|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//===========================================================================//
#include "tier0/platform.h"
#include "tier0/progressbar.h"
#include "bitmap/float_bm.h"
#include "mathlib/mathlib.h"
#include "tier2/tier2.h"
#include "tier0/memdbgon.h"
#include "mathlib/ssemath.h"
#ifdef _X360
#include "xbox/xbox_console.h"
#endif
#define PROBLEM_SIZE 1000
#define N_ITERS 100000
//#define RECORD_OUTPUT
static FourVectors g_XYZ[PROBLEM_SIZE]; static fltx4 g_CreationTime[PROBLEM_SIZE];
bool SIMDTest() { const Vector StartPnt(0,0,0); const Vector MidP(0,0,100); const Vector EndPnt(100,0,50);
// This app doesn't go through regular engine init, so init FPU/VPU math behaviour here:
SetupFPUControlWord(); TestVPUFlags();
// Initialize g_XYZ[] and g_CreationTime[]
SeedRandSIMD(1987301); for (int i = 0;i < PROBLEM_SIZE;i++) { float fourStartTimes[4]; Vector fourPoints[4]; Vector offset; for (int j = 0;j < 4;j++) { float t = (j + 4 * i) / (4.0f * (PROBLEM_SIZE - 1)); fourStartTimes[j] = t; fourPoints[j] = StartPnt + t*( EndPnt - StartPnt ); offset.Random( -10.0f, +10.0f ); fourPoints[j] += offset; } g_XYZ[i].LoadAndSwizzle( fourPoints[0], fourPoints[1], fourPoints[2], fourPoints[3] ); g_CreationTime[i] = LoadUnalignedSIMD( fourStartTimes ); }
#ifdef RECORD_OUTPUT
char outputBuffer[1024]; Q_snprintf( outputBuffer, sizeof( outputBuffer ), "float testOutput[%d][4][3] = {\n", N_ITERS ); Warning(outputBuffer); #endif // RECORD_OUTPUT
double STime=Plat_FloatTime(); bool bChangedSomething = false; for(int i=0;i<N_ITERS;i++) { float t=i*(1.0/N_ITERS); FourVectors * __restrict pXYZ = g_XYZ;
fltx4 * __restrict pCreationTime = g_CreationTime;
fltx4 CurTime = ReplicateX4( t ); fltx4 TimeScale = ReplicateX4( 1.0/(max(0.001, 1.0 ) ) );
// calculate radius spline
bool bConstantRadius = true; fltx4 Rad0=ReplicateX4(2.0); fltx4 Radm=Rad0; fltx4 Rad1=Rad0; fltx4 RadmMinusRad0=SubSIMD( Radm, Rad0); fltx4 Rad1MinusRadm=SubSIMD( Rad1, Radm); fltx4 SIMDMinDist=ReplicateX4( 2.0 ); fltx4 SIMDMinDist2=ReplicateX4( 2.0*2.0 ); fltx4 SIMDMaxDist=MaxSIMD( Rad0, MaxSIMD( Radm, Rad1 ) ); fltx4 SIMDMaxDist2=MulSIMD( SIMDMaxDist, SIMDMaxDist);
FourVectors StartP; StartP.DuplicateVector( StartPnt ); FourVectors MiddleP; MiddleP.DuplicateVector( MidP ); // form delta terms needed for quadratic bezier
FourVectors Delta0; Delta0.DuplicateVector( MidP-StartPnt ); FourVectors Delta1; Delta1.DuplicateVector( EndPnt-MidP ); int nLoopCtr = PROBLEM_SIZE; do { fltx4 TScale=MinSIMD( Four_Ones, MulSIMD( TimeScale, SubSIMD( CurTime, *pCreationTime ) ) );
// bezier(a,b,c,t)=lerp( lerp(a,b,t),lerp(b,c,t),t)
FourVectors L0 = Delta0; L0 *= TScale; L0 += StartP; FourVectors L1= Delta1; L1 *= TScale; L1 += MiddleP; FourVectors Center = L1; Center -= L0; Center *= TScale; Center += L0;
FourVectors pts_original = *(pXYZ); FourVectors pts = pts_original; pts -= Center;
// calculate radius at the point. !!speed!! - use special case for constant radius
fltx4 dist_squared= pts * pts; fltx4 TooFarMask = CmpGtSIMD( dist_squared, SIMDMaxDist2 ); if ( ( !bConstantRadius) && ( ! IsAnyNegative( TooFarMask ) ) ) { // need to calculate and adjust for true radius =- we've only trivially rejected note
// voodoo here - we update simdmaxdist for true radius, but not max dist^2, since
// that's used only for the trivial reject case, which we've already done
fltx4 R0=AddSIMD( Rad0, MulSIMD( RadmMinusRad0, TScale ) ); fltx4 R1=AddSIMD( Radm, MulSIMD( Rad1MinusRadm, TScale ) ); SIMDMaxDist = AddSIMD( R0, MulSIMD( SubSIMD( R1, R0 ), TScale) ); // now that we know the true radius, update our mask
TooFarMask = CmpGtSIMD( dist_squared, MulSIMD( SIMDMaxDist, SIMDMaxDist ) ); }
fltx4 TooCloseMask = CmpLtSIMD( dist_squared, SIMDMinDist2 ); fltx4 NeedAdjust = OrSIMD( TooFarMask, TooCloseMask ); if ( IsAnyNegative( NeedAdjust ) ) // any out of bounds?
