become invalid;
g_pShaderAPI->ClearSnapshots(); }
if ( bRedownloadTextures || bRedownloadLightmaps ) { // Get rid of this?
ColorSpace::SetGamma( 2.2f, 2.2f, OVERBRIGHT, g_config.bAllowCheats, false ); }
// 360 does not support various configuration changes and cannot reload materials
if ( !IsX360() ) { if ( bResetAnisotropy || recomputeSnapshots || bRedownloadLightmaps || bRedownloadTextures || bResetAnisotropy || bVideoModeChange || bSetStandardVertexShaderConstants || bResetTextureFilter ) { Unlock( hLock ); ForceSingleThreaded(); hLock = Lock(); } } if ( bReloadMaterials && !IsX360() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: ReloadMaterials\n" ); } ReloadMaterials(); }
// 360 does not support various configuration changes and cannot reload textures
// 360 has no reason to reload textures, it's unnecessary and massively expensive
// 360 does not use this path as an init affect to get its textures into memory
if ( bRedownloadTextures && !IsX360() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: redownloading textures\n" ); }
if ( g_pShaderAPI->CanDownloadTextures() ) { TextureManager()->RestoreRenderTargets(); TextureManager()->RestoreNonRenderTargetTextures(); } } else if ( bResetTextureFilter ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: ResetTextureFilteringState\n" ); } TextureManager()->ResetTextureFilteringState(); }
// Recompute all state snapshots
if ( recomputeSnapshots ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: RecomputeAllStateSnapshots\n" ); } RecomputeAllStateSnapshots(); }
if ( bResetAnisotropy ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: SetAnisotropicLevel\n" ); } g_pShaderAPI->SetAnisotropicLevel( config.m_nForceAnisotropicLevel ); }
if ( bSetStandardVertexShaderConstants ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: SetStandardVertexShaderConstants\n" ); } g_pShaderAPI->SetStandardVertexShaderConstants( OVERBRIGHT ); }
if ( bMonitorGammaChanged ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: SetHardwareGammaRamp\n" ); } g_pShaderDevice->SetHardwareGammaRamp( config.m_fMonitorGamma, config.m_fGammaTVRangeMin, config.m_fGammaTVRangeMax, config.m_fGammaTVExponent, config.m_bGammaTVEnabled ); }
if ( bVideoModeChange ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: ChangeVideoMode\n" ); } ShaderDeviceInfo_t info; ConvertModeStruct( &info, config ); g_pShaderAPI->ChangeVideoMode( info );
#if defined( USE_SDL )
uint width = info.m_DisplayMode.m_nWidth; uint height = info.m_DisplayMode.m_nHeight; g_pLauncherMgr->RenderedSize( width, height, true ); // true = set
#endif
}
if ( bForceAltTab ) { // Simulate an Alt-Tab
// g_pShaderAPI->ReleaseResources();
// g_pShaderAPI->ReacquireResources();
}
Unlock( hLock ); if ( bVideoModeChange ) { ForceSingleThreaded(); } return bRedownloadLightmaps; }
//-----------------------------------------------------------------------------
// This is called when the config changes
//-----------------------------------------------------------------------------
bool CMaterialSystem::UpdateConfig( bool forceUpdate ) { int nUpdateFlags = 0; if ( g_pCVar && g_pCVar->HasQueuedMaterialThreadConVarSets() ) { ForceSingleThreaded(); nUpdateFlags = g_pCVar->ProcessQueuedMaterialThreadConVarSets(); }
MaterialSystem_Config_t config = g_config; ReadConfigFromConVars( &config ); return OverrideConfig( config, forceUpdate ); }
void CMaterialSystem::ReleaseResources() { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: CMaterialSystem::ReleaseResources\n" ); } g_pShaderAPI->FlushBufferedPrimitives(); g_pShaderDevice->ReleaseResources(); }
void CMaterialSystem::ReacquireResources() { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: CMaterialSystem::ReacquireResources\n" ); } g_pShaderDevice->ReacquireResources(); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMaterialSystem::OnDrawMesh( IMesh *pMesh, int firstIndex, int numIndices ) { if ( IsInStubMode() ) { return false; }
return GetRenderContextInternal()->OnDrawMesh( pMesh, firstIndex, numIndices ); }
bool CMaterialSystem::OnDrawMesh( IMesh *pMesh, CPrimList *pLists, int nLists ) { if ( IsInStubMode() ) { return false; }
return GetRenderContextInternal()->OnDrawMesh( pMesh, pLists, nLists ); }
void CMaterialSystem::OnThreadEvent( uint32 threadEvent ) { m_threadEvents.AddToTail( threadEvent ); }
ShaderAPITextureHandle_t CMaterialSystem::GetShaderAPITextureBindHandle( ITexture *pTexture, int nFrame, int nTextureChannel ) { return ShaderSystem()->GetShaderAPITextureBindHandle( pTexture, nFrame, nTextureChannel ); }
//-----------------------------------------------------------------------------
// Creates a procedural texture
//-----------------------------------------------------------------------------
ITexture *CMaterialSystem::CreateProceduralTexture( const char *pTextureName, const char *pTextureGroupName, int w, int h, ImageFormat fmt, int nFlags ) { ITextureInternal* pTex = TextureManager()->CreateProceduralTexture( pTextureName, pTextureGroupName, w, h, 1, fmt, nFlags ); return pTex; }
//-----------------------------------------------------------------------------
// Create new materials (currently only used by the editor!)
//-----------------------------------------------------------------------------
IMaterial *CMaterialSystem::CreateMaterial( const char *pMaterialName, KeyValues *pVMTKeyValues ) { // For not, just create a material with no default settings
IMaterialInternal* pMaterial = IMaterialInternal::CreateMaterial( pMaterialName, TEXTURE_GROUP_OTHER, pVMTKeyValues ); pMaterial->IncrementReferenceCount(); AddMaterialToMaterialList( pMaterial ); return pMaterial->GetQueueFriendlyVersion(); }
//-----------------------------------------------------------------------------
// Finds or creates a procedural material
//-----------------------------------------------------------------------------
IMaterial *CMaterialSystem::FindProceduralMaterial( const char *pMaterialName, const char *pTextureGroupName, KeyValues *pVMTKeyValues ) { // We need lower-case symbols for this to work
int nLen = Q_strlen( pMaterialName ) + 1; char *pTemp = (char*)stackalloc( nLen ); Q_strncpy( pTemp, pMaterialName, nLen ); Q_strlower( pTemp ); Q_FixSlashes( pTemp, '/' );
// 'true' causes the search to find procedural materials
IMaterialInternal *pMaterial = m_MaterialDict.FindMaterial( pTemp, true ); if ( pMaterial ) { pVMTKeyValues->deleteThis(); } else { pMaterial = IMaterialInternal::CreateMaterial( pMaterialName, pTextureGroupName, pVMTKeyValues ); AddMaterialToMaterialList( static_cast<IMaterialInternal*>( pMaterial ) ); }
return pMaterial->GetQueueFriendlyVersion(); }
//-----------------------------------------------------------------------------
// Search by name
//-----------------------------------------------------------------------------
bool CMaterialSystem::IsMaterialLoaded( char const *pMaterialName ) { // We need lower-case symbols for this to work
int nLen = Q_strlen( pMaterialName ) + 1; char *pFixedNameTemp = (char*)stackalloc( nLen ); char *pTemp = (char*)stackalloc( nLen ); Q_strncpy( pFixedNameTemp, pMaterialName, nLen ); Q_strlower( pFixedNameTemp ); #ifdef POSIX
// strip extensions needs correct slashing for the OS, so fix it up early for Posix
Q_FixSlashes( pFixedNameTemp, '/' ); #endif
Q_StripExtension( pFixedNameTemp, pTemp, nLen ); #ifndef POSIX
Q_FixSlashes( pTemp, '/' ); #endif
Assert( nLen >= Q_strlen( pTemp ) + 1 );
return m_MaterialDict.FindMaterial( pTemp, false ) != NULL; // 'false' causes the search to find only file-created materials
}
//-----------------------------------------------------------------------------
// Search by name
//-----------------------------------------------------------------------------
IMaterial* CMaterialSystem::FindMaterial( char const *pMaterialName, const char *pTextureGroupName, bool bComplain, const char *pComplainPrefix ) { return FindMaterialEx( pMaterialName, pTextureGroupName, MATERIAL_FINDCONTEXT_NONE, bComplain, pComplainPrefix ); }
//-----------------------------------------------------------------------------
// Search by name
//-----------------------------------------------------------------------------
IMaterial* CMaterialSystem::FindMaterialEx( char const* pMaterialName, const char *pTextureGroupName, int nContext, bool bComplain, const char *pComplainPrefix ) { // We need lower-case symbols for this to work
int nLen = Q_strlen( pMaterialName ) + 1; char *pFixedNameTemp = (char*)stackalloc( nLen ); char *pTemp = (char*)stackalloc( nLen ); Q_strncpy( pFixedNameTemp, pMaterialName, nLen ); Q_strlower( pFixedNameTemp ); #ifdef POSIX
// strip extensions needs correct slashing for the OS, so fix it up early for Posix
Q_FixSlashes( pFixedNameTemp, '/' ); #endif
Q_StripExtension( pFixedNameTemp, pTemp, nLen ); #ifndef POSIX
Q_FixSlashes( pTemp, '/' ); #endif
Assert( nLen >= Q_strlen( pTemp ) + 1 );
IMaterialInternal *pExistingMaterial = m_MaterialDict.FindMaterial( pTemp, false ); // 'false' causes the search to find only file-created materials
if ( pExistingMaterial ) return pExistingMaterial->GetQueueFriendlyVersion();
// It hasn't been seen yet, so let's check to see if it's in the filesystem.
nLen = Q_strlen( "materials/" ) + Q_strlen( pTemp ) + Q_strlen( ".vmt" ) + 1; char *vmtName = (char *)stackalloc( nLen );
// Check to see if this is a UNC-specified material name
bool bIsUNC = pTemp[0] == '/' && pTemp[1] == '/' && pTemp[2] != '/'; if ( !bIsUNC ) { Q_strncpy( vmtName, "materials/", nLen ); Q_strncat( vmtName, pTemp, nLen, COPY_ALL_CHARACTERS ); V_FixDoubleSlashes( vmtName ); } else { Q_strncpy( vmtName, pTemp, nLen ); }
//Q_strncat( vmtName, ".vmt", nLen, COPY_ALL_CHARACTERS );
Assert( nLen >= (int)Q_strlen( vmtName ) + 1 );
CUtlVector<FileNameHandle_t> includes; KeyValues *pKeyValues = new KeyValues("vmt"); KeyValues *pPatchKeyValues = new KeyValues( "vmt_patches" ); if ( !LoadVMTFile( *pKeyValues, *pPatchKeyValues, vmtName, true, &includes ) ) { pKeyValues->deleteThis(); pKeyValues = NULL; pPatchKeyValues->deleteThis(); pPatchKeyValues = NULL; } else { char *matNameWithExtension; nLen = Q_strlen( pTemp ) + Q_strlen( ".vmt" ) + 1; matNameWithExtension = (char *)stackalloc( nLen ); Q_strncpy( matNameWithExtension, pTemp, nLen ); Q_strncat( matNameWithExtension, ".vmt", nLen, COPY_ALL_CHARACTERS );
IMaterialInternal *pMat = NULL; if ( !Q_stricmp( pKeyValues->GetName(), "subrect" ) ) { pMat = m_MaterialDict.AddMaterialSubRect( matNameWithExtension, pTextureGroupName, pKeyValues, pPatchKeyValues ); } else { pMat = m_MaterialDict.AddMaterial( matNameWithExtension, pTextureGroupName ); if ( g_pShaderDevice->IsUsingGraphics() ) { if ( !bIsUNC ) { m_pForcedTextureLoadPathID = "GAME"; } pMat->PrecacheVars( pKeyValues, pPatchKeyValues, &includes, nContext ); m_pForcedTextureLoadPathID = NULL; } } pKeyValues->deleteThis(); pPatchKeyValues->deleteThis();
return pMat->GetQueueFriendlyVersion(); }
if ( bComplain ) { Assert( pTemp );
// convert to lowercase
nLen = Q_strlen(pTemp) + 1 ; char *name = (char*)stackalloc( nLen ); Q_strncpy( name, pTemp, nLen ); Q_strlower( name );
if ( m_MaterialDict.NoteMissing( name ) ) { if ( pComplainPrefix ) { DevWarning( "%s", pComplainPrefix ); } DevWarning( "material \"%s\" not found.\n", name ); } }
return g_pErrorMaterial->GetRealTimeVersion(); }
void CMaterialSystem::SetAsyncTextureLoadCache( void* h ) { Assert( !h || !m_hAsyncLoadFileCache ); m_hAsyncLoadFileCache = ( FileCacheHandle_t ) h; }
static char const *TextureAliases[] = { // this table is only here for backwards compatibility where a render target change was made,
// and we wish to redirect an existing old client.dll for hl2 to reference this texture. It's
// not meant as a general texture aliasing system.
