|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
//
// write.c: writes a studio .mdl file
//
#pragma warning( disable : 4244 )
#pragma warning( disable : 4237 )
#pragma warning( disable : 4305 )
#include <io.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <limits.h>
#include "cmdlib.h"
#include "scriplib.h"
#include "mathlib/mathlib.h"
#include "studio.h"
#include "studiomdl.h"
#include "collisionmodel.h"
#include "optimize.h"
#include "studiobyteswap.h"
#include "byteswap.h"
#include "materialsystem/imaterial.h"
#include "materialsystem/imaterialvar.h"
#include "mdlobjects/dmeboneflexdriver.h"
#include "perfstats.h"
#include "tier1/smartptr.h"
#include "tier2/p4helpers.h"
int totalframes = 0; float totalseconds = 0; extern int numcommandnodes;
// WriteFile is the only externally visible function in this file.
// pData points to the current location in an output buffer and pStart is
// the beginning of the buffer.
bool FixupToSortedLODVertexes( studiohdr_t *pStudioHdr ); bool Clamp_RootLOD( studiohdr_t *phdr ); static void WriteAllSwappedFiles( const char *filename );
/*
============ WriteModel ============ */
static byte *pData; static byte *pStart; static byte *pBlockData; static byte *pBlockStart;
#undef ALIGN4
#undef ALIGN16
#undef ALIGN32
#define ALIGN4( a ) a = (byte *)((int)((byte *)a + 3) & ~ 3)
#define ALIGN16( a ) a = (byte *)((int)((byte *)a + 15) & ~ 15)
#define ALIGN32( a ) a = (byte *)((int)((byte *)a + 31) & ~ 31)
#define ALIGN64( a ) a = (byte *)((int)((byte *)a + 63) & ~ 63)
#define ALIGN512( a ) a = (byte *)((int)((byte *)a + 511) & ~ 511)
// make sure kalloc aligns to maximum alignment size
#define FILEBUFFER (8 * 1024 * 1024)
void WriteSeqKeyValues( mstudioseqdesc_t *pseqdesc, CUtlVector< char > *pKeyValue );
//-----------------------------------------------------------------------------
// Purpose: stringtable is a session global string table.
//-----------------------------------------------------------------------------
struct stringtable_t { byte *base; int *ptr; const char *string; int dupindex; byte *addr; };
static int numStrings; static stringtable_t strings[32768];
static void BeginStringTable( ) { strings[0].base = NULL; strings[0].ptr = NULL; strings[0].string = ""; strings[0].dupindex = -1; numStrings = 1; }
//-----------------------------------------------------------------------------
// Purpose: add a string to the file-global string table.
// Keep track of fixup locations
//-----------------------------------------------------------------------------
static void AddToStringTable( void *base, int *ptr, const char *string ) { for (int i = 0; i < numStrings; i++) { if (!string || !strcmp( string, strings[i].string )) { strings[numStrings].base = (byte *)base; strings[numStrings].ptr = ptr; strings[numStrings].string = string; strings[numStrings].dupindex = i; numStrings++; return; } }
strings[numStrings].base = (byte *)base; strings[numStrings].ptr = ptr; strings[numStrings].string = string; strings[numStrings].dupindex = -1; numStrings++; }
//-----------------------------------------------------------------------------
// Purpose: Write out stringtable
// fixup local pointers
//-----------------------------------------------------------------------------
static byte *WriteStringTable( byte *pData ) { // force null at first address
strings[0].addr = pData; *pData = '\0'; pData++;
// save all the rest
for (int i = 1; i < numStrings; i++) { if (strings[i].dupindex == -1) { // not in table yet
// calc offset relative to local base
*strings[i].ptr = pData - strings[i].base; // keep track of address in case of duplication
strings[i].addr = pData; // copy string data, add a terminating \0
strcpy( (char *)pData, strings[i].string ); pData += strlen( strings[i].string ); *pData = '\0'; pData++; } else { // already in table, calc offset of existing string relative to local base
*strings[i].ptr = strings[strings[i].dupindex].addr - strings[i].base; } } ALIGN4( pData ); return pData; }
// compare function for qsort below
static int BoneNameCompare( const void *elem1, const void *elem2 ) { int index1 = *(byte *)elem1; int index2 = *(byte *)elem2;
// compare bones by name
return strcmpi( g_bonetable[index1].name, g_bonetable[index2].name ); }
static void WriteBoneInfo( studiohdr_t *phdr ) { int i, j, k; mstudiobone_t *pbone; mstudiobonecontroller_t *pbonecontroller; mstudioattachment_t *pattachment; mstudiobbox_t *pbbox;
// save bone info
pbone = (mstudiobone_t *)pData; phdr->numbones = g_numbones; phdr->boneindex = pData - pStart;
char* pSurfacePropName = GetDefaultSurfaceProp( ); AddToStringTable( phdr, &phdr->surfacepropindex, pSurfacePropName ); phdr->contents = GetDefaultContents();
for (i = 0; i < g_numbones; i++) { AddToStringTable( &pbone[i], &pbone[i].sznameindex, g_bonetable[i].name ); pbone[i].parent = g_bonetable[i].parent; pbone[i].flags = g_bonetable[i].flags; pbone[i].procindex = 0; pbone[i].physicsbone = g_bonetable[i].physicsBoneIndex; pbone[i].pos = g_bonetable[i].pos; pbone[i].rot = g_bonetable[i].rot; pbone[i].posscale = g_bonetable[i].posscale; pbone[i].rotscale = g_bonetable[i].rotscale; MatrixInvert( g_bonetable[i].boneToPose, pbone[i].poseToBone ); pbone[i].qAlignment = g_bonetable[i].qAlignment;
AngleQuaternion( RadianEuler( g_bonetable[i].rot[0], g_bonetable[i].rot[1], g_bonetable[i].rot[2] ), pbone[i].quat ); QuaternionAlign( pbone[i].qAlignment, pbone[i].quat, pbone[i].quat );
pSurfacePropName = GetSurfaceProp( g_bonetable[i].name ); AddToStringTable( &pbone[i], &pbone[i].surfacepropidx, pSurfacePropName ); pbone[i].contents = GetContents( g_bonetable[i].name ); }
pData += g_numbones * sizeof( mstudiobone_t ); ALIGN4( pData );
// save procedural bone info
if (g_numaxisinterpbones) { mstudioaxisinterpbone_t *pProc = (mstudioaxisinterpbone_t *)pData; for (i = 0; i < g_numaxisinterpbones; i++) { j = g_axisinterpbonemap[i]; k = g_axisinterpbones[j].bone; pbone[k].procindex = (byte *)&pProc[i] - (byte *)&pbone[k]; pbone[k].proctype = STUDIO_PROC_AXISINTERP; // printf("bone %d %d\n", j, pbone[k].procindex );
pProc[i].control = g_axisinterpbones[j].control; pProc[i].axis = g_axisinterpbones[j].axis; for (k = 0; k < 6; k++) { VectorCopy( g_axisinterpbones[j].pos[k], pProc[i].pos[k] ); pProc[i].quat[k] = g_axisinterpbones[j].quat[k]; } } pData += g_numaxisinterpbones * sizeof( mstudioaxisinterpbone_t ); ALIGN4( pData ); }
if (g_numquatinterpbones) { mstudioquatinterpbone_t *pProc = (mstudioquatinterpbone_t *)pData; pData += g_numquatinterpbones * sizeof( mstudioquatinterpbone_t ); ALIGN4( pData );
for (i = 0; i < g_numquatinterpbones; i++) { j = g_quatinterpbonemap[i]; k = g_quatinterpbones[j].bone; pbone[k].procindex = (byte *)&pProc[i] - (byte *)&pbone[k]; pbone[k].proctype = STUDIO_PROC_QUATINTERP; // printf("bone %d %d\n", j, pbone[k].procindex );
pProc[i].control = g_quatinterpbones[j].control;
mstudioquatinterpinfo_t *pTrigger = (mstudioquatinterpinfo_t *)pData; pProc[i].numtriggers = g_quatinterpbones[j].numtriggers; pProc[i].triggerindex = (byte *)pTrigger - (byte *)&pProc[i]; pData += pProc[i].numtriggers * sizeof( mstudioquatinterpinfo_t );
for (k = 0; k < pProc[i].numtriggers; k++) { pTrigger[k].inv_tolerance = 1.0 / g_quatinterpbones[j].tolerance[k]; pTrigger[k].trigger = g_quatinterpbones[j].trigger[k]; pTrigger[k].pos = g_quatinterpbones[j].pos[k]; pTrigger[k].quat = g_quatinterpbones[j].quat[k]; } } }
if (g_numjigglebones) { mstudiojigglebone_t *jiggleInfo = (mstudiojigglebone_t *)pData; for (i = 0; i < g_numjigglebones; i++) { j = g_jigglebonemap[i]; k = g_jigglebones[j].bone; pbone[k].procindex = (byte *)&jiggleInfo[i] - (byte *)&pbone[k]; pbone[k].proctype = STUDIO_PROC_JIGGLE; jiggleInfo[i] = g_jigglebones[j].data; } pData += g_numjigglebones * sizeof( mstudiojigglebone_t ); ALIGN4( pData ); }
// write aim at bones
if (g_numaimatbones) { mstudioaimatbone_t *pProc = (mstudioaimatbone_t *)pData; for (i = 0; i < g_numaimatbones; i++) { j = g_aimatbonemap[i]; k = g_aimatbones[j].bone; pbone[k].procindex = (byte *)&pProc[i] - (byte *)&pbone[k]; pbone[k].proctype = g_aimatbones[j].aimAttach == -1 ? STUDIO_PROC_AIMATBONE : STUDIO_PROC_AIMATATTACH; pProc[i].parent = g_aimatbones[j].parent; pProc[i].aim = g_aimatbones[j].aimAttach == -1 ? g_aimatbones[j].aimBone : g_aimatbones[j].aimAttach; pProc[i].aimvector = g_aimatbones[j].aimvector; pProc[i].upvector = g_aimatbones[j].upvector; pProc[i].basepos = g_aimatbones[j].basepos; } pData += g_numaimatbones * sizeof( mstudioaimatbone_t ); ALIGN4( pData ); }
// map g_bonecontroller to bones
for (i = 0; i < g_numbones; i++) { for (j = 0; j < 6; j++) { pbone[i].bonecontroller[j] = -1; } } for (i = 0; i < g_numbonecontrollers; i++) { j = g_bonecontroller[i].bone; switch( g_bonecontroller[i].type & STUDIO_TYPES ) { case STUDIO_X: pbone[j].bonecontroller[0] = i; break; case STUDIO_Y: pbone[j].bonecontroller[1] = i; break; case STUDIO_Z: pbone[j].bonecontroller[2] = i; break; case STUDIO_XR: pbone[j].bonecontroller[3] = i; break; case STUDIO_YR: pbone[j].bonecontroller[4] = i; break; case STUDIO_ZR: pbone[j].bonecontroller[5] = i; break; default: MdlError("unknown g_bonecontroller type\n"); } }
// save g_bonecontroller info
pbonecontroller = (mstudiobonecontroller_t *)pData; phdr->numbonecontrollers = g_numbonecontrollers; phdr->bonecontrollerindex = pData - pStart;
for (i = 0; i < g_numbonecontrollers; i++) { pbonecontroller[i].bone = g_bonecontroller[i].bone; pbonecontroller[i].inputfield = g_bonecontroller[i].inputfield; pbonecontroller[i].type = g_bonecontroller[i].type; pbonecontroller[i].start = g_bonecontroller[i].start; pbonecontroller[i].end = g_bonecontroller[i].end; } pData += g_numbonecontrollers * sizeof( mstudiobonecontroller_t ); ALIGN4( pData );
// save attachment info
pattachment = (mstudioattachment_t *)pData; phdr->numlocalattachments = g_numattachments; phdr->localattachmentindex = pData - pStart;
for (i = 0; i < g_numattachments; i++) { pattachment[i].localbone = g_attachment[i].bone; AddToStringTable( &pattachment[i], &pattachment[i].sznameindex, g_attachment[i].name ); MatrixCopy( g_attachment[i].local, pattachment[i].local ); pattachment[i].flags = g_attachment[i].flags; } pData += g_numattachments * sizeof( mstudioattachment_t ); ALIGN4( pData ); // save hitbox sets
phdr->numhitboxsets = g_hitboxsets.Size();
// Remember start spot
mstudiohitboxset_t *hitboxset = (mstudiohitboxset_t *)pData; phdr->hitboxsetindex = pData - pStart;
pData += phdr->numhitboxsets * sizeof( mstudiohitboxset_t ); ALIGN4( pData );
for ( int s = 0; s < g_hitboxsets.Size(); s++, hitboxset++ ) { s_hitboxset *set = &g_hitboxsets[ s ];
AddToStringTable( hitboxset, &hitboxset->sznameindex, set->hitboxsetname );
hitboxset->numhitboxes = set->numhitboxes; hitboxset->hitboxindex = ( pData - (byte *)hitboxset );
// save bbox info
pbbox = (mstudiobbox_t *)pData; for (i = 0; i < hitboxset->numhitboxes; i++) { pbbox[i].bone = set->hitbox[i].bone; pbbox[i].group = set->hitbox[i].group; VectorCopy( set->hitbox[i].bmin, pbbox[i].bbmin ); VectorCopy( set->hitbox[i].bmax, pbbox[i].bbmax ); pbbox[i].szhitboxnameindex = 0; AddToStringTable( &(pbbox[i]), &(pbbox[i].szhitboxnameindex), set->hitbox[i].hitboxname ); }
pData += hitboxset->numhitboxes * sizeof( mstudiobbox_t ); ALIGN4( pData ); } byte *pBoneTable = pData; phdr->bonetablebynameindex = (pData - pStart);
// make a table in bone order and sort it with qsort
for ( i = 0; i < phdr->numbones; i++ ) { pBoneTable[i] = i; } qsort( pBoneTable, phdr->numbones, sizeof(byte), BoneNameCompare ); pData += phdr->numbones * sizeof( byte ); ALIGN4( pData ); }
// load a preexisting model to remember its sequence names and indices
CUtlVector< CUtlString > g_vecPreexistingSequences; void LoadPreexistingSequenceOrder( const char *pFilename ) { g_vecPreexistingSequences.RemoveAll();
if ( !FileExists( pFilename ) ) return;
Msg( "Loading preexisting model: %s\n", pFilename );
studiohdr_t *pStudioHdr; int len = LoadFile((char*)pFilename, (void **)&pStudioHdr);
if ( len && pStudioHdr && pStudioHdr->SequencesAvailable() ) { Msg( " Found %i preexisting sequences.\n", pStudioHdr->GetNumSeq() );
for ( int i=0; i<pStudioHdr->GetNumSeq(); i++ ) { //Msg( " Sequence %i : \"%s\"\n", i, pStudioHdr->pSeqdesc(i).pszLabel() );
g_vecPreexistingSequences.AddToTail( pStudioHdr->pSeqdesc(i).pszLabel() ); } } else { MdlWarning( "Zero-size file or no sequences.\n" ); } }
static void WriteSequenceInfo( studiohdr_t *phdr ) { int i, j, k;
mstudioseqdesc_t *pseqdesc; mstudioseqdesc_t *pbaseseqdesc; mstudioevent_t *pevent; byte *ptransition;
// write models to disk with this flag set false. This will force
// the sequences to be indexed by activity whenever the g_model is loaded
// from disk.
phdr->activitylistversion = 0; phdr->eventsindexed = 0;
// save g_sequence info
pseqdesc = (mstudioseqdesc_t *)pData; pbaseseqdesc = pseqdesc; phdr->numlocalseq = g_sequence.Count(); phdr->localseqindex = (pData - pStart); pData += g_sequence.Count() * sizeof( mstudioseqdesc_t );
bool bErrors = false;
// build a table to remap new sequence indices to match the preexisting model
bool bUseSeqOrderRemapping = false; int nSeqOrderRemappingTable[MAXSTUDIOSEQUENCES]; for (i=0; i<MAXSTUDIOSEQUENCES; i++) nSeqOrderRemappingTable[i] = -1;
bool bAllowSequenceRemoval = false;
if ( g_vecPreexistingSequences.Count() ) {
if ( g_sequence.Count() < g_vecPreexistingSequences.Count() && !bAllowSequenceRemoval ) { Msg( "\n" ); MdlWarning( "This model has fewer sequences than its predecessor.\nPlease confirm sequence deletion: [y/n] " ); int nInput = 0; do { nInput = getchar(); } while ( nInput != 121 /* y */ && nInput != 110 /* n */ );
if ( nInput == 110 ) { MdlError( "Model contains fewer sequences than its predecessor!\n" ); } else if ( nInput == 121 ) { bAllowSequenceRemoval = true; } }
{ Msg( "Building sequence index remapping table...\n" ); CUtlVector<int> vecNewIndices; vecNewIndices.RemoveAll();
// map current sequences to their old indices
for (i = 0; i < g_sequence.Count(); i++ ) { int nIdx = g_vecPreexistingSequences.Find( g_sequence[i].name ); if ( nIdx >= 0 ) { nSeqOrderRemappingTable[nIdx] = i; } else { if ( i < g_vecPreexistingSequences.Count() ) { Msg( " Found new sequence \"%s\" using index of old sequence \"%s\".\n", g_sequence[i].name, g_vecPreexistingSequences[i].String() ); } else { Msg( " Found new sequence \"%s\".\n", g_sequence[i].name ); } vecNewIndices.AddToTail(i); } }
// slot new sequences into unused indices
while ( vecNewIndices.Count() ) { for (i = 0; i < MAXSTUDIOSEQUENCES; i++ ) { if ( nSeqOrderRemappingTable[i] == -1 ) { nSeqOrderRemappingTable[i] = vecNewIndices[0]; vecNewIndices.Remove(0); break; } } }
// verify no indices are undefined
for (i = 0; i < g_sequence.Count(); i++ ) { if ( nSeqOrderRemappingTable[i] == -1 ) { if ( bAllowSequenceRemoval ) { do { for ( int nB=i; nB<g_vecPreexistingSequences.Count(); nB++ ) { nSeqOrderRemappingTable[nB] = nSeqOrderRemappingTable[nB+1]; } } while (nSeqOrderRemappingTable[i] == -1); } else { MdlError( "Failed to reorder sequence indices.\n" ); }
} else if ( nSeqOrderRemappingTable[i] != i ) { bUseSeqOrderRemapping = true; } }
if ( bUseSeqOrderRemapping ) { Msg( "Sequence indices need re-ordering.\n" ); } else { Msg( "No re-ordering required.\n" ); } } }
// build an inverted remapping table so autolayer sequence indices can find their sources later
int nSeqOrderRemappingTableInv[MAXSTUDIOSEQUENCES]; if ( bUseSeqOrderRemapping ) { for (i=0; i<MAXSTUDIOSEQUENCES; i++) nSeqOrderRemappingTableInv[nSeqOrderRemappingTable[i]] = i; } int m; for (m = 0; m < g_sequence.Count(); m++, pseqdesc++) {
if ( bUseSeqOrderRemapping ) { i = nSeqOrderRemappingTable[m]; if ( i != m ) { Msg( " Remapping sequence %i to index %i (%s) to retain existing order.\n", i, m, g_sequence[i].name ); } } else { i = m; }
byte *pSequenceStart = (byte *)pseqdesc;
AddToStringTable( pseqdesc, &pseqdesc->szlabelindex, g_sequence[i].name ); AddToStringTable( pseqdesc, &pseqdesc->szactivitynameindex, g_sequence[i].activityname );
pseqdesc->baseptr = pStart - (byte *)pseqdesc;
pseqdesc->flags = g_sequence[i].flags;
pseqdesc->numblends = g_sequence[i].numblends; pseqdesc->groupsize[0] = g_sequence[i].groupsize[0]; pseqdesc->groupsize[1] = g_sequence[i].groupsize[1];
pseqdesc->paramindex[0] = g_sequence[i].paramindex[0]; pseqdesc->paramstart[0] = g_sequence[i].paramstart[0]; pseqdesc->paramend[0] = g_sequence[i].paramend[0]; pseqdesc->paramindex[1] = g_sequence[i].paramindex[1]; pseqdesc->paramstart[1] = g_sequence[i].paramstart[1]; pseqdesc->paramend[1] = g_sequence[i].paramend[1];
if (g_sequence[i].groupsize[0] > 1 || g_sequence[i].groupsize[1] > 1) { // save posekey values
float *pposekey = (float *)pData; pseqdesc->posekeyindex = (pData - pSequenceStart); pData += (pseqdesc->groupsize[0] + pseqdesc->groupsize[1]) * sizeof( float ); for (j = 0; j < pseqdesc->groupsize[0]; j++) { *(pposekey++) = g_sequence[i].param0[j]; // printf("%.2f ", g_sequence[i].param0[j] );
} for (j = 0; j < pseqdesc->groupsize[1]; j++) { *(pposekey++) = g_sequence[i].param1[j]; // printf("%.2f ", g_sequence[i].param1[j] );
} // printf("\n" );
}
// pseqdesc->motiontype = g_sequence[i].motiontype;
// pseqdesc->motionbone = 0; // g_sequence[i].motionbone;
// VectorCopy( g_sequence[i].linearmovement, pseqdesc->linearmovement );
pseqdesc->activity = g_sequence[i].activity; pseqdesc->actweight = g_sequence[i].actweight;
pseqdesc->bbmin = g_sequence[i].bmin; pseqdesc->bbmax = g_sequence[i].bmax;
pseqdesc->fadeintime = g_sequence[i].fadeintime; pseqdesc->fadeouttime = g_sequence[i].fadeouttime;
pseqdesc->localentrynode = g_sequence[i].entrynode; pseqdesc->localexitnode = g_sequence[i].exitnode; //pseqdesc->entryphase = g_sequence[i].entryphase;
//pseqdesc->exitphase = g_sequence[i].exitphase;
pseqdesc->nodeflags = g_sequence[i].nodeflags;
// save events
pevent = (mstudioevent_t *)pData; pseqdesc->numevents = g_sequence[i].numevents; pseqdesc->eventindex = (pData - pSequenceStart); pData += pseqdesc->numevents * sizeof( mstudioevent_t ); for (j = 0; j < g_sequence[i].numevents; j++) { k = g_sequence[i].panim[0][0]->numframes - 1;
if (g_sequence[i].event[j].frame <= k) pevent[j].cycle = g_sequence[i].event[j].frame / ((float)k); else if (k == 0 && g_sequence[i].event[j].frame == 0) pevent[j].cycle = 0; else { MdlWarning("Event %d (frame %d) out of range in %s\n", g_sequence[i].event[j].event, g_sequence[i].event[j].frame, g_sequence[i].name ); bErrors = true; }
//Adrian - Remove me once we phase out the old event system.
