|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $Revision: $
// $NoKeywords: $
//
// This file contains code to allow us to associate client data with bsp leaves.
//
//=============================================================================//
#include "vrad.h"
#include "mathlib/vector.h"
#include "UtlBuffer.h"
#include "utlvector.h"
#include "GameBSPFile.h"
#include "BSPTreeData.h"
#include "VPhysics_Interface.h"
#include "Studio.h"
#include "Optimize.h"
#include "Bsplib.h"
#include "CModel.h"
#include "PhysDll.h"
#include "phyfile.h"
#include "collisionutils.h"
#include "tier1/KeyValues.h"
#include "pacifier.h"
#include "materialsystem/imaterial.h"
#include "materialsystem/hardwareverts.h"
#include "materialsystem/hardwaretexels.h"
#include "byteswap.h"
#include "mpivrad.h"
#include "vtf/vtf.h"
#include "tier1/utldict.h"
#include "tier1/utlsymbol.h"
#include "bitmap/tgawriter.h"
#include "messbuf.h"
#include "vmpi.h"
#include "vmpi_distribute_work.h"
#define ALIGN_TO_POW2(x,y) (((x)+(y-1))&~(y-1))
// identifies a vertex embedded in solid
// lighting will be copied from nearest valid neighbor
struct badVertex_t { int m_ColorVertex; Vector m_Position; Vector m_Normal; };
// a final colored vertex
struct colorVertex_t { Vector m_Color; Vector m_Position; bool m_bValid; };
// a texel suitable for a model
struct colorTexel_t { Vector m_Color; Vector m_WorldPosition; Vector m_WorldNormal; float m_fDistanceToTri; // If we are outside of the triangle, how far away is it?
bool m_bValid; bool m_bPossiblyInteresting;
};
class CComputeStaticPropLightingResults { public: ~CComputeStaticPropLightingResults() { m_ColorVertsArrays.PurgeAndDeleteElements(); m_ColorTexelsArrays.PurgeAndDeleteElements(); } CUtlVector< CUtlVector<colorVertex_t>* > m_ColorVertsArrays; CUtlVector< CUtlVector<colorTexel_t>* > m_ColorTexelsArrays; };
//-----------------------------------------------------------------------------
struct Rasterizer { struct Location { Vector barycentric; Vector2D uv; bool insideTriangle; };
Rasterizer(Vector2D t0, Vector2D t1, Vector2D t2, size_t resX, size_t resY) : mT0(t0) , mT1(t1) , mT2(t2) , mResX(resX) , mResY(resY) , mUvStepX(1.0f / resX) , mUvStepY(1.0f / resY) { Build(); }
CUtlVector< Location >::iterator begin() { return mRasterizedLocations.begin(); } CUtlVector< Location >::iterator end() { return mRasterizedLocations.end(); }
void Build();
inline size_t GetRow(float y) const { return size_t(y * mResY); } inline size_t GetCol(float x) const { return size_t(x * mResX); }
inline size_t GetLinearPos( const CUtlVector< Location >::iterator& it ) const { // Given an iterator, return what the linear position in the buffer would be for the data.
return (size_t)(GetRow(it->uv.y) * mResX) + (size_t)(GetCol(it->uv.x)); } private: const Vector2D mT0, mT1, mT2; const size_t mResX, mResY; const float mUvStepX, mUvStepY;
// Right now, we just fill this out and directly iterate over it.
// It could be large. This is a memory/speed tradeoff. We could instead generate them
// on demand.
CUtlVector< Location > mRasterizedLocations; };
//-----------------------------------------------------------------------------
inline Vector ComputeBarycentric( Vector2D _edgeC, Vector2D _edgeA, Vector2D _edgeB, float _dAA, float _dAB, float _dBB, float _invDenom ) { float dCA = _edgeC.Dot(_edgeA); float dCB = _edgeC.Dot(_edgeB); Vector retVal; retVal.y = (_dBB * dCA - _dAB * dCB) * _invDenom; retVal.z = (_dAA * dCB - _dAB * dCA) * _invDenom; retVal.x = 1.0f - retVal.y - retVal.z;
return retVal; }
//-----------------------------------------------------------------------------
void Rasterizer::Build() { // For now, use the barycentric method. It's easy, I'm lazy.
// We can optimize later if it's a performance issue.
const float baseX = mUvStepX / 2.0f; const float baseY = mUvStepY / 2.0f;
float fMinX = min(min(mT0.x, mT1.x), mT2.x); float fMinY = min(min(mT0.y, mT1.y), mT2.y); float fMaxX = max(max(mT0.x, mT1.x), mT2.x); float fMaxY = max(max(mT0.y, mT1.y), mT2.y);
// Degenerate. Consider warning about these, but otherwise no problem.
if (fMinX == fMaxX || fMinY == fMaxY) return;
// Clamp to 0..1
fMinX = max(0, fMinX); fMinY = max(0, fMinY); fMaxX = min(1.0f, fMaxX); fMaxY = min(1.0f, fMaxY);
// We puff the interesting area up by 1 so we can hit an inflated region for the necessary bilerp data.