"_rt_FullFrameFB1", "_rt_FullScreen" };
ITexture *CMaterialSystem::FindTexture( char const *pTextureName, const char *pTextureGroupName, bool bComplain /* = false */, int nAdditionalCreationFlags /* = 0 */ ) { if ( m_hAsyncLoadFileCache && !TextureManager()->IsTextureLoaded( pTextureName ) ) { bool bIsUNCName = ( pTextureName[0] == '/' && pTextureName[1] == '/' && pTextureName[2] != '/' ); if ( !bIsUNCName ) { const char* pPathID = "GAME"; char buf[MAX_PATH]; V_snprintf( buf, MAX_PATH, "materials/%s", pTextureName ); V_SetExtension( buf, ".vtf", sizeof( buf ) ); const char *pbuf = buf; g_pFullFileSystem->AddFilesToFileCache( m_hAsyncLoadFileCache, &pbuf, 1, pPathID ); return TextureManager()->ErrorTexture(); } }
ITextureInternal *pTexture = TextureManager()->FindOrLoadTexture( pTextureName, pTextureGroupName, nAdditionalCreationFlags ); Assert( pTexture ); if ( pTexture->IsError() ) { if ( IsPC() ) { for ( int i=0; i<NELEMS( TextureAliases ); i+=2 ) { if ( !Q_stricmp( pTextureName, TextureAliases[i] ) ) { return FindTexture( TextureAliases[i+1], pTextureGroupName, bComplain, nAdditionalCreationFlags ); } } } if ( bComplain ) { DevWarning( "Texture '%s' not found.\n", pTextureName ); } }
return pTexture; }
bool CMaterialSystem::IsTextureLoaded( char const* pTextureName ) const { return TextureManager()->IsTextureLoaded( pTextureName ); }
void CMaterialSystem::AddTextureAlias( const char *pAlias, const char *pRealName ) { TextureManager()->AddTextureAlias( pAlias, pRealName ); }
void CMaterialSystem::RemoveTextureAlias( const char *pAlias ) { TextureManager()->RemoveTextureAlias( pAlias ); }
void CMaterialSystem::SetExcludedTextures( const char *pScriptName ) { TextureManager()->SetExcludedTextures( pScriptName ); }
void CMaterialSystem::UpdateExcludedTextures( void ) { TextureManager()->UpdateExcludedTextures(); // Have to re-setup the representative textures since they may have been removed out from under us by the queued loader.
for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { GetMaterialInternal(i)->FindRepresentativeTexture(); GetMaterialInternal(i)->PrecacheMappingDimensions(); } }
//-----------------------------------------------------------------------------
// Recomputes state snapshots for all materials
//-----------------------------------------------------------------------------
void CMaterialSystem::RecomputeAllStateSnapshots() { g_pShaderAPI->ClearSnapshots(); for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { GetMaterialInternal(i)->RecomputeStateSnapshots(); } g_pShaderAPI->ResetRenderState(); }
//-----------------------------------------------------------------------------
// Suspend texture streaming operations, for abormal periods such as loading
//-----------------------------------------------------------------------------
void CMaterialSystem::SuspendTextureStreaming() { TextureManager()->SuspendTextureStreaming(); }
//-----------------------------------------------------------------------------
// Inverse of SuspendTextureStreaming
//-----------------------------------------------------------------------------
void CMaterialSystem::ResumeTextureStreaming() { TextureManager()->ResumeTextureStreaming(); }
//-----------------------------------------------------------------------------
// Uncache all materials
//-----------------------------------------------------------------------------
void CMaterialSystem::UncacheAllMaterials() { MaterialLock_t hLock = Lock(); Flush( true );
m_bReplacementFilesValid = false;
for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial( i ) ) { Assert( GetMaterialInternal(i)->GetReferenceCount() >= 0 ); GetMaterialInternal(i)->Uncache(); } TextureManager()->RemoveUnusedTextures(); Unlock( hLock ); }
//-----------------------------------------------------------------------------
// Uncache unused materials
//-----------------------------------------------------------------------------
void CMaterialSystem::UncacheUnusedMaterials( bool bRecomputeStateSnapshots ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
MaterialLock_t hLock = Lock(); Flush( true );
// We need two loops to make sure we don't reset the snapshots if nothing got removed,
// otherwise the snapshot recomputation is expensive and avoided at load time
bool bDidUncacheMaterial = false; for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { IMaterialInternal *pMatInternal = GetMaterialInternal( i ); Assert( pMatInternal->GetReferenceCount() >= 0 ); if ( pMatInternal->GetReferenceCount() <= 0 ) { bDidUncacheMaterial = true; pMatInternal->Uncache(); } }
if ( IsX360() && bRecomputeStateSnapshots ) { // Always recompute snapshots because the queued loading process skips it during pre-purge,
// allowing it to happen just once, here.
bDidUncacheMaterial = true; }
if ( bDidUncacheMaterial && bRecomputeStateSnapshots ) { // Clear the state snapshots since we are going to rebuild all of them.
g_pShaderAPI->ClearSnapshots(); g_pShaderAPI->ClearVertexAndPixelShaderRefCounts();
for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { IMaterialInternal *pMatInternal = GetMaterialInternal(i); if ( pMatInternal->GetReferenceCount() > 0 ) { // Recompute the state snapshots for the materials that we are keeping
// since we blew all of them away above.
pMatInternal->RecomputeStateSnapshots(); } } g_pShaderAPI->PurgeUnusedVertexAndPixelShaders(); }
if ( bRecomputeStateSnapshots ) { // kick out all per material context datas
for( MaterialHandle_t i = m_MaterialDict.FirstMaterial(); i != m_MaterialDict.InvalidMaterial(); i = m_MaterialDict.NextMaterial( i ) ) { GetMaterialInternal(i)->ClearContextData(); } }
TextureManager()->RemoveUnusedTextures(); Unlock( hLock ); }
//-----------------------------------------------------------------------------
// Release temporary HW memory...
//-----------------------------------------------------------------------------
void CMaterialSystem::ResetTempHWMemory( bool bExitingLevel ) { g_pShaderAPI->DestroyVertexBuffers( bExitingLevel ); TextureManager()->ReleaseTempRenderTargetBits(); }
//-----------------------------------------------------------------------------
// Cache used materials
//-----------------------------------------------------------------------------
void CMaterialSystem::CacheUsedMaterials( ) { g_pShaderAPI->EvictManagedResources(); size_t count = 0; for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { // Some (mac) drivers (amd) seem to keep extra resources around on uploads until the next frame swap. This
// injects pointless synthetic swaps (between already-static load frames)
if ( mat_texture_reload_frame_swap_workaround.GetBool() ) { if ( count++ % 20 == 0 ) { Flush(true); SwapBuffers(); // Not the right thing to call
} } IMaterialInternal* pMat = GetMaterialInternal(i); Assert( pMat->GetReferenceCount() >= 0 ); if( pMat->GetReferenceCount() > 0 ) { pMat->Precache(); } } if ( mat_forcemanagedtextureintohardware.GetBool() ) { TextureManager()->ForceAllTexturesIntoHardware(); } }
//-----------------------------------------------------------------------------
// Reloads textures + materials
//-----------------------------------------------------------------------------
void CMaterialSystem::ReloadTextures( void ) { // Add by jay in changelist 621420.
ForceSingleThreaded();
// 360 should not have gotten here
Assert( !IsX360() );
KeyValuesSystem()->InvalidateCache();
TextureManager()->RestoreRenderTargets(); TextureManager()->RestoreNonRenderTargetTextures(); }
void CMaterialSystem::ReloadMaterials( const char *pSubString ) { bool bDeviceReady = g_pShaderAPI->CanDownloadTextures();
if ( !bDeviceReady ) { //$ TODO: Merge m_bDeferredMaterialReload from cs:go?
Msg( "%s bDeviceReady false\n", __FUNCTION__ ); }
// Add by jay in changelist 621420.
ForceSingleThreaded();
KeyValuesSystem()->InvalidateCache();
bool bVertexFormatChanged = false; if( pSubString == NULL ) { bVertexFormatChanged = true; UncacheAllMaterials(); CacheUsedMaterials(); } else { Flush( false );
char const chMultiDelim = '*'; CUtlVector< char > arrSearchSubString; CUtlVector< char const * > arrSearchItems;
if ( strchr( pSubString, chMultiDelim ) ) { arrSearchSubString.SetCount( strlen( pSubString ) + 1 ); strcpy( arrSearchSubString.Base(), pSubString ); for ( char * pch = arrSearchSubString.Base(); pch; ) { char *pchEnd = strchr( pch, chMultiDelim ); pchEnd ? *( pchEnd ++ ) = 0 : 0; arrSearchItems.AddToTail( pch ); pch = pchEnd; } }
for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { if( GetMaterialInternal(i)->GetReferenceCount() <= 0 ) continue;
char const *szMatName = GetMaterialInternal(i)->GetName(); if ( arrSearchItems.Count() > 1 ) { bool bMatched = false; for ( int k = 0; !bMatched && ( k < arrSearchItems.Count() ); ++ k ) if( Q_stristr( szMatName, arrSearchItems[k] ) ) bMatched = true; if ( !bMatched ) continue; } else { if( !Q_stristr( szMatName, pSubString ) ) continue; }
if ( !GetMaterialInternal(i)->IsPrecached() ) { if ( GetMaterialInternal(i)->IsPrecachedVars() ) { GetMaterialInternal(i)->Uncache( ); } } else { VertexFormat_t oldVertexFormat = GetMaterialInternal(i)->GetVertexFormat(); GetMaterialInternal(i)->Uncache(); GetMaterialInternal(i)->Precache(); GetMaterialInternal(i)->ReloadTextures(); if( GetMaterialInternal(i)->GetVertexFormat() != oldVertexFormat ) { bVertexFormatChanged = true; } } } }
if( bVertexFormatChanged && bDeviceReady ) { // Reloading materials could cause a vertex format change, so
// we need to release and restore
ReleaseShaderObjects(); RestoreShaderObjects( NULL, MATERIAL_RESTORE_VERTEX_FORMAT_CHANGED ); } }
//-----------------------------------------------------------------------------
// Allocates the standard textures used by the material system
//-----------------------------------------------------------------------------
void CMaterialSystem::AllocateStandardTextures() { if ( m_StandardTexturesAllocated ) return;
m_StandardTexturesAllocated = true;
float nominal_lightmap_value = 1.0; if ( HardwareConfig()->GetHDRType() == HDR_TYPE_INTEGER ) nominal_lightmap_value = 1.0/16.0;
unsigned char texel[4]; texel[3] = 255;
int tcFlags = TEXTURE_CREATE_MANAGED; int tcFlagsSRGB = TEXTURE_CREATE_MANAGED | TEXTURE_CREATE_SRGB; if ( IsX360() ) { tcFlags |= TEXTURE_CREATE_CANCONVERTFORMAT; tcFlagsSRGB |= TEXTURE_CREATE_CANCONVERTFORMAT; }
// allocate a white, single texel texture for the fullbright lightmap
// note: make sure and redo this when changing gamma, etc.