if ( V_isdigit( g_sequence[i].event[j].eventname[0] ) ) { pevent[j].event = atoi( g_sequence[i].event[j].eventname ); pevent[j].type = 0; pevent[j].szeventindex = 0; } else { AddToStringTable( &pevent[j], &pevent[j].szeventindex, g_sequence[i].event[j].eventname ); pevent[j].type = NEW_EVENT_STYLE; } // printf("%4d : %d %f\n", pevent[j].event, g_sequence[i].event[j].frame, pevent[j].cycle );
// AddToStringTable( &pevent[j], &pevent[j].szoptionindex, g_sequence[i].event[j].options );
strcpy( pevent[j].options, g_sequence[i].event[j].options ); } ALIGN4( pData );
// save ikrules
pseqdesc->numikrules = g_sequence[i].numikrules;
// save autolayers
mstudioautolayer_t *pautolayer = (mstudioautolayer_t *)pData; pseqdesc->numautolayers = g_sequence[i].numautolayers; pseqdesc->autolayerindex = (pData - pSequenceStart); pData += pseqdesc->numautolayers * sizeof( mstudioautolayer_t ); for (j = 0; j < g_sequence[i].numautolayers; j++) { pautolayer[j].iSequence = g_sequence[i].autolayer[j].sequence; pautolayer[j].iPose = g_sequence[i].autolayer[j].pose; pautolayer[j].flags = g_sequence[i].autolayer[j].flags;
// autolayer indices are stored by index, so remap them now using the invertex lookup table
if ( bUseSeqOrderRemapping ) { int nRemapAutoLayer = nSeqOrderRemappingTableInv[ pautolayer[j].iSequence ]; if ( nRemapAutoLayer != pautolayer[j].iSequence ) { Msg( " Autolayer remapping index %i to %i.\n", pautolayer[j].iSequence, nRemapAutoLayer ); pautolayer[j].iSequence = nRemapAutoLayer; } }
if (!(pautolayer[j].flags & STUDIO_AL_POSE)) { pautolayer[j].start = g_sequence[i].autolayer[j].start / (g_sequence[i].panim[0][0]->numframes - 1); pautolayer[j].peak = g_sequence[i].autolayer[j].peak / (g_sequence[i].panim[0][0]->numframes - 1); pautolayer[j].tail = g_sequence[i].autolayer[j].tail / (g_sequence[i].panim[0][0]->numframes - 1); pautolayer[j].end = g_sequence[i].autolayer[j].end / (g_sequence[i].panim[0][0]->numframes - 1); } else { pautolayer[j].start = g_sequence[i].autolayer[j].start; pautolayer[j].peak = g_sequence[i].autolayer[j].peak; pautolayer[j].tail = g_sequence[i].autolayer[j].tail; pautolayer[j].end = g_sequence[i].autolayer[j].end; } }
// save boneweights
float *pweight = 0; j = 0; // look up previous sequence weights and try to find a match
for (k = 0; k < m; k++) { j = 0; // only check newer boneweights than the last one
if (pseqdesc[k-m].pBoneweight( 0 ) > pweight) { pweight = pseqdesc[k-m].pBoneweight( 0 ); for (j = 0; j < g_numbones; j++) { // we're not walking the linear sequence list if we're remapping, so we need to remap this check
int nRemap = k; if ( bUseSeqOrderRemapping ) nRemap = nSeqOrderRemappingTable[k];
if (g_sequence[i].weight[j] != g_sequence[nRemap].weight[j]) break; } if (j == g_numbones) break; } }
// check to see if all the bones matched
if (j < g_numbones) { // allocate new block
//printf("new %08x\n", pData );
pweight = (float *)pData; pseqdesc->weightlistindex = (pData - pSequenceStart); pData += g_numbones * sizeof( float ); for (j = 0; j < g_numbones; j++) { pweight[j] = g_sequence[i].weight[j]; } } else { // use previous boneweight
//printf("prev %08x\n", pweight );
pseqdesc->weightlistindex = ((byte *)pweight - pSequenceStart); }
// save iklocks
mstudioiklock_t *piklock = (mstudioiklock_t *)pData; pseqdesc->numiklocks = g_sequence[i].numiklocks; pseqdesc->iklockindex = (pData - pSequenceStart); pData += pseqdesc->numiklocks * sizeof( mstudioiklock_t ); ALIGN4( pData );
for (j = 0; j < pseqdesc->numiklocks; j++) { piklock->chain = g_sequence[i].iklock[j].chain; piklock->flPosWeight = g_sequence[i].iklock[j].flPosWeight; piklock->flLocalQWeight = g_sequence[i].iklock[j].flLocalQWeight; piklock++; }
// Write animation blend parameters
short *blends = ( short * )pData; pseqdesc->animindexindex = ( pData - pSequenceStart ); pData += ( g_sequence[i].groupsize[0] * g_sequence[i].groupsize[1] ) * sizeof( short ); ALIGN4( pData );
for ( j = 0; j < g_sequence[i].groupsize[0] ; j++ ) { for ( k = 0; k < g_sequence[i].groupsize[1]; k++ ) { // height value * width of row + width value
int offset = k * g_sequence[i].groupsize[0] + j;
if ( g_sequence[i].panim[j][k] ) { int animindex = g_sequence[i].panim[j][k]->index;
Assert( animindex >= 0 && animindex < SHRT_MAX );
blends[ offset ] = (short)animindex; } else { blends[ offset ] = 0; } } }
// Write cycle overrides
pseqdesc->cycleposeindex = g_sequence[i].cycleposeindex;
WriteSeqKeyValues( pseqdesc, &g_sequence[i].KeyValue ); }
if (bErrors) { MdlError( "Exiting due to Errors\n"); }
// save transition graph
int *pxnodename = (int *)pData; phdr->localnodenameindex = (pData - pStart); pData += g_numxnodes * sizeof( *pxnodename ); ALIGN4( pData ); for (i = 0; i < g_numxnodes; i++) { AddToStringTable( phdr, pxnodename, g_xnodename[i+1] ); // printf("%d : %s\n", i, g_xnodename[i+1] );
pxnodename++; }
ptransition = (byte *)pData; phdr->numlocalnodes = g_numxnodes; phdr->localnodeindex = pData - pStart; pData += g_numxnodes * g_numxnodes * sizeof( byte ); ALIGN4( pData ); for (i = 0; i < g_numxnodes; i++) { // printf("%2d (%12s) : ", i + 1, g_xnodename[i+1] );
for (j = 0; j < g_numxnodes; j++) { *ptransition++ = g_xnode[i][j]; // printf(" %2d", g_xnode[i][j] );
} // printf("\n" );
} }
//-----------------------------------------------------------------------------
// Purpose: Stub implementation
// Input : *group -
//-----------------------------------------------------------------------------
const studiohdr_t *studiohdr_t::FindModel( void **cache, char const *modelname ) const { return NULL; }
virtualmodel_t *studiohdr_t::GetVirtualModel( void ) const { return NULL; }
const studiohdr_t *virtualgroup_t::GetStudioHdr( void ) const { return (studiohdr_t *)cache; }
byte *studiohdr_t::GetAnimBlock( int i ) const { return NULL; }
int studiohdr_t::GetAutoplayList( unsigned short **pOut ) const { return 0; }
int rawanimbytes = 0; int animboneframes = 0;
int numAxis[4] = { 0, 0, 0, 0 }; int numPos[4] = { 0, 0, 0, 0 }; int useRaw = 0;
void WriteAnimationData( s_animation_t *srcanim, mstudioanimdesc_t *destanimdesc, byte *&pLocalData, byte *&pExtData ) { int j, k, n;
byte *pData = NULL;
for (int w = 0; w < srcanim->numsections; w++) { bool bUseExtData = false; pData = pLocalData;
if (pExtData != NULL && !srcanim->disableAnimblocks && !(w == 0 && srcanim->isFirstSectionLocal)) { pData = pExtData; bUseExtData = true; }
mstudioanim_t *destanim = (mstudioanim_t *)pData; byte *pStartSection = pData; pData += sizeof( *destanim );
destanim->bone = 255;
mstudioanim_t *prevanim = NULL;
// save animation value info
for (j = 0; j < g_numbones; j++) { // destanim->weight = srcanim->weight[j];
// printf( "%s %.1f\n", g_bonetable[j].name, destanim->weight );
destanim->flags = 0; s_compressed_t *psrcdata = &srcanim->anim[w][j];
numPos[ (psrcdata->num[0] != 0) + (psrcdata->num[1] != 0) + (psrcdata->num[2] != 0) ]++; numAxis[ (psrcdata->num[3] != 0) + (psrcdata->num[4] != 0) + (psrcdata->num[5] != 0) ]++;
if (psrcdata->num[0] + psrcdata->num[1] + psrcdata->num[2] + psrcdata->num[3] + psrcdata->num[4] + psrcdata->num[5] == 0) { // no animation, skip
continue; }
destanim->bone = j;
// copy flags over if delta animation
if (srcanim->flags & STUDIO_DELTA) { destanim->flags |= STUDIO_ANIM_DELTA; }
if ((srcanim->numframes == 1) || (psrcdata->num[0] <= 2 && psrcdata->num[1] <= 2 && psrcdata->num[2] <= 2 && psrcdata->num[3] <= 2 && psrcdata->num[4] <= 2 && psrcdata->num[5] <= 2)) { // printf("%d : %d %d %d : %d %d %d\n", j, psrcdata->num[0], psrcdata->num[1], psrcdata->num[2], psrcdata->num[3], psrcdata->num[4], psrcdata->num[5] );
// single frame, if animation detected just store as raw
int iFrame = min( w * srcanim->sectionframes, srcanim->numframes - 1 ); if (psrcdata->num[3] != 0 || psrcdata->num[4] != 0 || psrcdata->num[5] != 0) { Quaternion q; AngleQuaternion( srcanim->sanim[iFrame][j].rot, q ); *((Quaternion64 *)pData) = q; pData += sizeof( Quaternion64 ); rawanimbytes += sizeof( Quaternion64 ); destanim->flags |= STUDIO_ANIM_RAWROT2; }
if (psrcdata->num[0] != 0 || psrcdata->num[1] != 0 || psrcdata->num[2] != 0) { *((Vector48 *)pData) = srcanim->sanim[iFrame][j].pos; pData += sizeof( Vector48 ); rawanimbytes += sizeof( Vector48 ); destanim->flags |= STUDIO_ANIM_RAWPOS; } } else { // look to see if storing raw quat's would have taken less space
if (psrcdata->num[3] >= srcanim->numframes && psrcdata->num[4] >= srcanim->numframes && psrcdata->num[5] >= srcanim->numframes) { useRaw++; }
mstudioanim_valueptr_t *posvptr = NULL; mstudioanim_valueptr_t *rotvptr = NULL;
// allocate room for rotation ptrs
rotvptr = (mstudioanim_valueptr_t *)pData; pData += sizeof( *rotvptr );
// skip all position info if there's no animation
if (psrcdata->num[0] != 0 || psrcdata->num[1] != 0 || psrcdata->num[2] != 0) { posvptr = (mstudioanim_valueptr_t *)pData; pData += sizeof( *posvptr ); }
mstudioanimvalue_t *destanimvalue = (mstudioanimvalue_t *)pData;
if (rotvptr) { // store rotation animations
for (k = 3; k < 6; k++) { if (psrcdata->num[k] == 0) { rotvptr->offset[k-3] = 0; } else { rotvptr->offset[k-3] = ((byte *)destanimvalue - (byte *)rotvptr); for (n = 0; n < psrcdata->num[k]; n++) { destanimvalue->value = psrcdata->data[k][n].value; destanimvalue++; } } } destanim->flags |= STUDIO_ANIM_ANIMROT; }
if (posvptr) { // store position animations
for (k = 0; k < 3; k++) { if (psrcdata->num[k] == 0) { posvptr->offset[k] = 0; } else { posvptr->offset[k] = ((byte *)destanimvalue - (byte *)posvptr); for (n = 0; n < psrcdata->num[k]; n++) { destanimvalue->value = psrcdata->data[k][n].value; destanimvalue++; } } } destanim->flags |= STUDIO_ANIM_ANIMPOS; } rawanimbytes += ((byte *)destanimvalue - pData); pData = (byte *)destanimvalue; }
prevanim = destanim; destanim->nextoffset = pData - (byte *)destanim; destanim = (mstudioanim_t *)pData; pData += sizeof( *destanim ); }
if (prevanim) { prevanim->nextoffset = 0; }
ALIGN4( pData );
// write into anim blocks if needed
if (destanimdesc->sectionindex) { if (bUseExtData) { if (g_numanimblocks && pData - g_animblock[g_numanimblocks-1].start > g_animblocksize) { // advance to next animblock
g_animblock[g_numanimblocks-1].end = pStartSection; g_animblock[g_numanimblocks].start = pStartSection; g_numanimblocks++; }
destanimdesc->pSection(w)->animblock = g_numanimblocks - 1; destanimdesc->pSection(w)->animindex = pStartSection - g_animblock[g_numanimblocks-1].start; } else { destanimdesc->pSection(w)->animblock = 0; destanimdesc->pSection(w)->animindex = pStartSection - (byte *)destanimdesc; } // printf("%s (%d) : %d:%d\n", srcanim->name, w, destanimdesc->pSection(w)->animblock, destanimdesc->pSection(w)->animindex );
}
if (!bUseExtData) { pLocalData = pData; } else { pExtData = pData; } } }
byte *WriteIkErrors( s_animation_t *srcanim, byte *pData ) { int j, k;
// write IK error keys
mstudioikrule_t *pikruledata = (mstudioikrule_t *)pData; pData += srcanim->numikrules * sizeof( *pikruledata ); ALIGN4( pData );
for (j = 0; j < srcanim->numikrules; j++) { mstudioikrule_t *pikrule = pikruledata + j;
pikrule->index = srcanim->ikrule[j].index;
pikrule->chain = srcanim->ikrule[j].chain; pikrule->bone = srcanim->ikrule[j].bone; pikrule->type = srcanim->ikrule[j].type; pikrule->slot = srcanim->ikrule[j].slot; pikrule->pos = srcanim->ikrule[j].pos; pikrule->q = srcanim->ikrule[j].q; pikrule->height = srcanim->ikrule[j].height; pikrule->floor = srcanim->ikrule[j].floor; pikrule->radius = srcanim->ikrule[j].radius;
if (srcanim->numframes > 1.0) { pikrule->start = srcanim->ikrule[j].start / (srcanim->numframes - 1.0f); pikrule->peak = srcanim->ikrule[j].peak / (srcanim->numframes - 1.0f); pikrule->tail = srcanim->ikrule[j].tail / (srcanim->numframes - 1.0f); pikrule->end = srcanim->ikrule[j].end / (srcanim->numframes - 1.0f); pikrule->contact= srcanim->ikrule[j].contact / (srcanim->numframes - 1.0f); } else { pikrule->start = 0.0f; pikrule->peak = 0.0f; pikrule->tail = 1.0f; pikrule->end = 1.0f; pikrule->contact= 0.0f; }
/*
printf("%d %d %d %d : %.2f %.2f %.2f %.2f\n", srcanim->ikrule[j].start, srcanim->ikrule[j].peak, srcanim->ikrule[j].tail, srcanim->ikrule[j].end, pikrule->start, pikrule->peak, pikrule->tail, pikrule->end ); */
pikrule->iStart = srcanim->ikrule[j].start;
#if 0
// uncompressed
pikrule->ikerrorindex = (pData - (byte*)pikrule); mstudioikerror_t *perror = (mstudioikerror_t *)pData; pData += srcanim->ikrule[j].numerror * sizeof( *perror );
for (k = 0; k < srcanim->ikrule[j].numerror; k++) { perror[k].pos = srcanim->ikrule[j].pError[k].pos; perror[k].q = srcanim->ikrule[j].pError[k].q; } #endif
#if 1
// skip writting the header if there's no IK data
for (k = 0; k < 6; k++) { if (srcanim->ikrule[j].errorData.numanim[k]) break; }
if (k == 6) continue;
// compressed
pikrule->compressedikerrorindex = (pData - (byte*)pikrule); mstudiocompressedikerror_t *pCompressed = (mstudiocompressedikerror_t *)pData; pData += sizeof( *pCompressed );
for (k = 0; k < 6; k++) { pCompressed->scale[k] = srcanim->ikrule[j].errorData.scale[k]; pCompressed->offset[k] = (pData - (byte*)pCompressed); int size = srcanim->ikrule[j].errorData.numanim[k] * sizeof( mstudioanimvalue_t ); memmove( pData, srcanim->ikrule[j].errorData.anim[k], size ); pData += size; }
if (strlen( srcanim->ikrule[j].attachment ) > 0) { // don't use string table, we're probably not in the same file.