// If we wanted to support better texturing (almost definitely unnecessary), we'd change this to a larger size.
const int kFilterSampleRadius = 1;
int iMinX = GetCol(fMinX) - kFilterSampleRadius; int iMinY = GetRow(fMinY) - kFilterSampleRadius; int iMaxX = GetCol(fMaxX) + 1 + kFilterSampleRadius; int iMaxY = GetRow(fMaxY) + 1 + kFilterSampleRadius;
// Clamp to valid texture (integer) locations
iMinX = max(0, iMinX); iMinY = max(0, iMinY); iMaxX = min(iMaxX, mResX - 1); iMaxY = min(iMaxY, mResY - 1);
// Set the size to be as expected.
// TODO: Pass this in from outside to minimize allocations
int count = (iMaxY - iMinY + 1) * (iMaxX - iMinX + 1); mRasterizedLocations.EnsureCount(count); memset( mRasterizedLocations.Base(), 0, mRasterizedLocations.Count() * sizeof( Location ) ); // Computing Barycentrics adapted from here http://gamedev.stackexchange.com/questions/23743/whats-the-most-efficient-way-to-find-barycentric-coordinates
Vector2D edgeA = mT1 - mT0; Vector2D edgeB = mT2 - mT0;
float dAA = edgeA.Dot(edgeA); float dAB = edgeA.Dot(edgeB); float dBB = edgeB.Dot(edgeB); float invDenom = 1.0f / (dAA * dBB - dAB * dAB);
int linearPos = 0; for (int j = iMinY; j <= iMaxY; ++j) { for (int i = iMinX; i <= iMaxX; ++i) { Vector2D testPt( i * mUvStepX + baseX, j * mUvStepY + baseY ); Vector barycentric = ComputeBarycentric( testPt - mT0, edgeA, edgeB, dAA, dAB, dBB, invDenom );
// Test whether the point is inside the triangle.
// MCJOHNTODO: Edge rules and whatnot--right now we re-rasterize points on the edge.
Location& newLoc = mRasterizedLocations[linearPos++]; newLoc.barycentric = barycentric; newLoc.uv = testPt;
newLoc.insideTriangle = (barycentric.x >= 0.0f && barycentric.x <= 1.0f && barycentric.y >= 0.0f && barycentric.y <= 1.0f && barycentric.z >= 0.0f && barycentric.z <= 1.0f); } } }
//-----------------------------------------------------------------------------
// Globals
//-----------------------------------------------------------------------------
CUtlSymbolTable g_ForcedTextureShadowsModels;
// DON'T USE THIS FROM WITHIN A THREAD. THERE IS A THREAD CONTEXT CREATED
// INSIDE PropTested_t. USE THAT INSTEAD.
IPhysicsCollision *s_pPhysCollision = NULL;
static void ConvertTexelDataToTexture(unsigned int _resX, unsigned int _resY, ImageFormat _destFmt, const CUtlVector<colorTexel_t>& _srcTexels, CUtlMemory<byte>* _outTexture);
// Such a monstrosity. :(
static void GenerateLightmapSamplesForMesh( const matrix3x4_t& _matPos, const matrix3x4_t& _matNormal, int _iThread, int _skipProp, int _nFlags, int _lightmapResX, int _lightmapResY, studiohdr_t* _pStudioHdr, mstudiomodel_t* _pStudioModel, OptimizedModel::ModelHeader_t* _pVtxModel, int _meshID, CComputeStaticPropLightingResults *_pResults );
// Debug function, converts lightmaps to linear space then dumps them out.
// TODO: Write out the file in a .dds instead of a .tga, in whatever format we're supposed to use.
static void DumpLightmapLinear( const char* _dstFilename, const CUtlVector<colorTexel_t>& _srcTexels, int _width, int _height );
//-----------------------------------------------------------------------------
// Vrad's static prop manager
//-----------------------------------------------------------------------------
class CVradStaticPropMgr : public IVradStaticPropMgr { public: // constructor, destructor
CVradStaticPropMgr(); virtual ~CVradStaticPropMgr();
// methods of IStaticPropMgr
void Init(); void Shutdown();
// iterate all the instanced static props and compute their vertex lighting
void ComputeLighting( int iThread );
private: // VMPI stuff.