// don't mipmap lightmaps
m_FullbrightLightmapTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[FULLBRIGHT_LIGHTMAP_TEXID]", TEXTURE_GROUP_LIGHTMAP ); g_pShaderAPI->ModifyTexture( m_FullbrightLightmapTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); float tmpVect[3] = { nominal_lightmap_value, nominal_lightmap_value, nominal_lightmap_value }; ColorSpace::LinearToLightmap( texel, tmpVect ); g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, texel );
// allocate a black single texel texture
#if !defined( _X360 )
m_BlackTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlagsSRGB, "[BLACK_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_BlackTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = texel[1] = texel[2] = 0; g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, texel ); #else
m_BlackTextureHandle = ((ITextureInternal*)FindTexture( "black", TEXTURE_GROUP_OTHER, true ))->GetTextureHandle( 0 ); #endif
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_BLACK, m_BlackTextureHandle );
// allocate a fully white single texel texture
#if !defined( _X360 )
m_WhiteTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlagsSRGB, "[WHITE_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_WhiteTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = texel[1] = texel[2] = 255; g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, texel ); #else
m_WhiteTextureHandle = ((ITextureInternal*)FindTexture( "white", TEXTURE_GROUP_OTHER, true ))->GetTextureHandle( 0 ); #endif
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_WHITE, m_WhiteTextureHandle );
// allocate a grey single texel texture with an alpha of zero (for mat_fullbright 2)
#if !defined( _X360 )
m_GreyTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlagsSRGB, "[GREY_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_GreyTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = texel[1] = texel[2] = 128; texel[3] = 255; // needs to be 255 so that mat_fullbright 2 stuff isn't translucent.
g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, texel ); #else
m_GreyTextureHandle = ((ITextureInternal*)FindTexture( "grey", TEXTURE_GROUP_OTHER, true ))->GetTextureHandle( 0 ); #endif
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_GREY, m_GreyTextureHandle );
// allocate a grey single texel texture with an alpha of zero (for mat_fullbright 2)
#if !defined( _X360 )
m_GreyAlphaZeroTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_RGBA8888, 1, 1, tcFlagsSRGB, "[GREYALPHAZERO_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_GreyAlphaZeroTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = texel[1] = texel[2] = 128; texel[3] = 0; // needs to be 0 so that self-illum doens't affect mat_fullbright 2
g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_RGBA8888, 0, 1, 1, IMAGE_FORMAT_RGBA8888, false, texel ); texel[3] = 255; // set back to default value so we don't affect the rest of this code.'
#else
m_GreyAlphaZeroTextureHandle = ((ITextureInternal*)FindTexture( "greyalphazero", TEXTURE_GROUP_OTHER, true ))->GetTextureHandle( 0 ); #endif
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_GREY_ALPHA_ZERO, m_GreyAlphaZeroTextureHandle );
// allocate a single texel flat normal texture lightmap
m_FlatNormalTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[FLAT_NORMAL_TEXTURE]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_FlatNormalTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = 255; // B
texel[1] = 127; // G
texel[2] = 127; // R
g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, texel ); g_pShaderAPI->SetStandardTextureHandle( TEXTURE_NORMALMAP_FLAT, m_FlatNormalTextureHandle );
// allocate a single texel fullbright 1 lightmap for use with bump textures
m_FullbrightBumpedLightmapTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[FULLBRIGHT_BUMPED_LIGHTMAP_TEXID]", TEXTURE_GROUP_LIGHTMAP ); g_pShaderAPI->ModifyTexture( m_FullbrightBumpedLightmapTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); float linearColor[3] = { nominal_lightmap_value, nominal_lightmap_value, nominal_lightmap_value }; unsigned char dummy[3]; ColorSpace::LinearToBumpedLightmap( linearColor, linearColor, linearColor, linearColor, dummy, texel, dummy, dummy ); g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, texel ); g_pShaderAPI->SetStandardTextureHandle( TEXTURE_LIGHTMAP_BUMPED_FULLBRIGHT, m_FullbrightBumpedLightmapTextureHandle ); { int iGammaLookupFlags = tcFlags; ImageFormat gammalookupfmt; gammalookupfmt = IMAGE_FORMAT_I8;
// generate the linear->gamma conversion table texture.
{ const int LINEAR_TO_GAMMA_TABLE_WIDTH = 512; m_LinearToGammaTableTextureHandle = g_pShaderAPI->CreateTexture( LINEAR_TO_GAMMA_TABLE_WIDTH, 1, 1, gammalookupfmt, 1, 1, iGammaLookupFlags, "[LINEAR_TO_GAMMA_LOOKUP_SRGBON_TEXID]", TEXTURE_GROUP_PIXEL_SHADERS ); g_pShaderAPI->ModifyTexture( m_LinearToGammaTableTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_CLAMP ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_CLAMP ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_CLAMP );
float pixelData[LINEAR_TO_GAMMA_TABLE_WIDTH]; //sometimes used as float, sometimes as uint8, sizeof(float) > sizeof(uint8)
for( int i = 0; i != LINEAR_TO_GAMMA_TABLE_WIDTH; ++i ) { float fLookupResult = ((float)i) / ((float)(LINEAR_TO_GAMMA_TABLE_WIDTH - 1)); fLookupResult = g_pShaderAPI->LinearToGamma_HardwareSpecific( fLookupResult ); //do an extra srgb conversion because we'll be converting back on texture read
fLookupResult = g_pShaderAPI->LinearToGamma_HardwareSpecific( fLookupResult ); //that's right, linear->gamma->gamma2x so that that gamma->linear srgb read still ends up in gamma
int iColor = RoundFloatToInt( fLookupResult * 255.0f ); if( iColor > 255 ) iColor = 255;
((uint8 *)pixelData)[i] = (uint8)iColor; }
g_pShaderAPI->TexImage2D( 0, 0, gammalookupfmt, 0, LINEAR_TO_GAMMA_TABLE_WIDTH, 1, gammalookupfmt, false, (void *)pixelData ); }
// generate the identity conversion table texture.
{ const int LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH = 256; m_LinearToGammaIdentityTableTextureHandle = g_pShaderAPI->CreateTexture( LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH, 1, 1, gammalookupfmt, 1, 1, tcFlags, "[LINEAR_TO_GAMMA_LOOKUP_SRGBOFF_TEXID]", TEXTURE_GROUP_PIXEL_SHADERS ); g_pShaderAPI->ModifyTexture( m_LinearToGammaIdentityTableTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_CLAMP ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_CLAMP ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_CLAMP );
float pixelData[LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH]; //sometimes used as float, sometimes as uint8, sizeof(float) > sizeof(uint8)
for( int i = 0; i != LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH; ++i ) { float fLookupResult = ((float)i) / ((float)(LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH - 1)); //do an extra srgb conversion because we'll be converting back on texture read
fLookupResult = g_pShaderAPI->LinearToGamma_HardwareSpecific( fLookupResult );
int iColor = RoundFloatToInt( fLookupResult * 255.0f ); if ( iColor > 255 ) iColor = 255;
((uint8 *)pixelData)[i] = (uint8)iColor; }
g_pShaderAPI->TexImage2D( 0, 0, gammalookupfmt, 0, LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH, 1, gammalookupfmt, false, (void *)pixelData ); } }
//create the maximum depth texture
{ m_MaxDepthTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_RGBA8888, 1, 1, tcFlags, "[MAXDEPTH_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_MaxDepthTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); //360 gets depth out of the red channel (which doubles as depth in D24S8) and may be 0/1 depending on REVERSE_DEPTH_ON_X360
//PC gets depth out of the alpha channel
texel[0] = texel[1] = texel[2] = ReverseDepthOnX360() ? 0 : 255; texel[3] = 255;
g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_RGBA8888, 0, 1, 1, IMAGE_FORMAT_RGBA8888, false, texel ); }
//only the shaderapi can handle switching between textures correctly, so pass off the textures to it.
g_pShaderAPI->SetLinearToGammaConversionTextures( m_LinearToGammaTableTextureHandle, m_LinearToGammaIdentityTableTextureHandle ); }
void CMaterialSystem::ReleaseStandardTextures() { if ( m_StandardTexturesAllocated ) { if ( IsPC() ) { g_pShaderAPI->DeleteTexture( m_BlackTextureHandle ); g_pShaderAPI->DeleteTexture( m_WhiteTextureHandle ); g_pShaderAPI->DeleteTexture( m_GreyTextureHandle ); g_pShaderAPI->DeleteTexture( m_GreyAlphaZeroTextureHandle ); } g_pShaderAPI->DeleteTexture( m_FullbrightLightmapTextureHandle ); g_pShaderAPI->DeleteTexture( m_FlatNormalTextureHandle ); g_pShaderAPI->DeleteTexture( m_FullbrightBumpedLightmapTextureHandle );
g_pShaderAPI->DeleteTexture( m_LinearToGammaTableTextureHandle ); g_pShaderAPI->DeleteTexture( m_LinearToGammaIdentityTableTextureHandle ); g_pShaderAPI->SetLinearToGammaConversionTextures( INVALID_SHADERAPI_TEXTURE_HANDLE, INVALID_SHADERAPI_TEXTURE_HANDLE );
g_pShaderAPI->DeleteTexture( m_MaxDepthTextureHandle );
m_StandardTexturesAllocated = false; } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMaterialSystem::BeginFrame( float frameTime ) { // Safety measure (calls should only come from the main thread, also check correct pairing)
if ( !ThreadInMainThread() || IsInFrame() ) return;
// check debug vars. we will use these to setup g_nDebugVarsSignature so that materials will
// rebuild their draw lists when debug modes changed.
g_nDebugVarsSignature = ( (mat_specular.GetInt() != 0 ) + ( mat_normalmaps.GetInt() << 1 ) + ( mat_fullbright.GetInt() << 2 ) + (mat_fastnobump.GetInt() << 4 ) ) << 24; Assert( m_bGeneratedConfig );
VPROF_BUDGET( "CMaterialSystem::BeginFrame", VPROF_BUDGETGROUP_SWAP_BUFFERS ); tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "%s", __FUNCTION__ );
IMatRenderContextInternal *pRenderContext = GetRenderContextInternal(); if ( g_config.ForceHWSync() && (IsPC() || m_ThreadMode != MATERIAL_QUEUED_THREADED) ) { tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "ForceHardwareSync" ); pRenderContext->ForceHardwareSync(); }
pRenderContext->MarkRenderDataUnused( true ); pRenderContext->BeginFrame(); pRenderContext->SetFrameTime( frameTime ); pRenderContext->SetToneMappingScaleLinear( Vector( 1,1,1) );
Assert( !m_bInFrame ); m_bInFrame = true; }
bool CMaterialSystem::IsInFrame( ) const { return m_bInFrame; }
#ifdef RAD_TELEMETRY_ENABLED
static const char *GetMatString( enum MaterialThreadMode_t ThreadMode ) { switch( ThreadMode ) { case MATERIAL_SINGLE_THREADED: return "single"; case MATERIAL_QUEUED_SINGLE_THREADED: return "queued_single"; case MATERIAL_QUEUED_THREADED: return "queued_threaded"; default: return "???"; } } #endif
ConVar mat_queue_mode( "mat_queue_mode", "-1", FCVAR_ARCHIVE, "The queue/thread mode the material system should use: -1=default, 0=synchronous single thread" #ifdef MAT_QUEUE_MODE_PROFILE
", 1=queued single thread" #endif
", 2=queued multithreaded" );
ConVar mat_queue_report( "mat_queue_report", "0", FCVAR_ARCHIVE, "Report thread stalls. Positive number will filter by stalls >= time in ms. -1 reports all locks." );
void CMaterialSystem::ThreadExecuteQueuedContext( CMatQueuedRenderContext *pContext ) { #ifdef RAD_TELEMETRY_ENABLED
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s-%s", __FUNCTION__, GetMatString( m_ThreadMode ) ); CTelemetrySpikeDetector Spike( "ThreadExecuteQueuedContext", 1 ); #endif
Assert( m_bThreadHasOwnership );
m_nRenderThreadID = ThreadGetCurrentId(); IMatRenderContextInternal* pSavedRenderContext = m_pRenderContext.Get(); m_pRenderContext.Set( &m_HardwareRenderContext ); pContext->EndQueue( true ); m_pRenderContext.Set( pSavedRenderContext ); m_nRenderThreadID = 0xFFFFFFFF; }
IThreadPool *CMaterialSystem::CreateMatQueueThreadPool() { if( IsX360() ) { return g_pThreadPool; } else if( !m_pMatQueueThreadPool ) { ThreadPoolStartParams_t startParams;
startParams.nThreads = 1; startParams.nStackSize = 256*1024; startParams.fDistribute = TRS_TRUE;
// The rendering thread has the GL context and the main thread is coming in and
// "helping" finish jobs - that breaks OpenGL, which requires TLS. This flag states
// that only the threadpool threads should execute these jobs.
startParams.bExecOnThreadPoolThreadsOnly = true;
m_pMatQueueThreadPool = CreateThreadPool(); m_pMatQueueThreadPool->Start( startParams, "MatQueue" ); }
return m_pMatQueueThreadPool; }
void CMaterialSystem::DestroyMatQueueThreadPool() { if( m_pMatQueueThreadPool ) { m_pMatQueueThreadPool->Stop(); delete m_pMatQueueThreadPool; m_pMatQueueThreadPool = NULL; } }
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
class CThreadAcquire : public CJob { virtual JobStatus_t DoExecute() { g_pShaderAPI->AcquireThreadOwnership();
return JOB_OK; } };
void CMaterialSystem::EndFrame( void ) { // Safety measure (calls should only come from the main thread, also check correct pairing)
if ( !ThreadInMainThread() || !IsInFrame() ) return;
Assert( m_bGeneratedConfig ); VPROF_BUDGET( "CMaterialSystem::EndFrame", VPROF_BUDGETGROUP_SWAP_BUFFERS );
GetRenderContextInternal()->EndFrame(); TextureManager()->Update();
while ( !m_scheduledComposites.IsEmpty() ) { // We hold a ref, so if there's only one count left, it's us. Let it go and move on.