int size = strlen( srcanim->ikrule[j].attachment ) + 1; strcpy( (char *)pData, srcanim->ikrule[j].attachment ); pikrule->szattachmentindex = pData - (byte *)pikrule; pData += size; }
ALIGN4( pData );
#endif
// AddToStringTable( pikrule, &pikrule->szattachmentindex, srcanim->ikrule[j].attachment );
}
return pData; }
byte *WriteLocalHierarchy( s_animation_t *srcanim, byte *pData ) { int j, k;
// write hierarchy keys
mstudiolocalhierarchy_t *pHierarchyData = (mstudiolocalhierarchy_t *)pData; pData += srcanim->numlocalhierarchy * sizeof( *pHierarchyData ); ALIGN4( pData );
for (j = 0; j < srcanim->numlocalhierarchy; j++) { mstudiolocalhierarchy_t *pHierarchy = pHierarchyData + j;
pHierarchy->iBone = srcanim->localhierarchy[j].bone; pHierarchy->iNewParent = srcanim->localhierarchy[j].newparent;
if (srcanim->numframes > 1.0) { pHierarchy->start = srcanim->localhierarchy[j].start / (srcanim->numframes - 1.0f); pHierarchy->peak = srcanim->localhierarchy[j].peak / (srcanim->numframes - 1.0f); pHierarchy->tail = srcanim->localhierarchy[j].tail / (srcanim->numframes - 1.0f); pHierarchy->end = srcanim->localhierarchy[j].end / (srcanim->numframes - 1.0f); } else { pHierarchy->start = 0.0f; pHierarchy->peak = 0.0f; pHierarchy->tail = 1.0f; pHierarchy->end = 1.0f; }
pHierarchy->iStart = srcanim->localhierarchy[j].start;
#if 0
// uncompressed
pHierarchy->ikerrorindex = (pData - (byte*)pHierarchy); mstudioikerror_t *perror = (mstudioikerror_t *)pData; pData += srcanim->ikrule[j].numerror * sizeof( *perror );
for (k = 0; k < srcanim->ikrule[j].numerror; k++) { perror[k].pos = srcanim->ikrule[j].pError[k].pos; perror[k].q = srcanim->ikrule[j].pError[k].q; } #endif
#if 1
// skip writting the header if there's no IK data
for (k = 0; k < 6; k++) { if (srcanim->localhierarchy[j].localData.numanim[k]) break; }
if (k == 6) continue;
// compressed
pHierarchy->localanimindex = (pData - (byte*)pHierarchy); mstudiocompressedikerror_t *pCompressed = (mstudiocompressedikerror_t *)pData; pData += sizeof( *pCompressed );
for (k = 0; k < 6; k++) { pCompressed->scale[k] = srcanim->localhierarchy[j].localData.scale[k]; pCompressed->offset[k] = (pData - (byte*)pCompressed); int size = srcanim->localhierarchy[j].localData.numanim[k] * sizeof( mstudioanimvalue_t ); memmove( pData, srcanim->localhierarchy[j].localData.anim[k], size ); pData += size; }
ALIGN4( pData );
#endif
// AddToStringTable( pHierarchy, &pHierarchy->szattachmentindex, srcanim->ikrule[j].attachment );
}
return pData; }
static byte *WriteAnimations( byte *pData, byte *pStart, studiohdr_t *phdr ) { int i, j;
mstudioanimdesc_t *panimdesc;
// save animations
panimdesc = (mstudioanimdesc_t *)pData; if( phdr ) { phdr->numlocalanim = g_numani; phdr->localanimindex = (pData - pStart); } pData += g_numani * sizeof( *panimdesc ); ALIGN4( pData ); // ------------ ------- ------- : ------- (-------)
if( g_verbose ) { printf(" animation x y ips angle\n"); }
for (i = 0; i < g_numani; i++) { s_animation_t *srcanim = g_panimation[ i ]; mstudioanimdesc_t *destanim = &panimdesc[i]; Assert( srcanim );
AddToStringTable( destanim, &destanim->sznameindex, srcanim->name );
destanim->baseptr = pStart - (byte *)destanim; destanim->fps = srcanim->fps; destanim->flags = srcanim->flags;
destanim->sectionframes = srcanim->sectionframes;
totalframes += srcanim->numframes; totalseconds += srcanim->numframes / srcanim->fps;
destanim->numframes = srcanim->numframes;
// destanim->motiontype = srcanim->motiontype;
// destanim->motionbone = srcanim->motionbone;
// VectorCopy( srcanim->linearpos, destanim->linearpos );
j = srcanim->numpiecewisekeys - 1; if (srcanim->piecewisemove[j].pos[0] != 0 || srcanim->piecewisemove[j].pos[1] != 0) { float t = (srcanim->numframes - 1) / srcanim->fps;
float r = 1 / t; float a = atan2( srcanim->piecewisemove[j].pos[1], srcanim->piecewisemove[j].pos[0] ) * (180 / M_PI); float d = sqrt( DotProduct( srcanim->piecewisemove[j].pos, srcanim->piecewisemove[j].pos ) ); if( g_verbose ) { printf("%12s %7.2f %7.2f : %7.2f (%7.2f) %.1f\n", srcanim->name, srcanim->piecewisemove[j].pos[0], srcanim->piecewisemove[j].pos[1], d * r, a, t ); } }
if (srcanim->numsections > 1) { destanim->sectionindex = pData - (byte *)destanim; pData += srcanim->numsections * sizeof( mstudioanimsections_t ); }
// VectorCopy( srcanim->linearrot, destanim->linearrot );
// destanim->automoveposindex = srcanim->automoveposindex;
// destanim->automoveangleindex = srcanim->automoveangleindex;
// align all animation data to cache line boundaries
ALIGN16( pData ); ALIGN16( pBlockData );
if (pBlockStart) { // allocate the first block if needed
if (g_numanimblocks == 0) { g_numanimblocks = 1; g_animblock[g_numanimblocks].start = pBlockData; g_numanimblocks++; } }
if (!pBlockStart || (g_bonesaveframe.Count() == 0 && srcanim->numframes == 1)) { // hack
srcanim->disableAnimblocks = true; } else if (g_bNoAnimblockStall) { srcanim->isFirstSectionLocal = true; } // block zero is relative to me
g_animblock[0].start = (byte *)(destanim);
byte *pAnimData = NULL; byte *pIkData = NULL; byte *pLocalHierarchy = NULL; byte *pBlockEnd = pBlockData;
if (srcanim->disableAnimblocks || srcanim->isFirstSectionLocal) { destanim->animblock = 0; pAnimData = pData; WriteAnimationData( srcanim, destanim, pData, pBlockEnd ); pIkData = pData; pLocalHierarchy = WriteIkErrors( srcanim, pIkData ); pData = WriteLocalHierarchy( srcanim, pLocalHierarchy ); } else { pAnimData = pBlockEnd; WriteAnimationData( srcanim, destanim, pData, pBlockEnd ); if ( destanim->sectionindex ) { // if sections were written, don't move the data already written to the last block
pBlockData = pBlockEnd; } destanim->animblock = g_numanimblocks-1; pIkData = pBlockEnd; pLocalHierarchy = WriteIkErrors( srcanim, pIkData ); pBlockEnd = WriteLocalHierarchy( srcanim, pLocalHierarchy ); }
// printf("%d %x %x %x %s : %d\n", g_numanimblocks - 1, g_animblock[g_numanimblocks-1].start, pBlockData, pBlockEnd, srcanim->name, srcanim->numsections );
if (pBlockData != pBlockEnd && pBlockEnd - g_animblock[g_numanimblocks-1].start > g_animblocksize) { g_animblock[g_numanimblocks-1].end = pBlockData; g_animblock[g_numanimblocks].start = pBlockData; g_numanimblocks++; destanim->animblock = g_numanimblocks-1; }
destanim->animindex = pAnimData - g_animblock[destanim->animblock].start;
if ( srcanim->numikrules ) { destanim->numikrules = srcanim->numikrules; if (destanim->animblock == 0) { destanim->ikruleindex = pIkData - g_animblock[destanim->animblock].start; } else { destanim->animblockikruleindex = pIkData - g_animblock[destanim->animblock].start; } } if ( srcanim->numlocalhierarchy ) { destanim->numlocalhierarchy = srcanim->numlocalhierarchy; destanim->localhierarchyindex = pLocalHierarchy - g_animblock[destanim->animblock].start; }
if (g_numanimblocks) { g_animblock[g_numanimblocks-1].end = pBlockEnd; pBlockData = pBlockEnd; }
// printf("%s : %d:%d\n", srcanim->name, destanim->animblock, destanim->animindex );
// printf("raw bone data %d : %s\n", (byte *)destanimvalue - pData, srcanim->name);
}
if( !g_quiet ) { /*
for (i = 0; i < g_numanimblocks; i++) { printf("%2d (%3d:%3d): %d\n", i, g_animblock[i].iStartAnim, g_animblock[i].iEndAnim, g_animblock[i].end - g_animblock[i].start ); } */ }
if( !g_quiet ) { /*
printf("raw anim data %d : %d\n", rawanimbytes, animboneframes ); printf("pos %d %d %d %d\n", numPos[0], numPos[1], numPos[2], numPos[3] ); printf("axis %d %d %d %d : %d\n", numAxis[0], numAxis[1], numAxis[2], numAxis[3], useRaw ); */ }
// write movement keys
for (i = 0; i < g_numani; i++) { s_animation_t *anim = g_panimation[ i ];
// panimdesc[i].entrancevelocity = anim->entrancevelocity;
panimdesc[i].nummovements = anim->numpiecewisekeys; if (panimdesc[i].nummovements) { panimdesc[i].movementindex = pData - (byte*)&panimdesc[i];
mstudiomovement_t *pmove = (mstudiomovement_t *)pData; pData += panimdesc[i].nummovements * sizeof( *pmove ); ALIGN4( pData );
for (j = 0; j < panimdesc[i].nummovements; j++) { pmove[j].endframe = anim->piecewisemove[j].endframe; pmove[j].motionflags = anim->piecewisemove[j].flags; pmove[j].v0 = anim->piecewisemove[j].v0; pmove[j].v1 = anim->piecewisemove[j].v1; pmove[j].angle = RAD2DEG( anim->piecewisemove[j].rot[2] ); VectorCopy( anim->piecewisemove[j].vector, pmove[j].vector ); VectorCopy( anim->piecewisemove[j].pos, pmove[j].position ); } } }
// only write zero frames if the animation data is demand loaded
if (!pBlockStart) return pData;
// calculate what bones should be have zero frame saved out
if (g_bonesaveframe.Count() == 0) { for (j = 0; j < g_numbones; j++) { if ((g_bonetable[j].parent == -1) || (g_bonetable[j].posrange.Length() > 2.0)) { g_bonetable[j].flags |= BONE_HAS_SAVEFRAME_POS; } g_bonetable[j].flags |= BONE_HAS_SAVEFRAME_ROT;
if ((!g_quiet) && (g_bonetable[j].flags & (BONE_HAS_SAVEFRAME_POS | BONE_HAS_SAVEFRAME_ROT))) { printf("$BoneSaveFrame \"%s\"", g_bonetable[j].name ); if (g_bonetable[j].flags & BONE_HAS_SAVEFRAME_POS) printf(" position" ); if (g_bonetable[j].flags & BONE_HAS_SAVEFRAME_ROT) printf(" rotation" ); printf("\n"); } } } else { for (i = 0; i < g_bonesaveframe.Count(); i++) { j = findGlobalBone( g_bonesaveframe[i].name );
if (j != -1) { if (g_bonesaveframe[i].bSavePos) { g_bonetable[j].flags |= BONE_HAS_SAVEFRAME_POS; } if (g_bonesaveframe[i].bSaveRot) { g_bonetable[j].flags |= BONE_HAS_SAVEFRAME_ROT; } } } }
for (j = 0; j < g_numbones; j++) { phdr->pBone(j)->flags |= g_bonetable[j].flags; }
ALIGN4( pData );
// write zero frames
for (i = 0; i < g_numani; i++) { s_animation_t *anim = g_panimation[ i ];
if (panimdesc[i].animblock != 0) { panimdesc[i].zeroframeindex = pData - (byte *)&panimdesc[i];
int k = min( panimdesc[i].numframes - 1, 9 ); if (panimdesc[i].flags & STUDIO_LOOPING) { k = min( (panimdesc[i].numframes - 1) / 2, k ); } panimdesc[i].zeroframespan = k; if (k > 2) { panimdesc[i].zeroframecount = min( (panimdesc[i].numframes - 1) / panimdesc[i].zeroframespan, 3 ); // save frames 0..24 frames
} if (panimdesc[i].zeroframecount < 1) panimdesc[i].zeroframecount = 1;
for (j = 0; j < g_numbones; j++) { if (g_bonetable[j].flags & BONE_HAS_SAVEFRAME_POS) { for (int n = 0; n < panimdesc[i].zeroframecount; n++) { *(Vector48 *)pData = anim->sanim[panimdesc[i].zeroframespan*n][j].pos; pData += sizeof( Vector48 ); } } if (g_bonetable[j].flags & BONE_HAS_SAVEFRAME_ROT) { for (int n = 0; n < panimdesc[i].zeroframecount; n++) { Quaternion q; AngleQuaternion( anim->sanim[panimdesc[i].zeroframespan*n][j].rot, q ); *((Quaternion64 *)pData) = q; pData += sizeof( Quaternion64 ); } } } } }
ALIGN4( pData );
return pData; }
static void WriteTextures( studiohdr_t *phdr ) { int i, j; short *pref;
// save texture info
mstudiotexture_t *ptexture = (mstudiotexture_t *)pData; phdr->numtextures = g_nummaterials; phdr->textureindex = pData - pStart; pData += g_nummaterials * sizeof( mstudiotexture_t ); for (i = 0; i < g_nummaterials; i++) { j = g_material[i]; AddToStringTable( &ptexture[i], &ptexture[i].sznameindex, g_texture[j].name ); } ALIGN4( pData );
int *cdtextureoffset = (int *)pData; phdr->numcdtextures = numcdtextures; phdr->cdtextureindex = pData - pStart; pData += numcdtextures * sizeof( int ); for (i = 0; i < numcdtextures; i++) { AddToStringTable( phdr, &cdtextureoffset[i], cdtextures[i] ); } ALIGN4( pData );
// save texture directory info
phdr->skinindex = (pData - pStart); phdr->numskinref = g_numskinref; phdr->numskinfamilies = g_numskinfamilies; pref = (short *)pData;
for (i = 0; i < phdr->numskinfamilies; i++) { for (j = 0; j < phdr->numskinref; j++) { *pref = g_skinref[i][j]; pref++; } } pData = (byte *)pref; ALIGN4( pData ); }
//-----------------------------------------------------------------------------
// Write source bone transforms
//-----------------------------------------------------------------------------
static void WriteBoneTransforms( studiohdr2_t *phdr, mstudiobone_t *pBone ) { matrix3x4_t identity; SetIdentityMatrix( identity );
int nTransformCount = 0; for (int i = 0; i < g_numbones; i++) { if ( g_bonetable[i].flags & BONE_ALWAYS_PROCEDURAL ) continue; int nParent = g_bonetable[i].parent;
// Transformation is necessary if either you or your parent was realigned
if ( MatricesAreEqual( identity, g_bonetable[i].srcRealign ) && ( ( nParent < 0 ) || MatricesAreEqual( identity, g_bonetable[nParent].srcRealign ) ) ) continue;
++nTransformCount; } // save bone transform info
mstudiosrcbonetransform_t *pSrcBoneTransform = (mstudiosrcbonetransform_t *)pData; phdr->numsrcbonetransform = nTransformCount; phdr->srcbonetransformindex = pData - pStart; pData += nTransformCount * sizeof( mstudiosrcbonetransform_t ); int bt = 0; for ( int i = 0; i < g_numbones; i++ ) { if ( g_bonetable[i].flags & BONE_ALWAYS_PROCEDURAL ) continue; int nParent = g_bonetable[i].parent; if ( MatricesAreEqual( identity, g_bonetable[i].srcRealign ) && ( ( nParent < 0 ) || MatricesAreEqual( identity, g_bonetable[nParent].srcRealign ) ) ) continue; // What's going on here?