static void VMPI_ProcessStaticProp_Static( int iThread, uint64 iStaticProp, MessageBuffer *pBuf ); static void VMPI_ReceiveStaticPropResults_Static( uint64 iStaticProp, MessageBuffer *pBuf, int iWorker ); void VMPI_ProcessStaticProp( int iThread, int iStaticProp, MessageBuffer *pBuf ); void VMPI_ReceiveStaticPropResults( int iStaticProp, MessageBuffer *pBuf, int iWorker ); // local thread version
static void ThreadComputeStaticPropLighting( int iThread, void *pUserData ); void ComputeLightingForProp( int iThread, int iStaticProp );
// Methods associated with unserializing static props
void UnserializeModelDict( CUtlBuffer& buf ); void UnserializeModels( CUtlBuffer& buf ); void UnserializeStaticProps();
// Creates a collision model
void CreateCollisionModel( char const* pModelName );
private: // Unique static prop models
struct StaticPropDict_t { vcollide_t m_loadedModel; CPhysCollide* m_pModel; Vector m_Mins; // Bounding box is in local coordinates
Vector m_Maxs; studiohdr_t* m_pStudioHdr; CUtlBuffer m_VtxBuf; CUtlVector<int> m_textureShadowIndex; // each texture has an index if this model casts texture shadows
CUtlVector<int> m_triangleMaterialIndex;// each triangle has an index if this model casts texture shadows
};
struct MeshData_t { CUtlVector<Vector> m_VertexColors; CUtlMemory<byte> m_TexelsEncoded; int m_nLod; };
// A static prop instance
struct CStaticProp { Vector m_Origin; QAngle m_Angles; Vector m_mins; Vector m_maxs; Vector m_LightingOrigin; int m_ModelIdx; BSPTreeDataHandle_t m_Handle; CUtlVector<MeshData_t> m_MeshData; int m_Flags; bool m_bLightingOriginValid;
// Note that all lightmaps for a given prop share the same resolution (and format)--and there can be multiple lightmaps
// per prop (if there are multiple pieces--the watercooler is an example).
// This is effectively because there's not a good way in hammer for a prop to say "this should be the resolution
// of each of my sub-pieces."
ImageFormat m_LightmapImageFormat; unsigned int m_LightmapImageWidth; unsigned int m_LightmapImageHeight;
};
// Enumeration context
struct EnumContext_t { PropTested_t* m_pPropTested; Ray_t const* m_pRay; };
// The list of all static props
CUtlVector <StaticPropDict_t> m_StaticPropDict; CUtlVector <CStaticProp> m_StaticProps;
bool m_bIgnoreStaticPropTrace;
void ComputeLighting( CStaticProp &prop, int iThread, int prop_index, CComputeStaticPropLightingResults *pResults ); void ApplyLightingToStaticProp( int iStaticProp, CStaticProp &prop, const CComputeStaticPropLightingResults *pResults );
void SerializeLighting(); void AddPolysForRayTrace(); void BuildTriList( CStaticProp &prop ); };
//-----------------------------------------------------------------------------
// Expose IVradStaticPropMgr to vrad
//-----------------------------------------------------------------------------
static CVradStaticPropMgr g_StaticPropMgr; IVradStaticPropMgr* StaticPropMgr() { return &g_StaticPropMgr; }
//-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
CVradStaticPropMgr::CVradStaticPropMgr() { // set to ignore static prop traces
m_bIgnoreStaticPropTrace = false; }
CVradStaticPropMgr::~CVradStaticPropMgr() { }
//-----------------------------------------------------------------------------
// Makes sure the studio model is a static prop
//-----------------------------------------------------------------------------
bool IsStaticProp( studiohdr_t* pHdr ) { if (!(pHdr->flags & STUDIOHDR_FLAGS_STATIC_PROP)) return false;
return true; }
//-----------------------------------------------------------------------------
// Load a file into a Utlbuf
//-----------------------------------------------------------------------------
static bool LoadFile( char const* pFileName, CUtlBuffer& buf ) { if ( !g_pFullFileSystem ) return false;
return g_pFullFileSystem->ReadFile( pFileName, NULL, buf ); }
//-----------------------------------------------------------------------------
// Constructs the file name from the model name
//-----------------------------------------------------------------------------
static char const* ConstructFileName( char const* pModelName ) { static char buf[1024]; sprintf( buf, "%s%s", gamedir, pModelName ); return buf; }
//-----------------------------------------------------------------------------
// Computes a convex hull from a studio mesh
//-----------------------------------------------------------------------------
static CPhysConvex* ComputeConvexHull( mstudiomesh_t* pMesh, studiohdr_t *pStudioHdr ) { const mstudio_meshvertexdata_t *vertData = pMesh->GetVertexData( (void *)pStudioHdr ); Assert( vertData ); // This can only return NULL on X360 for now
// Generate a list of all verts in the mesh
Vector** ppVerts = (Vector**)_alloca(pMesh->numvertices * sizeof(Vector*) ); for (int i = 0; i < pMesh->numvertices; ++i) { ppVerts[i] = vertData->Position(i); }
// Generate a convex hull from the verts
return s_pPhysCollision->ConvexFromVerts( ppVerts, pMesh->numvertices ); }
//-----------------------------------------------------------------------------
// Computes a convex hull from the studio model
//-----------------------------------------------------------------------------
CPhysCollide* ComputeConvexHull( studiohdr_t* pStudioHdr ) { CUtlVector<CPhysConvex*> convexHulls;
for (int body = 0; body < pStudioHdr->numbodyparts; ++body ) { mstudiobodyparts_t *pBodyPart = pStudioHdr->pBodypart( body ); for( int model = 0; model < pBodyPart->nummodels; ++model ) { mstudiomodel_t *pStudioModel = pBodyPart->pModel( model ); for( int mesh = 0; mesh < pStudioModel->nummeshes; ++mesh ) { // Make a convex hull for each mesh
// NOTE: This won't work unless the model has been compiled
// with $staticprop
mstudiomesh_t *pStudioMesh = pStudioModel->pMesh( mesh ); convexHulls.AddToTail( ComputeConvexHull( pStudioMesh, pStudioHdr ) ); } } }
// Convert an array of convex elements to a compiled collision model
// (this deletes the convex elements)
return s_pPhysCollision->ConvertConvexToCollide( convexHulls.Base(), convexHulls.Size() ); }
//-----------------------------------------------------------------------------
// Load studio model vertex data from a file...