if ( m_scheduledComposites[ 0 ]->GetRefCount() == 1 ) { m_scheduledComposites[ 0 ]->Release(); m_scheduledComposites.Remove( 0 ); continue; }
m_scheduledComposites[ 0 ]->Resolve(); m_pendingComposites.AddToTail( m_scheduledComposites[ 0 ] );
m_scheduledComposites.Remove( 0 );
// Only do one per frame, because these can actually be fairly expensive.
break; }
FOR_EACH_VEC( m_pendingComposites, i ) { CTextureCompositor* comp = m_pendingComposites[ i ];
// We hold a ref, so if there's only one count left, it's us. Let it go and move on.
if ( comp->GetRefCount() == 1 ) { comp->Release(); m_pendingComposites.Remove( i ); // Back up one
--i; continue; }
comp->Update();
if ( comp->GetResolveStatus() == ECRS_Complete || comp->GetResolveStatus() == ECRS_Error ) { comp->Release(); m_pendingComposites.Remove( i );
// Stop after the first one reports that it was completed, these can take awhile and
// we don't want to hammer anyone's framerate.
break; } }
//-------------------------------------------------------------
int iConVarThreadMode = mat_queue_mode.GetInt();
// For this testing release, -2 is equivalent to 0 (off). When we release, we'll make -2 equivalent to -1 (on)
if ( iConVarThreadMode == -2 ) { iConVarThreadMode = MATERIAL_QUEUED_THREADED; }
#ifndef MAT_QUEUE_MODE_PROFILE
if ( iConVarThreadMode == MATERIAL_QUEUED_SINGLE_THREADED ) { iConVarThreadMode = MATERIAL_SINGLE_THREADED; } #endif
MaterialThreadMode_t nextThreadMode = ( iConVarThreadMode >= 0 ) ? (MaterialThreadMode_t)iConVarThreadMode : m_IdealThreadMode; // note: This is a hack because there is no explicit query for the device being deactivated due to device lost.
// however, that is all the current implementation of CanDownloadTextures actually does.
bool bDeviceReady = g_pShaderAPI->CanDownloadTextures(); if ( !bDeviceReady || !m_bAllowQueuedRendering ) { nextThreadMode = MATERIAL_SINGLE_THREADED; }
if ( m_bForcedSingleThreaded || m_bThreadingNotAvailable ) { nextThreadMode = MATERIAL_SINGLE_THREADED; m_bForcedSingleThreaded = false; }
switch ( m_ThreadMode ) { case MATERIAL_SINGLE_THREADED: OnRenderingAsyncComplete(); break;
case MATERIAL_QUEUED_THREADED: { VPROF_BUDGET( "Mat_ThreadedEndframe", "Mat_ThreadedEndframe" ); if ( !m_bThreadHasOwnership ) { ThreadAcquire( true ); }
if ( m_pActiveAsyncJob && !m_pActiveAsyncJob->IsFinished() ) { m_pActiveAsyncJob->WaitForFinish(); if ( !IsPC() && g_config.ForceHWSync() ) { g_pShaderAPI->ForceHardwareSync(); } } SafeRelease( m_pActiveAsyncJob );
OnRenderingAsyncComplete();
CMatQueuedRenderContext *pPrevContext = &m_QueuedRenderContexts[m_iCurQueuedContext];
m_iCurQueuedContext = ( ( m_iCurQueuedContext + 1 ) % ARRAYSIZE( m_QueuedRenderContexts) ); m_QueuedRenderContexts[m_iCurQueuedContext].BeginQueue( pPrevContext ); m_pRenderContext.Set( &m_QueuedRenderContexts[m_iCurQueuedContext] );
m_pActiveAsyncJob = new CFunctorJob( CreateFunctor( this, &CMaterialSystem::ThreadExecuteQueuedContext, pPrevContext ), "ThreadExecuteQueuedContext" ); if ( IsX360() ) { if ( m_nServiceThread >= 0 ) { m_pActiveAsyncJob->SetServiceThread( m_nServiceThread ); } }
IThreadPool *pThreadPool = CreateMatQueueThreadPool(); pThreadPool->AddJob( m_pActiveAsyncJob ); break; }
case MATERIAL_QUEUED_SINGLE_THREADED: OnRenderingAsyncComplete(); break;
#ifdef MAT_QUEUE_MODE_PROFILE
{ VPROF_BUDGET( "Mat_ThreadedEndframe", "Mat_QueuedEndframe" );
g_pShaderAPI->SetDisallowAccess( false ); m_pRenderContext.Set( &m_HardwareRenderContext ); m_QueuedRenderContexts[m_iCurQueuedContext].CallQueued(); m_pRenderContext.Set( &m_QueuedRenderContexts[m_iCurQueuedContext] ); g_pShaderAPI->SetDisallowAccess( true ); break; } #endif
}
bool bRelease = false; if ( !bDeviceReady ) { if ( nextThreadMode != MATERIAL_SINGLE_THREADED ) { Assert( nextThreadMode == MATERIAL_SINGLE_THREADED ); bRelease = true; nextThreadMode = MATERIAL_SINGLE_THREADED; if( mat_debugalttab.GetBool() ) { Warning("Handling alt-tab in queued mode!\n"); } } }
if ( m_threadEvents.Count() ) { nextThreadMode = MATERIAL_SINGLE_THREADED; }
if ( m_ThreadMode != nextThreadMode ) { // Shut down the current mode & set new mode
switch ( m_ThreadMode ) { case MATERIAL_SINGLE_THREADED: break;
case MATERIAL_QUEUED_THREADED: { if ( m_pActiveAsyncJob ) { m_pActiveAsyncJob->WaitForFinish(); SafeRelease( m_pActiveAsyncJob ); } // probably have a queued context set here, need hardware to flush the queue if the job isn't active
m_HardwareRenderContext.InitializeFrom(&m_QueuedRenderContexts[m_iCurQueuedContext]); m_pRenderContext.Set( &m_HardwareRenderContext );
m_QueuedRenderContexts[m_iCurQueuedContext].EndQueue( true ); ThreadRelease(); } break;
#ifdef MAT_QUEUE_MODE_PROFILE
case MATERIAL_QUEUED_SINGLE_THREADED: { g_pShaderAPI->SetDisallowAccess( false ); // We have a queued context set here, need hardware to flush the queue if the job isn't active
m_pRenderContext.Set( &m_HardwareRenderContext ); m_QueuedRenderContexts[m_iCurQueuedContext].EndQueue( true ); break; } #endif
}
m_ThreadMode = nextThreadMode; Assert( g_MatSysMutex.GetOwnerId() == 0 );
g_pShaderAPI->EnableShaderShaderMutex( m_ThreadMode != MATERIAL_SINGLE_THREADED ); // use mutex even for queued to allow "disalow access" to function properly
g_pShaderAPI->EnableBuffer2FramesAhead( true );
switch ( m_ThreadMode ) { case MATERIAL_SINGLE_THREADED: m_pRenderContext.Set( &m_HardwareRenderContext ); for ( int i = 0; i < ARRAYSIZE( m_QueuedRenderContexts ); i++ ) { Assert( m_QueuedRenderContexts[i].IsInitialized() ); m_QueuedRenderContexts[i].EndQueue( true ); } break;
#ifdef MAT_QUEUE_MODE_PROFILE
case MATERIAL_QUEUED_SINGLE_THREADED: #endif
case MATERIAL_QUEUED_THREADED: { m_iCurQueuedContext = 0; m_QueuedRenderContexts[m_iCurQueuedContext].BeginQueue( &m_HardwareRenderContext ); m_pRenderContext.Set( &m_QueuedRenderContexts[m_iCurQueuedContext] ); #ifdef MAT_QUEUE_MODE_PROFILE
if ( m_ThreadMode == MATERIAL_QUEUED_SINGLE_THREADED ) { g_pShaderAPI->SetDisallowAccess( true ); } else #endif
{ g_pShaderAPI->ReleaseThreadOwnership();
CJob *pActiveAsyncJob = new CThreadAcquire(); IThreadPool *pThreadPool = CreateMatQueueThreadPool(); pThreadPool->AddJob( pActiveAsyncJob ); SafeRelease( pActiveAsyncJob );
m_bThreadHasOwnership = true; m_ThreadOwnershipID = ThreadGetCurrentId(); } } break; } }
if ( m_ThreadMode == MATERIAL_SINGLE_THREADED ) { for ( int i = 0; i < m_threadEvents.Count(); i++ ) { g_pShaderDevice->HandleThreadEvent(m_threadEvents[i]); } m_threadEvents.RemoveAll(); } Assert( m_bInFrame ); m_bInFrame = false; }
void CMaterialSystem::SetInStubMode( bool bInStubMode ) { m_bInStubMode = bInStubMode; }
bool CMaterialSystem::IsInStubMode() { return m_bInStubMode; }
void CMaterialSystem::Flush( bool flushHardware ) { GetRenderContextInternal()->Flush( flushHardware ); }
//-----------------------------------------------------------------------------
// Flushes managed textures from the texture cacher
//-----------------------------------------------------------------------------
void CMaterialSystem::EvictManagedResources() { g_pShaderAPI->EvictManagedResources(); }
int __cdecl MaterialNameCompareFunc( const void *elem1, const void *elem2 ) { IMaterialInternal *pMaterialA = g_MaterialSystem.GetMaterialInternal( *(MaterialHandle_t *)elem1 ); IMaterialInternal *pMaterialB = g_MaterialSystem.GetMaterialInternal( *(MaterialHandle_t *)elem2 );
// case insensitive to group similar named materials
return stricmp( pMaterialA->GetName(), pMaterialB->GetName() ); }
void CMaterialSystem::DebugPrintUsedMaterials( const char *pSearchSubString, bool bVerbose ) { MaterialHandle_t h; int i; int nNumCached; int nRefCount; int nSortedMaterials; int nNumErrors; // build a mapping to sort the material names
MaterialHandle_t *pSorted = (MaterialHandle_t*)stackalloc( GetNumMaterials() * sizeof(MaterialHandle_t) ); nSortedMaterials = 0; for (h = FirstMaterial(); h != InvalidMaterial(); h = NextMaterial(h) ) { pSorted[nSortedMaterials++] = h; } qsort( pSorted, nSortedMaterials, sizeof(MaterialHandle_t), MaterialNameCompareFunc );
nNumCached = 0; nNumErrors = 0; for (i = 0; i < nSortedMaterials; i++) { // iterate using sort mapping
IMaterialInternal *pMaterial = GetMaterialInternal(pSorted[i]);
nRefCount = pMaterial->GetReferenceCount(); if ( nRefCount < 0 ) { nNumErrors++; } else if (!nRefCount) { if (pMaterial->IsPrecached() || pMaterial->IsPrecachedVars()) { nNumErrors++; } } else { // nonzero reference count
// tally the valid ones
nNumCached++;
if( pSearchSubString ) { if( !Q_stristr( pMaterial->GetName(), pSearchSubString ) && (!pMaterial->GetShader() || !Q_stristr( pMaterial->GetShader()->GetName(), pSearchSubString )) ) { continue; } }
DevMsg( "%s (shader: %s) refCount: %d.\n", pMaterial->GetName(), pMaterial->GetShader() ? pMaterial->GetShader()->GetName() : "unknown\n", nRefCount );
if( !bVerbose ) { continue; }
if( pMaterial->IsPrecached() ) { if( pMaterial->GetShader() ) { for( int j = 0; j < pMaterial->GetShader()->GetNumParams(); j++ ) { IMaterialVar *var; var = pMaterial->GetShaderParams()[j]; if( var ) { switch( var->GetType() ) { case MATERIAL_VAR_TYPE_TEXTURE: { ITextureInternal *texture = static_cast<ITextureInternal *>( var->GetTextureValue() ); if( !texture ) { DevWarning( "Programming error: CMaterialSystem::DebugPrintUsedMaterialsCallback: NULL texture\n" ); continue; } if( IsTextureInternalEnvCubemap( texture ) ) { DevMsg( " \"%s\" \"env_cubemap\"\n", var->GetName() ); } else { DevMsg( " \"%s\" \"%s\"\n", var->GetName(), texture->GetName() ); DevMsg( " %dx%d refCount: %d numframes: %d\n", texture->GetActualWidth(), texture->GetActualHeight(), texture->GetReferenceCount(), texture->GetNumAnimationFrames() ); } } break; case MATERIAL_VAR_TYPE_UNDEFINED: break; default: DevMsg( " \"%s\" \"%s\"\n", var->GetName(), var->GetStringValue() ); break; } } } } } } }
// list the critical errors after, otherwise the console log scrolls them away
if (nNumErrors) { for (i = 0; i < nSortedMaterials; i++) { // iterate using sort mapping
IMaterialInternal *pMaterial = GetMaterialInternal(pSorted[i]);
nRefCount = pMaterial->GetReferenceCount();
if ( nRefCount < 0 ) { // reference counts should not be negative
DevWarning( "DebugPrintUsedMaterials: refCount (%d) < 0 for material: \"%s\"\n", nRefCount, pMaterial->GetName() ); } else if (!nRefCount) { // ensure that it stayed uncached after the post loading uncache
// this is effectively a coding bug thats needs to be fixed
// a material is being precached without incrementing its reference
if (pMaterial->IsPrecached() || pMaterial->IsPrecachedVars()) { DevWarning( "DebugPrintUsedMaterials: material: \"%s\" didn't unache\n", pMaterial->GetName() ); } } } DevWarning( "%d Errors\n", nNumErrors ); }
if (!pSearchSubString) { DevMsg( "%d Cached, %d Total Materials\n", nNumCached, GetNumMaterials() ); } }
void CMaterialSystem::DebugPrintUsedTextures( void ) { TextureManager()->DebugPrintUsedTextures(); }
#if defined( _X360 )
void CMaterialSystem::ListUsedMaterials( void ) { int numMaterials = GetNumMaterials(); xMaterialList_t* pMaterialList = (xMaterialList_t *)stackalloc( numMaterials * sizeof( xMaterialList_t ) );
numMaterials = 0; for ( MaterialHandle_t hMaterial = FirstMaterial(); hMaterial != InvalidMaterial(); hMaterial = NextMaterial( hMaterial ) ) { IMaterialInternal *pMaterial = GetMaterialInternal( hMaterial ); pMaterialList[numMaterials].pName = pMaterial->GetName(); pMaterialList[numMaterials].pShaderName = pMaterial->GetShader() ? pMaterial->GetShader()->GetName() : "???"; pMaterialList[numMaterials].refCount = pMaterial->GetReferenceCount(); numMaterials++; }
XBX_rMaterialList( numMaterials, pMaterialList ); } #endif
void CMaterialSystem::ToggleSuppressMaterial( char const* pMaterialName ) { /*
// This version suppresses all but the material
IMaterial *pMaterial = GetFirstMaterial(); while (pMaterial) { if (stricmp(pMaterial->GetName(), pMaterialName)) { IMaterialInternal* pMatInt = static_cast<IMaterialInternal*>(pMaterial); pMatInt->ToggleSuppression(); } pMaterial = GetNextMaterial(); } */
// Note: if we use this function a lot, we'll want to do something else, like have them
// pass in a texture group or reuse whatever texture group the material already had.