// So, when we realign a bone, we want to do it in a way so that the child bones
// have the same bone->world transform. If we take T as the src realignment transform
// for the parent, P is the parent to world, and C is the child to parent, we expect
// the child->world is constant after realignment:
// CtoW = P * C = ( P * T ) * ( T^-1 * C )
// therefore Cnew = ( T^-1 * C )
if ( nParent >= 0 ) { MatrixInvert( g_bonetable[nParent].srcRealign, pSrcBoneTransform[bt].pretransform ); } else { SetIdentityMatrix( pSrcBoneTransform[bt].pretransform ); } MatrixCopy( g_bonetable[i].srcRealign, pSrcBoneTransform[bt].posttransform ); AddToStringTable( &pSrcBoneTransform[bt], &pSrcBoneTransform[bt].sznameindex, g_bonetable[i].name ); ++bt; } ALIGN4( pData );
if (g_numbones > 1) { // write second bone table
phdr->linearboneindex = pData - (byte *)phdr; mstudiolinearbone_t *pLinearBone = (mstudiolinearbone_t *)pData; pData += sizeof( *pLinearBone );
pLinearBone->numbones = g_numbones;
#define WRITE_BONE_BLOCK( type, srcfield, dest, destindex ) \
type *##dest = (type *)pData; \ pLinearBone->##destindex = pData - (byte *)pLinearBone; \ pData += g_numbones * sizeof( *##dest ); \ ALIGN4( pData ); \ for ( int i = 0; i < g_numbones; i++) \ dest##[i] = pBone[i].##srcfield;
WRITE_BONE_BLOCK( int, flags, pFlags, flagsindex ); WRITE_BONE_BLOCK( int, parent, pParent, parentindex ); WRITE_BONE_BLOCK( Vector, pos, pPos, posindex ); WRITE_BONE_BLOCK( Quaternion, quat, pQuat, quatindex ); WRITE_BONE_BLOCK( RadianEuler, rot, pRot, rotindex ); WRITE_BONE_BLOCK( matrix3x4_t, poseToBone, pPoseToBone, posetoboneindex ); WRITE_BONE_BLOCK( Vector, posscale, pPoseScale, posscaleindex ); WRITE_BONE_BLOCK( Vector, rotscale, pRotScale, rotscaleindex ); WRITE_BONE_BLOCK( Quaternion, qAlignment, pQAlignment, qalignmentindex ); } }
//-----------------------------------------------------------------------------
// Write the bone flex drivers
//-----------------------------------------------------------------------------
static void WriteBoneFlexDrivers( studiohdr2_t *pStudioHdr2 ) { ALIGN4( pData );
pStudioHdr2->m_nBoneFlexDriverCount = 0; pStudioHdr2->m_nBoneFlexDriverIndex = 0;
CDmeBoneFlexDriverList *pDmeBoneFlexDriverList = GetElement< CDmeBoneFlexDriverList >( g_hDmeBoneFlexDriverList ); if ( !pDmeBoneFlexDriverList ) return;
const int nBoneFlexDriverCount = pDmeBoneFlexDriverList->m_eBoneFlexDriverList.Count(); if ( nBoneFlexDriverCount <= 0 ) return;
mstudioboneflexdriver_t *pBoneFlexDriver = (mstudioboneflexdriver_t *)pData; pStudioHdr2->m_nBoneFlexDriverCount = nBoneFlexDriverCount; pStudioHdr2->m_nBoneFlexDriverIndex = pData - (byte *)pStudioHdr2; pData += nBoneFlexDriverCount * sizeof( mstudioboneflexdriver_t ); ALIGN4( pData );
for ( int i = 0; i < nBoneFlexDriverCount; ++i ) { CDmeBoneFlexDriver *pDmeBoneFlexDriver = pDmeBoneFlexDriverList->m_eBoneFlexDriverList[i]; Assert( pDmeBoneFlexDriver ); Assert( pDmeBoneFlexDriver->m_eControlList.Count() > 0 ); Assert( pDmeBoneFlexDriver->GetValue< int >( "__boneIndex", -1 ) >= 0 );
pBoneFlexDriver->m_nBoneIndex = pDmeBoneFlexDriver->GetValue< int >( "__boneIndex", 0 ); pBoneFlexDriver->m_nControlCount = pDmeBoneFlexDriver->m_eControlList.Count(); pBoneFlexDriver->m_nControlIndex = pData - (byte *)pBoneFlexDriver;
mstudioboneflexdrivercontrol_t *pControl = reinterpret_cast< mstudioboneflexdrivercontrol_t * >( pData );
for ( int j = 0; j < pBoneFlexDriver->m_nControlCount; ++j ) { CDmeBoneFlexDriverControl *pDmeControl = pDmeBoneFlexDriver->m_eControlList[j]; Assert( pDmeControl ); Assert( pDmeControl->GetValue< int >( "__flexControlIndex", -1 ) >= 0 ); Assert( pDmeControl->m_nBoneComponent >= STUDIO_BONE_FLEX_TX ); Assert( pDmeControl->m_nBoneComponent <= STUDIO_BONE_FLEX_TZ );
pControl[j].m_nFlexControllerIndex = pDmeControl->GetValue< int >( "__flexControlIndex", 0 ); pControl[j].m_nBoneComponent = pDmeControl->m_nBoneComponent; pControl[j].m_flMin = pDmeControl->m_flMin; pControl[j].m_flMax = pDmeControl->m_flMax; }
pData += pBoneFlexDriver->m_nControlCount * sizeof( mstudioboneflexdrivercontrol_t ); ALIGN4( pData );
++pBoneFlexDriver; } }
//-----------------------------------------------------------------------------
// Write the processed vertices
//-----------------------------------------------------------------------------
static void WriteVertices( studiohdr_t *phdr ) { char fileName[MAX_PATH]; byte *pStart; byte *pData; int i; int j; int k; int cur;
if (!g_nummodelsbeforeLOD) return;
V_strcpy_safe( fileName, gamedir ); // if( *g_pPlatformName )
// {
// strcat( fileName, "platform_" );
// strcat( fileName, g_pPlatformName );
// strcat( fileName, "/" );
// }
V_strcat_safe( fileName, "models/" ); V_strcat_safe( fileName, outname ); Q_StripExtension( fileName, fileName, sizeof( fileName ) ); V_strcat_safe( fileName, ".vvd" );
if ( !g_quiet ) { printf ("---------------------\n"); printf ("writing %s:\n", fileName); }
pStart = (byte *)kalloc( 1, FILEBUFFER ); pData = pStart;
vertexFileHeader_t *fileHeader = (vertexFileHeader_t *)pData; pData += sizeof(vertexFileHeader_t);
fileHeader->id = MODEL_VERTEX_FILE_ID; fileHeader->version = MODEL_VERTEX_FILE_VERSION; fileHeader->checksum = phdr->checksum;
// data has no fixes and requires no fixes
fileHeader->numFixups = 0; fileHeader->fixupTableStart = 0;
// unfinalized during first pass, fixed during second pass
// data can be considered as single lod at lod 0
fileHeader->numLODs = 1; fileHeader->numLODVertexes[0] = 0;
// store vertexes grouped by mesh order
ALIGN16( pData ); fileHeader->vertexDataStart = pData-pStart; for (i = 0; i < g_nummodelsbeforeLOD; i++) { s_loddata_t *pLodData = g_model[i]->m_pLodData;
// skip blank empty model
if (!pLodData) continue;
// save vertices
ALIGN16( pData ); cur = (int)pData; mstudiovertex_t *pVert = (mstudiovertex_t *)pData; pData += pLodData->numvertices * sizeof( mstudiovertex_t ); for (j = 0; j < pLodData->numvertices; j++) { // printf( "saving bone weight %d for model %d at 0x%p\n",
// j, i, &pbone[j] );
const s_vertexinfo_t &lodVertex = pLodData->vertex[j]; VectorCopy( lodVertex.position, pVert[j].m_vecPosition ); VectorCopy( lodVertex.normal, pVert[j].m_vecNormal ); Vector2DCopy( lodVertex.texcoord, pVert[j].m_vecTexCoord );
mstudioboneweight_t *pBoneWeight = &pVert[j].m_BoneWeights; memset( pBoneWeight, 0, sizeof( mstudioboneweight_t ) ); pBoneWeight->numbones = lodVertex.boneweight.numbones; for (k = 0; k < pBoneWeight->numbones; k++) { pBoneWeight->bone[k] = lodVertex.boneweight.bone[k]; pBoneWeight->weight[k] = lodVertex.boneweight.weight[k]; } }
fileHeader->numLODVertexes[0] += pLodData->numvertices;
if (!g_quiet) { printf( "vertices %7d bytes (%d vertices)\n", (int)(pData - cur), pLodData->numvertices ); } }
// store tangents grouped by mesh order
ALIGN4( pData ); fileHeader->tangentDataStart = pData-pStart; for (i = 0; i < g_nummodelsbeforeLOD; i++) { s_loddata_t *pLodData = g_model[i]->m_pLodData;
// skip blank empty model
if (!pLodData) continue;
// save tangent space S
ALIGN4( pData ); cur = (int)pData; Vector4D *ptangents = (Vector4D *)pData; pData += pLodData->numvertices * sizeof( Vector4D ); for (j = 0; j < pLodData->numvertices; j++) { Vector4DCopy( pLodData->vertex[j].tangentS, ptangents[j] ); #ifdef _DEBUG
float w = ptangents[j].w; Assert( w == 1.0f || w == -1.0f ); #endif
}
if (!g_quiet) { printf( "tangents %7d bytes (%d vertices)\n", (int)(pData - cur), pLodData->numvertices ); } }
if (!g_quiet) { printf( "total %7d bytes\n", pData - pStart ); }
// fileHeader->length = pData - pStart;
{ CP4AutoEditAddFile autop4( fileName, "binary" ); SaveFile( fileName, pStart, pData - pStart ); } }
//-----------------------------------------------------------------------------
// Computes the maximum absolute value of any component of all vertex animation
// pos (x,y,z) normal (x,y,z) or wrinkle
//
// Returns the fixed point scale and also sets appropriate values & flags in
// passed studiohdr_t
//-----------------------------------------------------------------------------
float ComputeVertAnimFixedPointScale( studiohdr_t *pStudioHdr ) { float flVertAnimRange = 0.0f;
for ( int j = 0; j < g_numflexkeys; ++j ) { if ( g_flexkey[j].numvanims <= 0 ) continue;
const bool bWrinkleVAnim = ( g_flexkey[j].vanimtype == STUDIO_VERT_ANIM_WRINKLE );
s_vertanim_t *pVertAnim = g_flexkey[j].vanim;
for ( int k = 0; k < g_flexkey[j].numvanims; ++k ) { if ( fabs( pVertAnim->pos.x ) > flVertAnimRange ) { flVertAnimRange = fabs( pVertAnim->pos.x ); }
if ( fabs( pVertAnim->pos.y ) > flVertAnimRange ) { flVertAnimRange = fabs( pVertAnim->pos.y ); }
if ( fabs( pVertAnim->pos.z ) > flVertAnimRange ) { flVertAnimRange = fabs( pVertAnim->pos.z ); }
if ( fabs( pVertAnim->normal.x ) > flVertAnimRange ) { flVertAnimRange = fabs( pVertAnim->normal.x ); }
if ( fabs( pVertAnim->normal.y ) > flVertAnimRange ) { flVertAnimRange = fabs( pVertAnim->normal.y ); }
if ( fabs( pVertAnim->normal.z ) > flVertAnimRange ) { flVertAnimRange = fabs( pVertAnim->normal.z ); }
if ( bWrinkleVAnim ) { if ( fabs( pVertAnim->wrinkle ) > flVertAnimRange ) { flVertAnimRange = fabs( pVertAnim->wrinkle ); } }
pVertAnim++; } }
// Legacy value
float flVertAnimFixedPointScale = 1.0 / 4096.0f;
if ( flVertAnimRange > 0.0f ) { if ( flVertAnimRange > 32767 ) { MdlWarning( "Flex value too large: %.2f, Max: 32767\n", flVertAnimRange );
flVertAnimFixedPointScale = 1.0f; } else { const float flTmpScale = flVertAnimRange / 32767.0f; if ( flTmpScale > flVertAnimFixedPointScale ) { flVertAnimFixedPointScale = flTmpScale; } } }
if ( flVertAnimFixedPointScale != 1.0f / 4096.0f ) { pStudioHdr->flags |= STUDIOHDR_FLAGS_VERT_ANIM_FIXED_POINT_SCALE; pStudioHdr->flVertAnimFixedPointScale = flVertAnimFixedPointScale; }
return flVertAnimFixedPointScale; }
static void WriteModel( studiohdr_t *phdr ) { int i, j, k, m; mstudiobodyparts_t *pbodypart; mstudiomodel_t *pmodel; s_source_t *psource; mstudiovertanim_t *pvertanim; s_vertanim_t *pvanim;
int cur = (int)pData;
// vertex data is written to external file, offsets kept internal
// track expected external base to store proper offsets
byte *externalVertexIndex = 0; byte *externalTangentsIndex = 0;
// write bodypart info
pbodypart = (mstudiobodyparts_t *)pData; phdr->numbodyparts = g_numbodyparts; phdr->bodypartindex = pData - pStart; pData += g_numbodyparts * sizeof( mstudiobodyparts_t );
pmodel = (mstudiomodel_t *)pData; pData += g_nummodelsbeforeLOD * sizeof( mstudiomodel_t );
for (i = 0, j = 0; i < g_numbodyparts; i++) { AddToStringTable( &pbodypart[i], &pbodypart[i].sznameindex, g_bodypart[i].name ); pbodypart[i].nummodels = g_bodypart[i].nummodels; pbodypart[i].base = g_bodypart[i].base; pbodypart[i].modelindex = ((byte *)&pmodel[j]) - (byte *)&pbodypart[i]; j += g_bodypart[i].nummodels; } ALIGN4( pData );
// write global flex names
mstudioflexdesc_t *pflexdesc = (mstudioflexdesc_t *)pData; phdr->numflexdesc = g_numflexdesc; phdr->flexdescindex = pData - pStart; pData += g_numflexdesc * sizeof( mstudioflexdesc_t ); ALIGN4( pData );
for (j = 0; j < g_numflexdesc; j++) { // printf("%d %s\n", j, g_flexdesc[j].FACS );
AddToStringTable( pflexdesc, &pflexdesc->szFACSindex, g_flexdesc[j].FACS ); pflexdesc++; }
// write global flex controllers
mstudioflexcontroller_t *pflexcontroller = (mstudioflexcontroller_t *)pData; phdr->numflexcontrollers = g_numflexcontrollers; phdr->flexcontrollerindex = pData - pStart; pData += g_numflexcontrollers * sizeof( mstudioflexcontroller_t ); ALIGN4( pData );
for (j = 0; j < g_numflexcontrollers; j++) { AddToStringTable( pflexcontroller, &pflexcontroller->sznameindex, g_flexcontroller[j].name ); AddToStringTable( pflexcontroller, &pflexcontroller->sztypeindex, g_flexcontroller[j].type ); pflexcontroller->min = g_flexcontroller[j].min; pflexcontroller->max = g_flexcontroller[j].max; pflexcontroller->localToGlobal = -1; pflexcontroller++; }
// write flex rules
mstudioflexrule_t *pflexrule = (mstudioflexrule_t *)pData; phdr->numflexrules = g_numflexrules; phdr->flexruleindex = pData - pStart; pData += g_numflexrules * sizeof( mstudioflexrule_t ); ALIGN4( pData );
for (j = 0; j < g_numflexrules; j++) { pflexrule->flex = g_flexrule[j].flex; pflexrule->numops = g_flexrule[j].numops; pflexrule->opindex = (pData - (byte *)pflexrule);
mstudioflexop_t *pflexop = (mstudioflexop_t *)pData;
for (i = 0; i < pflexrule->numops; i++) { pflexop[i].op = g_flexrule[j].op[i].op; pflexop[i].d.index = g_flexrule[j].op[i].d.index; }
pData += sizeof( mstudioflexop_t ) * pflexrule->numops; ALIGN4( pData );
pflexrule++; }
// write global flex controller information
mstudioflexcontrollerui_t *pFlexControllerUI = (mstudioflexcontrollerui_t *)pData; phdr->numflexcontrollerui = 0; phdr->flexcontrolleruiindex = pData - pStart;
// Loop through all defined controllers and create a UI structure for them
// All actual controllers will be defined as a member of some ui structure
// and all actual controllers can only be a member of one ui structure
bool *pControllerHandled = ( bool * )_alloca( g_numflexcontrollers * sizeof( bool ) ); memset( pControllerHandled, 0, g_numflexcontrollers * sizeof( bool ) );
for ( j = 0; j < g_numflexcontrollers; ++j ) { // Don't handle controls twice
if ( pControllerHandled[ j ] ) continue;
const s_flexcontroller_t &flexcontroller = g_flexcontroller[ j ];
bool found = false;
// See if this controller is in the remap table
for ( k = 0; k < g_FlexControllerRemap.Count(); ++k ) { s_flexcontrollerremap_t &remap = g_FlexControllerRemap[ k ]; if ( j == remap.m_Index || j == remap.m_LeftIndex || j == remap.m_RightIndex || j == remap.m_MultiIndex ) { AddToStringTable( pFlexControllerUI, &pFlexControllerUI->sznameindex, remap.m_Name );
pFlexControllerUI->stereo = remap.m_bIsStereo; if ( pFlexControllerUI->stereo ) { Assert( !pControllerHandled[ remap.m_LeftIndex ] ); pFlexControllerUI->szindex0 = ( phdr->flexcontrollerindex - int( pData - pStart ) + remap.m_LeftIndex * sizeof( mstudioflexcontroller_t ) ); pControllerHandled[ remap.m_LeftIndex ] = true;
Assert( !pControllerHandled[ remap.m_RightIndex ] ); pFlexControllerUI->szindex1 = ( phdr->flexcontrollerindex - int( pData - pStart ) + remap.m_RightIndex * sizeof( mstudioflexcontroller_t ) ); pControllerHandled[ remap.m_RightIndex ] = true; } else { Assert( !pControllerHandled[ remap.m_Index ] ); pFlexControllerUI->szindex0 = ( phdr->flexcontrollerindex - int( pData - pStart ) + remap.m_Index * sizeof( mstudioflexcontroller_t ) ); pControllerHandled[ remap.m_Index ] = true; pFlexControllerUI->szindex1 = ( 0 ); }
pFlexControllerUI->remaptype = remap.m_RemapType; if ( pFlexControllerUI->remaptype == FLEXCONTROLLER_REMAP_NWAY || pFlexControllerUI->remaptype == FLEXCONTROLLER_REMAP_EYELID ) { Assert( remap.m_MultiIndex != -1 ); Assert( !pControllerHandled[ remap.m_MultiIndex ] ); pFlexControllerUI->szindex2 = ( phdr->flexcontrollerindex - int( pData - pStart ) + remap.m_MultiIndex * sizeof( mstudioflexcontroller_t ) ); pControllerHandled[ remap.m_MultiIndex ] = true; } else { pFlexControllerUI->szindex2 = 0; }
found = true; break; } }
if ( !found ) { pFlexControllerUI->remaptype = FLEXCONTROLLER_REMAP_PASSTHRU; pFlexControllerUI->szindex2 = 0; // Unused in this case
if ( j < g_numflexcontrollers - 1 && StringAfterPrefixCaseSensitive( flexcontroller.name, "right_" ) && StringAfterPrefixCaseSensitive( g_flexcontroller[ j + 1 ].name, "left_" ) && !Q_strcmp( StringAfterPrefixCaseSensitive( flexcontroller.name, "right_" ), StringAfterPrefixCaseSensitive( g_flexcontroller[ j + 1 ].name, "left_" ) ) ) { AddToStringTable( pFlexControllerUI, &pFlexControllerUI->sznameindex, flexcontroller.name + 6 );
pFlexControllerUI->stereo = true;
Assert( !pControllerHandled[ j + 1 ] ); pFlexControllerUI->szindex0 = ( phdr->flexcontrollerindex - int( pData - pStart ) + ( j + 1 ) * sizeof( mstudioflexcontroller_t ) ); pControllerHandled[ j + 1 ] = true;
Assert( !pControllerHandled[ j ] ); pFlexControllerUI->szindex1 = ( phdr->flexcontrollerindex - int( pData - pStart ) + j * sizeof( mstudioflexcontroller_t ) ); pControllerHandled[ j ] = true; } else if ( j > 0 && StringAfterPrefixCaseSensitive( flexcontroller.name, "left_" ) && StringAfterPrefixCaseSensitive( g_flexcontroller[ j - 1 ].name, "right_" ) && !Q_strcmp( StringAfterPrefixCaseSensitive( flexcontroller.name, "left_" ), StringAfterPrefixCaseSensitive( g_flexcontroller[ j - 1 ].name, "right_" ) ) ) { AddToStringTable( pFlexControllerUI, &pFlexControllerUI->sznameindex, flexcontroller.name + 5 );
pFlexControllerUI->stereo = true;
Assert( !pControllerHandled[ j ] ); pFlexControllerUI->szindex0 = ( phdr->flexcontrollerindex - int( pData - pStart ) + j * sizeof( mstudioflexcontroller_t ) ); pControllerHandled[ j ] = true;
Assert( !pControllerHandled[ j - 1 ] ); pFlexControllerUI->szindex1 = ( phdr->flexcontrollerindex - int( pData - pStart ) + ( j - 1 ) * sizeof( mstudioflexcontroller_t ) ); pControllerHandled[ j - 1 ] = true; } else { AddToStringTable( pFlexControllerUI, &pFlexControllerUI->sznameindex, flexcontroller.name ); pFlexControllerUI->stereo = false; pFlexControllerUI->szindex0 = ( phdr->flexcontrollerindex - int( pData - pStart ) + j * sizeof( mstudioflexcontroller_t ) ); pFlexControllerUI->szindex1 = 0; // Unused in this case
pControllerHandled[ j ] = true; } }
phdr->numflexcontrollerui++; pData += sizeof( mstudioflexcontrollerui_t ); ++pFlexControllerUI; } ALIGN4( pData );
#ifdef _DEBUG
for ( j = 0; j < g_numflexcontrollers; ++j ) { Assert( pControllerHandled[ j ] ); } #endif // _DEBUG
// write ik chains
mstudioikchain_t *pikchain = (mstudioikchain_t *)pData; phdr->numikchains = g_numikchains; phdr->ikchainindex = pData - pStart; pData += g_numikchains * sizeof( mstudioikchain_t ); ALIGN4( pData );
for (j = 0; j < g_numikchains; j++) { AddToStringTable( pikchain, &pikchain->sznameindex, g_ikchain[j].name ); pikchain->numlinks = g_ikchain[j].numlinks;
mstudioiklink_t *piklink = (mstudioiklink_t *)pData; pikchain->linkindex = (pData - (byte *)pikchain); pData += pikchain->numlinks * sizeof( mstudioiklink_t );
for (i = 0; i < pikchain->numlinks; i++) { piklink[i].bone = g_ikchain[j].link[i].bone; piklink[i].kneeDir = g_ikchain[j].link[i].kneeDir; }
pikchain++; }
// save autoplay locks
mstudioiklock_t *piklock = (mstudioiklock_t *)pData; phdr->numlocalikautoplaylocks = g_numikautoplaylocks; phdr->localikautoplaylockindex = pData - pStart; pData += g_numikautoplaylocks * sizeof( mstudioiklock_t ); ALIGN4( pData );
for (j = 0; j < g_numikautoplaylocks; j++) { piklock->chain = g_ikautoplaylock[j].chain; piklock->flPosWeight = g_ikautoplaylock[j].flPosWeight; piklock->flLocalQWeight = g_ikautoplaylock[j].flLocalQWeight; piklock++; }
// save mouth info
mstudiomouth_t *pmouth = (mstudiomouth_t *)pData; phdr->nummouths = g_nummouths; phdr->mouthindex = pData - pStart; pData += g_nummouths * sizeof( mstudiomouth_t ); ALIGN4( pData );
for (i = 0; i < g_nummouths; i++) { pmouth[i].bone = g_mouth[i].bone; VectorCopy( g_mouth[i].forward, pmouth[i].forward ); pmouth[i].flexdesc = g_mouth[i].flexdesc; }
// save pose parameters
mstudioposeparamdesc_t *ppose = (mstudioposeparamdesc_t *)pData; phdr->numlocalposeparameters = g_numposeparameters; phdr->localposeparamindex = pData - pStart; pData += g_numposeparameters * sizeof( mstudioposeparamdesc_t ); ALIGN4( pData );
for (i = 0; i < g_numposeparameters; i++) { AddToStringTable( &ppose[i], &ppose[i].sznameindex, g_pose[i].name ); ppose[i].start = g_pose[i].min; ppose[i].end = g_pose[i].max; ppose[i].flags = g_pose[i].flags; ppose[i].loop = g_pose[i].loop; }
if( !g_quiet ) { printf("ik/pose %7d bytes\n", (int)(pData - cur) ); } cur = (int)pData;
const float flVertAnimFixedPointScale = ComputeVertAnimFixedPointScale( phdr );
// write model
for (i = 0; i < g_nummodelsbeforeLOD; i++) { int n = 0;
byte *pModelStart = (byte *)(&pmodel[i]); strcpy( pmodel[i].name, g_model[i]->filename ); // AddToStringTable( &pmodel[i], &pmodel[i].sznameindex, g_model[i]->filename );
// pmodel[i].mrmbias = g_model[i]->mrmbias;
// pmodel[i].minresolution = g_model[i]->minresolution;
// pmodel[i].maxresolution = g_model[i]->maxresolution;
// save bbox info
psource = g_model[i]->source; s_loddata_t *pLodData = g_model[i]->m_pLodData;
// save mesh info
if (pLodData) { pmodel[i].numvertices = pLodData->numvertices; } else { // empty model
pmodel[i].numvertices = 0; }
if ( pmodel[i].numvertices >= MAXSTUDIOVERTS ) { // We have to check this here so that we don't screw up decal
// vert caching in the runtime.