{ // change squared distance into approximate rsqr root
fltx4 guess=ReciprocalSqrtEstSIMD(dist_squared); // newton iteration for 1/sqrt(x) : y(n+1)=1/2 (y(n)*(3-x*y(n)^2));
guess=MulSIMD(guess,SubSIMD(Four_Threes,MulSIMD(dist_squared,MulSIMD(guess,guess)))); guess=MulSIMD(Four_PointFives,guess); pts *= guess; FourVectors clamp_far=pts; clamp_far *= SIMDMaxDist; clamp_far += Center; FourVectors clamp_near=pts; clamp_near *= SIMDMinDist; clamp_near += Center; pts.x = MaskedAssign( TooCloseMask, clamp_near.x, MaskedAssign( TooFarMask, clamp_far.x, pts_original.x )); pts.y = MaskedAssign( TooCloseMask, clamp_near.y, MaskedAssign( TooFarMask, clamp_far.y, pts_original.y )); pts.z = MaskedAssign( TooCloseMask, clamp_near.z, MaskedAssign( TooFarMask, clamp_far.z, pts_original.z )); *(pXYZ) = pts; bChangedSomething = true; }
#ifdef RECORD_OUTPUT
if (nLoopCtr == 257) { Q_snprintf( outputBuffer, sizeof( outputBuffer ), "/*%04d:*/ { {%+14e,%+14e,%+14e}, {%+14e,%+14e,%+14e}, {%+14e,%+14e,%+14e}, {%+14e,%+14e,%+14e} },\n", i, pXYZ->X(0), pXYZ->Y(0), pXYZ->Z(0), pXYZ->X(1), pXYZ->Y(1), pXYZ->Z(1), pXYZ->X(2), pXYZ->Y(2), pXYZ->Z(2), pXYZ->X(3), pXYZ->Y(3), pXYZ->Z(3)); Warning(outputBuffer); } #endif // RECORD_OUTPUT
++pXYZ; ++pCreationTime; } while ( --nLoopCtr ); } double ETime=Plat_FloatTime()-STime;
#ifdef RECORD_OUTPUT
Q_snprintf( outputBuffer, sizeof( outputBuffer ), " };\n" ); Warning(outputBuffer); #endif // RECORD_OUTPUT
printf("elapsed time=%f p/s=%f\n",ETime, (4.0*PROBLEM_SIZE*N_ITERS)/ETime ); return bChangedSomething; }
#ifdef _X360
__declspec(passinreg) struct float4 { operator __vector4 () const { return vmx; } __vector4 vmx; };
void OctoberXDKCompilerIssueTestCode( const fltx4 & val, fltx4 * out ) { // UNDONE: This code demonstrates serious 360 compiler issues. XBox Developer Support has been contacted.
// The assembly contains tons of useless instructions (vector stores and supporting integer math), even in the
// below code - no use of pointers or static constants, no wrapper layers on top of the vector intrinsics.