// As it is, this is rarely used, so if it's not in TEXTURE_GROUP_OTHER, it'll go in
// TEXTURE_GROUP_SHARED.
IMaterial* pMaterial = FindMaterial( pMaterialName, TEXTURE_GROUP_OTHER, true, NULL ); if ( !IsErrorMaterial( pMaterial ) ) { IMaterialInternal* pMatInt = static_cast<IMaterialInternal*>(pMaterial); pMatInt = pMatInt->GetRealTimeVersion(); //always work with the realtime material internally
pMatInt->ToggleSuppression(); } }
void CMaterialSystem::ToggleDebugMaterial( char const* pMaterialName ) { // Note: if we use this function a lot, we'll want to do something else, like have them
// pass in a texture group or reuse whatever texture group the material already had.
// As it is, this is rarely used, so if it's not in TEXTURE_GROUP_OTHER, it'll go in
// TEXTURE_GROUP_SHARED.
IMaterial* pMaterial = FindMaterial( pMaterialName, TEXTURE_GROUP_OTHER, false, NULL ); if ( !IsErrorMaterial( pMaterial ) ) { IMaterialInternal* pMatInt = static_cast<IMaterialInternal*>(pMaterial); pMatInt = pMatInt->GetRealTimeVersion(); //always work with the realtime material internally
pMatInt->ToggleDebugTrace(); } else { Warning("Unknown material %s\n", pMaterialName ); } }
//-----------------------------------------------------------------------------
// Used to iterate over all shaders for editing purposes
//-----------------------------------------------------------------------------
int CMaterialSystem::ShaderCount() const { return ShaderSystem()->ShaderCount(); }
int CMaterialSystem::GetShaders( int nFirstShader, int nMaxCount, IShader **ppShaderList ) const { return ShaderSystem()->GetShaders( nFirstShader, nMaxCount, ppShaderList ); }
//-----------------------------------------------------------------------------
// FIXME: Is there a better way of doing this?
// Returns shader flag names for editors to be able to edit them
//-----------------------------------------------------------------------------
int CMaterialSystem::ShaderFlagCount() const { return ShaderSystem()->ShaderStateCount( ); }
const char *CMaterialSystem::ShaderFlagName( int nIndex ) const { return ShaderSystem()->ShaderStateString( nIndex ); }
//-----------------------------------------------------------------------------
// Returns the currently active shader fallback for a particular shader
//-----------------------------------------------------------------------------
void CMaterialSystem::GetShaderFallback( const char *pShaderName, char *pFallbackShader, int nFallbackLength ) { // FIXME: This is pretty much a hack. We need a better way for the
// editor to get ahold of shader fallbacks
int nCount = ShaderCount(); IShader** ppShaderList = (IShader**)_alloca( nCount * sizeof(IShader) ); GetShaders( 0, nCount, ppShaderList );
do { int i; for ( i = 0; i < nCount; ++i ) { if ( !Q_stricmp( pShaderName, ppShaderList[i]->GetName() ) ) break; }
// Didn't find a match!
if ( i == nCount ) { Q_strncpy( pFallbackShader, "wireframe", nFallbackLength ); return; }
// Found a match
// FIXME: Theoretically, getting fallbacks should require a param list
// In practice, it looks rare or maybe even neved done
const char *pFallback = ppShaderList[i]->GetFallbackShader( NULL ); if ( !pFallback ) { Q_strncpy( pFallbackShader, pShaderName, nFallbackLength ); return; } else { pShaderName = pFallback; } } while (true); }
//-----------------------------------------------------------------------------
// Triggers OpenGL shader preloading at game startup
//-----------------------------------------------------------------------------
#ifdef DX_TO_GL_ABSTRACTION
void CMaterialSystem::DoStartupShaderPreloading( void ) { GetRenderContextInternal()->DoStartupShaderPreloading(); } #endif
void CMaterialSystem::SwapBuffers( void ) { VPROF_BUDGET( "CMaterialSystem::SwapBuffers", VPROF_BUDGETGROUP_SWAP_BUFFERS ); GetRenderContextInternal()->SwapBuffers(); g_FrameNum++; }
bool CMaterialSystem::InEditorMode() const { Assert( m_bGeneratedConfig ); return g_config.bEditMode && CanUseEditorMaterials(); }
void CMaterialSystem::NoteAnisotropicLevel( int currentLevel ) { Assert( m_bGeneratedConfig ); g_config.m_nForceAnisotropicLevel = currentLevel; }
// Get the current config for this video card (as last set by control panel or the default if not)
const MaterialSystem_Config_t &CMaterialSystem::GetCurrentConfigForVideoCard() const { Assert( m_bGeneratedConfig ); return g_config; }
// Does the device support the given MSAA level?
bool CMaterialSystem::SupportsMSAAMode( int nNumSamples ) { return g_pShaderAPI->SupportsMSAAMode( nNumSamples ); }
void CMaterialSystem::ReloadFilesInList( IFileList *pFilesToReload ) { if ( !IsPC() ) return;
// We have to flush the materials in 2 steps because they have recursive dependencies. The problem case
// is if you have two materials, A and B, that depend on C. You tell A to reload and it also reloads C. Then
// the filesystem thinks C doesn't need to be reloaded anymore. So when you get to B, it decides not to reload
// either since C doesn't need to be reloaded. To fix this, we ask all materials if they want to reload in
// one stage, then in the next stage we actually reload the appropriate ones.
MaterialHandle_t hNext; for ( MaterialHandle_t h=m_MaterialDict.FirstMaterial(); h != m_MaterialDict.InvalidMaterial(); h=hNext ) { hNext = m_MaterialDict.NextMaterial( h ); IMaterialInternal *pMat = m_MaterialDict.GetMaterialInternal( h );
pMat->DecideShouldReloadFromWhitelist( pFilesToReload ); }
// Now reload the materials that wanted to be reloaded.
for ( MaterialHandle_t h=m_MaterialDict.FirstMaterial(); h != m_MaterialDict.InvalidMaterial(); h=hNext ) { hNext = m_MaterialDict.NextMaterial( h ); IMaterialInternal *pMat = m_MaterialDict.GetMaterialInternal( h );
pMat->ReloadFromWhitelistIfMarked(); }
// Flush out necessary textures.
TextureManager()->ReloadFilesInList( pFilesToReload ); }
// Does the device support the given CSAA level?
bool CMaterialSystem::SupportsCSAAMode( int nNumSamples, int nQualityLevel ) { return g_pShaderAPI->SupportsCSAAMode( nNumSamples, nQualityLevel ); }
// Does the device support shadow depth texturing?
bool CMaterialSystem::SupportsShadowDepthTextures( void ) { return g_pShaderAPI->SupportsShadowDepthTextures(); }
// Does the device support Fetch4
bool CMaterialSystem::SupportsFetch4( void ) { return g_pShaderAPI->SupportsFetch4(); }
// Vendor-dependent shadow depth texture format
ImageFormat CMaterialSystem::GetShadowDepthTextureFormat( void ) { return g_pShaderAPI->GetShadowDepthTextureFormat(); }
// Vendor-dependent slim texture format
ImageFormat CMaterialSystem::GetNullTextureFormat( void ) { return g_pShaderAPI->GetNullTextureFormat(); }
void CMaterialSystem::SetShadowDepthBiasFactors( float fShadowSlopeScaleDepthBias, float fShadowDepthBias ) { g_pShaderAPI->SetShadowDepthBiasFactors( fShadowSlopeScaleDepthBias, fShadowDepthBias ); }
bool CMaterialSystem::SupportsHDRMode( HDRType_t nHDRMode ) { return HardwareConfig()->SupportsHDRMode( nHDRMode ); }
bool CMaterialSystem::UsesSRGBCorrectBlending( void ) const { return HardwareConfig()->UsesSRGBCorrectBlending(); }
// Get video card identitier
const MaterialSystemHardwareIdentifier_t &CMaterialSystem::GetVideoCardIdentifier( void ) const { static MaterialSystemHardwareIdentifier_t foo; Assert( 0 ); return foo; }
void CMaterialSystem::AddModeChangeCallBack( ModeChangeCallbackFunc_t func ) { g_pShaderDeviceMgr->AddModeChangeCallback( func ); }
void CMaterialSystem::RemoveModeChangeCallBack( ModeChangeCallbackFunc_t func ) { g_pShaderDeviceMgr->RemoveModeChangeCallback( func ); }
//-----------------------------------------------------------------------------
// Gets configuration information associated with the display card, and optionally for a particular DX level.
// It will return a list of ConVars and values to set.