MdlError( "Too many verts in model. (%d verts, MAXSTUDIOVERTS==%d)\n", pmodel[i].numvertices, ( int )MAXSTUDIOVERTS ); }
mstudiomesh_t *pmesh = (mstudiomesh_t *)pData; pmodel[i].meshindex = (pData - pModelStart); pData += psource->nummeshes * sizeof( mstudiomesh_t ); ALIGN4( pData );
pmodel[i].nummeshes = psource->nummeshes; for (m = 0; m < pmodel[i].nummeshes; m++) { n = psource->meshindex[m];
pmesh[m].material = n; pmesh[m].modelindex = (byte *)&pmodel[i] - (byte *)&pmesh[m]; pmesh[m].numvertices = pLodData->mesh[n].numvertices; pmesh[m].vertexoffset = pLodData->mesh[n].vertexoffset; }
// set expected base offsets to external data
ALIGN16( externalVertexIndex ); pmodel[i].vertexindex = (int)externalVertexIndex; externalVertexIndex += pmodel[i].numvertices * sizeof(mstudiovertex_t);
// set expected base offsets to external data
ALIGN4( externalTangentsIndex ); pmodel[i].tangentsindex = (int)externalTangentsIndex; externalTangentsIndex += pmodel[i].numvertices * sizeof( Vector4D );
cur = (int)pData;
// save eyeballs
mstudioeyeball_t *peyeball; peyeball = (mstudioeyeball_t *)pData; pmodel[i].numeyeballs = g_model[i]->numeyeballs; pmodel[i].eyeballindex = pData - pModelStart; pData += g_model[i]->numeyeballs * sizeof( mstudioeyeball_t ); ALIGN4( pData ); for (j = 0; j < g_model[i]->numeyeballs; j++) { k = g_model[i]->eyeball[j].mesh; pmesh[k].materialtype = 1; // FIXME: tag custom material
pmesh[k].materialparam = j; // FIXME: tag custom material
peyeball[j].bone = g_model[i]->eyeball[j].bone; VectorCopy( g_model[i]->eyeball[j].org, peyeball[j].org ); peyeball[j].zoffset = g_model[i]->eyeball[j].zoffset; peyeball[j].radius = g_model[i]->eyeball[j].radius; VectorCopy( g_model[i]->eyeball[j].up, peyeball[j].up ); VectorCopy( g_model[i]->eyeball[j].forward, peyeball[j].forward ); peyeball[j].iris_scale = g_model[i]->eyeball[j].iris_scale;
for (k = 0; k < 3; k++) { peyeball[j].upperflexdesc[k] = g_model[i]->eyeball[j].upperflexdesc[k]; peyeball[j].lowerflexdesc[k] = g_model[i]->eyeball[j].lowerflexdesc[k]; peyeball[j].uppertarget[k] = g_model[i]->eyeball[j].uppertarget[k]; peyeball[j].lowertarget[k] = g_model[i]->eyeball[j].lowertarget[k]; }
peyeball[j].upperlidflexdesc = g_model[i]->eyeball[j].upperlidflexdesc; peyeball[j].lowerlidflexdesc = g_model[i]->eyeball[j].lowerlidflexdesc; }
if ( !g_quiet ) { printf("eyeballs %7d bytes (%d eyeballs)\n", (int)(pData - cur), g_model[i]->numeyeballs ); }
// move flexes into individual meshes
cur = (int)pData; for (m = 0; m < pmodel[i].nummeshes; m++) { int numflexkeys[MAXSTUDIOFLEXKEYS]; pmesh[m].numflexes = 0;
// initialize array
for (j = 0; j < g_numflexkeys; j++) { numflexkeys[j] = 0; }
// count flex instances per mesh
for (j = 0; j < g_numflexkeys; j++) { if (g_flexkey[j].imodel == i) { for (k = 0; k < g_flexkey[j].numvanims; k++) { n = g_flexkey[j].vanim[k].vertex - pmesh[m].vertexoffset; if (n >= 0 && n < pmesh[m].numvertices) { if (numflexkeys[j]++ == 0) { pmesh[m].numflexes++; } } } } }
if (pmesh[m].numflexes) { pmesh[m].flexindex = ( pData - (byte *)&pmesh[m] ); mstudioflex_t *pflex = (mstudioflex_t *)pData; pData += pmesh[m].numflexes * sizeof( mstudioflex_t ); ALIGN4( pData );
for (j = 0; j < g_numflexkeys; j++) { if (!numflexkeys[j]) continue;
pflex->flexdesc = g_flexkey[j].flexdesc; pflex->target0 = g_flexkey[j].target0; pflex->target1 = g_flexkey[j].target1; pflex->target2 = g_flexkey[j].target2; pflex->target3 = g_flexkey[j].target3; pflex->numverts = numflexkeys[j]; pflex->vertindex = (pData - (byte *)pflex); pflex->flexpair = g_flexkey[j].flexpair; pflex->vertanimtype = g_flexkey[j].vanimtype;
// printf("%d %d %s : %f %f %f %f\n", j, g_flexkey[j].flexdesc, g_flexdesc[g_flexkey[j].flexdesc].FACS, g_flexkey[j].target0, g_flexkey[j].target1, g_flexkey[j].target2, g_flexkey[j].target3 );
// if (j < 9) printf("%d %d %s : %d (%d) %f\n", j, g_flexkey[j].flexdesc, g_flexdesc[g_flexkey[j].flexdesc].FACS, g_flexkey[j].numvanims, pflex->numverts, g_flexkey[j].target );
// printf("%d %d : %d %f\n", j, g_flexkey[j].flexnum, g_flexkey[j].numvanims, g_flexkey[j].target );
pvanim = g_flexkey[j].vanim;
bool bWrinkleVAnim = ( pflex->vertanimtype == STUDIO_VERT_ANIM_WRINKLE ); int nVAnimDeltaSize = bWrinkleVAnim ? sizeof(mstudiovertanim_wrinkle_t) : sizeof(mstudiovertanim_t);
pvertanim = (mstudiovertanim_t *)pData; pData += pflex->numverts * nVAnimDeltaSize; ALIGN4( pData ); for ( k = 0; k < g_flexkey[j].numvanims; k++ ) { n = g_flexkey[j].vanim[k].vertex - pmesh[m].vertexoffset; if ( n >= 0 && n < pmesh[m].numvertices ) { pvertanim->index = n; pvertanim->speed = 255.0F*pvanim->speed; pvertanim->side = 255.0F*pvanim->side;
pvertanim->SetDeltaFloat( pvanim->pos ); pvertanim->SetNDeltaFloat( pvanim->normal ); if ( bWrinkleVAnim ) { ( (mstudiovertanim_wrinkle_t*)pvertanim )->SetWrinkleFixed( pvanim->wrinkle, flVertAnimFixedPointScale ); }
pvertanim = (mstudiovertanim_t*)( (byte*)pvertanim + nVAnimDeltaSize );
/*
if ((tmp - pvanim->pos).Length() > 0.1) { pvertanim->delta.x = pvanim->pos.x; printf("%f %f %f : %f %f %f\n", pvanim->pos[0], pvanim->pos[1], pvanim->pos[2], tmp.x, tmp.y, tmp.z ); } */ // if (j < 9) printf("%d %.2f %.2f %.2f\n", n, pvanim->pos[0], pvanim->pos[1], pvanim->pos[2] );
} // printf("%d %.2f %.2f %.2f\n", pvanim->vertex, pvanim->pos[0], pvanim->pos[1], pvanim->pos[2] );
pvanim++; } pflex++; } } }
if( !g_quiet ) { printf("flexes %7d bytes (%d flexes)\n", (int)(pData - cur), g_numflexkeys ); } cur = (int)pData; }
ALIGN4( pData );
mstudiomodelgroup_t *pincludemodel = (mstudiomodelgroup_t *)pData; phdr->numincludemodels = g_numincludemodels; phdr->includemodelindex = pData - pStart; pData += g_numincludemodels * sizeof( mstudiomodelgroup_t );
for (i = 0; i < g_numincludemodels; i++) { AddToStringTable( pincludemodel, &pincludemodel->sznameindex, g_includemodel[i].name ); pincludemodel++; }
// save animblock group info
mstudioanimblock_t *panimblock = (mstudioanimblock_t *)pData; phdr->numanimblocks = g_numanimblocks; phdr->animblockindex = pData - pStart; pData += phdr->numanimblocks * sizeof( mstudioanimblock_t ); ALIGN4( pData );
for (i = 1; i < g_numanimblocks; i++) { panimblock[i].datastart = g_animblock[i].start - pBlockStart; panimblock[i].dataend = g_animblock[i].end - pBlockStart; // printf("block %d : %x %x (%d)\n", i, panimblock[i].datastart, panimblock[i].dataend, panimblock[i].dataend - panimblock[i].datastart );
} AddToStringTable( phdr, &phdr->szanimblocknameindex, g_animblockname ); }
static void AssignMeshIDs( studiohdr_t *pStudioHdr ) { int i; int j; int m; int numMeshes; mstudiobodyparts_t *pStudioBodyPart; mstudiomodel_t *pStudioModel; mstudiomesh_t *pStudioMesh;
numMeshes = 0; for (i=0; i<pStudioHdr->numbodyparts; i++) { pStudioBodyPart = pStudioHdr->pBodypart(i); for (j=0; j<pStudioBodyPart->nummodels; j++) { pStudioModel = pStudioBodyPart->pModel(j); for (m=0; m<pStudioModel->nummeshes; m++) { // get each mesh
pStudioMesh = pStudioModel->pMesh(m); pStudioMesh->meshid = numMeshes + m; } numMeshes += pStudioModel->nummeshes; } } }
void LoadMaterials( studiohdr_t *phdr ) { int i, j;
// get index of each material
if( phdr->textureindex != 0 ) { for( i = 0; i < phdr->numtextures; i++ ) { char szPath[256]; IMaterial *pMaterial = NULL; // search through all specified directories until a valid material is found
for( j = 0; j < phdr->numcdtextures && IsErrorMaterial( pMaterial ); j++ ) { strcpy( szPath, phdr->pCdtexture( j ) ); strcat( szPath, phdr->pTexture( i )->pszName( ) );
pMaterial = g_pMaterialSystem->FindMaterial( szPath, TEXTURE_GROUP_OTHER, false ); } if( IsErrorMaterial( pMaterial ) && !g_quiet ) { // hack - if it isn't found, go through the motions of looking for it again
// so that the materialsystem will give an error.
for( j = 0; j < phdr->numcdtextures; j++ ) { strcpy( szPath, phdr->pCdtexture( j ) ); strcat( szPath, phdr->pTexture( i )->pszName( ) ); g_pMaterialSystem->FindMaterial( szPath, TEXTURE_GROUP_OTHER, true ); } }
phdr->pTexture( i )->material = pMaterial;
// FIXME: hack, needs proper client side material system interface
bool found = false; IMaterialVar *clientShaderVar = pMaterial->FindVar( "$clientShader", &found, false ); if( found ) { if (stricmp( clientShaderVar->GetStringValue(), "MouthShader") == 0) { phdr->pTexture( i )->flags = 1; } phdr->pTexture( i )->used = 1; } } } }
void WriteKeyValues( studiohdr_t *phdr, CUtlVector< char > *pKeyValue ) { phdr->keyvalueindex = (pData - pStart); phdr->keyvaluesize = KeyValueTextSize( pKeyValue ); if (phdr->keyvaluesize) { memcpy( pData, KeyValueText( pKeyValue ), phdr->keyvaluesize );
// Add space for a null terminator
pData[phdr->keyvaluesize] = 0; ++phdr->keyvaluesize;
pData += phdr->keyvaluesize * sizeof( char ); } ALIGN4( pData ); }
void WriteSeqKeyValues( mstudioseqdesc_t *pseqdesc, CUtlVector< char > *pKeyValue ) { pseqdesc->keyvalueindex = (pData - (byte *)pseqdesc); pseqdesc->keyvaluesize = KeyValueTextSize( pKeyValue ); if (pseqdesc->keyvaluesize) { memcpy( pData, KeyValueText( pKeyValue ), pseqdesc->keyvaluesize );
// Add space for a null terminator
pData[pseqdesc->keyvaluesize] = 0; ++pseqdesc->keyvaluesize;
pData += pseqdesc->keyvaluesize * sizeof( char ); } ALIGN4( pData ); }
void EnsureFileDirectoryExists( const char *pFilename ) { char dirName[MAX_PATH]; Q_strncpy( dirName, pFilename, sizeof( dirName ) ); Q_FixSlashes( dirName ); char *pLastSlash = strrchr( dirName, CORRECT_PATH_SEPARATOR ); if ( pLastSlash ) { *pLastSlash = 0;
if ( _access( dirName, 0 ) != 0 ) { char cmdLine[512]; Q_snprintf( cmdLine, sizeof( cmdLine ), "md \"%s\"", dirName ); system( cmdLine ); } } }
void WriteModelFiles(void) { FileHandle_t modelouthandle = 0; FileHandle_t blockouthandle = 0; CPlainAutoPtr< CP4File > spFileBlockOut, spFileModelOut; int total = 0; int i; char filename[MAX_PATH]; studiohdr_t *phdr; studiohdr_t *pblockhdr = 0;
pStart = (byte *)kalloc( 1, FILEBUFFER );
pBlockData = NULL; pBlockStart = NULL;
Q_StripExtension( outname, outname, sizeof( outname ) ); if (g_animblocksize != 0) { // write the non-default g_sequence group data to separate files
sprintf( g_animblockname, "models/%s.ani", outname );
V_strcpy_safe( filename, gamedir ); V_strcat_safe( filename, g_animblockname );
EnsureFileDirectoryExists( filename );
if (!g_bVerifyOnly) { spFileBlockOut.Attach( g_p4factory->AccessFile( filename ) ); spFileBlockOut->Edit();
// Create the directory hierarchy for the ANI
char parentdir[MAX_PATH]; V_strcpy_safe( parentdir, filename ); V_StripFilename( parentdir ); g_pFullFileSystem->CreateDirHierarchy( parentdir );
blockouthandle = SafeOpenWrite( filename ); }
pBlockStart = (byte *)kalloc( 1, FILEBUFFER ); pBlockData = pBlockStart;
pblockhdr = (studiohdr_t *)pBlockData; pblockhdr->id = IDSTUDIOANIMGROUPHEADER; pblockhdr->version = STUDIO_VERSION;
pBlockData += sizeof( *pblockhdr ); }
//
// write the g_model output file
//
phdr = (studiohdr_t *)pStart;
phdr->id = IDSTUDIOHEADER; phdr->version = STUDIO_VERSION;
V_strcat_safe (outname, ".mdl");
// strcpy( outname, ExpandPath( outname ) );
V_strcpy_safe( filename, gamedir ); // if( *g_pPlatformName )
// {
// strcat( filename, "platform_" );
// strcat( filename, g_pPlatformName );
// strcat( filename, "/" );
// }
V_strcat_safe( filename, "models/" ); V_strcat_safe( filename, outname );
// Create the directory.