//-----------------------------------------------------------------------------
bool LoadStudioModel( char const* pModelName, CUtlBuffer& buf ) { // No luck, gotta build it
// Construct the file name...
if (!LoadFile( pModelName, buf )) { Warning("Error! Unable to load model \"%s\"\n", pModelName ); return false; }
// Check that it's valid
if (strncmp ((const char *) buf.PeekGet(), "IDST", 4) && strncmp ((const char *) buf.PeekGet(), "IDAG", 4)) { Warning("Error! Invalid model file \"%s\"\n", pModelName ); return false; }
studiohdr_t* pHdr = (studiohdr_t*)buf.PeekGet();
Studio_ConvertStudioHdrToNewVersion( pHdr );
if (pHdr->version != STUDIO_VERSION) { Warning("Error! Invalid model version \"%s\"\n", pModelName ); return false; }
if (!IsStaticProp(pHdr)) { Warning("Error! To use model \"%s\"\n" " as a static prop, it must be compiled with $staticprop!\n", pModelName ); return false; }
// ensure reset
pHdr->pVertexBase = NULL; pHdr->pIndexBase = NULL;
return true; }
bool LoadStudioCollisionModel( char const* pModelName, CUtlBuffer& buf ) { char tmp[1024]; Q_strncpy( tmp, pModelName, sizeof( tmp ) ); Q_SetExtension( tmp, ".phy", sizeof( tmp ) ); // No luck, gotta build it
if (!LoadFile( tmp, buf )) { // this is not an error, the model simply has no PHY file
return false; }
phyheader_t *header = (phyheader_t *)buf.PeekGet();
if ( header->size != sizeof(*header) || header->solidCount <= 0 ) return false;
return true; }
bool LoadVTXFile( char const* pModelName, const studiohdr_t *pStudioHdr, CUtlBuffer& buf ) { char filename[MAX_PATH];
// construct filename
Q_StripExtension( pModelName, filename, sizeof( filename ) ); strcat( filename, ".dx80.vtx" );
if ( !LoadFile( filename, buf ) ) { Warning( "Error! Unable to load file \"%s\"\n", filename ); return false; }
OptimizedModel::FileHeader_t* pVtxHdr = (OptimizedModel::FileHeader_t *)buf.Base();
// Check that it's valid
if ( pVtxHdr->version != OPTIMIZED_MODEL_FILE_VERSION ) { Warning( "Error! Invalid VTX file version: %d, expected %d \"%s\"\n", pVtxHdr->version, OPTIMIZED_MODEL_FILE_VERSION, filename ); return false; } if ( pVtxHdr->checkSum != pStudioHdr->checksum ) { Warning( "Error! Invalid VTX file checksum: %d, expected %d \"%s\"\n", pVtxHdr->checkSum, pStudioHdr->checksum, filename ); return false; }
return true; }
//-----------------------------------------------------------------------------
// Gets a vertex position from a strip index
//-----------------------------------------------------------------------------
inline static Vector* PositionFromIndex( const mstudio_meshvertexdata_t *vertData, mstudiomesh_t* pMesh, OptimizedModel::StripGroupHeader_t* pStripGroup, int i ) { OptimizedModel::Vertex_t* pVert = pStripGroup->pVertex( i ); return vertData->Position( pVert->origMeshVertID ); }
//-----------------------------------------------------------------------------
// Purpose: Writes a glview text file containing the collision surface in question
// Input : *pCollide -
// *pFilename -
//-----------------------------------------------------------------------------
void DumpCollideToGlView( vcollide_t *pCollide, const char *pFilename ) { if ( !pCollide ) return;
Msg("Writing %s...\n", pFilename );
FILE *fp = fopen( pFilename, "w" ); for (int i = 0; i < pCollide->solidCount; ++i) { Vector *outVerts; int vertCount = s_pPhysCollision->CreateDebugMesh( pCollide->solids[i], &outVerts ); int triCount = vertCount / 3; int vert = 0;
unsigned char r = (i & 1) * 64 + 64; unsigned char g = (i & 2) * 64 + 64; unsigned char b = (i & 4) * 64 + 64;
float fr = r / 255.0f; float fg = g / 255.0f; float fb = b / 255.0f;
