|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <math.h>
#include <float.h>
#include "cmdlib.h"
#include "scriplib.h"
#include "mathlib/mathlib.h"
#include "studio.h"
#include "studiomdl.h"
#include "bone_setup.h"
#include "tier1/strtools.h"
#include "mathlib/vmatrix.h"
#include "optimize.h"
// debugging only - enabling turns off remapping to create all lod vertexes as unique
// to ensure remapping logic does not introduce collapse anomalies
//#define UNIQUE_VERTEXES_FOR_LOD
//-----------------------------------------------------------------------------
// Forward declarations local to this file
//-----------------------------------------------------------------------------
class CVertexDictionary; struct VertexInfo_t; static void BuildBoneLODMapping( CUtlVector<int> &boneMap, int lodID );
//-----------------------------------------------------------------------------
// Globals
//-----------------------------------------------------------------------------
static int g_NumBonesInLOD[MAX_NUM_LODS];
//-----------------------------------------------------------------------------
// Makes sure all boneweights in a s_boneweight_t are valid
//-----------------------------------------------------------------------------
static void ValidateBoneWeight( const s_boneweight_t &boneWeight ) { #ifdef _DEBUG
int i; if( boneWeight.weight[0] == 1.0f ) { Assert( boneWeight.numbones == 1 ); } for( i = 0; i < boneWeight.numbones; i++ ) { Assert( boneWeight.bone[i] >= 0 && boneWeight.bone[i] < g_numbones ); }
float weight = 0.0f; for( i = 0; i < boneWeight.numbones; i++ ) { weight += boneWeight.weight[i] ; } Assert( fabs( weight - 1.0f ) < 1e-3 ); #endif
}
//-----------------------------------------------------------------------------
// Swap bones
//-----------------------------------------------------------------------------
static inline void SwapBones( s_boneweight_t &boneWeight, int nBone1, int nBone2 ) { // swap
int nTmpBone = boneWeight.bone[nBone1]; float flTmpWeight = boneWeight.weight[nBone1]; boneWeight.bone[nBone1] = boneWeight.bone[nBone2]; boneWeight.weight[nBone1] = boneWeight.weight[nBone2]; boneWeight.bone[nBone2] = nTmpBone; boneWeight.weight[nBone2] = flTmpWeight; }
//-----------------------------------------------------------------------------
// Sort the bone weight structure to be sorted by bone weight
//-----------------------------------------------------------------------------
static void SortBoneWeightByWeight( s_boneweight_t &boneWeight ) { // bubble sort the bones by weight. . .put the largest weight first.
for( int j = boneWeight.numbones; j > 1; j-- ) { for( int k = 0; k < j - 1; k++ ) { if( boneWeight.weight[k] >= boneWeight.weight[k+1] ) continue;
SwapBones( boneWeight, k, k+1 ); } } }
//-----------------------------------------------------------------------------
// Sort the bone weight structure to be sorted by bone index
//-----------------------------------------------------------------------------
static void SortBoneWeightByIndex( s_boneweight_t &boneWeight ) { // bubble sort the bones by index. . .put the smallest index first.
for ( int j = boneWeight.numbones; j > 1; j-- ) { for( int k = 0; k < j - 1; k++ ) { if( boneWeight.bone[k] <= boneWeight.bone[k+1] ) continue;
SwapBones( boneWeight, k, k+1 ); } } }
//-----------------------------------------------------------------------------
// A vertex format
//-----------------------------------------------------------------------------
struct VertexInfo_t { Vector m_Position; Vector m_Normal; Vector2D m_TexCoord; Vector4D m_TangentS; s_boneweight_t m_BoneWeight; int m_nLodFlag; };
//-----------------------------------------------------------------------------
// Stores all vertices in the vertex dictionary
//-----------------------------------------------------------------------------
class CVertexDictionary { public: CVertexDictionary();
// Adds a vertex to the dictionary
int AddVertex( const VertexInfo_t &srcVertex ); int AddVertexFromSource( const s_source_t *pSrc, int nVertexIndex, int nLod );
// Iteration
int VertexCount() const; VertexInfo_t &Vertex( int i ); const VertexInfo_t &Vertex( int i ) const;
int RootLODVertexStart() const; int RootLODVertexEnd() const;
// Gets the vertex count for the previous LOD
int PrevLODVertexCount() const;
// Marks the dictionary as starting defining vertices for a new LOD
void StartNewLOD();
void SetRootVertexRange( int start, int end );
private: CUtlVector<VertexInfo_t> m_Verts; int m_nPrevLODCount; int m_nRootLODStart; int m_nRootLODEnd; };
//-----------------------------------------------------------------------------
// Copies in a particular vertex from the s_source_t
//-----------------------------------------------------------------------------
CVertexDictionary::CVertexDictionary() { m_nPrevLODCount = 0; }
//-----------------------------------------------------------------------------
// Accessor
//-----------------------------------------------------------------------------
inline VertexInfo_t &CVertexDictionary::Vertex( int i ) { return m_Verts[i]; }
inline const VertexInfo_t &CVertexDictionary::Vertex( int i ) const { return m_Verts[i]; }
//-----------------------------------------------------------------------------
// Gets the vertex count for the previous LOD
//-----------------------------------------------------------------------------
inline int CVertexDictionary::PrevLODVertexCount() const { return m_nPrevLODCount; }
inline int CVertexDictionary::RootLODVertexStart() const { return m_nRootLODStart; }
inline int CVertexDictionary::RootLODVertexEnd() const { return m_nRootLODEnd; }
//-----------------------------------------------------------------------------
// Marks the dictionary as starting defining vertices for a new LOD
//-----------------------------------------------------------------------------
void CVertexDictionary::StartNewLOD() { m_nPrevLODCount = VertexCount(); }
void CVertexDictionary::SetRootVertexRange( int start, int end ) { m_nRootLODStart = start; m_nRootLODEnd = end; }
//-----------------------------------------------------------------------------
// Adds a vertex to the dictionary
//-----------------------------------------------------------------------------
int CVertexDictionary::AddVertex( const VertexInfo_t &srcVertex ) { int nDstVertID = m_Verts.AddToTail( srcVertex ); VertexInfo_t &vertex = m_Verts[ nDstVertID ]; ValidateBoneWeight( vertex.m_BoneWeight ); SortBoneWeightByIndex( vertex.m_BoneWeight ); ValidateBoneWeight( vertex.m_BoneWeight );
return nDstVertID; }
//-----------------------------------------------------------------------------
// Copies in a particular vertex from the s_source_t
//-----------------------------------------------------------------------------
int CVertexDictionary::AddVertexFromSource( const s_source_t *pSrc, int nVertexIndex, int nLod ) { int nDstVertID = m_Verts.AddToTail( ); VertexInfo_t &vertex = m_Verts[ nDstVertID ];
const s_vertexinfo_t &srcVertex = pSrc->m_GlobalVertices[nVertexIndex]; vertex.m_Position = srcVertex.position; vertex.m_Normal = srcVertex.normal; vertex.m_TexCoord = srcVertex.texcoord; vertex.m_TangentS = srcVertex.tangentS; vertex.m_BoneWeight = srcVertex.boneweight; vertex.m_nLodFlag = 1 << nLod;
ValidateBoneWeight( vertex.m_BoneWeight ); SortBoneWeightByIndex( vertex.m_BoneWeight ); ValidateBoneWeight( vertex.m_BoneWeight );
return nDstVertID; }
//-----------------------------------------------------------------------------
// How many vertices in the dictionary?