EnsureFileDirectoryExists( filename );
if( !g_quiet ) { printf ("---------------------\n"); printf ("writing %s:\n", filename); }
LoadPreexistingSequenceOrder( filename );
if (!g_bVerifyOnly) { spFileModelOut.Attach( g_p4factory->AccessFile( filename ) ); spFileModelOut->Edit();
// Create the directory hierarchy for the MDL
char parentdir[MAX_PATH]; V_strcpy_safe( parentdir, filename ); V_StripFilename( parentdir ); g_pFullFileSystem->CreateDirHierarchy( parentdir );
modelouthandle = SafeOpenWrite (filename); }
phdr->eyeposition = eyeposition; phdr->illumposition = illumposition;
if ( !g_wrotebbox && g_sequence.Count() > 0) { VectorCopy( g_sequence[0].bmin, bbox[0] ); VectorCopy( g_sequence[0].bmax, bbox[1] ); CollisionModel_ExpandBBox( bbox[0], bbox[1] ); VectorCopy( bbox[0], g_sequence[0].bmin ); VectorCopy( bbox[1], g_sequence[0].bmax ); } if ( !g_wrotecbox ) { // no default clipping box, just use per-sequence box
VectorCopy( vec3_origin, cbox[0] ); VectorCopy( vec3_origin, cbox[1] ); }
phdr->hull_min = bbox[0]; phdr->hull_max = bbox[1]; phdr->view_bbmin = cbox[0]; phdr->view_bbmax = cbox[1];
phdr->flags = gflags; phdr->mass = GetCollisionModelMass(); phdr->constdirectionallightdot = g_constdirectionalightdot;
if ( g_numAllowedRootLODs > 0 ) { phdr->numAllowedRootLODs = g_numAllowedRootLODs; }
pData = (byte *)phdr + sizeof( studiohdr_t );
// FIXME: Remove when we up the model version
phdr->studiohdr2index = ( pData - pStart ); studiohdr2_t* phdr2 = (studiohdr2_t*)pData; memset( phdr2, 0, sizeof(studiohdr2_t) ); pData = (byte*)phdr2 + sizeof(studiohdr2_t);
phdr2->illumpositionattachmentindex = g_illumpositionattachment; phdr2->flMaxEyeDeflection = g_flMaxEyeDeflection;
BeginStringTable( );
// Copy the full path for compatibility with older programs
//V_strcpy_safe( phdr->name, V_UnqualifiedFileName( outname ) );
V_strcpy_safe( phdr->name, outname ); AddToStringTable( phdr2, &phdr2->sznameindex, outname );
WriteBoneInfo( phdr ); if( !g_quiet ) { printf("bones %7d bytes (%d)\n", pData - pStart - total, g_numbones ); } total = pData - pStart;
pData = WriteAnimations( pData, pStart, phdr ); if( !g_quiet ) { printf("animations %7d bytes (%d anims) (%d frames) [%d:%02d]\n", pData - pStart - total, g_numani, totalframes, (int)totalseconds / 60, (int)totalseconds % 60 ); } total = pData - pStart;
WriteSequenceInfo( phdr ); if( !g_quiet ) { printf("sequences %7d bytes (%d seq) \n", pData - pStart - total, g_sequence.Count() ); } total = pData - pStart;
WriteModel( phdr ); /*
if( !g_quiet ) { printf("models %7d bytes\n", pData - pStart - total ); } */ total = pData - pStart;
WriteTextures( phdr ); if( !g_quiet ) { printf("textures %7d bytes\n", pData - pStart - total ); } total = pData - pStart;
WriteKeyValues( phdr, &g_KeyValueText ); if( !g_quiet ) { printf("keyvalues %7d bytes\n", pData - pStart - total ); } total = pData - pStart;
WriteBoneTransforms( phdr2, phdr->pBone( 0 ) ); if( !g_quiet ) { printf("bone transforms %7d bytes\n", pData - pStart - total ); } total = pData - pStart; if ( total > FILEBUFFER ) { MdlError( "file exceeds %d bytes (%d)", FILEBUFFER, total ); }
WriteBoneFlexDrivers( phdr2 ); if ( !g_quiet ) { printf("bone flex driver %7d bytes\n", pData - pStart - total ); } total = pData - pStart; if ( total > FILEBUFFER ) { MdlError( "file exceeds %d bytes (%d)", FILEBUFFER, total ); }
pData = WriteStringTable( pData );
total = pData - pStart; if ( total > FILEBUFFER ) { MdlError( "file exceeds %d bytes (%d)", FILEBUFFER, total ); }
phdr->checksum = 0; for (i = 0; i < total; i += 4) { // TODO: does this need something more than a simple shift left and add checksum?
phdr->checksum = (phdr->checksum << 1) + ((phdr->checksum & 0x8000000) ? 1 : 0) + *((long *)(pStart + i)); }
if (g_bVerifyOnly) return;
CollisionModel_Write( phdr->checksum );
if( !g_quiet ) { printf("collision %7d bytes\n", pData - pStart - total ); }
AssignMeshIDs( phdr );
phdr->length = pData - pStart; if( !g_quiet ) { printf("total %7d\n", phdr->length ); } if ( phdr->length > FILEBUFFER ) { MdlError( "file exceeds %d bytes (%d)", FILEBUFFER, total ); }
// Load materials for this model via the material system so that the
// optimizer can ask questions about the materials.
LoadMaterials( phdr );
SafeWrite( modelouthandle, pStart, phdr->length );
g_pFileSystem->Close(modelouthandle); if ( spFileModelOut.IsValid() ) spFileModelOut->Add();
if (pBlockStart) { pblockhdr->length = pBlockData - pBlockStart;
if ( g_bX360 ) { // Before writing this .ani, write the byteswapped version
void *pOutBase = kalloc(1, pblockhdr->length + BYTESWAP_ALIGNMENT_PADDING); int finalSize = StudioByteSwap::ByteswapANI( phdr, pOutBase, pBlockStart, pblockhdr->length ); if ( finalSize == 0 ) { MdlError("Aborted ANI byteswap on '%s':\n", g_animblockname); }
char outname[ MAX_PATH ]; Q_StripExtension( g_animblockname, outname, sizeof( outname ) ); Q_strcat( outname, ".360.ani", sizeof( outname ) ); { CP4AutoEditAddFile autop4( outname ); SaveFile( outname, pOutBase, finalSize ); } }
SafeWrite( blockouthandle, pBlockStart, pblockhdr->length ); g_pFileSystem->Close( blockouthandle ); if ( spFileBlockOut.IsValid() ) spFileBlockOut->Add();
if ( !g_quiet ) { printf ("---------------------\n"); printf("writing %s:\n", g_animblockname); printf("blocks %7d\n", g_numanimblocks ); printf("total %7d\n", pblockhdr->length ); } }
if (phdr->numbodyparts != 0) { // vertices have become an external peer data store
// write now prior to impending vertex access from any further code
// vertex accessors hide shifting vertex data
WriteVertices( phdr );
#ifdef _DEBUG
int bodyPartID; for( bodyPartID = 0; bodyPartID < phdr->numbodyparts; bodyPartID++ ) { mstudiobodyparts_t *pBodyPart = phdr->pBodypart( bodyPartID ); int modelID; for( modelID = 0; modelID < pBodyPart->nummodels; modelID++ ) { mstudiomodel_t *pModel = pBodyPart->pModel( modelID ); const mstudio_modelvertexdata_t *vertData = pModel->GetVertexData(); Assert( vertData ); // This can only return NULL on X360 for now
int vertID; for( vertID = 0; vertID < pModel->numvertices; vertID++ ) { Vector4D *pTangentS = vertData->TangentS( vertID ); Assert( pTangentS->w == -1.0f || pTangentS->w == 1.0f ); } } } #endif
if ( !g_StudioMdlCheckUVCmd.CheckUVs( g_source, g_numsources ) ) { MdlError( "UV checks failed\n" ); }
OptimizedModel::WriteOptimizedFiles( phdr, g_bodypart );
// now have external finalized vtx (windings) and vvd (vertexes)
// re-open files, sort vertexes, perform fixups, and rewrite
// purposely isolated as a post process for stability
if (!FixupToSortedLODVertexes( phdr )) { MdlError("Aborted vertex sort fixup on '%s':\n", filename); }
if (!Clamp_RootLOD( phdr )) { MdlError("Aborted root lod shift '%s':\n", filename); } }
if ( g_bX360 ) { // now all files have been finalized and fixed up.
// re-open the files once more and swap all little-endian
// data to big-endian format to produce Xbox360 files.
WriteAllSwappedFiles( filename ); }
// NOTE! If you don't want to go through the effort of loading studiorender for perf reasons,
// make sure spewFlags ends up being zero.
unsigned int spewFlags = SPEWPERFSTATS_SHOWSTUDIORENDERWARNINGS;
if ( g_bPerf ) { spewFlags |= SPEWPERFSTATS_SHOWPERF; } if( spewFlags ) { SpewPerfStats( phdr, filename, spewFlags ); } }
const vertexFileHeader_t * mstudiomodel_t::CacheVertexData( void * pModelData ) { static vertexFileHeader_t *pVertexHdr; char filename[MAX_PATH];
Assert( pModelData == NULL );
if (pVertexHdr) { // studiomdl is a single model process, can simply persist data in static
goto hasData; }
// load and persist the vertex file
V_strcpy_safe( filename, gamedir ); // if( *g_pPlatformName )
// {
// strcat( filename, "platform_" );
// strcat( filename, g_pPlatformName );
// strcat( filename, "/" );
// }
V_strcat_safe( filename, "models/" ); V_strcat_safe( filename, outname ); Q_StripExtension( filename, filename, sizeof( filename ) ); V_strcat_safe( filename, ".vvd" );
LoadFile(filename, (void**)&pVertexHdr);
// check id
if (pVertexHdr->id != MODEL_VERTEX_FILE_ID) { MdlError("Error Vertex File: '%s' (id %d should be %d)\n", filename, pVertexHdr->id, MODEL_VERTEX_FILE_ID); }
// check version
if (pVertexHdr->version != MODEL_VERTEX_FILE_VERSION) { MdlError("Error Vertex File: '%s' (version %d should be %d)\n", filename, pVertexHdr->version, MODEL_VERTEX_FILE_VERSION); }
hasData: return pVertexHdr; }
typedef struct { int meshVertID; int finalMeshVertID; int vertexOffset; int lodFlags; } usedVertex_t;
typedef struct { int offsets[MAX_NUM_LODS]; int numVertexes[MAX_NUM_LODS]; } lodMeshInfo_t;
typedef struct { usedVertex_t *pVertexList; unsigned short *pVertexMap; int numVertexes; lodMeshInfo_t lodMeshInfo; } vertexPool_t;
#define ALIGN(b,s) (((unsigned int)(b)+(s)-1)&~((s)-1))
//-----------------------------------------------------------------------------
// FindVertexOffsets
//
// Iterate sorted vertex list to determine mesh starts and counts.
//-----------------------------------------------------------------------------
void FindVertexOffsets(int vertexOffset, int offsets[MAX_NUM_LODS], int counts[MAX_NUM_LODS], int numLods, const usedVertex_t *pVertexList, int numVertexes) { int lodFlags; int i; int j; int k;
// vertexOffset uniquely identifies a single mesh's vertexes in lod vertex sorted list
// lod vertex list is sorted from lod N..lod 0
for (i=numLods-1; i>=0; i--) { offsets[i] = 0; counts[i] = 0;
lodFlags = (1<<(i+1))-1; for (j=0; j<numVertexes; j++) { // determine start of mesh at desired lod
if (pVertexList[j].lodFlags > lodFlags) continue; if (pVertexList[j].vertexOffset != vertexOffset) continue;
for (k=j; k<numVertexes; k++) { // determine end of mesh at desired lod
if (pVertexList[k].vertexOffset != vertexOffset) break; if (!(pVertexList[k].lodFlags & (1<<i))) break; }
offsets[i] = j; counts[i] = k-j; break; } } }
//-----------------------------------------------------------------------------
// _CompareUsedVertexes
//
// qsort callback
//-----------------------------------------------------------------------------
static int _CompareUsedVertexes(const void *a, const void *b) { usedVertex_t *pVertexA; usedVertex_t *pVertexB; int sort; int lodA; int lodB;
pVertexA = (usedVertex_t*)a; pVertexB = (usedVertex_t*)b;
// determine highest (lowest detail) lod
// forces grouping into discrete MAX_NUM_LODS sections
lodA = Q_log2(pVertexA->lodFlags); lodB = Q_log2(pVertexB->lodFlags);
// descending sort (LodN..Lod0)
sort = lodB-lodA; if (sort) return sort;
// within same lod, sub sort (ascending) by mesh
sort = pVertexA->vertexOffset - pVertexB->vertexOffset; if (sort) return sort; // within same mesh, sub sort (ascending) by vertex
sort = pVertexA->meshVertID - pVertexB->meshVertID; return sort; }
//-----------------------------------------------------------------------------
// BuildSortedVertexList
//
// Generates the sorted vertex list. Routine is purposely serial to
// ensure vertex integrity.
//-----------------------------------------------------------------------------
bool BuildSortedVertexList(const studiohdr_t *pStudioHdr, const void *pVtxBuff, vertexPool_t **ppVertexPools, int *pNumVertexPools, usedVertex_t **ppVertexList, int *pNumVertexes) { OptimizedModel::FileHeader_t *pVtxHdr; OptimizedModel::BodyPartHeader_t *pBodyPartHdr; OptimizedModel::ModelHeader_t *pModelHdr; OptimizedModel::ModelLODHeader_t *pModelLODHdr; OptimizedModel::MeshHeader_t *pMeshHdr; OptimizedModel::StripGroupHeader_t *pStripGroupHdr; OptimizedModel::Vertex_t *pStripVertex; mstudiobodyparts_t *pStudioBodyPart; mstudiomodel_t *pStudioModel; mstudiomesh_t *pStudioMesh; usedVertex_t *usedVertexes; vertexPool_t *pVertexPools; vertexPool_t *pPool; usedVertex_t *pVertexList; int *pVertexes; unsigned short *pVertexMap; int index; int currLod; int vertexOffset; int i,j,k,m,n,p; int poolStart; int numVertexPools; int numVertexes; int numMeshVertexes; int offsets[MAX_NUM_LODS]; int counts[MAX_NUM_LODS]; int finalMeshVertID; int baseMeshVertID;
*ppVertexPools = NULL; *pNumVertexPools = 0; *ppVertexList = NULL; *pNumVertexes = 0;
pVtxHdr = (OptimizedModel::FileHeader_t*)pVtxBuff;
// determine number of vertex pools
if (pStudioHdr->numbodyparts != pVtxHdr->numBodyParts) return false; numVertexPools = 0; for (i=0; i<pVtxHdr->numBodyParts; i++) { pBodyPartHdr = pVtxHdr->pBodyPart(i); pStudioBodyPart = pStudioHdr->pBodypart(i); if (pStudioBodyPart->nummodels != pBodyPartHdr->numModels) return false;
// the model's subordinate lods only reference from a single top level pool
// no new verts are created for sub lods
// each model's subordinate mesh dictates its own vertex pool
for (j=0; j<pBodyPartHdr->numModels; j++) { pStudioModel = pStudioBodyPart->pModel(j); numVertexPools += pStudioModel->nummeshes; } }
// allocate pools
pVertexPools = (vertexPool_t*)malloc(numVertexPools*sizeof(vertexPool_t)); memset(pVertexPools, 0, numVertexPools*sizeof(vertexPool_t));
// iterate lods, mark referenced indexes
numVertexPools = 0; for (i=0; i<pVtxHdr->numBodyParts; i++) { pBodyPartHdr = pVtxHdr->pBodyPart(i); pStudioBodyPart = pStudioHdr->pBodypart(i);
for (j=0; j<pBodyPartHdr->numModels; j++) { pModelHdr = pBodyPartHdr->pModel(j); pStudioModel = pStudioBodyPart->pModel(j);
// allocate each mesh's vertex list
poolStart = numVertexPools; for (k=0; k<pStudioModel->nummeshes; k++) { // track the expected relative offset into a flattened vertex list
vertexOffset = 0; for (m=0; m<poolStart+k; m++) vertexOffset += pVertexPools[m].numVertexes;
pStudioMesh = pStudioModel->pMesh(k); numMeshVertexes = pStudioMesh->numvertices; if (numMeshVertexes) { usedVertexes = (usedVertex_t*)malloc(numMeshVertexes*sizeof(usedVertex_t)); pVertexMap = (unsigned short*)malloc(numMeshVertexes*sizeof(unsigned short));
for (n=0; n<numMeshVertexes; n++) { // setup mapping
// due to the hierarchial layout, the vertID's map per mesh's pool
// a linear layout of the vertexes requires a unique signature to achieve a remap
// the offset and index form a unique signature
usedVertexes[n].meshVertID = n; usedVertexes[n].finalMeshVertID = -1; usedVertexes[n].vertexOffset = vertexOffset; usedVertexes[n].lodFlags = 0; pVertexMap[n] = n; } pVertexPools[numVertexPools].pVertexList = usedVertexes; pVertexPools[numVertexPools].pVertexMap = pVertexMap; } pVertexPools[numVertexPools].numVertexes = numMeshVertexes; numVertexPools++; }
// iterate all lods
for (currLod=0; currLod<pVtxHdr->numLODs; currLod++) { pModelLODHdr = pModelHdr->pLOD(currLod);
if (pModelLODHdr->numMeshes != pStudioModel->nummeshes) return false;
for (k=0; k<pModelLODHdr->numMeshes; k++) { pMeshHdr = pModelLODHdr->pMesh(k); pStudioMesh = pStudioModel->pMesh(k); for (m=0; m<pMeshHdr->numStripGroups; m++) { pStripGroupHdr = pMeshHdr->pStripGroup(m); // sanity check the indexes have 100% coverage of the vertexes
pVertexes = (int*)malloc(pStripGroupHdr->numVerts*sizeof(int)); memset(pVertexes, 0xFF, pStripGroupHdr->numVerts*sizeof(int));
for (n=0; n<pStripGroupHdr->numIndices; n++) { index = *pStripGroupHdr->pIndex(n); if (index < 0 || index >= pStripGroupHdr->numVerts) return false; pVertexes[index] = index; }
// sanity check for coverage
for (n=0; n<pStripGroupHdr->numVerts; n++) { if (pVertexes[n] != n) return false; }
free(pVertexes);
// iterate vertexes
pPool = &pVertexPools[poolStart + k]; for (n=0; n<pStripGroupHdr->numVerts; n++) { pStripVertex = pStripGroupHdr->pVertex(n); if (pStripVertex->origMeshVertID < 0 || pStripVertex->origMeshVertID >= pPool->numVertexes) return false;
// arrange binary flags for numerical sorting
// the lowest detail lod's verts at the top, the root lod's verts at the bottom
pPool->pVertexList[pStripVertex->origMeshVertID].lodFlags |= 1<<currLod; } } } } } }
// flatten the vertex pool hierarchy into a linear sequence
numVertexes = 0; for (i=0; i<numVertexPools; i++) numVertexes += pVertexPools[i].numVertexes; pVertexList = (usedVertex_t*)malloc(numVertexes*sizeof(usedVertex_t)); numVertexes = 0; for (i=0; i<numVertexPools; i++) { pPool = &pVertexPools[i]; for (j=0; j<pPool->numVertexes; j++) { if (!pPool->pVertexList[j].lodFlags) { // found an orphaned vertex that is unreferenced at any lod strip winding
// don't know how these occur or who references them
// cannot cull the orphaned vertexes, otherwise vertex counts are wrong
// every vertex must be remapped
// force the vertex to belong to the lowest lod
// lod flags must be nonzero for proper sorted runs
pPool->pVertexList[j].lodFlags = 1<<(pVtxHdr->numLODs-1); } }
memcpy(&pVertexList[numVertexes], pPool->pVertexList, pPool->numVertexes*sizeof(usedVertex_t)); numVertexes += pPool->numVertexes; }
// sort the vertexes based on lod flags
// the sort dictates the linear sequencing of the .vvd data file
// the vtx file indexes get remapped to the new sort order
qsort(pVertexList, numVertexes, sizeof(usedVertex_t), _CompareUsedVertexes); // build a mapping table from mesh relative indexes to the flat lod sorted array
vertexOffset = 0; for (i=0; i<numVertexPools; i++) { pPool = &pVertexPools[i]; for (j=0; j<pPool->numVertexes; j++) { // scan flattened sorted vertexes
for (k=0; k<numVertexes; k++) { if (pVertexList[k].vertexOffset == vertexOffset && pVertexList[k].meshVertID == j) break; } pPool->pVertexMap[j] = k; } vertexOffset += pPool->numVertexes; }
// build offsets and counts that identifies mesh's distribution across lods
// calc final fixed vertex location if vertexes were gathered to mesh order from lod sorted list
finalMeshVertID = 0; poolStart = 0; for (i=0; i<pStudioHdr->numbodyparts; i++) { pStudioBodyPart = pStudioHdr->pBodypart(i); for (j=0; j<pStudioBodyPart->nummodels; j++) { pStudioModel = pStudioBodyPart->pModel(j); for (m=0; m<pStudioModel->nummeshes; m++) { // track the expected offset into linear vertexes
vertexOffset = 0; for (n=0; n<poolStart+m; n++) vertexOffset += pVertexPools[n].numVertexes;
// vertexOffset works as unique key to identify vertexes for a specific mesh
// a mesh's verts are distributed, but guaranteed sequential in the lod sorted vertex list
// determine base index and offset and run length for target mesh for all lod levels
FindVertexOffsets(vertexOffset, offsets, counts, pVtxHdr->numLODs, pVertexList, numVertexes);
for (n=0; n<pVtxHdr->numLODs; n++) { if (!counts[n]) offsets[n] = 0;
pVertexPools[poolStart+m].lodMeshInfo.offsets[n] = offsets[n]; pVertexPools[poolStart+m].lodMeshInfo.numVertexes[n] = counts[n]; }
// iterate using calced offsets to walk each mesh
// set its expected final vertex id, which is its "gathered" index relative to mesh
baseMeshVertID = finalMeshVertID; for (n=pVtxHdr->numLODs-1; n>=0; n--) { // iterate each vert in the mesh
// vertex id is relative to
for (p=0; p<counts[n]; p++) { pVertexList[offsets[n] + p].finalMeshVertID = finalMeshVertID - baseMeshVertID; finalMeshVertID++; } } } poolStart += pStudioModel->nummeshes; } }
// safety check
// every referenced vertex should have been remapped correctly
// some models do have orphaned vertexes, ignore these
for (i=0; i<numVertexes; i++) { if (pVertexList[i].lodFlags && pVertexList[i].finalMeshVertID == -1) { // should never happen, data occured in unknown manner
// don't build corrupted data
return false; } }
// provide generated tables
*ppVertexPools = pVertexPools; *pNumVertexPools = numVertexPools; *ppVertexList = pVertexList; *pNumVertexes = numVertexes;
// success
return true; }
//-----------------------------------------------------------------------------
// FixupVVDFile
//
// VVD files get vertexes remapped to a flat lod sorted order.