for ( int i = 0; i < triCount; i++ ) { fprintf( fp, "3\n" ); fprintf( fp, "%6.3f %6.3f %6.3f %.2f %.3f %.3f\n", outVerts[vert].x, outVerts[vert].y, outVerts[vert].z, fr, fg, fb ); vert++; fprintf( fp, "%6.3f %6.3f %6.3f %.2f %.3f %.3f\n", outVerts[vert].x, outVerts[vert].y, outVerts[vert].z, fr, fg, fb ); vert++; fprintf( fp, "%6.3f %6.3f %6.3f %.2f %.3f %.3f\n", outVerts[vert].x, outVerts[vert].y, outVerts[vert].z, fr, fg, fb ); vert++; } s_pPhysCollision->DestroyDebugMesh( vertCount, outVerts ); } fclose( fp ); }
static bool PointInTriangle( const Vector2D &p, const Vector2D &v0, const Vector2D &v1, const Vector2D &v2 ) { float coords[3]; GetBarycentricCoords2D( v0, v1, v2, p, coords ); for ( int i = 0; i < 3; i++ ) { if ( coords[i] < 0.0f || coords[i] > 1.0f ) return false; } float sum = coords[0] + coords[1] + coords[2]; if ( sum > 1.0f ) return false; return true; }
bool LoadFileIntoBuffer( CUtlBuffer &buf, const char *pFilename ) { FileHandle_t fileHandle = g_pFileSystem->Open( pFilename, "rb" ); if ( !fileHandle ) return false;
// Get the file size
int texSize = g_pFileSystem->Size( fileHandle ); buf.EnsureCapacity( texSize ); int nBytesRead = g_pFileSystem->Read( buf.Base(), texSize, fileHandle ); g_pFileSystem->Close( fileHandle ); buf.SeekPut( CUtlBuffer::SEEK_HEAD, nBytesRead ); buf.SeekGet( CUtlBuffer::SEEK_HEAD, 0 ); return true; }
// keeps a list of all textures that cast shadows via alpha channel
class CShadowTextureList { public: // This loads a vtf and converts it to RGB8888 format
unsigned char *LoadVTFRGB8888( const char *pName, int *pWidth, int *pHeight, bool *pClampU, bool *pClampV ) { char szPath[MAX_PATH]; Q_strncpy( szPath, "materials/", sizeof( szPath ) ); Q_strncat( szPath, pName, sizeof( szPath ), COPY_ALL_CHARACTERS ); Q_strncat( szPath, ".vtf", sizeof( szPath ), COPY_ALL_CHARACTERS ); Q_FixSlashes( szPath, CORRECT_PATH_SEPARATOR );
CUtlBuffer buf; if ( !LoadFileIntoBuffer( buf, szPath ) ) return NULL; IVTFTexture *pTex = CreateVTFTexture(); if (!pTex->Unserialize( buf )) return NULL; Msg("Loaded alpha texture %s\n", szPath ); unsigned char *pSrcImage = pTex->ImageData( 0, 0, 0, 0, 0, 0 ); int iWidth = pTex->Width(); int iHeight = pTex->Height(); ImageFormat dstFormat = IMAGE_FORMAT_RGBA8888; ImageFormat srcFormat = pTex->Format(); *pClampU = (pTex->Flags() & TEXTUREFLAGS_CLAMPS) ? true : false; *pClampV = (pTex->Flags() & TEXTUREFLAGS_CLAMPT) ? true : false; unsigned char *pDstImage = new unsigned char[ImageLoader::GetMemRequired( iWidth, iHeight, 1, dstFormat, false )];
if( !ImageLoader::ConvertImageFormat( pSrcImage, srcFormat, pDstImage, dstFormat, iWidth, iHeight, 0, 0 ) ) { delete[] pDstImage; return NULL; }
*pWidth = iWidth; *pHeight = iHeight; return pDstImage; }
// Checks the database for the material and loads if necessary
// returns true if found and pIndex will be the index, -1 if no alpha shadows
bool FindOrLoadIfValid( const char *pMaterialName, int *pIndex ) { *pIndex = -1; int index = m_Textures.Find(pMaterialName); bool bFound = false; if ( index != m_Textures.InvalidIndex() ) { bFound = true; *pIndex = index; } else { KeyValues *pVMT = new KeyValues("vmt"); CUtlBuffer buf(0,0,CUtlBuffer::TEXT_BUFFER); LoadFileIntoBuffer( buf, pMaterialName ); if ( pVMT->LoadFromBuffer( pMaterialName, buf ) ) { bFound = true; if ( pVMT->FindKey("$translucent") || pVMT->FindKey("$alphatest") ) { KeyValues *pBaseTexture = pVMT->FindKey("$basetexture"); if ( pBaseTexture ) { const char *pBaseTextureName = pBaseTexture->GetString(); if ( pBaseTextureName ) { int w, h; bool bClampU = false; bool bClampV = false; unsigned char *pImageBits = LoadVTFRGB8888( pBaseTextureName, &w, &h, &bClampU, &bClampV ); if ( pImageBits ) { int index = m_Textures.Insert( pMaterialName ); m_Textures[index].InitFromRGB8888( w, h, pImageBits ); *pIndex = index; if ( pVMT->FindKey("$nocull") ) { // UNDONE: Support this? Do we need to emit two triangles?