//-----------------------------------------------------------------------------
bool CMaterialSystem::GetRecommendedConfigurationInfo( int nDXLevel, KeyValues *pKeyValues ) { MaterialLock_t hLock = Lock(); bool bResult = g_pShaderDeviceMgr->GetRecommendedConfigurationInfo( m_nAdapter, nDXLevel, pKeyValues ); Unlock( hLock ); return bResult; }
//-----------------------------------------------------------------------------
// For dealing with device lost in cases where SwapBuffers isn't called all the time (Hammer)
//-----------------------------------------------------------------------------
void CMaterialSystem::HandleDeviceLost() { if ( IsX360() ) return;
g_pShaderAPI->HandleDeviceLost(); } bool CMaterialSystem::UsingFastClipping( void ) { return (HardwareConfig()->UseFastClipping() || (HardwareConfig()->MaxUserClipPlanes() < 1)); };
int CMaterialSystem::StencilBufferBits( void ) { return HardwareConfig()->StencilBufferBits(); }
ITexture* CMaterialSystem::CreateRenderTargetTexture( int w, int h, RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format, MaterialRenderTargetDepth_t depth ) { return CreateNamedRenderTargetTextureEx( NULL, w, h, sizeMode, format, depth, TEXTUREFLAGS_CLAMPS|TEXTUREFLAGS_CLAMPT, 0 ); }
ITexture* CMaterialSystem::CreateNamedRenderTargetTexture( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format, MaterialRenderTargetDepth_t depth, bool bClampTexCoords, bool bAutoMipMap ) { unsigned int textureFlags = 0; if ( bClampTexCoords ) { textureFlags |= TEXTUREFLAGS_CLAMPS | TEXTUREFLAGS_CLAMPT; }
unsigned int renderTargetFlags = 0; if ( bAutoMipMap ) { renderTargetFlags |= CREATERENDERTARGETFLAGS_AUTOMIPMAP; }
return CreateNamedRenderTargetTextureEx( pRTName, w, h, sizeMode, format, depth, textureFlags, renderTargetFlags ); }
ITexture* CMaterialSystem::CreateNamedRenderTargetTextureEx( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format, MaterialRenderTargetDepth_t depth, unsigned int textureFlags, unsigned int renderTargetFlags ) { RenderTargetType_t rtType;
bool gl_canMixTargetSizes = (HardwareConfig() && HardwareConfig()->SupportsGLMixedSizeTargets()); // On GL, the depth buffer for a render target must be the same size (until we pick up mixed-sized attachments in 10.6.3)
if ( (!gl_canMixTargetSizes && IsPosix()) || IsEmulatingGL() ) { if ( depth != MATERIAL_RT_DEPTH_SEPARATE && depth != MATERIAL_RT_DEPTH_NONE ) { int fbWidth, fbHeight; g_pShaderAPI->GetBackBufferDimensions( fbWidth, fbHeight );
if ( sizeMode != RT_SIZE_FULL_FRAME_BUFFER ) { if ( w != fbWidth || h != fbHeight ) { depth = MATERIAL_RT_DEPTH_SEPARATE; } } } }
// Determine RT type based on depth buffer requirements
switch ( depth ) { case MATERIAL_RT_DEPTH_SEPARATE: // using own depth buffer
rtType = RENDER_TARGET_WITH_DEPTH; break; case MATERIAL_RT_DEPTH_NONE: // no depth buffer
rtType = RENDER_TARGET_NO_DEPTH; break; case MATERIAL_RT_DEPTH_ONLY: // only depth buffer
rtType = RENDER_TARGET_ONLY_DEPTH; break; case MATERIAL_RT_DEPTH_SHARED: default: // using shared depth buffer
rtType = RENDER_TARGET; break; } ITextureInternal* pTex = TextureManager()->CreateRenderTargetTexture( pRTName, w, h, sizeMode, format, rtType, textureFlags, renderTargetFlags ); pTex->IncrementReferenceCount();
#if defined( _X360 )
if ( !( renderTargetFlags & CREATERENDERTARGETFLAGS_NOEDRAM ) ) { // create the EDRAM surface that is bound to the RT Texture
pTex->CreateRenderTargetSurface( 0, 0, IMAGE_FORMAT_UNKNOWN, true ); } #endif
// If we're not in a BeginRenderTargetAllocation-EndRenderTargetAllocation block
// because we're being called by a legacy path (i.e. a mod), force an Alt-Tab after every
// RT allocation to ensure that all RTs get priority during allocation
if ( !m_bAllocatingRenderTargets ) { EndRenderTargetAllocation(); }
return pTex; }
//-----------------------------------------------------------------------------------------------------
// New version which must be called inside BeginRenderTargetAllocation-EndRenderTargetAllocation block
//-----------------------------------------------------------------------------------------------------
ITexture *CMaterialSystem::CreateNamedRenderTargetTextureEx2( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format, MaterialRenderTargetDepth_t depth, unsigned int textureFlags, unsigned int renderTargetFlags ) { // Only proceed if we are between BeginRenderTargetAllocation and EndRenderTargetAllocation
if ( !m_bAllocatingRenderTargets ) { Warning( "Tried to create render target outside of CMaterialSystem::BeginRenderTargetAllocation/EndRenderTargetAllocation block\n" ); return NULL; }
ITexture* pTexture = CreateNamedRenderTargetTextureEx( pRTName, w, h, sizeMode, format, depth, textureFlags, renderTargetFlags );
pTexture->DecrementReferenceCount(); // Follow the same convention as CTextureManager::LoadTexture (return refcount of 0).
return pTexture; }
class CTextureBitsRegenerator : public ITextureRegenerator { public: CTextureBitsRegenerator( int w, int h, int mips, ImageFormat fmt, int srcBufferSize, byte* srcBits ) : m_nWidth( w ) , m_nHeight( h ) , m_nMipmaps( mips ) , m_ImageFormat( fmt ) { Assert( srcBits ); Assert( srcBufferSize > 0 ); Assert( m_nMipmaps != 0 );
// If these fail, we'll crash later, so look to before here for the problem.
Assert( ImageLoader::GetMemRequired( w, h, 1, fmt, m_nMipmaps > 1 ? true : false ) <= srcBufferSize ); Assert( m_nMipmaps == 1 || m_nMipmaps == ImageLoader::GetNumMipMapLevels( m_nWidth, m_nHeight, 1 ) );
m_ImageData.EnsureCapacity( srcBufferSize ); Q_memcpy( m_ImageData.Base(), srcBits, srcBufferSize ); }
virtual void RegenerateTextureBits( ITexture *pTexture, IVTFTexture *pVTFTexture, Rect_t *pRect ) { Assert( pVTFTexture->FrameCount() == 1 ); Assert( pVTFTexture->FaceCount() == 1 );
int destWidth, destHeight, destDepth; pVTFTexture->ComputeMipLevelDimensions( 0, &destWidth, &destHeight, &destDepth ); Assert( destDepth == 1 ); Assert( destWidth <= m_nWidth && destHeight <= m_nHeight );
unsigned char* pDest = pVTFTexture->ImageData(); ImageFormat destFmt = pVTFTexture->Format();
if ( destFmt == m_ImageFormat && destWidth == m_nWidth && destHeight == m_nHeight ) { Q_memcpy( pDest, m_ImageData.Base(), m_ImageData.NumAllocated() ); } else { int srcResX = m_nWidth; int srcResY = m_nHeight; int srcOffset = 0; int dstOffset = 0; int mip = 0;
// Skip the mips we're not including.
while ( mip < m_nMipmaps && ( srcResX > destWidth || srcResY > destHeight ) ) { srcOffset += ImageLoader::GetMemRequired( srcResX, srcResY, 1, m_ImageFormat, false );
srcResX = Max( 1, ( srcResX >> 1 ) ); srcResY = Max( 1, ( srcResY >> 1 ) );
mip++; } // Assert we're where we expect to be now.
Assert( srcResX == destWidth && srcResY == destHeight );
for ( ; mip < m_nMipmaps; ++mip ) { // Convert this mipmap level.
ImageLoader::ConvertImageFormat( m_ImageData.Base() + srcOffset, m_ImageFormat, pDest + dstOffset, destFmt, srcResX, srcResY );
// Then update offsets for the next mipmap level.
srcOffset += ImageLoader::GetMemRequired( srcResX, srcResY, 1, m_ImageFormat, false ); dstOffset += ImageLoader::GetMemRequired( srcResX, srcResY, 1, destFmt, false );
srcResX = Max( 1, ( srcResX >> 1 ) ); srcResY = Max( 1, ( srcResY >> 1 ) ); } } }
virtual void Release() { delete this; }
private: int m_nWidth; int m_nHeight; int m_nMipmaps; ImageFormat m_ImageFormat; CUtlMemory<byte> m_ImageData; };
ITexture* CMaterialSystem::CreateTextureFromBits(int w, int h, int mips, ImageFormat fmt, int srcBufferSize, byte* srcBits) { int flags = TEXTUREFLAGS_SINGLECOPY | ( mips > 1 ? TEXTUREFLAGS_ALL_MIPS : TEXTUREFLAGS_NOMIP ) ;
return CreateNamedTextureFromBitsEx( "frombits", TEXTURE_GROUP_OTHER, w, h, mips, fmt, srcBufferSize, srcBits, flags ); }
void CMaterialSystem::OverrideRenderTargetAllocation( bool rtAlloc ) { m_bAllocatingRenderTargets = rtAlloc; }
ITextureCompositor* CMaterialSystem::NewTextureCompositor( int w, int h, const char* pCompositeName, int nTeamNum, uint64 randomSeed, KeyValues* stageDesc, uint32 texCompositeCreateFlags ) { return CreateTextureCompositor( w, h, pCompositeName, nTeamNum, randomSeed, stageDesc, texCompositeCreateFlags ); }
void CMaterialSystem::ScheduleTextureComposite( CTextureCompositor* _texCompositor ) { Assert( _texCompositor != NULL ); _texCompositor->AddRef(); m_scheduledComposites.AddToTail( _texCompositor ); }
void CMaterialSystem::AsyncFindTexture( const char* pFilename, const char *pTextureGroupName, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs, bool bComplain, int nAdditionalCreationFlags ) { Assert( pFilename != NULL ); Assert( pTextureGroupName != NULL ); Assert( pRecipient != NULL );
// Bump the ref count on the recipient before handing it off. This ensures the receiver won't go away before we have completed our work.
pRecipient->AddRef();
TextureManager()->AsyncFindOrLoadTexture( pFilename, pTextureGroupName, pRecipient, pExtraArgs, bComplain, nAdditionalCreationFlags ); }
// creates a texture suitable for use with materials from a raw stream of bits.
// The bits will be retained by the material system and can be freed upon return.
ITexture *CMaterialSystem::CreateNamedTextureFromBitsEx( const char* pName, const char *pTextureGroupName, int w, int h, int mips, ImageFormat fmt, int srcBufferSize, byte* srcBits, int nFlags ) { Assert( srcBits );
CTextureBitsRegenerator* regen = new CTextureBitsRegenerator( w, h, mips, fmt, srcBufferSize, srcBits ); ITextureInternal* tex = TextureManager()->CreateProceduralTexture( pName, pTextureGroupName, w, h, 1, fmt, nFlags, regen ); return tex; }
bool CMaterialSystem::AddTextureCompositorTemplate( const char* pName, KeyValues* pTmplDesc, int /* nTexCompositeTemplateFlags */ ) { // Flags are currently unused, but added for futureproofing.
return TextureManager()->AddTextureCompositorTemplate( pName, pTmplDesc ); }
bool CMaterialSystem::VerifyTextureCompositorTemplates() { return TextureManager()->VerifyTextureCompositorTemplates(); }
void CMaterialSystem::BeginRenderTargetAllocation( void ) { g_pShaderAPI->FlushBufferedPrimitives(); m_bAllocatingRenderTargets = true; }
void CMaterialSystem::EndRenderTargetAllocation( void ) { // Any GPU newer than 2005 doesn't need to do this, and it eats up ~40% of our level load time!
const bool cbRequiresRenderTargetAllocationFirst = mat_requires_rt_alloc_first.GetBool();
g_pShaderAPI->FlushBufferedPrimitives(); m_bAllocatingRenderTargets = false;
if ( IsPC() && cbRequiresRenderTargetAllocationFirst && g_pShaderAPI->CanDownloadTextures() ) { // Simulate an Alt-Tab...will cause RTs to be allocated first
g_pShaderDevice->ReleaseResources(); g_pShaderDevice->ReacquireResources(); }
TextureManager()->CacheExternalStandardRenderTargets(); }
void CMaterialSystem::SetRenderTargetFrameBufferSizeOverrides( int nWidth, int nHeight ) { m_nRenderTargetFrameBufferWidthOverride = nWidth; m_nRenderTargetFrameBufferHeightOverride = nHeight; }
void CMaterialSystem::GetRenderTargetFrameBufferDimensions( int & nWidth, int & nHeight ) { if( m_nRenderTargetFrameBufferHeightOverride && m_nRenderTargetFrameBufferWidthOverride ) { nWidth = m_nRenderTargetFrameBufferWidthOverride; nHeight = m_nRenderTargetFrameBufferHeightOverride; } else { GetBackBufferDimensions( nWidth, nHeight ); } }
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
void CMaterialSystem::UpdateLightmap( int lightmapPageID, int lightmapSize[2], int offsetIntoLightmapPage[2], float *pFloatImage, float *pFloatImageBump1, float *pFloatImageBump2, float *pFloatImageBump3 ) { CMatCallQueue *pCallQueue = GetRenderCallQueue(); if ( !pCallQueue ) { m_Lightmaps.UpdateLightmap( lightmapPageID, lightmapSize, offsetIntoLightmapPage, pFloatImage, pFloatImageBump1, pFloatImageBump2, pFloatImageBump3 ); } else { ExecuteOnce( DebuggerBreakIfDebugging() ); } }
//-----------------------------------------------------------------------------------------------------
// 360 TTF Font Support
//-----------------------------------------------------------------------------------------------------
#if defined( _X360 )
HXUIFONT CMaterialSystem::OpenTrueTypeFont( const char *pFontname, int tall, int style ) { MaterialLock_t hLock = Lock(); HXUIFONT result = g_pShaderAPI->OpenTrueTypeFont( pFontname, tall, style ); Unlock( hLock ); return result; } void CMaterialSystem::CloseTrueTypeFont( HXUIFONT hFont ) { MaterialLock_t hLock = Lock(); g_pShaderAPI->CloseTrueTypeFont( hFont ); Unlock( hLock ); } bool CMaterialSystem::GetTrueTypeFontMetrics( HXUIFONT hFont, XUIFontMetrics *pFontMetrics, XUICharMetrics charMetrics[256] ) { MaterialLock_t hLock = Lock(); bool result = g_pShaderAPI->GetTrueTypeFontMetrics( hFont, pFontMetrics, charMetrics ); Unlock( hLock ); return result; } bool CMaterialSystem::GetTrueTypeGlyphs( HXUIFONT hFont, int numChars, wchar_t *pWch, int *pOffsetX, int *pOffsetY, int *pWidth, int *pHeight, unsigned char *pRGBA, int *pRGBAOffset ) { MaterialLock_t hLock = Lock(); bool result = g_pShaderAPI->GetTrueTypeGlyphs( hFont, numChars, pWch, pOffsetX, pOffsetY, pWidth, pHeight, pRGBA, pRGBAOffset ); Unlock( hLock ); return result; } #endif
//-----------------------------------------------------------------------------------------------------
// 360 Back Buffer access. Due to hardware, RT data must be blitted from EDRAM
// and converted.