//-----------------------------------------------------------------------------
bool FixupVVDFile(const char *fileName, const studiohdr_t *pStudioHdr, const void *pVtxBuff, const vertexPool_t *pVertexPools, int numVertexPools, const usedVertex_t *pVertexList, int numVertexes) { OptimizedModel::FileHeader_t *pVtxHdr; vertexFileHeader_t *pFileHdr_old; vertexFileHeader_t *pFileHdr_new; mstudiobodyparts_t *pStudioBodyPart; mstudiomodel_t *pStudioModel; mstudiomesh_t *pStudioMesh; mstudiovertex_t *pVertex_old; mstudiovertex_t *pVertex_new; Vector4D *pTangent_new; Vector4D *pTangent_old; mstudiovertex_t **pFlatVertexes; Vector4D **pFlatTangents; vertexFileFixup_t *pFixupTable; const lodMeshInfo_t *pLodMeshInfo; byte *pStart_new; byte *pData_new; byte *pStart_base; byte *pVertexBase_old; byte *pTangentBase_old; void *pVvdBuff; int i; int j; int k; int n; int p; int numFixups; int numFlat; int oldIndex; int mask; int maxCount; int numMeshes; int numOutFixups;
pVtxHdr = (OptimizedModel::FileHeader_t*)pVtxBuff;
LoadFile((char*)fileName, &pVvdBuff);
pFileHdr_old = (vertexFileHeader_t*)pVvdBuff; if (pFileHdr_old->numLODs != 1) { // file has wrong expected state
return false; }
// meshes need relocation fixup from lod order back to mesh order
numFixups = 0; numMeshes = 0; for (i=0; i<pStudioHdr->numbodyparts; i++) { pStudioBodyPart = pStudioHdr->pBodypart(i); for (j=0; j<pStudioBodyPart->nummodels; j++) { pStudioModel = pStudioBodyPart->pModel(j); for (k=0; k<pStudioModel->nummeshes; k++) { pStudioMesh = pStudioModel->pMesh(k); if (!pStudioMesh->numvertices) { // no vertexes for this mesh, skip it
continue; } for (n=pVtxHdr->numLODs-1; n>=0; n--) { pLodMeshInfo = &pVertexPools[numMeshes+k].lodMeshInfo; if (!pLodMeshInfo->numVertexes[n]) { // no vertexes for this portion of the mesh at this lod, skip it
continue; } numFixups++; } } numMeshes += k; } } if (numMeshes == 1 || numFixups == 1 || pVtxHdr->numLODs == 1) { // no fixup required for a single mesh
// no fixup required for single lod
// no fixup required when mesh data is contiguous as expected
numFixups = 0; }
pStart_base = (byte*)malloc(FILEBUFFER); memset(pStart_base, 0, FILEBUFFER); pStart_new = (byte*)ALIGN(pStart_base,16); pData_new = pStart_new;
// setup headers
pFileHdr_new = (vertexFileHeader_t*)pData_new; pData_new += sizeof(vertexFileHeader_t);
// clone and fixup new header
*pFileHdr_new = *pFileHdr_old; pFileHdr_new->numLODs = pVtxHdr->numLODs; pFileHdr_new->numFixups = numFixups;
// skip new fixup table
pData_new = (byte*)ALIGN(pData_new, 4); pFixupTable = (vertexFileFixup_t*)pData_new; pFileHdr_new->fixupTableStart = pData_new - pStart_new; pData_new += numFixups*sizeof(vertexFileFixup_t);
// skip new vertex data
pData_new = (byte*)ALIGN(pData_new, 16); pVertex_new = (mstudiovertex_t*)pData_new; pFileHdr_new->vertexDataStart = pData_new - pStart_new; pData_new += numVertexes*sizeof(mstudiovertex_t);
// skip new tangent data
pData_new = (byte*)ALIGN(pData_new, 16); pTangent_new = (Vector4D*)pData_new; pFileHdr_new->tangentDataStart = pData_new - pStart_new; pData_new += numVertexes*sizeof(Vector4D);
pVertexBase_old = (byte*)pFileHdr_old + pFileHdr_old->vertexDataStart; pTangentBase_old = (byte*)pFileHdr_old + pFileHdr_old->tangentDataStart;
// determine number of aggregate verts towards root lod
// loader can truncate read according to desired root lod
maxCount = -1; for (n=pVtxHdr->numLODs-1; n>=0; n--) { mask = 1<<n; for (p=0; p<numVertexes; p++) { if (mask & pVertexList[p].lodFlags) { if (maxCount < p) maxCount = p; } } pFileHdr_new->numLODVertexes[n] = maxCount+1; } for (n=pVtxHdr->numLODs; n<MAX_NUM_LODS; n++) { // ripple the last valid lod entry all the way down
pFileHdr_new->numLODVertexes[n] = pFileHdr_new->numLODVertexes[pVtxHdr->numLODs-1]; } // build mesh relocation fixup table
if (numFixups) { numMeshes = 0; numOutFixups = 0; for (i=0; i<pStudioHdr->numbodyparts; i++) { pStudioBodyPart = pStudioHdr->pBodypart(i); for (j=0; j<pStudioBodyPart->nummodels; j++) { pStudioModel = pStudioBodyPart->pModel(j); for (k=0; k<pStudioModel->nummeshes; k++) { pStudioMesh = pStudioModel->pMesh(k); if (!pStudioMesh->numvertices) { // not vertexes for this mesh, skip it
continue; } for (n=pVtxHdr->numLODs-1; n>=0; n--) { pLodMeshInfo = &pVertexPools[numMeshes+k].lodMeshInfo; if (!pLodMeshInfo->numVertexes[n]) { // no vertexes for this portion of the mesh at this lod, skip it
continue; } pFixupTable[numOutFixups].lod = n; pFixupTable[numOutFixups].numVertexes = pLodMeshInfo->numVertexes[n]; pFixupTable[numOutFixups].sourceVertexID = pLodMeshInfo->offsets[n]; numOutFixups++; } } numMeshes += pStudioModel->nummeshes; } }
if (numOutFixups != numFixups) { // logic sync error, final calc should match precalc, otherwise memory corruption
return false; } }
// generate offsets to vertexes
numFlat = 0; pFlatVertexes = (mstudiovertex_t**)malloc(numVertexes*sizeof(mstudiovertex_t*)); pFlatTangents = (Vector4D**)malloc(numVertexes*sizeof(Vector4D*)); for (i=0; i<pStudioHdr->numbodyparts; i++) { pStudioBodyPart = pStudioHdr->pBodypart(i); for (j=0; j<pStudioBodyPart->nummodels; j++) { pStudioModel = pStudioBodyPart->pModel(j); pVertex_old = (mstudiovertex_t*)&pVertexBase_old[pStudioModel->vertexindex]; pTangent_old = (Vector4D*)&pTangentBase_old[pStudioModel->tangentsindex]; for (k=0; k<pStudioModel->nummeshes; k++) { // get each mesh's vertexes
pStudioMesh = pStudioModel->pMesh(k); for (n=0; n<pStudioMesh->numvertices; n++) { // old vertex pools are per model, seperated per mesh by a start offset
// vertexes are then isolated subpools per mesh
// build the flat linear array of lookup pointers
pFlatVertexes[numFlat] = &pVertex_old[pStudioMesh->vertexoffset + n]; pFlatTangents[numFlat] = &pTangent_old[pStudioMesh->vertexoffset + n]; numFlat++; } } } }
// write in lod sorted order
for (i=0; i<numVertexes; i++) { // iterate sorted order, remap old vert location to new vert location
oldIndex = pVertexList[i].vertexOffset + pVertexList[i].meshVertID; memcpy(&pVertex_new[i], pFlatVertexes[oldIndex], sizeof(mstudiovertex_t)); memcpy(&pTangent_new[i], pFlatTangents[oldIndex], sizeof(Vector4D)); }
// pFileHdr_new->length = pData_new-pStart_new;
{ CP4AutoEditAddFile autop4( fileName, "binary" ); SaveFile((char*)fileName, pStart_new, pData_new-pStart_new); }
free(pStart_base); free(pFlatVertexes); free(pFlatTangents);
// success
return true; }
//-----------------------------------------------------------------------------
// FixupVTXFile
//
// VTX files get their windings remapped.
//-----------------------------------------------------------------------------
bool FixupVTXFile(const char *fileName, const studiohdr_t *pStudioHdr, const vertexPool_t *pVertexPools, int numVertexPools, const usedVertex_t *pVertexList, int numVertexes) { OptimizedModel::FileHeader_t *pVtxHdr; OptimizedModel::BodyPartHeader_t *pBodyPartHdr; OptimizedModel::ModelHeader_t *pModelHdr; OptimizedModel::ModelLODHeader_t *pModelLODHdr; OptimizedModel::MeshHeader_t *pMeshHdr; OptimizedModel::StripGroupHeader_t *pStripGroupHdr; OptimizedModel::Vertex_t *pStripVertex; int currLod; int vertexOffset; mstudiobodyparts_t *pStudioBodyPart; mstudiomodel_t *pStudioModel; int i,j,k,m,n; int poolStart; int VtxLen; int newMeshVertID; void *pVtxBuff;
VtxLen = LoadFile((char*)fileName, &pVtxBuff); pVtxHdr = (OptimizedModel::FileHeader_t*)pVtxBuff;
// iterate all lod's windings
poolStart = 0; for (i=0; i<pVtxHdr->numBodyParts; i++) { pBodyPartHdr = pVtxHdr->pBodyPart(i); pStudioBodyPart = pStudioHdr->pBodypart(i);
for (j=0; j<pBodyPartHdr->numModels; j++) { pModelHdr = pBodyPartHdr->pModel(j); pStudioModel = pStudioBodyPart->pModel(j);
// iterate all lods
for (currLod=0; currLod<pVtxHdr->numLODs; currLod++) { pModelLODHdr = pModelHdr->pLOD(currLod);
if (pModelLODHdr->numMeshes != pStudioModel->nummeshes) return false;
for (k=0; k<pModelLODHdr->numMeshes; k++) { // track the expected relative offset into the flat vertexes
vertexOffset = 0; for (m=0; m<poolStart+k; m++) vertexOffset += pVertexPools[m].numVertexes;
pMeshHdr = pModelLODHdr->pMesh(k); for (m=0; m<pMeshHdr->numStripGroups; m++) { pStripGroupHdr = pMeshHdr->pStripGroup(m); for (n=0; n<pStripGroupHdr->numVerts; n++) { pStripVertex = pStripGroupHdr->pVertex(n);
// remap old mesh relative vertex index to absolute flat sorted list
newMeshVertID = pVertexPools[poolStart+k].pVertexMap[pStripVertex->origMeshVertID];
// map to expected final fixed vertex locations
// final fixed vertex location is performed by runtime loading code
newMeshVertID = pVertexList[newMeshVertID].finalMeshVertID;
// fixup to expected
pStripVertex->origMeshVertID = newMeshVertID; } } } } poolStart += pStudioModel->nummeshes; } }
// pVtxHdr->length = VtxLen;
{ CP4AutoEditAddFile autop4( fileName, "binary" ); SaveFile((char*)fileName, pVtxBuff, VtxLen); }
free(pVtxBuff);
return true; }
//-----------------------------------------------------------------------------
// FixupMDLFile
//
// MDL files get flexes/vertex/tangent data offsets fixed
//-----------------------------------------------------------------------------
bool FixupMDLFile(const char *fileName, studiohdr_t *pStudioHdr, const void *pVtxBuff, const vertexPool_t *pVertexPools, int numVertexPools, const usedVertex_t *pVertexList, int numVertexes) { OptimizedModel::FileHeader_t *pVtxHdr; const lodMeshInfo_t *pLodMeshInfo; mstudiobodyparts_t *pStudioBodyPart; mstudiomodel_t *pStudioModel; mstudiomesh_t *pStudioMesh; mstudioflex_t *pStudioFlex; mstudiovertanim_t *pStudioVertAnim; int newMeshVertID; int i; int j; int m; int n; int p; int numLODs; int numMeshes; int total;
pVtxHdr = (OptimizedModel::FileHeader_t*)pVtxBuff;
numLODs = pVtxHdr->numLODs;
numMeshes = 0; for (i=0; i<pStudioHdr->numbodyparts; i++) { pStudioBodyPart = pStudioHdr->pBodypart(i);
for (j=0; j<pStudioBodyPart->nummodels; j++) { pStudioModel = pStudioBodyPart->pModel(j);
for (m=0; m<pStudioModel->nummeshes; m++) { // get each mesh
pStudioMesh = pStudioModel->pMesh(m); pLodMeshInfo = &pVertexPools[numMeshes+m].lodMeshInfo;
for (n=0; n<numLODs; n++) { // the root lod, contains all the lower detail lods verts
// tally the verts that are at each lod
total = 0; for (p=n; p<numLODs; p++) total += pLodMeshInfo->numVertexes[p];
// embed the fixup for loader
pStudioMesh->vertexdata.numLODVertexes[n] = total; } for (p=n; p<MAX_NUM_LODS; p++) { // duplicate last valid lod to end of list
pStudioMesh->vertexdata.numLODVertexes[p] = pStudioMesh->vertexdata.numLODVertexes[numLODs-1]; }
// fix the flexes
for (n=0; n<pStudioMesh->numflexes; n++) { pStudioFlex = pStudioMesh->pFlex(n);
byte *pvanim = pStudioFlex->pBaseVertanim(); int nVAnimSizeBytes = pStudioFlex->VertAnimSizeBytes();
for (p=0; p<pStudioFlex->numverts; p++, pvanim += nVAnimSizeBytes ) { pStudioVertAnim = (mstudiovertanim_t*)( pvanim );
if (pStudioVertAnim->index < 0 || pStudioVertAnim->index >= pStudioMesh->numvertices) return false;
// remap old mesh relative vertex index to absolute flat sorted list
newMeshVertID = pVertexPools[numMeshes+m].pVertexMap[pStudioVertAnim->index];
// map to expected final fixed vertex locations
// final fixed vertex location is performed by runtime loading code
newMeshVertID = pVertexList[newMeshVertID].finalMeshVertID;
// fixup to expected
pStudioVertAnim->index = newMeshVertID; } } } numMeshes += pStudioModel->nummeshes; } }
{ CP4AutoEditAddFile autop4( fileName, "binary" ); SaveFile((char*)fileName, (void*)pStudioHdr, pStudioHdr->length); }
// success
return true; }
//-----------------------------------------------------------------------------
// FixupToSortedLODVertexes
//
// VVD files get vertexes fixed to a flat sorted order, ascending in lower detail lod usage
// VTX files get their windings remapped to the sort.