// If/when the compiler issue is resolved, other known issues are:
// - pass vector params by const reference
// - avoid putting __vector4 in a union or an array
// - avoid default constructors, return constructed objects directly ("return VecClass(__vector4Val);")
#define DECL_ASS( _var_, _val_ ) fltx4 _var_ = _val_
//#define DECL_ASS( _var_, _val_ ) float4 _var_; _var_.vmx = _val_
//#define DECL_ASS( _var_, _val_ ) float4 _var_( _val_ )
DECL_ASS( resultx, Four_Zeros ); DECL_ASS( resulty, Four_Zeros ); DECL_ASS( resultz, Four_Zeros );
DECL_ASS( CurTime, __vmulfp( val, Four_PointFives ) ); DECL_ASS( TimeScale, val ); //fltx4 *pCreationTime = g_CreationTime;
DECL_ASS( Delta0x, val ); DECL_ASS( Delta0y, val ); DECL_ASS( Delta0z, val ); DECL_ASS( Delta1x, __vaddfp(Delta0x, Delta0x) ); DECL_ASS( Delta1y, __vaddfp(Delta0y, Delta0y) ); DECL_ASS( Delta1z, __vaddfp(Delta0z, Delta0z) ); DECL_ASS( StartPx, __vaddfp(Delta0x, Delta0x) ); DECL_ASS( StartPy, __vaddfp(Delta0y, Delta0y) ); DECL_ASS( StartPz, __vaddfp(Delta0z, Delta0z) ); DECL_ASS( MiddlePx, __vaddfp(StartPx, StartPx) ); DECL_ASS( MiddlePy, __vaddfp(StartPy, StartPy) ); DECL_ASS( MiddlePz, __vaddfp(StartPz, StartPz) ); for (int i = 0;i < 1000;i++) { DECL_ASS( TScale, __vsubfp( CurTime, resultx ) );//*pCreationTime );
TScale = __vmulfp( TScale, TimeScale ); TScale = __vminfp( TScale, resulty );//Four_Ones );
//resultx = __vaddfp( resultx, TScale );
//resulty = __vaddfp( resulty, TScale );
//resultz = __vaddfp( resultz, TScale );
DECL_ASS( L0x, Delta0x ); DECL_ASS( L0y, Delta0y ); DECL_ASS( L0z, Delta0z ); L0x = __vmulfp(L0x,TScale); L0y = __vmulfp(L0y,TScale); L0z = __vmulfp(L0z,TScale); L0x = __vaddfp(StartPx,L0x); L0y = __vaddfp(StartPy,L0y); L0z = __vaddfp(StartPz,L0z);
DECL_ASS( L1x, Delta1x ); DECL_ASS( L1y, Delta1y ); DECL_ASS( L1z, Delta1z ); L1x = __vmulfp(L1x,TScale); L1y = __vmulfp(L1y,TScale); L1z = __vmulfp(L1z,TScale); L1x = __vaddfp(MiddlePx,L1x); L1y = __vaddfp(MiddlePy,L1y); L1z = __vaddfp(MiddlePz,L1z);
L0x = __vaddfp(L0x,L1x); L0y = __vaddfp(L0y,L1y); L0z = __vaddfp(L0z,L1z);
resultx = __vaddfp( resultx, L0x ); resulty = __vaddfp( resulty, L0y ); resultz = __vaddfp( resultz, L0z );
//pCreationTime++;
}
out[0] = resultx; out[1] = resulty; out[2] = resultz; }
#else // _X360
void SSEClassTest( const fltx4 & val, fltx4 & out ) { fltx4 result = Four_Zeros; for (int i = 0;i < N_ITERS;i++) { result = SubSIMD( val, result ); result = MulSIMD( val, result ); result = AddSIMD( val, result ); result = MinSIMD( val, result ); } FourVectors result4; result4.x = result; result4.y = result; result4.z = result; for (int i = 0;i < N_ITERS;i++) { result4 *= result4; result4 += result4; result4 *= result4; result4 += result4; } result = result4*result4; out = result; }
#endif // !_X360
int main(int argc,char **argv) { #ifndef _X360
// UNDONE: InitCommandLineProgram needs fixing for 360 (if we want to make lots of new 360 executables)
InitCommandLineProgram( argc, argv );
// This function is useful for inspecting compiler output
fltx4 result; SSEClassTest( Four_PointFives, result ); printf("(%f,%f,%f,%f)\n", SubFloat( result, 0 ), SubFloat( result, 1 ), SubFloat( result, 2 ), SubFloat( result, 3 ) );
#else // _X360
// Wait for VXConsole, so that all debug output goes there
XBX_InitConsoleMonitor(true);
// This function is useful for inspecting compiler output
FourVectors result; OctoberXDKCompilerIssueTestCode( Four_PointFives, (fltx4 *)&result ); printf("(%f,%f,%f,%f)\n", result.X(0), result.X(1), result.X(2), result.X(3)); printf("(%f,%f,%f,%f)\n", result.Y(0), result.Y(1), result.Y(2), result.Y(3)); printf("(%f,%f,%f,%f)\n", result.Z(0), result.Z(1), result.Z(2), result.Z(3));
#endif // _X360
// Run the perf. test
SIMDTest(); return 0; }
|