m_Textures[index].allowBackface = true; } m_Textures[index].clampU = bClampU; m_Textures[index].clampV = bClampV; delete[] pImageBits; } } } }
} pVMT->deleteThis(); }
return bFound; }
// iterate the textures for the model and load each one into the database
// this is used on models marked to cast texture shadows
void LoadAllTexturesForModel( studiohdr_t *pHdr, int *pTextureList ) { for ( int i = 0; i < pHdr->numtextures; i++ ) { int textureIndex = -1; // try to add each texture to the transparent shadow manager
char szPath[MAX_PATH];
// iterate quietly through all specified directories until a valid material is found
for ( int j = 0; j < pHdr->numcdtextures; j++ ) { Q_strncpy( szPath, "materials/", sizeof( szPath ) ); Q_strncat( szPath, pHdr->pCdtexture( j ), sizeof( szPath ) ); const char *textureName = pHdr->pTexture( i )->pszName(); Q_strncat( szPath, textureName, sizeof( szPath ), COPY_ALL_CHARACTERS ); Q_strncat( szPath, ".vmt", sizeof( szPath ), COPY_ALL_CHARACTERS ); Q_FixSlashes( szPath, CORRECT_PATH_SEPARATOR ); if ( FindOrLoadIfValid( szPath, &textureIndex ) ) break; }
pTextureList[i] = textureIndex; } } int AddMaterialEntry( int shadowTextureIndex, const Vector2D &t0, const Vector2D &t1, const Vector2D &t2 ) { int index = m_MaterialEntries.AddToTail(); m_MaterialEntries[index].textureIndex = shadowTextureIndex; m_MaterialEntries[index].uv[0] = t0; m_MaterialEntries[index].uv[1] = t1; m_MaterialEntries[index].uv[2] = t2; return index; }
// HACKHACK: Compute the average coverage for this triangle by sampling the AABB of its texture space
float ComputeCoverageForTriangle( int shadowTextureIndex, const Vector2D &t0, const Vector2D &t1, const Vector2D &t2 ) { float umin = min(t0.x, t1.x); umin = min(umin, t2.x); float umax = max(t0.x, t1.x); umax = max(umax, t2.x);
float vmin = min(t0.y, t1.y); vmin = min(vmin, t2.y); float vmax = max(t0.y, t1.y); vmax = max(vmax, t2.y);
// UNDONE: Do something about tiling
umin = clamp(umin, 0, 1); umax = clamp(umax, 0, 1); vmin = clamp(vmin, 0, 1); vmax = clamp(vmax, 0, 1); Assert(umin>=0.0f && umax <= 1.0f); Assert(vmin>=0.0f && vmax <= 1.0f); const alphatexture_t &tex = m_Textures.Element(shadowTextureIndex); int u0 = umin * (tex.width-1); int u1 = umax * (tex.width-1); int v0 = vmin * (tex.height-1); int v1 = vmax * (tex.height-1);
int total = 0; int count = 0; for ( int v = v0; v <= v1; v++ ) { int row = (v * tex.width); for ( int u = u0; u <= u1; u++ ) { total += tex.pAlphaTexels[row + u]; count++; } } if ( count ) { float coverage = float(total) / (count * 255.0f); return coverage; } return 1.0f; } int SampleMaterial( int materialIndex, const Vector &coords, bool bBackface ) { const materialentry_t &mat = m_MaterialEntries[materialIndex]; const alphatexture_t &tex = m_Textures.Element(m_MaterialEntries[materialIndex].textureIndex); if ( bBackface && !tex.allowBackface ) return 0; Vector2D uv = coords.x * mat.uv[0] + coords.y * mat.uv[1] + coords.z * mat.uv[2]; int u = RoundFloatToInt( uv[0] * tex.width ); int v = RoundFloatToInt( uv[1] * tex.height ); // asume power of 2, clamp or wrap
// UNDONE: Support clamp? This code should work
#if 0
u = tex.clampU ? clamp(u,0,(tex.width-1)) : (u & (tex.width-1)); v = tex.clampV ? clamp(v,0,(tex.height-1)) : (v & (tex.height-1)); #else
// for now always wrap
u &= (tex.width-1); v &= (tex.height-1); #endif
return tex.pAlphaTexels[v * tex.width + u]; }
struct alphatexture_t { short width; short height; bool allowBackface; bool clampU; bool clampV; unsigned char *pAlphaTexels;
void InitFromRGB8888( int w, int h, unsigned char *pTexels ) { width = w; height = h; pAlphaTexels = new unsigned char[w*h]; for ( int i = 0; i < h; i++ ) { for ( int j = 0; j < w; j++ ) { int index = (i*w) + j; pAlphaTexels[index] = pTexels[index*4 + 3]; } } } }; struct materialentry_t { int textureIndex; Vector2D uv[3]; }; // this is the list of textures we've loaded
// only load each one once
CUtlDict< alphatexture_t, unsigned short > m_Textures; CUtlVector<materialentry_t> m_MaterialEntries; };
// global to keep the shadow-casting texture list and their alpha bits
CShadowTextureList g_ShadowTextureList;
float ComputeCoverageFromTexture( float b0, float b1, float b2, int32 hitID ) { const float alphaScale = 1.0f / 255.0f; // UNDONE: Pass ray down to determine backfacing?