//-----------------------------------------------------------------------------------------------------
#if defined( _X360 )
void CMaterialSystem::ReadBackBuffer( Rect_t *pSrcRect, Rect_t *pDstRect, unsigned char *pDstData, ImageFormat dstFormat, int dstStride ) { Assert( pSrcRect && pDstRect && pDstData );
int fbWidth, fbHeight; g_pShaderAPI->GetBackBufferDimensions( fbWidth, fbHeight );
if ( pDstRect->width > fbWidth || pDstRect->height > fbHeight ) { Assert( 0 ); return; }
// intermediate results will be placed at (0,0)
Rect_t rect; rect.x = 0; rect.y = 0; rect.width = pDstRect->width; rect.height = pDstRect->height;
ITexture *pTempRT; bool bStretch = ( pSrcRect->width != pDstRect->width || pSrcRect->height != pDstRect->height ); if ( !bStretch ) { // hijack an unused RT (no surface required) for 1:1 resolve work, fastest path
pTempRT = FindTexture( "_rt_FullFrameFB", TEXTURE_GROUP_RENDER_TARGET ); } else { // hijack an unused RT (with surface abilities) for stretch work, slower path
pTempRT = FindTexture( "_rt_WaterReflection", TEXTURE_GROUP_RENDER_TARGET ); }
Assert( !pTempRT->IsError() && pDstRect->width <= pTempRT->GetActualWidth() && pDstRect->height <= pTempRT->GetActualHeight() ); GetRenderContextInternal()->CopyRenderTargetToTextureEx( pTempRT, 0, pSrcRect, &rect );
// access the RT bits
CPixelWriter writer; g_pShaderAPI->ModifyTexture( ((ITextureInternal*)pTempRT)->GetTextureHandle( 0 ) ); if ( !g_pShaderAPI->TexLock( 0, 0, 0, 0, pTempRT->GetActualWidth(), pTempRT->GetActualHeight(), writer ) ) return;
// this will be adequate for non-block formats
int srcStride = pTempRT->GetActualWidth() * ImageLoader::SizeInBytes( pTempRT->GetImageFormat() );
// untile intermediate RT in place to achieve linear access
XGUntileTextureLevel( pTempRT->GetActualWidth(), pTempRT->GetActualHeight(), 0, XGGetGpuFormat( ImageLoader::ImageFormatToD3DFormat( pTempRT->GetImageFormat() ) ), 0, (char*)writer.GetPixelMemory(), srcStride, NULL, writer.GetPixelMemory(), NULL );
// swap back to x86 order as expected by image conversion
ImageLoader::ByteSwapImageData( (unsigned char*)writer.GetPixelMemory(), srcStride*pTempRT->GetActualHeight(), pTempRT->GetImageFormat() );
// convert to callers format
Assert( dstFormat == IMAGE_FORMAT_RGB888 ); ImageLoader::ConvertImageFormat( (unsigned char*)writer.GetPixelMemory(), pTempRT->GetImageFormat(), pDstData, dstFormat, pDstRect->width, pDstRect->height, srcStride, dstStride );
g_pShaderAPI->TexUnlock(); } #endif
#if defined( _X360 )
void CMaterialSystem::PersistDisplay() { g_pShaderAPI->PersistDisplay(); } #endif
#if defined( _X360 )
void *CMaterialSystem::GetD3DDevice() { return g_pShaderAPI->GetD3DDevice(); } #endif
#if defined( _X360 )
bool CMaterialSystem::OwnGPUResources( bool bEnable ) { return g_pShaderAPI->OwnGPUResources( bEnable ); } #endif
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
class CThreadRelease : public CJob { virtual JobStatus_t DoExecute() { g_pShaderAPI->ReleaseThreadOwnership();
return JOB_OK; } };
void CMaterialSystem::ThreadRelease( ) { if ( !m_bThreadHasOwnership ) { return; }
double flStartTime, flEndThreadRelease, flEndTime; int do_report = mat_queue_report.GetInt();
if ( do_report ) { flStartTime = Plat_FloatTime(); }
CJob *pActiveAsyncJob = new CThreadRelease(); IThreadPool *pThreadPool = CreateMatQueueThreadPool(); pThreadPool->AddJob( pActiveAsyncJob ); pActiveAsyncJob->WaitForFinish();
SafeRelease( pActiveAsyncJob );
if ( do_report ) { flEndThreadRelease = Plat_FloatTime(); }
g_pShaderAPI->AcquireThreadOwnership();
m_bThreadHasOwnership = false; m_ThreadOwnershipID = 0;
if ( do_report ) { flEndTime = Plat_FloatTime(); double flResult = ( flEndTime - flStartTime ) * 1000.0;
if ( do_report == -1 || flResult > mat_queue_report.GetFloat() ) { Color red( 200, 20, 20, 255 ); ConColorMsg( red, "CMaterialSystem::ThreadRelease: %0.2fms = Release:%0.2fms + Acquire:%0.2fms\n", flResult, ( flEndThreadRelease - flStartTime ) * 1000.0, ( flEndTime - flEndThreadRelease ) * 1000.0 ); } } }
void CMaterialSystem::ThreadAcquire( bool bForce ) { if ( !bForce ) { return; }
double flStartTime, flEndTime; int do_report = mat_queue_report.GetInt();
if ( do_report ) { flStartTime = Plat_FloatTime(); }
g_pShaderAPI->ReleaseThreadOwnership();
CJob *pActiveAsyncJob = new CThreadAcquire(); IThreadPool *pThreadPool = CreateMatQueueThreadPool(); pThreadPool->AddJob( pActiveAsyncJob ); // while we could wait for this job to finish, there's no reason too
// pActiveAsyncJob->WaitForFinish();
SafeRelease( pActiveAsyncJob );
m_bThreadHasOwnership = true; m_ThreadOwnershipID = ThreadGetCurrentId();
if ( do_report ) { flEndTime = Plat_FloatTime(); double flResult = ( flEndTime - flStartTime ) * 1000.0;
if ( do_report == -1 || flResult > mat_queue_report.GetFloat() ) { Color red( 200, 20, 20, 255 ); ConColorMsg( red, "CMaterialSystem::ThreadAcquire: %0.2fms\n", flResult ); } } }
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
MaterialLock_t CMaterialSystem::Lock() { double flStartTime; int do_report = mat_queue_report.GetInt();
if ( do_report ) { flStartTime = Plat_FloatTime(); }
IMatRenderContextInternal *pCurContext = GetRenderContextInternal(); #if 1 // Rick's optimization: not sure this is needed anymore
if ( pCurContext != &m_HardwareRenderContext && m_pActiveAsyncJob ) { m_pActiveAsyncJob->WaitForFinish(); // threadsafety note: not releasing or nulling pointer.
}
if ( m_ThreadMode != MATERIAL_SINGLE_THREADED ) { TelemetrySetLockName( TELEMETRY_LEVEL0, (char const *)&g_MatSysMutex, "MatSysMutex" );
tmTryLock( TELEMETRY_LEVEL0, (char const *)&g_MatSysMutex, "CMaterialSystem" ); g_MatSysMutex.Lock(); tmEndTryLock( TELEMETRY_LEVEL0, (char const *)&g_MatSysMutex, TMLR_SUCCESS ); tmSetLockState( TELEMETRY_LEVEL0, (char const *)&g_MatSysMutex, TMLS_LOCKED, "CMaterialSystem" ); } #endif
MaterialLock_t hMaterialLock = (MaterialLock_t)pCurContext; m_pRenderContext.Set( &m_HardwareRenderContext );
if ( m_ThreadMode != MATERIAL_SINGLE_THREADED ) { g_pShaderAPI->SetDisallowAccess( false ); if ( pCurContext->GetCallQueueInternal() ) { ThreadRelease(); } }
g_pShaderAPI->ShaderLock();
if ( do_report ) { double flEndTime = Plat_FloatTime(); double flResult = ( flEndTime - flStartTime ) * 1000.0;
if ( do_report == -1 || flResult > mat_queue_report.GetFloat() ) { Color red( 200, 20, 20, 255 ); ConColorMsg( red, "*CMaterialSystem::Lock: %0.2fms\n", flResult ); } }
return hMaterialLock; }
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
void CMaterialSystem::Unlock( MaterialLock_t hMaterialLock ) { double flStartTime; int do_report = mat_queue_report.GetInt();
if ( do_report ) { flStartTime = Plat_FloatTime(); }
IMatRenderContextInternal *pRenderContext = (IMatRenderContextInternal *)hMaterialLock; m_pRenderContext.Set( pRenderContext ); g_pShaderAPI->ShaderUnlock();
#ifdef MAT_QUEUE_MODE_PROFILE
if ( m_ThreadMode == MATERIAL_QUEUED_SINGLE_THREADED ) { g_pShaderAPI->SetDisallowAccess( true ); } else #endif
if ( m_ThreadMode == MATERIAL_QUEUED_THREADED ) { if ( pRenderContext->GetCallQueueInternal() ) { ThreadAcquire(); } }
#if 1 // Rick's optimization: not sure this is needed anymore
if ( m_ThreadMode != MATERIAL_SINGLE_THREADED ) { g_MatSysMutex.Unlock(); tmSetLockState( TELEMETRY_LEVEL0, (char const *)&g_MatSysMutex, TMLS_RELEASED, "CMaterialSystem" ); } #endif
if ( do_report ) { double flEndTime = Plat_FloatTime(); double flResult = ( flEndTime - flStartTime ) * 1000.0;
if ( do_report || flResult > mat_queue_report.GetFloat() ) { Color red( 200, 20, 20, 255 ); ConColorMsg( red, "*CMaterialSystem::Unlock: %0.2fms\n", flResult ); } } }
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
CMatCallQueue *CMaterialSystem::GetRenderCallQueue() { IMatRenderContextInternal *pRenderContext = m_pRenderContext.Get(); return pRenderContext ? pRenderContext->GetCallQueueInternal() : NULL; }
void CMaterialSystem::UnbindMaterial( IMaterial *pMaterial ) { Assert( (pMaterial == NULL) || ((IMaterialInternal *)pMaterial)->IsRealTimeVersion() ); if ( m_HardwareRenderContext.GetCurrentMaterial() == pMaterial ) { m_HardwareRenderContext.Bind( g_pErrorMaterial, NULL ); } }
class CReplacementProxy : public IMaterialProxy { public: CReplacementProxy( void ); virtual ~CReplacementProxy( void ); virtual bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); virtual void OnBind( void * ); virtual void Release( ); virtual IMaterial * GetMaterial( );
private: IMaterial *m_pReplaceMaterial; };
#define REPLACEMENT_NAME "_replacement"
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
CReplacementProxy::CReplacementProxy( void ) : m_pReplaceMaterial ( NULL ) { }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
CReplacementProxy::~CReplacementProxy( void ) { }
//-----------------------------------------------------------------------------
// Purpose: Get pointer to the color value
// Input : *pMaterial -
//-----------------------------------------------------------------------------
bool CReplacementProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { const char *pszFileName = pMaterial->GetName(); char szNewName[ MAX_PATH ];
V_sprintf_safe( szNewName, "%s" REPLACEMENT_NAME, pszFileName ); m_pReplaceMaterial = materials->CreateMaterial( szNewName, pKeyValues );
return true; }
//-----------------------------------------------------------------------------
// Purpose:
// Input :
//-----------------------------------------------------------------------------
void CReplacementProxy::OnBind( void * ) { }
void CReplacementProxy::Release( ) { m_pReplaceMaterial->DecrementReferenceCount(); // Since we have a material-holding-a-material situation here, we need to nuke these if unreferenced to prevent the
// engine needing to double-call UncacheUnusedMaterials to actually get rid of all materials.