//-----------------------------------------------------------------------------
int CVertexDictionary::VertexCount() const { return m_Verts.Count(); }
s_source_t* GetModelLODSource( const char *pModelName, const LodScriptData_t& scriptLOD, bool* pFound ) { // When doing LOD replacement, ignore all path + extension information
char* pTempBuf = (char*)_alloca( Q_strlen(pModelName) + 1 );
// Strip off extensions for the source...
strcpy( pTempBuf, pModelName ); char* pDot = strrchr( pTempBuf, '.' ); if (pDot) { *pDot = 0; }
for( int i = 0; i < scriptLOD.modelReplacements.Count(); i++ ) { // FIXME: Should we strip off path information?
// char* pSlash = strrchr( pTempBuf1, '\\' );
// char* pSlash2 = strrchr( pTempBuf1, '/' );
// if (pSlash2 > pSlash)
// pSlash = pSlash2;
// if (!pSlash)
// pSlash = pTempBuf1;
if( !Q_stricmp( pTempBuf, scriptLOD.modelReplacements[i].GetSrcName() ) ) { *pFound = true; return scriptLOD.modelReplacements[i].m_pSource; } }
*pFound = false; return 0; }
//-----------------------------------------------------------------------------
// Tolerances for all fields of the vertex
//-----------------------------------------------------------------------------
#define POSITION_EPSILON 0.01f // Was 0.05f
#define TEXCOORD_EPSILON 0.01f
#define NORMAL_EPSILON 10.0f // in degrees
#define TANGENT_EPSILON 10.0f // in degrees
#define BONEWEIGHT_EPSILON 0.05f
#define UNMATCHED_BONE_WEIGHT 1.0f
//-----------------------------------------------------------------------------
// Computes error between two positions; returns false if the error is too great
//-----------------------------------------------------------------------------
bool ComparePositionFuzzy( const Vector &p1, const Vector &p2, float &flError ) { Vector vecDelta; VectorSubtract( p1, p2, vecDelta ); flError = DotProduct( vecDelta, vecDelta ); return ( flError <= (POSITION_EPSILON * POSITION_EPSILON) ); }
//-----------------------------------------------------------------------------
// Computes error between two normals; returns false if the error is too great
//-----------------------------------------------------------------------------
bool CompareNormalFuzzy( const Vector &n1, const Vector &n2, float &flError ) { static float flEpsilon = cos( DEG2RAD( NORMAL_EPSILON ) );
Vector v1, v2; v1 = n1; v2 = n2; VectorNormalize( v1 ); VectorNormalize( v2 ); float flDot = DotProduct( v1, v2 ); flError = 1.0F - flDot; return ( flDot >= flEpsilon ); }
//-----------------------------------------------------------------------------
// Computes error between two tangentS vectors; returns false if the error is too great
//-----------------------------------------------------------------------------
bool CompareTangentSFuzzy( const Vector4D &n1, const Vector4D &n2, float &flError ) { static float flEpsilon = cos( DEG2RAD( TANGENT_EPSILON ) );
Vector4D v1, v2; v1 = n1; v2 = n2;
if (v1.w != v2.w) { // must match as -1 or 1
flError = 2; return false; }
VectorNormalize( v1.AsVector3D() ); VectorNormalize( v2.AsVector3D() ); float flDot = DotProduct( v1.AsVector3D(), v2.AsVector3D() );
// error ranges from [0..2]
flError = 1.0F - flDot;
return ( flDot >= flEpsilon ); }
//-----------------------------------------------------------------------------
// Computes error between two texcoords; returns false if the error is too great
//-----------------------------------------------------------------------------
bool CompareTexCoordsFuzzy( const Vector2D &t1, const Vector2D &t2, float &flError ) { Vector2D vecError; vecError[0] = fabs( t2[0] - t1[0] ); vecError[1] = fabs( t2[1] - t1[1] ); flError = vecError.LengthSqr(); return ( flError <= (TEXCOORD_EPSILON * TEXCOORD_EPSILON) ); }
//-----------------------------------------------------------------------------
// Computes the error between two bone weights, returns false if they are too far
//-----------------------------------------------------------------------------
bool CompareBoneWeightsFuzzy( const s_boneweight_t &b1, const s_boneweight_t &b2, float &flError ) { // This is a list of which bones that exist in b1 also exist in b2.
// Use the index to figure out where in the array for b2 that the corresponding bone in b1 is.
int nMatchingBones = 0; int pBoneIndexMap1[MAX_NUM_BONES_PER_VERT]; int pBoneIndexMap2[MAX_NUM_BONES_PER_VERT];
int i; for ( i = 0; i < b2.numbones; ++i ) { pBoneIndexMap2[i] = -1; }
for ( i = 0; i < b1.numbones; ++i ) { pBoneIndexMap1[i] = -1; for ( int j = 0; j < b2.numbones; ++j ) { if ( b2.bone[j] == b1.bone[i] ) { pBoneIndexMap1[i] = j; pBoneIndexMap2[j] = i; ++nMatchingBones; break; } } }
// If no bones match, we're done
if ( !nMatchingBones ) { flError = FLT_MAX; return false; }
// At least one bone matches, so we're going to consider this vertex as a potential match
// This loop will take care of figuring out the error for all bones that exist in
// b1 alone, and all bones that exist in b1 and b2
flError = 0; for ( i = 0; i < b1.numbones; ++i ) { // If we didn't find a match for this bone, compute a more expensive weight
if ( pBoneIndexMap1[i] == -1 ) { flError += b1.weight[i] * b1.weight[i] * UNMATCHED_BONE_WEIGHT; continue; }
float flDeltaWeight = fabs( b1.weight[i] - b2.weight[ pBoneIndexMap1[i] ] ); flError += flDeltaWeight * flDeltaWeight; }
// This loop will take care of figuring out the error for all bones that exist in b2 alone
for ( i = 0; i < b2.numbones; ++i ) { // If we didn't find a match for this bone, compute a more expensive weight
if ( pBoneIndexMap2[i] == -1 ) { flError += b2.weight[i] * b2.weight[i] * UNMATCHED_BONE_WEIGHT; } }
// This renormalizes the error. The error will become greater with the total
// number of bones in the two vertices.