//Vector normal( tri.m_flNx, tri.m_flNy, tri.m_flNz );
//bool bBackface = DotProduct(delta, tri.N) > 0 ? true : false;
Vector coords(b0,b1,b2); return alphaScale * g_ShadowTextureList.SampleMaterial( g_RtEnv.GetTriangleMaterial(hitID), coords, false ); }
// this is here to strip models/ or .mdl or whatnot
void CleanModelName( const char *pModelName, char *pOutput, int outLen ) { // strip off leading models/ if it exists
const char *pModelDir = "models/"; int modelLen = Q_strlen(pModelDir);
if ( !Q_strnicmp(pModelName, pModelDir, modelLen ) ) { pModelName += modelLen; } Q_strncpy( pOutput, pModelName, outLen );
// truncate any .mdl extension
char *dot = strchr(pOutput,'.'); if ( dot ) { *dot = 0; }
}
void ForceTextureShadowsOnModel( const char *pModelName ) { char buf[1024]; CleanModelName( pModelName, buf, sizeof(buf) ); if ( !g_ForcedTextureShadowsModels.Find(buf).IsValid()) { g_ForcedTextureShadowsModels.AddString(buf); } }
bool IsModelTextureShadowsForced( const char *pModelName ) { char buf[1024]; CleanModelName( pModelName, buf, sizeof(buf) ); return g_ForcedTextureShadowsModels.Find(buf).IsValid(); }
//-----------------------------------------------------------------------------
// Creates a collision model (based on the render geometry!)
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::CreateCollisionModel( char const* pModelName ) { CUtlBuffer buf; CUtlBuffer bufvtx; CUtlBuffer bufphy;
int i = m_StaticPropDict.AddToTail(); m_StaticPropDict[i].m_pModel = NULL; m_StaticPropDict[i].m_pStudioHdr = NULL;
if ( !LoadStudioModel( pModelName, buf ) ) { VectorCopy( vec3_origin, m_StaticPropDict[i].m_Mins ); VectorCopy( vec3_origin, m_StaticPropDict[i].m_Maxs ); return; }
studiohdr_t* pHdr = (studiohdr_t*)buf.Base();
VectorCopy( pHdr->hull_min, m_StaticPropDict[i].m_Mins ); VectorCopy( pHdr->hull_max, m_StaticPropDict[i].m_Maxs );
if ( LoadStudioCollisionModel( pModelName, bufphy ) ) { phyheader_t header; bufphy.Get( &header, sizeof(header) );
vcollide_t *pCollide = &m_StaticPropDict[i].m_loadedModel; s_pPhysCollision->VCollideLoad( pCollide, header.solidCount, (const char *)bufphy.PeekGet(), bufphy.TellPut() - bufphy.TellGet() ); m_StaticPropDict[i].m_pModel = m_StaticPropDict[i].m_loadedModel.solids[0];
/*
static int propNum = 0; char tmp[128]; sprintf( tmp, "staticprop%03d.txt", propNum ); DumpCollideToGlView( pCollide, tmp ); ++propNum; */ } else { // mark this as unused
m_StaticPropDict[i].m_loadedModel.solidCount = 0;
// CPhysCollide* pPhys = CreatePhysCollide( pHdr, pVtxHdr );
m_StaticPropDict[i].m_pModel = ComputeConvexHull( pHdr ); }
// clone it
m_StaticPropDict[i].m_pStudioHdr = (studiohdr_t *)malloc( buf.Size() ); memcpy( m_StaticPropDict[i].m_pStudioHdr, (studiohdr_t*)buf.Base(), buf.Size() );
if ( !LoadVTXFile( pModelName, m_StaticPropDict[i].m_pStudioHdr, m_StaticPropDict[i].m_VtxBuf ) ) { // failed, leave state identified as disabled
m_StaticPropDict[i].m_VtxBuf.Purge(); }
if ( g_bTextureShadows ) { if ( (pHdr->flags & STUDIOHDR_FLAGS_CAST_TEXTURE_SHADOWS) || IsModelTextureShadowsForced(pModelName) ) { m_StaticPropDict[i].m_textureShadowIndex.RemoveAll(); m_StaticPropDict[i].m_triangleMaterialIndex.RemoveAll(); m_StaticPropDict[i].m_textureShadowIndex.AddMultipleToTail( pHdr->numtextures ); g_ShadowTextureList.LoadAllTexturesForModel( pHdr, m_StaticPropDict[i].m_textureShadowIndex.Base() ); } } }
//-----------------------------------------------------------------------------
// Unserialize static prop model dictionary
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::UnserializeModelDict( CUtlBuffer& buf ) { int count = buf.GetInt(); while ( --count >= 0 ) { StaticPropDictLump_t lump; buf.Get( &lump, sizeof(StaticPropDictLump_t) ); CreateCollisionModel( lump.m_Name ); } }