//-----------------------------------------------------------------------------
bool FixupToSortedLODVertexes(studiohdr_t *pStudioHdr) { char filename[MAX_PATH]; char tmpFileName[MAX_PATH]; void *pVtxBuff; usedVertex_t *pVertexList; vertexPool_t *pVertexPools; int numVertexes; int numVertexPools; int VtxLen; int i; const char *vtxPrefixes[] = {".dx80.vtx", ".dx90.vtx", ".sw.vtx"};
V_strcpy_safe( filename, gamedir ); // if( *g_pPlatformName )
// {
// strcat( filename, "platform_" );
// strcat( filename, g_pPlatformName );
// strcat( filename, "/" );
// }
V_strcat_safe( filename, "models/" ); V_strcat_safe( filename, outname ); Q_StripExtension( filename, filename, sizeof( filename ) );
// determine lod usage per vertex
// all vtx files enumerate model's lod verts, but differ in their mesh makeup
// use xxx.dx80.vtx to establish which vertexes are used by each lod
V_strcpy_safe( tmpFileName, filename ); V_strcat_safe( tmpFileName, ".dx80.vtx" ); VtxLen = LoadFile( tmpFileName, &pVtxBuff );
// build the sorted vertex tables
if (!BuildSortedVertexList(pStudioHdr, pVtxBuff, &pVertexPools, &numVertexPools, &pVertexList, &numVertexes)) { // data sync error
return false; }
// fixup ???.vvd
V_strcpy_safe( tmpFileName, filename ); V_strcat_safe( tmpFileName, ".vvd" ); if (!FixupVVDFile(tmpFileName, pStudioHdr, pVtxBuff, pVertexPools, numVertexPools, pVertexList, numVertexes)) { // data error
return false; }
for (i=0; i<ARRAYSIZE(vtxPrefixes); i++) { // fixup ???.vtx
V_strcpy_safe( tmpFileName, filename ); V_strcat_safe( tmpFileName, vtxPrefixes[i] ); if (!FixupVTXFile(tmpFileName, pStudioHdr, pVertexPools, numVertexPools, pVertexList, numVertexes)) { // data error
return false; } }
// fixup ???.mdl
V_strcpy_safe( tmpFileName, filename ); V_strcat_safe( tmpFileName, ".mdl" ); if (!FixupMDLFile(tmpFileName, pStudioHdr, pVtxBuff, pVertexPools, numVertexPools, pVertexList, numVertexes)) { // data error
return false; }
// free the tables
for (i=0; i<numVertexPools; i++) { if (pVertexPools[i].pVertexList) free(pVertexPools[i].pVertexList); if (pVertexPools[i].pVertexMap) free(pVertexPools[i].pVertexMap); } if (numVertexPools) free(pVertexPools); free(pVtxBuff);
// success
return true; }
byte IsByte( int val ) { if (val < 0 || val > 0xFF) { MdlError("byte conversion out of range %d\n", val ); } return val; }
char IsChar( int val ) { if (val < -0x80 || val > 0x7F) { MdlError("char conversion out of range %d\n", val ); } return val; }
int IsInt24( int val ) { if (val < -0x800000 || val > 0x7FFFFF) { MdlError("int24 conversion out of range %d\n", val ); } return val; }
short IsShort( int val ) { if (val < -0x8000 || val > 0x7FFF) { MdlError("short conversion out of range %d\n", val ); } return val; }
unsigned short IsUShort( int val ) { if (val < 0 || val > 0xFFFF) { MdlError("ushort conversion out of range %d\n", val ); } return val; }
bool Clamp_MDL_LODS( const char *fileName, int rootLOD ) { studiohdr_t *pStudioHdr; int len;
len = LoadFile((char*)fileName, (void **)&pStudioHdr);
Studio_SetRootLOD( pStudioHdr, rootLOD );
#if 0
// shift down bone LOD masks
int iBone; for ( iBone = 0; iBone < pStudioHdr->numbones; iBone++) { mstudiobone_t *pBone = pStudioHdr->pBone( iBone );
int nLodID; for ( nLodID = 0; nLodID < rootLOD; nLodID++) { int iLodMask = BONE_USED_BY_VERTEX_LOD0 << nLodID;
if (pBone->flags & (BONE_USED_BY_VERTEX_LOD0 << rootLOD)) { pBone->flags = pBone->flags | iLodMask; } else { pBone->flags = pBone->flags & (~iLodMask); } } } #endif
{ CP4AutoEditAddFile autop4( fileName, "binary" ); SaveFile( (char *)fileName, pStudioHdr, len ); }
return true; }
bool Clamp_VVD_LODS( const char *fileName, int rootLOD ) { vertexFileHeader_t *pTempVvdHdr; int len;
len = LoadFile((char*)fileName, (void **)&pTempVvdHdr);
int newLength = Studio_VertexDataSize( pTempVvdHdr, rootLOD, true );
// printf("was %d now %d\n", len, newLength );
vertexFileHeader_t *pNewVvdHdr = (vertexFileHeader_t *)calloc( newLength, 1 );
Studio_LoadVertexes( pTempVvdHdr, pNewVvdHdr, rootLOD, true );
if (!g_quiet) { printf ("---------------------\n"); printf ("writing %s:\n", fileName); printf( "vertices (%d vertices)\n", pNewVvdHdr->numLODVertexes[ 0 ] ); }
// pNewVvdHdr->length = newLength;
{ CP4AutoEditAddFile autop4( fileName, "binary" ); SaveFile( (char *)fileName, pNewVvdHdr, newLength ); }
return true; }
bool Clamp_VTX_LODS( const char *fileName, int rootLOD, studiohdr_t *pStudioHdr ) { int i, j, k, m, n; int nLodID; int size;
OptimizedModel::FileHeader_t *pVtxHdr; int len;
len = LoadFile((char*)fileName, (void **)&pVtxHdr);
OptimizedModel::FileHeader_t *pNewVtxHdr = (OptimizedModel::FileHeader_t *)calloc( FILEBUFFER, 1 );
byte *pData = (byte *)pNewVtxHdr; pData += sizeof( OptimizedModel::FileHeader_t ); ALIGN4( pData );
// header
pNewVtxHdr->version = pVtxHdr->version; pNewVtxHdr->vertCacheSize = pVtxHdr->vertCacheSize; pNewVtxHdr->maxBonesPerStrip = pVtxHdr->maxBonesPerStrip; pNewVtxHdr->maxBonesPerTri = pVtxHdr->maxBonesPerTri; pNewVtxHdr->maxBonesPerVert = pVtxHdr->maxBonesPerVert; pNewVtxHdr->checkSum = pVtxHdr->checkSum; pNewVtxHdr->numLODs = pVtxHdr->numLODs;
// material replacement list
pNewVtxHdr->materialReplacementListOffset = (pData - (byte *)pNewVtxHdr); pData += pVtxHdr->numLODs * sizeof( OptimizedModel::MaterialReplacementListHeader_t ); // ALIGN4( pData );
BeginStringTable( );
// allocate replacement list arrays
for ( nLodID = rootLOD; nLodID < pVtxHdr->numLODs; nLodID++ ) { OptimizedModel::MaterialReplacementListHeader_t *pReplacementList = pVtxHdr->pMaterialReplacementList( nLodID ); OptimizedModel::MaterialReplacementListHeader_t *pNewReplacementList = pNewVtxHdr->pMaterialReplacementList( nLodID );
pNewReplacementList->numReplacements = pReplacementList->numReplacements; pNewReplacementList->replacementOffset = (pData - (byte *)pNewReplacementList); pData += pNewReplacementList->numReplacements * sizeof( OptimizedModel::MaterialReplacementHeader_t ); // ALIGN4( pData );
for (i = 0; i < pReplacementList->numReplacements; i++) { OptimizedModel::MaterialReplacementHeader_t *pReplacement = pReplacementList->pMaterialReplacement( i ); OptimizedModel::MaterialReplacementHeader_t *pNewReplacement = pNewReplacementList->pMaterialReplacement( i );
pNewReplacement->materialID = pReplacement->materialID; AddToStringTable( pNewReplacement, &pNewReplacement->replacementMaterialNameOffset, pReplacement->pMaterialReplacementName() ); } } pData = WriteStringTable( pData );
// link previous LODs to higher LODs
for ( nLodID = 0; nLodID < rootLOD; nLodID++ ) { OptimizedModel::MaterialReplacementListHeader_t *pRootReplacementList = pNewVtxHdr->pMaterialReplacementList( rootLOD ); OptimizedModel::MaterialReplacementListHeader_t *pNewReplacementList = pNewVtxHdr->pMaterialReplacementList( nLodID );
int delta = (byte *)pRootReplacementList - (byte *)pNewReplacementList;
pNewReplacementList->numReplacements = pRootReplacementList->numReplacements; pNewReplacementList->replacementOffset = pRootReplacementList->replacementOffset + delta; }
// body parts
pNewVtxHdr->numBodyParts = pStudioHdr->numbodyparts; pNewVtxHdr->bodyPartOffset = (pData - (byte *)pNewVtxHdr); pData += pNewVtxHdr->numBodyParts * sizeof( OptimizedModel::BodyPartHeader_t ); // ALIGN4( pData );
// Iterate over every body part...
for ( i = 0; i < pStudioHdr->numbodyparts; i++ ) { mstudiobodyparts_t* pBodyPart = pStudioHdr->pBodypart(i); OptimizedModel::BodyPartHeader_t* pVtxBodyPart = pVtxHdr->pBodyPart(i); OptimizedModel::BodyPartHeader_t* pNewVtxBodyPart = pNewVtxHdr->pBodyPart(i);
pNewVtxBodyPart->numModels = pBodyPart->nummodels; pNewVtxBodyPart->modelOffset = (pData - (byte *)pNewVtxBodyPart); pData += pNewVtxBodyPart->numModels * sizeof( OptimizedModel::ModelHeader_t ); // ALIGN4( pData );
// Iterate over every submodel...
for (j = 0; j < pBodyPart->nummodels; ++j) { mstudiomodel_t* pModel = pBodyPart->pModel(j); OptimizedModel::ModelHeader_t* pVtxModel = pVtxBodyPart->pModel(j); OptimizedModel::ModelHeader_t* pNewVtxModel = pNewVtxBodyPart->pModel(j);
pNewVtxModel->numLODs = pVtxModel->numLODs; pNewVtxModel->lodOffset = (pData - (byte *)pNewVtxModel); pData += pNewVtxModel->numLODs * sizeof( OptimizedModel::ModelLODHeader_t ); ALIGN4( pData );
for ( nLodID = rootLOD; nLodID < pVtxModel->numLODs; nLodID++ ) { OptimizedModel::ModelLODHeader_t *pVtxLOD = pVtxModel->pLOD( nLodID ); OptimizedModel::ModelLODHeader_t *pNewVtxLOD = pNewVtxModel->pLOD( nLodID );
pNewVtxLOD->numMeshes = pVtxLOD->numMeshes; pNewVtxLOD->switchPoint = pVtxLOD->switchPoint; pNewVtxLOD->meshOffset = (pData - (byte *)pNewVtxLOD); pData += pNewVtxLOD->numMeshes * sizeof( OptimizedModel::MeshHeader_t ); ALIGN4( pData );
// Iterate over all the meshes....
for (k = 0; k < pModel->nummeshes; ++k) { Assert( pModel->nummeshes == pVtxLOD->numMeshes ); // mstudiomesh_t* pMesh = pModel->pMesh(k);
OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(k); OptimizedModel::MeshHeader_t* pNewVtxMesh = pNewVtxLOD->pMesh(k);
pNewVtxMesh->numStripGroups = pVtxMesh->numStripGroups; pNewVtxMesh->flags = pVtxMesh->flags; pNewVtxMesh->stripGroupHeaderOffset = (pData - (byte *)pNewVtxMesh); pData += pNewVtxMesh->numStripGroups * sizeof( OptimizedModel::StripGroupHeader_t );
// printf("part %d : model %d : lod %d : mesh %d : strips %d : offset %d\n", i, j, nLodID, k, pVtxMesh->numStripGroups, pVtxMesh->stripGroupHeaderOffset );
for (m = 0; m < pVtxMesh->numStripGroups; m++) { OptimizedModel::StripGroupHeader_t *pStripGroup = pVtxMesh->pStripGroup( m ); OptimizedModel::StripGroupHeader_t *pNewStripGroup = pNewVtxMesh->pStripGroup( m );
// int delta = ((byte *)pStripGroup - (byte *)pVtxHdr) - ((byte *)pNewStripGroup - (byte *)pNewVtxHdr);
pNewStripGroup->numVerts = pStripGroup->numVerts; pNewStripGroup->vertOffset = (pData - (byte *)pNewStripGroup); size = pNewStripGroup->numVerts * sizeof( OptimizedModel::Vertex_t ); memcpy( pData, pStripGroup->pVertex(0), size ); pData += size;
pNewStripGroup->numIndices = pStripGroup->numIndices; pNewStripGroup->indexOffset = (pData - (byte *)pNewStripGroup); size = pNewStripGroup->numIndices * sizeof( unsigned short ); memcpy( pData, pStripGroup->pIndex(0), size ); pData += size;
pNewStripGroup->numStrips = pStripGroup->numStrips; pNewStripGroup->stripOffset = (pData - (byte *)pNewStripGroup); size = pNewStripGroup->numStrips * sizeof( OptimizedModel::StripHeader_t ); pData += size;
pNewStripGroup->flags = pStripGroup->flags;
/*
printf("\tnumVerts %d %d :\n", pStripGroup->numVerts, pStripGroup->vertOffset ); printf("\tnumIndices %d %d :\n", pStripGroup->numIndices, pStripGroup->indexOffset ); printf("\tnumStrips %d %d :\n", pStripGroup->numStrips, pStripGroup->stripOffset ); */
for (n = 0; n < pStripGroup->numStrips; n++) { OptimizedModel::StripHeader_t *pStrip = pStripGroup->pStrip( n ); OptimizedModel::StripHeader_t *pNewStrip = pNewStripGroup->pStrip( n );
pNewStrip->numIndices = pStrip->numIndices; pNewStrip->indexOffset = pStrip->indexOffset;
pNewStrip->numVerts = pStrip->numVerts; pNewStrip->vertOffset = pStrip->vertOffset;
pNewStrip->numBones = pStrip->numBones; pNewStrip->flags = pStrip->flags;
pNewStrip->numBoneStateChanges = pStrip->numBoneStateChanges; pNewStrip->boneStateChangeOffset = (pData - (byte *)pNewStrip); size = pNewStrip->numBoneStateChanges * sizeof( OptimizedModel::BoneStateChangeHeader_t ); memcpy( pData, pStrip->pBoneStateChange(0), size ); pData += size;
/*
printf("\t\tnumIndices %d %d :\n", pNewStrip->numIndices, pNewStrip->indexOffset ); printf("\t\tnumVerts %d %d :\n", pNewStrip->numVerts, pNewStrip->vertOffset ); printf("\t\tnumBoneStateChanges %d %d :\n", pNewStrip->numBoneStateChanges, pNewStrip->boneStateChangeOffset ); */ // printf("(%d)\n", delta );
} // printf("(%d)\n", delta );
} } } } }
// Iterate over every body part...
for ( i = 0; i < pStudioHdr->numbodyparts; i++ ) { mstudiobodyparts_t* pBodyPart = pStudioHdr->pBodypart(i);
// Iterate over every submodel...
for (j = 0; j < pBodyPart->nummodels; ++j) { // link previous LODs to higher LODs
for ( nLodID = 0; nLodID < rootLOD; nLodID++ ) { OptimizedModel::ModelLODHeader_t *pVtxLOD = pVtxHdr->pBodyPart(i)->pModel(j)->pLOD(nLodID); OptimizedModel::ModelLODHeader_t *pRootVtxLOD = pNewVtxHdr->pBodyPart(i)->pModel(j)->pLOD(rootLOD); OptimizedModel::ModelLODHeader_t *pNewVtxLOD = pNewVtxHdr->pBodyPart(i)->pModel(j)->pLOD(nLodID);
pNewVtxLOD->numMeshes = pRootVtxLOD->numMeshes; pNewVtxLOD->switchPoint = pVtxLOD->switchPoint;
int delta = (byte *)pRootVtxLOD - (byte *)pNewVtxLOD; pNewVtxLOD->meshOffset = pRootVtxLOD->meshOffset + delta; } } }
int newLen = pData - (byte *)pNewVtxHdr; // printf("len %d : %d\n", len, newLen );
// pNewVtxHdr->length = newLen;
if (!g_quiet) { printf ("writing %s:\n", fileName); printf( "everything (%d bytes)\n", newLen ); } { CP4AutoEditAddFile autop4( fileName, "binary" ); SaveFile( (char *)fileName, pNewVtxHdr, newLen ); }
free( pNewVtxHdr );
return true; }
bool Clamp_RootLOD( studiohdr_t *phdr ) { char filename[MAX_PATH]; char tmpFileName[MAX_PATH]; int i; const char *vtxPrefixes[] = {".dx80.vtx", ".dx90.vtx", ".sw.vtx"};
int rootLOD = g_minLod;
if (rootLOD > g_ScriptLODs.Size() - 1) { rootLOD = g_ScriptLODs.Size() -1; }
if (rootLOD == 0) { return true; }
V_strcpy_safe( filename, gamedir ); V_strcat_safe( filename, "models/" ); V_strcat_safe( filename, outname ); Q_StripExtension( filename, filename, sizeof( filename ) );
// shift the files so that g_minLod is the root LOD
V_strcpy_safe( tmpFileName, filename ); V_strcat_safe( tmpFileName, ".mdl" ); Clamp_MDL_LODS( tmpFileName, rootLOD );
V_strcpy_safe( tmpFileName, filename ); V_strcat_safe( tmpFileName, ".vvd" ); Clamp_VVD_LODS( tmpFileName, rootLOD );
for (i=0; i<ARRAYSIZE(vtxPrefixes); i++) { // fixup ???.vtx
V_strcpy_safe( tmpFileName, filename ); V_strcat_safe( tmpFileName, vtxPrefixes[i] ); Clamp_VTX_LODS( tmpFileName, rootLOD, phdr ); }
return true; }
//----------------------------------------------------------------------
// For a particular .qc, converts all studiomdl generated files to big-endian format.
//----------------------------------------------------------------------
void WriteSwappedFile( char *srcname, char *outname, int(*pfnSwapFunc)(void*, const void*, int) ) { if ( FileExists( srcname ) ) { if( !g_quiet ) { printf( "---------------------\n" ); printf( "Generating Xbox360 file format for \"%s\":\n", srcname ); }
void *pFileBase = NULL; int fileSize = LoadFile( srcname, &pFileBase ); int paddedSize = fileSize + BYTESWAP_ALIGNMENT_PADDING;
void *pOutBase = malloc( paddedSize );
int bytes = pfnSwapFunc( pOutBase, pFileBase, fileSize );
if ( bytes != 0 ) { CP4AutoEditAddFile autop4( outname, "binary" ); SaveFile( outname, pOutBase, bytes ); }
free(pOutBase); free(pFileBase);
if ( bytes == 0 ) { MdlError( "Aborted byteswap on '%s':\n", srcname ); } } }
//----------------------------------------------------------------------
// For a particular .qc, converts all studiomdl generated files to big-endian format.
//----------------------------------------------------------------------
void WriteAllSwappedFiles( const char *filename ) { char srcname[ MAX_PATH ]; char outname[ MAX_PATH ];
extern IPhysicsCollision *physcollision; if ( physcollision ) { StudioByteSwap::SetCollisionInterface( physcollision ); }
// Convert PHY
Q_StripExtension( filename, srcname, sizeof( srcname ) ); Q_strncpy( outname, srcname, sizeof( outname ) );
Q_strcat( srcname, ".phy", sizeof( srcname ) ); Q_strcat( outname, ".360.phy", sizeof( outname ) );
WriteSwappedFile( srcname, outname, StudioByteSwap::ByteswapPHY );
// Convert VVD
Q_StripExtension( filename, srcname, sizeof( srcname ) ); Q_strncpy( outname, srcname, sizeof( outname ) );
Q_strcat( srcname, ".vvd", sizeof( srcname ) ); Q_strcat( outname, ".360.vvd", sizeof( outname ) );
WriteSwappedFile( srcname, outname, StudioByteSwap::ByteswapVVD );
// Convert VTX
Q_StripExtension( filename, srcname, sizeof( srcname ) ); Q_StripExtension( srcname, srcname, sizeof( srcname ) ); Q_strncpy( outname, srcname, sizeof( outname ) );
Q_strcat( srcname, ".dx90.vtx", sizeof( srcname ) ); Q_strcat( outname, ".360.vtx", sizeof( outname ) );
WriteSwappedFile( srcname, outname, StudioByteSwap::ByteswapVTX );
// Convert MDL
Q_StripExtension( filename, srcname, sizeof( srcname ) ); Q_strncpy( outname, srcname, sizeof( outname ) );
Q_strcat( srcname, ".mdl", sizeof( srcname ) ); Q_strcat( outname, ".360.mdl", sizeof( outname ) );
WriteSwappedFile( srcname, outname, StudioByteSwap::ByteswapMDL ); }
|