flError /= sqrt( (float) (b1.numbones + b2.numbones)); return ( flError <= BONEWEIGHT_EPSILON ); }
//-----------------------------------------------------------------------------
// Searches for a material in the texture list
//-----------------------------------------------------------------------------
int FindMaterialByName( const char *pMaterialName ) { int i; int allocLen = strlen( pMaterialName ) + 1; char *pBaseName = ( char * )_alloca( allocLen ); Q_FileBase( ( char * )pMaterialName, pBaseName, allocLen );
for( i = 0; i < g_numtextures; i++ ) { if( stricmp( pBaseName, g_texture[i].name ) == 0 ) { return i; } } return -1; }
static s_mesh_t *FindMeshByMaterial( s_source_t *pSrc, int nMaterialID ) { for ( int m = 0; m < pSrc->nummeshes; m++ ) { if ( pSrc->meshindex[m] == nMaterialID ) return &pSrc->mesh[ pSrc->meshindex[m] ]; } // this mesh/material doesn't exist at this lod.
return NULL; }
static s_mesh_t *FindOrCullMesh( int nLodID, s_source_t *pSrc, int nMaterialID ) { char baseMeshName[MAX_PATH]; char baseRemovalName[MAX_PATH];
// possibly marked for removal via $removemesh
// determine mesh name
int nTextureID = MaterialToTexture( nMaterialID ); if (nTextureID == -1) { MdlError( "Unknown Texture for Material %d\n", nMaterialID ); }
Q_FileBase(g_texture[nTextureID].name, baseMeshName, sizeof(baseMeshName)-1); for ( int i = 0; i < g_ScriptLODs[nLodID].meshRemovals.Count(); i++ ) { const char *pMeshRemovalName = g_ScriptLODs[nLodID].meshRemovals[i].GetSrcName(); Q_FileBase( pMeshRemovalName, baseRemovalName, sizeof(baseRemovalName)-1);
if (!stricmp( baseRemovalName, baseMeshName )) { // mesh has been marked for removal
return NULL; } }
s_mesh_t *pMesh = FindMeshByMaterial( pSrc, nMaterialID ); return pMesh; }
static void CopyVerts( int nLodID, const s_source_t *pSrc, const s_mesh_t *pSrcMesh, CVertexDictionary &vertexDict, s_mesh_t *pDstMesh, int *pMeshVertIndexMap ) { // populate the dictionary with the verts
for( int srcVertID = 0; srcVertID < pSrcMesh->numvertices; srcVertID++ ) { int nVertexIndex = pSrcMesh->vertexoffset + srcVertID; pMeshVertIndexMap[ nVertexIndex ] = vertexDict.AddVertexFromSource( pSrc, nVertexIndex, nLodID ) - pDstMesh->vertexoffset; }
pDstMesh->numvertices = pSrcMesh->numvertices; }
static void CopyFaces( const s_source_t *pSrc, const s_mesh_t *pSrcMesh, CUtlVector<s_face_t> &faces, s_mesh_t *pDstMesh ) { int srcFaceID; for( srcFaceID = 0; srcFaceID < pSrcMesh->numfaces; srcFaceID++ ) { int srcID = srcFaceID + pSrcMesh->faceoffset; s_face_t *pSrcFace = &pSrc->face[srcID]; s_face_t *pDstFace = &faces[faces.AddToTail()]; pDstFace->a = pSrcFace->a; pDstFace->b = pSrcFace->b; pDstFace->c = pSrcFace->c; pDstMesh->numfaces++; } }
#define IGNORE_POSITION 0x01
#define IGNORE_TEXCOORD 0x02
#define IGNORE_BONEWEIGHT 0x04
#define IGNORE_NORMAL 0x08
#define IGNORE_TANGENTS 0x10
//-----------------------------------------------------------------------------
// return -1 if there is no match. The index returned is used to index into vertexDict.
//-----------------------------------------------------------------------------
static int FindVertexWithinVertexDictionary( const VertexInfo_t &find, const CVertexDictionary &vertexDict, int nStartVert, int nEndVert, int fIgnore ) { int nBestIndex = -1; float flPositionError = 0.0f; float flNormalError = 0.0f; float flTangentSError = 0.0f; float flTexcoordError = 0.0f; float flBoneWeightError = 0.0f; float flMinPositionError = FLT_MAX; float flMinNormalError = FLT_MAX; float flMinTangentSError = FLT_MAX; float flMinTexcoordError = FLT_MAX; float flMinBoneWeightError = FLT_MAX; bool bFound;
if (fIgnore & IGNORE_POSITION) { flMinPositionError = 0; flPositionError = 0; }
if (fIgnore & IGNORE_TEXCOORD) { flMinTexcoordError = 0; flTexcoordError = 0; }
if (fIgnore & IGNORE_BONEWEIGHT) { flMinBoneWeightError = 0; flBoneWeightError = 0; }
if (fIgnore & IGNORE_NORMAL) { flMinNormalError = 0; flNormalError = 0; }
if (fIgnore & IGNORE_TANGENTS) { flMinTangentSError = 0; flTangentSError = 0; }
for ( int nVertexIndex = nStartVert; nVertexIndex < nEndVert; ++nVertexIndex ) { // see if the position is reasonable
if ( !(fIgnore & IGNORE_POSITION) && !ComparePositionFuzzy( find.m_Position, vertexDict.Vertex(nVertexIndex).m_Position, flPositionError ) ) continue;
if ( !(fIgnore & IGNORE_TEXCOORD) && !CompareTexCoordsFuzzy( find.m_TexCoord, vertexDict.Vertex(nVertexIndex).m_TexCoord, flTexcoordError ) ) continue;
if ( !(fIgnore & IGNORE_BONEWEIGHT) && !CompareBoneWeightsFuzzy( find.m_BoneWeight, vertexDict.Vertex(nVertexIndex).m_BoneWeight, flBoneWeightError ) ) continue;
if ( !(fIgnore & IGNORE_NORMAL) && !CompareNormalFuzzy( find.m_Normal, vertexDict.Vertex(nVertexIndex).m_Normal, flNormalError ) ) continue;
if ( !(fIgnore & IGNORE_TANGENTS) && !CompareTangentSFuzzy( find.m_TangentS, vertexDict.Vertex(nVertexIndex).m_TangentS, flTangentSError ) ) continue;
// the vert with minimum error is the best or exact candidate
bFound = false; if (flMinPositionError > flPositionError) { bFound = true; } else if (flMinPositionError == flPositionError) { if (flMinTexcoordError > flTexcoordError) { bFound = true; } else if (flMinTexcoordError == flTexcoordError) { if (flMinBoneWeightError > flBoneWeightError) { bFound = true; } else if (flMinBoneWeightError == flBoneWeightError) { if (flMinNormalError > flNormalError) { bFound = true; } else if (flMinNormalError == flNormalError) { if (flMinTangentSError >= flTangentSError) { bFound = true; } } } } }
if (!bFound) continue;
flMinPositionError = flPositionError; flMinTexcoordError = flTexcoordError; flMinBoneWeightError = flBoneWeightError; flMinNormalError = flNormalError; flMinTangentSError = flTangentSError; nBestIndex = nVertexIndex; }