m_pReplaceMaterial->DeleteIfUnreferenced(); m_pReplaceMaterial = NULL; }
IMaterial *CReplacementProxy::GetMaterial() { static ConVarRef localplayer_visionflags( "localplayer_visionflags" ); bool bVisionOverride = ( localplayer_visionflags.IsValid() && ( localplayer_visionflags.GetInt() & ( 0x01 ) ) ); // Pyro-vision Goggles
if ( bVisionOverride ) { return m_pReplaceMaterial; }
return NULL; }
EXPOSE_INTERFACE( CReplacementProxy, IMaterialProxy, "replace_proxy" IMATERIAL_PROXY_INTERFACE_VERSION );
static const char *pszReplacementForceCopy[] = { "$nocull",
NULL };
void CMaterialSystem::LoadReplacementMaterials() { const char* cLocation = "materials"; if ( CommandLine()->FindParm( "-matscan") ) { ScanDirForReplacements( cLocation ); } else { InitReplacementsFromFile( cLocation ); } }
void CMaterialSystem::ScanDirForReplacements( const char *pszPathName ) { char szBaseName[ MAX_PATH ];
V_sprintf_safe( szBaseName, "%s/replacements.vmt", pszPathName ); if ( g_pFullFileSystem->FileExists( szBaseName ) ) { KeyValues *pKV = g_pFullFileSystem->LoadKeyValues( IFileSystem::TYPE_VMT, szBaseName ); if ( pKV ) { V_sprintf_safe( szBaseName, "%s/", pszPathName ); m_Replacements.Insert( szBaseName, pKV ); } }
V_sprintf_safe( szBaseName, "%s/*", pszPathName );
FileFindHandle_t FindHandle; const char *pFindFileName = g_pFullFileSystem->FindFirst( szBaseName, &FindHandle );
while ( pFindFileName && pFindFileName[ 0 ] != '\0' ) { if ( g_pFullFileSystem->FindIsDirectory( FindHandle ) ) { if ( strcmp( pFindFileName, "." ) != 0 && strcmp( pFindFileName, ".." ) != 0 ) { char szNextBaseName[ MAX_PATH ];
V_sprintf_safe( szNextBaseName, "%s/%s", pszPathName, pFindFileName ); ScanDirForReplacements( szNextBaseName ); } }
pFindFileName = g_pFullFileSystem->FindNext( FindHandle ); }
g_pFullFileSystem->FindClose( FindHandle );
}
void CMaterialSystem::InitReplacementsFromFile( const char *pszPathName ) { CUtlVector<char*> replacementFiles; char szBaseName[MAX_PATH]; V_sprintf_safe( szBaseName, "%s/replacements.txt", pszPathName );
int replacementCount = ReadListFromFile( &replacementFiles, szBaseName ); for ( int i = 0; i < replacementCount; ++i ) { V_snprintf( szBaseName, sizeof(szBaseName), "%s/%s/replacements.vmt", pszPathName, replacementFiles[i] ); if ( g_pFullFileSystem->FileExists(szBaseName) ) { KeyValues *pKV = g_pFullFileSystem->LoadKeyValues( IFileSystem::TYPE_VMT, szBaseName ); if (pKV) { V_sprintf_safe( szBaseName, "%s/%s/", pszPathName, replacementFiles[i] ); m_Replacements.Insert( szBaseName, pKV ); } } }
replacementFiles.PurgeAndDeleteElements(); }
void CMaterialSystem::PreloadReplacements( ) { int nIndex = m_Replacements.First(); while( m_Replacements.IsValidIndex( nIndex ) ) { m_Replacements.Element( nIndex )->deleteThis();
nIndex = m_Replacements.Next( nIndex ); } m_Replacements.Purge();
COM_TimestampedLog( "LoadReplacementMaterials(): Begin" ); LoadReplacementMaterials(); COM_TimestampedLog( "LoadReplacementMaterials(): End" );
m_bReplacementFilesValid = true; }
IMaterialProxy *CMaterialSystem::DetermineProxyReplacements( IMaterial *pMaterial, KeyValues *pFallbackKeyValues ) { CReplacementProxy *pReplacementProxy = NULL;
if ( !g_pMaterialSystemHardwareConfig->SupportsPixelShaders_2_0() ) { return NULL; }
if ( !m_bReplacementFilesValid ) { PreloadReplacements(); }
const char *pszMaterialName = pMaterial->GetName();
char szCheckPath[ MAX_PATH ], szCheckName[ MAX_PATH ], szLastPath[ MAX_PATH ]; const char *pszShadername = pFallbackKeyValues->GetName();
V_strcpy_safe( szLastPath, pszMaterialName ); int nLength = strlen( szLastPath ) - strlen( REPLACEMENT_NAME ); if ( nLength > 0 && strcmpi( &szLastPath[ nLength ], REPLACEMENT_NAME ) == 0 ) { return NULL; }
while( 1 ) { const char *pszRemoveSlashes; V_ExtractFilePath( szLastPath, szCheckPath, sizeof( szCheckPath ) );
pszRemoveSlashes = szCheckPath; while ( ( *pszRemoveSlashes ) != 0 && ( ( *pszRemoveSlashes ) == '/' || ( *pszRemoveSlashes ) == '\\' ) ) { pszRemoveSlashes++; }
V_sprintf_safe( szCheckName, "materials/%s", pszRemoveSlashes ); int nIndex = m_Replacements.Find( szCheckName );
if ( m_Replacements.IsValidIndex( nIndex ) ) { KeyValues *pKV = m_Replacements.Element( nIndex );
KeyValues *pTemplatesKV = pKV->FindKey( "templates" ); KeyValues *pPatternsKV = pKV->FindKey( "patterns" );
const char *pszFileName = V_GetFileName( pszMaterialName );
if ( !pTemplatesKV || !pPatternsKV ) { Warning( "Replacements: Invalid KV file %s\n", szCheckName ); } else { for ( KeyValues *pSubKey = pPatternsKV->GetFirstSubKey(); pSubKey; pSubKey = pSubKey->GetNextKey() ) { const char *pszReplacementName = pSubKey->GetName();
// Msg( " Sub: %s\n", pSubKey->GetName() );
if ( strnicmp( pszFileName, pszReplacementName, strlen( pszReplacementName ) ) == 0 ) { // We found a replacement!
const char *pszTemplateName = pSubKey->GetString( "template", NULL ); KeyValues *pReplacementMaterial = NULL;
if ( pszTemplateName && pTemplatesKV ) { KeyValues *pTemplateKV = pTemplatesKV->FindKey( pszTemplateName ); if ( pTemplateKV ) { pTemplateKV = pTemplateKV->FindKey( pszShadername );
if ( pTemplateKV && pTemplateKV->GetFirstSubKey() ) { pReplacementMaterial = pTemplateKV->GetFirstSubKey()->MakeCopy(); } } } else { if ( pSubKey->GetFirstSubKey() ) { pReplacementMaterial = pSubKey->GetFirstSubKey()->MakeCopy(); } }
if ( !pReplacementMaterial ) { break; }
if ( pReplacementMaterial->GetInt( "$copyall" ) == 1 ) { for( KeyValues *pCopyKV = pFallbackKeyValues->GetFirstSubKey(); pCopyKV; pCopyKV = pCopyKV->GetNextKey() ) { const char *pszCopyValue = pReplacementMaterial->GetString( pCopyKV->GetName(), NULL ); if ( !pszCopyValue ) { pReplacementMaterial->SetString( pCopyKV->GetName(), pCopyKV->GetString() ); } } } else { int nReplaceIndex = 0;
while( pszReplacementForceCopy[nReplaceIndex] ) { const char *pszCopyValue = pFallbackKeyValues->GetString( pszReplacementForceCopy[nReplaceIndex], NULL ); if ( pszCopyValue ) { pReplacementMaterial->SetString( pszReplacementForceCopy[nReplaceIndex], pszCopyValue ); } nReplaceIndex++; } }
for( KeyValues *pSearchKV = pReplacementMaterial->GetFirstSubKey(); pSearchKV; pSearchKV = pSearchKV->GetNextKey() ) { const char *pszValue = pSearchKV->GetString(); if ( pszValue[ 0 ] == '$' ) { const char *pszCopyValue = pFallbackKeyValues->GetString( pszValue, NULL ); if ( pszCopyValue ) { pSearchKV->SetStringValue( pszCopyValue ); } else { pSearchKV->SetStringValue( "" ); } } } pReplacementProxy = new CReplacementProxy(); pReplacementProxy->Init( pMaterial, pReplacementMaterial );
break; } } }
if ( pReplacementProxy == NULL ) { // Msg( "Failed to find: %s\n", GetName() );
}
break; }
if ( szCheckPath[ 0 ] == 0 ) { break; }
strcpy( szLastPath, szCheckPath ); }
return pReplacementProxy; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMaterialSystem::CompactMemory() { for ( int i = 0; i < ARRAYSIZE(m_QueuedRenderContexts); i++) { m_QueuedRenderContexts[i].CompactMemory(); } }
void CMaterialSystem::OnRenderingAsyncComplete() { Assert( m_pActiveAsyncJob == NULL );
// Update the texture manager, which may cause some textures to become available for compositing.
// Because updating textures may cause textures to swap out their active texture handles, this can only be done
// while the async job is not running.
bool bThreadHadOwnership = m_bThreadHasOwnership;
TextureManager()->UpdatePostAsync();
if ( bThreadHadOwnership && !m_bThreadHasOwnership ) ThreadAcquire( true ); }
//-----------------------------------------------------------------------------
// Material + texture related commands
//-----------------------------------------------------------------------------
void CMaterialSystem::DebugPrintUsedMaterials( const CCommand &args ) { if( args.ArgC() == 1 ) { DebugPrintUsedMaterials( NULL, false ); } else { DebugPrintUsedMaterials( args[ 1 ], false ); } }
void CMaterialSystem::DebugPrintUsedMaterialsVerbose( const CCommand &args ) { if( args.ArgC() == 1 ) { DebugPrintUsedMaterials( NULL, true ); } else { DebugPrintUsedMaterials( args[ 1 ], true ); } }
void CMaterialSystem::DebugPrintUsedTextures( const CCommand &args ) { DebugPrintUsedTextures(); }
#if defined( _X360 )
void CMaterialSystem::ListUsedMaterials( const CCommand &args ) { ListUsedMaterials(); } #endif // !_X360
void CMaterialSystem::ReloadAllMaterials( const CCommand &args ) { ReloadMaterials( NULL ); }
void CMaterialSystem::ReloadMaterials( const CCommand &args ) { if( args.ArgC() != 2 ) { ConWarning( "Usage: mat_reloadmaterial material_name_substring\n" " or mat_reloadmaterial substring1*substring2*...*substringN\n" ); return; } ReloadMaterials( args[ 1 ] ); }
void CMaterialSystem::ReloadTextures( const CCommand &args ) { ReloadTextures(); }
CON_COMMAND( mat_hdr_enabled, "Report if HDR is enabled for debugging" ) { if( HardwareConfig() && HardwareConfig()->GetHDREnabled() ) { Warning( "HDR Enabled\n" ); } else { Warning( "HDR Disabled\n" ); } }
static int ReadListFromFile(CUtlVector<char*>* outReplacementMaterials, const char *pszPathName) { Assert(outReplacementMaterials != NULL); Assert(pszPathName != NULL);
CUtlBuffer fileContents; if ( !g_pFullFileSystem->ReadFile( pszPathName, NULL, fileContents ) ) return 0;
const char* seps[] = { "\r", "\r\n", "\n" }; V_SplitString2( (char*)fileContents.Base(), seps, ARRAYSIZE(seps), *outReplacementMaterials );
return outReplacementMaterials->Size(); }
|