return nBestIndex; }
//-----------------------------------------------------------------------------
// Use position, normal, and texcoord checks across the entire model to find a boneweight
//-----------------------------------------------------------------------------
static void FindBoneWeightWithinModel( const VertexInfo_t &searchVertex, const s_source_t *pSrc, s_boneweight_t &boneWeight, int fIgnore ) { int nBestIndex = -1; float flPositionError = 0.0f; float flNormalError = 0.0f; float flTangentSError = 0.0f; float flTexcoordError = 0.0f; float flMinPositionError = FLT_MAX; float flMinNormalError = FLT_MAX; float flMinTangentSError = FLT_MAX; float flMinTexcoordError = FLT_MAX; bool bFound;
if (fIgnore & IGNORE_NORMAL) { flMinNormalError = 0; flNormalError = 0; }
if (fIgnore & IGNORE_TEXCOORD) { flMinTexcoordError = 0; flTexcoordError = 0; }
if (fIgnore & IGNORE_TANGENTS) { flMinTangentSError = 0; flTangentSError = 0; }
int nVertexCount = pSrc->m_GlobalVertices.Count(); for ( int i = 0; i < nVertexCount; i++ ) { const s_vertexinfo_t &srcVertex = pSrc->m_GlobalVertices[i];
// Compute error metrics
ComparePositionFuzzy( searchVertex.m_Position, srcVertex.position, flPositionError );
if (!(fIgnore & IGNORE_NORMAL)) { CompareNormalFuzzy( searchVertex.m_Normal, srcVertex.normal, flNormalError ); }
if (!(fIgnore & IGNORE_TEXCOORD)) { CompareTexCoordsFuzzy( searchVertex.m_TexCoord, srcVertex.texcoord, flTexcoordError ); }
if (!(fIgnore & IGNORE_TANGENTS)) { CompareTangentSFuzzy( searchVertex.m_TangentS, srcVertex.tangentS, flTangentSError ); }
// the vert with minimum error is the best or exact candidate
bFound = false; if (flMinPositionError > flPositionError) { bFound = true; } else if (flMinPositionError == flPositionError) { if (flMinTexcoordError > flTexcoordError) { bFound = true; } else if (flMinTexcoordError == flTexcoordError) { if (flMinNormalError > flNormalError) { bFound = true; } else if (flMinNormalError == flNormalError) { if (flMinTangentSError >= flTangentSError) { bFound = true; } } } }
if (bFound) { flMinPositionError = flPositionError; flMinTexcoordError = flTexcoordError; flMinNormalError = flNormalError; flMinTangentSError = flTangentSError; nBestIndex = i; } } if ( nBestIndex == -1 ) { MdlError( "Encountered a mesh with no vertices!\n" ); }
memcpy( &boneWeight, &pSrc->m_GlobalVertices[ nBestIndex ].boneweight, sizeof(s_boneweight_t) ); }
//-----------------------------------------------------------------------------
// Modify the bone weights in all of the vertices....
//-----------------------------------------------------------------------------
static void RemapBoneWeights( const CUtlVector<int> &boneMap, s_boneweight_t &boneWeight ) { for( int i = 0; i < boneWeight.numbones; i++ ) { Assert( boneWeight.bone[i] >= 0 && boneWeight.bone[i] < boneMap.Count() ); boneWeight.bone[i] = boneMap[ boneWeight.bone[i] ]; } }
//-----------------------------------------------------------------------------
// After the remapping, we may get multiple instances of the same bone
// which we want to collapse into a single bone
//-----------------------------------------------------------------------------
static void CollapseBoneWeights( s_boneweight_t &boneWeight ) { // We need the bones to be sorted by bone index for the loop right below
SortBoneWeightByIndex( boneWeight );
for( int i = 0; i < boneWeight.numbones-1; i++ ) { if( boneWeight.bone[i] != boneWeight.bone[i+1] ) continue;
// add i+1's weight to i since they have the same bone index
boneWeight.weight[i] += boneWeight.weight[i+1];
// remove i+1
for( int j = i+1; j < boneWeight.numbones-1; j++ ) { boneWeight.bone[j] = boneWeight.bone[j+1]; boneWeight.weight[j] = boneWeight.weight[j+1]; } --boneWeight.numbones;
// Gotta step back one, may have many bones collapsing into one
--i; }
ValidateBoneWeight( boneWeight ); }
//-----------------------------------------------------------------------------
// Find a matching vertex within the root lod
//-----------------------------------------------------------------------------
static void CalculateBoneWeightFromRootLod( const VertexInfo_t &searchVertex, CVertexDictionary &vertexDict, const s_source_t *pRootLODSrc, VertexInfo_t &idealVertex ) { idealVertex = searchVertex;
// Look through the part of the vertex dictionary associated with the root LODs for a match
// bone weights are not defined properly in SMDs for lower LODs, so don't consider
// we can only accept the boneweight from the root LOD
int nVertexDictID = FindVertexWithinVertexDictionary( searchVertex, vertexDict, vertexDict.RootLODVertexStart(), vertexDict.RootLODVertexEnd(), IGNORE_BONEWEIGHT|IGNORE_TANGENTS ); if ( nVertexDictID != -1 ) { Assert( nVertexDictID >= vertexDict.RootLODVertexStart() && nVertexDictID < vertexDict.RootLODVertexEnd() ); Assert( nVertexDictID >= 0 && nVertexDictID < vertexDict.VertexCount() );
// found vertex in dictionary
#ifdef UNIQUE_VERTEXES_FOR_LOD
// keep entry vertex and fill in the missing bone weight attribute
idealVertex.m_BoneWeight = vertexDict.Vertex( nVertexDictID ).m_BoneWeight; #else
// discard entry vertex in favor of best match
// this ensures all the attributes, including bone weight are correct for that vertex
// the worst case is that the vertex is not an *exact* match for entry attributes just a "close" match
idealVertex = vertexDict.Vertex( nVertexDictID ); #endif
return; }
// In this case, we didn't find anything within the tolerance, so we need to
// do a *positional check only* to give us a bone weight to assign to this vertex.
FindBoneWeightWithinModel( searchVertex, pRootLODSrc, idealVertex.m_BoneWeight, IGNORE_BONEWEIGHT|IGNORE_TANGENTS ); }
//-----------------------------------------------------------------------------
// Find a matching vertex
//-----------------------------------------------------------------------------
static void CalculateIdealVert( const VertexInfo_t &searchVertex, CVertexDictionary &vertexDict, const s_mesh_t *pVertexDictMesh, const s_source_t *pRootLODSrc, VertexInfo_t &idealVertex ) { #ifndef UNIQUE_VERTEXES_FOR_LOD
// Only look through the part of the vertex dictionary associated with all *higher* LODs for a match
int nVertexDictID = FindVertexWithinVertexDictionary( searchVertex, vertexDict, pVertexDictMesh->vertexoffset, vertexDict.PrevLODVertexCount(), 0 ); if ( nVertexDictID != -1 ) { Assert( nVertexDictID >= pVertexDictMesh->vertexoffset && nVertexDictID < vertexDict.PrevLODVertexCount() ); Assert( nVertexDictID >= 0 && nVertexDictID < vertexDict.VertexCount() );
// found vertex in dictionary
idealVertex = vertexDict.Vertex( nVertexDictID ); return; } #endif
// could not find a tolerant match
// the search vertex is unique
idealVertex = searchVertex; }
static bool FuzzyFloatCompare( float f1, float f2, float epsilon ) { if( fabs( f1 - f2 ) < epsilon ) { return true; } else { return false; } }
//-----------------------------------------------------------------------------
// Is this bone weight structure sorted by bone?
//-----------------------------------------------------------------------------
static bool IsBoneWeightSortedByBone( const s_boneweight_t &src ) { for ( int i = 1; i < src.numbones; ++i ) { Assert( src.bone[i] != -1 ); if ( src.bone[ i-1 ] > src.bone[ i ] ) return false; }
return true; }
//-----------------------------------------------------------------------------
// Are two bone-weight structures equal?
//-----------------------------------------------------------------------------
static bool AreBoneWeightsEqual( const s_boneweight_t &b1, const s_boneweight_t &b2 ) { // Have to have the same number of bones
if ( b1.numbones != b2.numbones ) return false;
// This is a list of which bones that exist in b1 also exist in b2.
// Use the index to figure out where in the array for b2 that the corresponding bone in b1 is.
int nMatchingBones = 0; int pBoneIndexMap[MAX_NUM_BONES_PER_VERT];
int i; for ( i = 0; i < b1.numbones; ++i ) { pBoneIndexMap[i] = -1; for ( int j = 0; j < b2.numbones; ++j ) { if ( b2.bone[j] == b1.bone[i] ) { pBoneIndexMap[i] = j; ++nMatchingBones; break; } } }
// If we aren't using the same bone indices, we're done
if ( nMatchingBones != b1.numbones ) return false;
// Check to see if the weights are the same
for ( i = 0; i < b1.numbones; ++i ) { Assert( pBoneIndexMap[i] != -1 ); if ( b1.weight[i] != b2.weight[ pBoneIndexMap[i] ] ) return false; }
return true; }
//-----------------------------------------------------------------------------
// Finds an *exact* requested vertex in the dictionary
//-----------------------------------------------------------------------------
static int FindVertexInDictionaryExact( CVertexDictionary &vertexDict, int nStartVert, int nEndVert, const VertexInfo_t &vertex ) { for ( int nVertID = nStartVert; nVertID < nEndVert; ++nVertID ) { if ( vertexDict.Vertex( nVertID ).m_Position != vertex.m_Position ) continue;
if ( !AreBoneWeightsEqual( vertexDict.Vertex( nVertID ).m_BoneWeight, vertex.m_BoneWeight ) ) continue;
if ( vertexDict.Vertex( nVertID ).m_TexCoord != vertex.m_TexCoord ) continue;
if ( vertexDict.Vertex( nVertID ).m_Normal != vertex.m_Normal ) continue;
if ( vertexDict.Vertex( nVertID ).m_TangentS != vertex.m_TangentS ) continue;
return nVertID; }
return -1; }
//-----------------------------------------------------------------------------
// Finds the *exact* requested vertex in the dictionary or creates it
//-----------------------------------------------------------------------------
static int FindOrCreateExactVertexInDictionary( CVertexDictionary &vertexDict, const VertexInfo_t &vertex, s_mesh_t *pDstMesh ) { int nMeshVertID = FindVertexInDictionaryExact( vertexDict, pDstMesh->vertexoffset, pDstMesh->vertexoffset+pDstMesh->numvertices, vertex ); if ( nMeshVertID != -1 ) { // flag vertex for what LoD's are using it
vertexDict.Vertex( nMeshVertID ).m_nLodFlag |= vertex.m_nLodFlag; return nMeshVertID - pDstMesh->vertexoffset; }
nMeshVertID = vertexDict.AddVertex( vertex ); ++pDstMesh->numvertices; return nMeshVertID - pDstMesh->vertexoffset; }
static void PrintBonesUsedInLOD( s_source_t *pSrc ) { printf( "PrintBonesUsedInLOD\n" );
int nVertexCount = pSrc->m_GlobalVertices.Count(); for( int i = 0; i <nVertexCount; i++ ) { Vector &pos = pSrc->m_GlobalVertices[i].position; Vector &norm = pSrc->m_GlobalVertices[i].normal; Vector2D &texcoord = pSrc->m_GlobalVertices[i].texcoord; printf( "pos: %f %f %f norm: %f %f %f texcoord: %f %f\n", pos[0], pos[1], pos[2], norm[0], norm[1], norm[2], texcoord[0], texcoord[1] ); s_boneweight_t *pBoneWeight = &pSrc->m_GlobalVertices[i].boneweight; int j; for( j = 0; j < pBoneWeight->numbones; j++ ) { int globalBoneID = pBoneWeight->bone[j]; const char *pBoneName = g_bonetable[globalBoneID].name; printf( "vert: %d bone: %d boneid: %d weight: %f name: \"%s\"\n", i, ( int )j, ( int )pBoneWeight->bone[j], ( float )pBoneWeight->weight[j], pBoneName ); } printf( "\n" ); fflush( stdout ); } }
//-----------------------------------------------------------------------------
// Indicates a particular set of bones is used by a particular LOD
//-----------------------------------------------------------------------------
static void MarkBonesUsedByLod( const s_boneweight_t &boneWeight, int nLodID ) { for( int j = 0; j < boneWeight.numbones; ++j ) { int nGlobalBoneID = boneWeight.bone[j]; s_bonetable_t *pBone = &g_bonetable[nGlobalBoneID]; pBone->flags |= ( BONE_USED_BY_VERTEX_LOD0 << nLodID ); } }
static void PrintSBoneWeight( s_boneweight_t *pBoneWeight, const s_source_t *pSrc ) { int j; for( j = 0; j < pBoneWeight->numbones; j++ ) { int globalBoneID; globalBoneID = pBoneWeight->bone[j]; const char *pBoneName = g_bonetable[globalBoneID].name; printf( "bone: %d boneid: %d weight: %f name: \"%s\"\n", ( int )j, ( int )pBoneWeight->bone[j], ( float )pBoneWeight->weight[j], pBoneName ); } }
//-----------------------------------------------------------------------------
// In the non-top LOD, look for vertices that would be appropriate from the
// vertex dictionary, and use them if you find them, or add new vertices to the
// vertex dictionary if not and use those new vertices.
//-----------------------------------------------------------------------------
static void CreateLODVertsInDictionary( int nLodID, const s_source_t *pRootLODSrc, s_source_t *pCurrentLODSrc, const s_mesh_t *pCurrLODMesh, s_mesh_t *pVertexDictMesh, CVertexDictionary &vertexDict, int *pMeshVertIndexMap ) { // this function is specific to lods and not the root
Assert( nLodID );
int nNumCurrentVerts = vertexDict.VertexCount();
// Used to control where we look for vertices + merging rules
vertexDict.StartNewLOD();
CUtlVector<int> boneMap; BuildBoneLODMapping( boneMap, nLodID );
for( int nSrcVertID = 0; nSrcVertID < pCurrLODMesh->numvertices; ++nSrcVertID ) { int nSrcID = nSrcVertID + pCurrLODMesh->vertexoffset;
// candidate vertex
// vertices at lower LODs have bogus boneweights assigned
// must get the boneweight from the nearest or exact vertex at root lod
const s_vertexinfo_t& srcVertex = pCurrentLODSrc->m_GlobalVertices[nSrcID]; VertexInfo_t vertex; vertex.m_Position = srcVertex.position; vertex.m_Normal = srcVertex.normal; vertex.m_TexCoord = srcVertex.texcoord; vertex.m_TangentS = srcVertex.tangentS;
#ifdef _DEBUG
memset( &vertex.m_BoneWeight, 0xDD, sizeof( s_boneweight_t ) ); #endif
// determine the best bone weight for the desired vertex within the root lod only
// the root lod contains no bone remappings
// this ensures we get a vertex with its matched proper boneweight assignment
VertexInfo_t idealVertex; CalculateBoneWeightFromRootLod( vertex, vertexDict, pRootLODSrc, idealVertex );
// try again to match the candidate vertex
// determine the ideal vertex with desired remapped boneweight
vertex = idealVertex; CalculateIdealVert( vertex, vertexDict, pVertexDictMesh, pRootLODSrc, idealVertex);
// remap bone
RemapBoneWeights( boneMap, idealVertex.m_BoneWeight ); CollapseBoneWeights( idealVertex.m_BoneWeight ); SortBoneWeightByWeight( idealVertex.m_BoneWeight );
// FIXME: this is marking bones based on the slammed vertex data
MarkBonesUsedByLod( idealVertex.m_BoneWeight, nLodID );
// tag ideal vertex as being part of the current lod
idealVertex.m_nLodFlag = 1 << nLodID;
// Find the exact vertex or create it in the dictionary
int nMeshVertID = FindOrCreateExactVertexInDictionary( vertexDict, idealVertex, pVertexDictMesh );
// Indicate where in the higher LODs the vertex we selected resides
pMeshVertIndexMap[nSrcID] = nMeshVertID; }
int nNewVertsCreated = vertexDict.VertexCount() - nNumCurrentVerts; if (!g_quiet && nNewVertsCreated) { printf( "Lod %d: vertexes: %d (%d new)\n", nLodID, vertexDict.VertexCount(), nNewVertsCreated); } }
static void PrintSourceVerts( s_source_t *pSrc ) { int nVertexCount = pSrc->m_GlobalVertices.Count(); for( int i = 0; i < nVertexCount; i++ ) { const s_vertexinfo_t &srcVertex = pSrc->m_GlobalVertices[i]; printf( "v %d ", i ); printf( "pos: %f %f %f ", srcVertex.position[0], srcVertex.position[1], srcVertex.position[2] ); printf( "norm: %f %f %f ", srcVertex.normal[0], srcVertex.normal[1], srcVertex.normal[2] ); printf( "texcoord: %f %f\n", srcVertex.texcoord[0], srcVertex.texcoord[1] ); int j; for( j = 0; j < srcVertex.boneweight.numbones; j++ ) { printf( "\t%d: %d %f\n", j, ( int )srcVertex.boneweight.bone[j], srcVertex.boneweight.weight[j] ); } fflush( stdout ); } }
//-----------------------------------------------------------------------------
// Copy the vertex dictionary to the finalized processed data
// Leaves the source data intact, necessary for later processes.
// Routines can then choose which data they operate on
//-----------------------------------------------------------------------------
static void SetProcessedWithDictionary( s_model_t* pSrcModel, CVertexDictionary &vertexDict, CUtlVector<s_face_t> &faces, CUtlVector<s_mesh_t> &meshes, int *pMeshVertIndexMaps[MAX_NUM_LODS] ) { int i;
s_loddata_t *pLodData = new s_loddata_t; memset( pLodData, 0, sizeof(s_loddata_t) ); pSrcModel->m_pLodData = pLodData;
int nVertexCount = vertexDict.VertexCount();
pLodData->vertex = (s_lodvertexinfo_t *)kalloc( nVertexCount, sizeof( s_lodvertexinfo_t ) ); pLodData->numvertices = nVertexCount; pLodData->face = (s_face_t *)kalloc( faces.Count(), sizeof( s_face_t )); pLodData->numfaces = faces.Count(); for ( i = 0; i < nVertexCount; ++i ) { const VertexInfo_t &srcVertex = vertexDict.Vertex( i ); s_lodvertexinfo_t &dstVertex = pLodData->vertex[i];
dstVertex.boneweight = srcVertex.m_BoneWeight; Assert( dstVertex.boneweight.numbones <= 4 ); dstVertex.position = srcVertex.m_Position; dstVertex.normal = srcVertex.m_Normal; dstVertex.texcoord = srcVertex.m_TexCoord; dstVertex.tangentS = srcVertex.m_TangentS; dstVertex.lodFlag = srcVertex.m_nLodFlag; }
memcpy( pLodData->face, faces.Base(), faces.Count() * sizeof( s_face_t ) ); memcpy( pLodData->mesh, meshes.Base(), meshes.Count() * sizeof( s_mesh_t ) );
for (i=0; i<MAX_NUM_LODS; i++) { pLodData->pMeshVertIndexMaps[i] = pMeshVertIndexMaps[i]; } }
//-----------------------------------------------------------------------------
// This fills out boneMap, which is a mapping from src bone to src bone replacement (or to itself
// if there is no bone replacement.
//-----------------------------------------------------------------------------
static void BuildBoneLODMapping( CUtlVector<int> &boneMap, int lodID ) { boneMap.AddMultipleToTail( g_numbones );
Assert( lodID < g_ScriptLODs.Size() ); LodScriptData_t& scriptLOD = g_ScriptLODs[lodID];
// First, create a direct mapping where no bones are collapsed
int i; for( i = 0; i < g_numbones; i++ ) { boneMap[i] = i; }
for( i = 0; i < scriptLOD.boneReplacements.Size(); i++ ) { const char *src, *dst; src = scriptLOD.boneReplacements[i].GetSrcName(); dst = scriptLOD.boneReplacements[i].GetDstName(); int j = findGlobalBone( src ); int k = findGlobalBone( dst );
if ( j != -1 && k != -1) { boneMap[j] = k; } else if ( j == -1) { // FIXME: is this really an error? It could just be replacement command for bone that doesnt' exist anymore.
if (g_verbose) { MdlWarning( "Couldn't replace unknown bone \"%s\" with \"%s\"\n", src, dst ); } } else { // FIXME: is this really an error? It could just be replacement command for bone that doesnt' exist anymore.
if (g_verbose) { MdlWarning( "Couldn't replace bone \"%s\" with unknown \"%s\"\n", src, dst ); } } } }
static void MarkRootLODBones( CVertexDictionary &vertexDictionary ) { // should result in an identity mapping
// because their are no bone remaps at the root lod
CUtlVector<int> boneMap; BuildBoneLODMapping( boneMap, 0 );
// iterate and mark bones
for (int nVertDictID=vertexDictionary.RootLODVertexStart(); nVertDictID<vertexDictionary.RootLODVertexEnd(); nVertDictID++) { s_boneweight_t &boneWeight = vertexDictionary.Vertex( nVertDictID ).m_BoneWeight;
RemapBoneWeights( boneMap, boneWeight ); CollapseBoneWeights( boneWeight ); SortBoneWeightByWeight( boneWeight );
MarkBonesUsedByLod( boneWeight, 0 ); } }
//-----------------------------------------------------------------------------
// Computes LOD vertices for a model piece.
//-----------------------------------------------------------------------------
static void UnifyModelLODs( s_model_t *pSrcModel ) { if ( !Q_stricmp( pSrcModel->name, "blank" ) ) return;
// each lod has a unique vertex mapping table
int nNumLODs = pSrcModel->m_LodSources.Count(); int nLodID; int *pMeshVertIndexMaps[MAX_NUM_LODS]; for ( nLodID = 0; nLodID < MAX_NUM_LODS; nLodID++ ) { if ( nLodID < nNumLODs && pSrcModel->m_LodSources[nLodID] ) { int nVertexCount = pSrcModel->m_LodSources[nLodID]->m_GlobalVertices.Count(); pMeshVertIndexMaps[nLodID] = new int[ nVertexCount ]; #ifdef _DEBUG
memset( pMeshVertIndexMaps[nLodID], 0xDD, nVertexCount * sizeof(int) ); #endif
} else { pMeshVertIndexMaps[nLodID] = NULL; } }
// These hold the aggregate data for the model that grows as lods are processed
CVertexDictionary vertexDictionary; CUtlVector<s_face_t> faces; CUtlVector<s_mesh_t> meshes; meshes.AddMultipleToTail( MAXSTUDIOSKINS ); Assert( meshes.Count() == MAXSTUDIOSKINS ); memset( meshes.Base(), 0, meshes.Count() * sizeof( s_mesh_t ) );
int nMeshID; for( nMeshID = 0; nMeshID < pSrcModel->source->nummeshes; nMeshID++ ) { s_mesh_t *pVertexDictMesh = &meshes[pSrcModel->source->meshindex[nMeshID]]; pVertexDictMesh->numvertices = 0; pVertexDictMesh->vertexoffset = vertexDictionary.VertexCount(); pVertexDictMesh->numfaces = 0; pVertexDictMesh->faceoffset = faces.Count(); // First build up information for LOD 0
if ( !pSrcModel->m_LodSources[0] ) continue;
s_source_t *pLOD0Source = pSrcModel->m_LodSources[0];
// lookup the material used by this mesh
int nMaterialID = pLOD0Source->meshindex[nMeshID]; s_mesh_t *pLOD0Mesh = FindMeshByMaterial( pLOD0Source, nMaterialID ); if ( !pLOD0Mesh ) continue;
// populate with all vertices from LOD 0
int nStart = vertexDictionary.VertexCount(); CopyVerts( 0, pLOD0Source, pLOD0Mesh, vertexDictionary, pVertexDictMesh, pMeshVertIndexMaps[0] ); vertexDictionary.SetRootVertexRange( nStart, vertexDictionary.VertexCount() ); MarkRootLODBones( vertexDictionary );
// only fix up the faces for the highest lod since the lowest ones are going
// to be reprocessed later.
CopyFaces( pLOD0Source, pLOD0Mesh, faces, pVertexDictMesh );
// Now, for each LOD, try to build meshes using the vertices in LOD 0.
// Ideally, vertices used in an LOD would be in LOD 0 for the benefit of shared vertices.
// If we don't find vertices in LOD 0, this code will add vertices into LOD 0's list
// of vertices for the next LOD to find
for ( nLodID = 1; nLodID < nNumLODs; ++nLodID ) { s_source_t *pCurrLOD = pSrcModel->m_LodSources[nLodID]; if ( !pCurrLOD ) continue;
// Find the mesh that matches the material
// mesh may not be present or could be culled due to $removemesh commands
s_mesh_t *pCurrLODMesh = FindOrCullMesh( nLodID, pCurrLOD, nMaterialID ); if ( !pCurrLODMesh ) continue;
CreateLODVertsInDictionary( nLodID, pLOD0Source, pCurrLOD, pCurrLODMesh, pVertexDictMesh, vertexDictionary, pMeshVertIndexMaps[nLodID]); } }
#ifdef _DEBUG
Msg( "Total vertex count: %d\n", vertexDictionary.VertexCount() ); #endif
// save the data we just built into the processed data section
// The processed data has all of the verts that are needed for all LODs.
SetProcessedWithDictionary( pSrcModel, vertexDictionary, faces, meshes, pMeshVertIndexMaps ); // PrintSourceVerts( pSrcModel->m_LodModels[0] );
}
//-----------------------------------------------------------------------------
// Force the vertex array for a model to have all of the vertices that are needed
// for all of the LODs of the model.
//-----------------------------------------------------------------------------
void UnifyLODs( void ) { // todo: need to fixup the firstref/lastref stuff . . do we really need it anymore?
for( int modelID = 0; modelID < g_nummodelsbeforeLOD; modelID++ ) { UnifyModelLODs( g_model[modelID] ); } }
static void PrintSpaces( int numSpaces ) { int i; for( i = 0; i < numSpaces; i++ ) { printf( " " ); } }
static void SpewBoneInfo( int globalBoneID, int depth ) { s_bonetable_t *pBone = &g_bonetable[globalBoneID]; if( g_bPrintBones ) { PrintSpaces( depth * 2 ); printf( "%d \"%s\" ", depth, pBone->name ); } int i; for( i = 0; i < 8; i++ ) { if( pBone->flags & ( BONE_USED_BY_VERTEX_LOD0 << i ) ) { if( g_bPrintBones ) { printf( "lod%d ", i ); } g_NumBonesInLOD[i]++; } } if( g_bPrintBones ) { printf( "\n" ); } int j; for( j = 0; j < g_numbones; j++ ) { s_bonetable_t *pBone = &g_bonetable[j]; if( pBone->parent == globalBoneID ) { SpewBoneInfo( j, depth + 1 ); } } }
void SpewBoneUsageStats( void ) { memset( g_NumBonesInLOD, 0, sizeof( int ) * MAX_NUM_LODS ); if( g_numbones == 0 ) { return; } SpewBoneInfo( 0, 0 ); if( g_bPrintBones ) { int i; for( i = 0; i < g_ScriptLODs.Count(); i++ ) { printf( "\t%d bones used in lod %d\n", g_NumBonesInLOD[i], i ); } } }
void MarkParentBoneLODs( void ) { int i; for( i = 0; i < g_numbones; i++ ) { int flags = g_bonetable[i].flags; flags &= BONE_USED_BY_VERTEX_MASK; int globalBoneID = g_bonetable[i].parent; while( globalBoneID != -1 ) { g_bonetable[globalBoneID].flags |= flags; globalBoneID = g_bonetable[globalBoneID].parent; } } }
//-----------------------------------------------------------------------------
// Returns the sources associated with the various LODs based on the script commands
//-----------------------------------------------------------------------------
static void GetLODSources( CUtlVector< s_source_t * > &lods, const s_model_t *pSrcModel ) { int nNumLODs = g_ScriptLODs.Count(); lods.EnsureCount( nNumLODs ); for( int lodID = 0; lodID < nNumLODs; lodID++ ) { LodScriptData_t& scriptLOD = g_ScriptLODs[lodID];
bool bFound; s_source_t* pSource = GetModelLODSource( pSrcModel->filename, scriptLOD, &bFound ); if ( !pSource && !bFound ) { pSource = pSrcModel->source; }
lods[lodID] = pSource; } }
//-----------------------------------------------------------------------------
// Creates models to store converted data for the various LODs
//-----------------------------------------------------------------------------
void LoadLODSources( void ) { g_nummodelsbeforeLOD = g_nummodels; for( int modelID = 0; modelID < g_nummodelsbeforeLOD; modelID++ ) { if ( !Q_stricmp( g_model[modelID]->name, "blank" ) ) { int nNumLODs = g_ScriptLODs.Count(); g_model[modelID]->m_LodSources.SetCount( nNumLODs ); for ( int i = 0; i < nNumLODs; ++i ) { g_model[modelID]->m_LodSources[i] = NULL; } continue; }
GetLODSources( g_model[modelID]->m_LodSources, g_model[modelID] ); } }
static void ReplaceBonesRecursive( int globalBoneID, bool replaceThis, CUtlVector<CLodScriptReplacement_t> &boneReplacements, const char *replacementName ) { if( replaceThis ) { CLodScriptReplacement_t &boneReplacement = boneReplacements[boneReplacements.AddToTail()]; boneReplacement.SetSrcName( g_bonetable[globalBoneID].name ); boneReplacement.SetDstName( replacementName ); }
// find children and recurse.
int i; for( i = 0; i < g_numbones; i++ ) { if( g_bonetable[i].parent == globalBoneID ) { ReplaceBonesRecursive( i, true, boneReplacements, replacementName ); } } }
static void ConvertSingleBoneTreeCollapseToReplaceBones( CLodScriptReplacement_t &boneTreeCollapse, CUtlVector<CLodScriptReplacement_t> &boneReplacements ) { // find the bone that we are starting with.
int i = findGlobalBone( boneTreeCollapse.GetSrcName() ); if (i != -1) { ReplaceBonesRecursive( i, false, boneReplacements, g_bonetable[i].name ); return; } MdlWarning( "Couldn't find bone %s for bonetreecollapse, skipping\n", boneTreeCollapse.GetSrcName() ); }
void ConvertBoneTreeCollapsesToReplaceBones( void ) { int i; for( i = 0; i < g_ScriptLODs.Size(); i++ ) { LodScriptData_t& lod = g_ScriptLODs[i]; int j; for( j = 0; j < lod.boneTreeCollapses.Size(); j++ ) { ConvertSingleBoneTreeCollapseToReplaceBones( lod.boneTreeCollapses[j], lod.boneReplacements ); } } }
/*
static void PrintReplacedBones( LodScriptData_t &lod ) { int i; for( i = 0; i < lod.boneReplacements.Count(); i++ ) { printf( "%s -> %s\n", lod.boneReplacements[i].GetSrcName(), lod.boneReplacements[i].GetDstName() ); } } */
void FixupReplacedBonesForLOD( LodScriptData_t &lod ) { /*
printf( "before:\n" ); PrintReplacedBones( lod ); */ bool changed; int i; int j; do { changed = false; for( i = 0; i < lod.boneReplacements.Count(); i++ ) { for( j = 0; j < lod.boneReplacements.Count(); j++ ) { if( i == j ) { continue; } if( Q_stricmp( lod.boneReplacements[i].GetSrcName(), lod.boneReplacements[j].GetDstName() ) == 0 ) { lod.boneReplacements[j].SetDstName( lod.boneReplacements[i].GetDstName() ); changed = true; } } } } while( changed ); /*
printf( "after:\n" ); PrintReplacedBones( lod ); */ }
void FixupReplacedBones( void ) { int i; for( i = 0; i < g_ScriptLODs.Size(); i++ ) { FixupReplacedBonesForLOD( g_ScriptLODs[i] ); } }
|