void CVradStaticPropMgr::UnserializeModels( CUtlBuffer& buf ) { int count = buf.GetInt();
m_StaticProps.AddMultipleToTail(count); for ( int i = 0; i < count; ++i ) { StaticPropLump_t lump; buf.Get( &lump, sizeof(StaticPropLump_t) ); VectorCopy( lump.m_Origin, m_StaticProps[i].m_Origin ); VectorCopy( lump.m_Angles, m_StaticProps[i].m_Angles ); VectorCopy( lump.m_LightingOrigin, m_StaticProps[i].m_LightingOrigin ); m_StaticProps[i].m_bLightingOriginValid = ( lump.m_Flags & STATIC_PROP_USE_LIGHTING_ORIGIN ) > 0; m_StaticProps[i].m_ModelIdx = lump.m_PropType; m_StaticProps[i].m_Handle = TREEDATA_INVALID_HANDLE; m_StaticProps[i].m_Flags = lump.m_Flags;
// Changed this from using DXT1 to RGB888 because the compression artifacts were pretty nasty.
// TODO: Consider changing back or basing this on user selection in hammer.
m_StaticProps[i].m_LightmapImageFormat = IMAGE_FORMAT_RGB888; m_StaticProps[i].m_LightmapImageWidth = lump.m_nLightmapResolutionX; m_StaticProps[i].m_LightmapImageHeight = lump.m_nLightmapResolutionY; } }
//-----------------------------------------------------------------------------
// Unserialize static props
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::UnserializeStaticProps() { // Unserialize static props, insert them into the appropriate leaves
GameLumpHandle_t handle = g_GameLumps.GetGameLumpHandle( GAMELUMP_STATIC_PROPS ); int size = g_GameLumps.GameLumpSize( handle ); if (!size) return;
if ( g_GameLumps.GetGameLumpVersion( handle ) != GAMELUMP_STATIC_PROPS_VERSION ) { Error( "Cannot load the static props... encountered a stale map version. Re-vbsp the map." ); }
if ( g_GameLumps.GetGameLump( handle ) ) { CUtlBuffer buf( g_GameLumps.GetGameLump(handle), size, CUtlBuffer::READ_ONLY ); UnserializeModelDict( buf );
// Skip the leaf list data
int count = buf.GetInt(); buf.SeekGet( CUtlBuffer::SEEK_CURRENT, count * sizeof(StaticPropLeafLump_t) );
UnserializeModels( buf ); } }
//-----------------------------------------------------------------------------
// Level init, shutdown
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::Init() { CreateInterfaceFn physicsFactory = GetPhysicsFactory(); if ( !physicsFactory ) Error( "Unable to load vphysics DLL." ); s_pPhysCollision = (IPhysicsCollision *)physicsFactory( VPHYSICS_COLLISION_INTERFACE_VERSION, NULL ); if( !s_pPhysCollision ) { Error( "Unable to get '%s' for physics interface.", VPHYSICS_COLLISION_INTERFACE_VERSION ); return; }
// Read in static props that have been compiled into the bsp file
UnserializeStaticProps(); }
void CVradStaticPropMgr::Shutdown() {
// Remove all static prop model data
for (int i = m_StaticPropDict.Size(); --i >= 0; ) { studiohdr_t *pStudioHdr = m_StaticPropDict[i].m_pStudioHdr; if ( pStudioHdr ) { if ( pStudioHdr->pVertexBase ) { free( pStudioHdr->pVertexBase ); } free( pStudioHdr ); } }
m_StaticProps.Purge(); m_StaticPropDict.Purge(); }
void ComputeLightmapColor( dface_t* pFace, Vector &color ) { texinfo_t* pTex = &texinfo[pFace->texinfo]; if ( pTex->flags & SURF_SKY ) { // sky ambient already accounted for in direct component
return; } }
bool PositionInSolid( Vector &position ) { int ndxLeaf = PointLeafnum( position ); if ( dleafs[ndxLeaf].contents & CONTENTS_SOLID ) { // position embedded in solid
return true; }
return false; }
//-----------------------------------------------------------------------------
// Trace from a vertex to each direct light source, accumulating its contribution.
//-----------------------------------------------------------------------------
void ComputeDirectLightingAtPoint( Vector &position, Vector &normal, Vector &outColor, int iThread, int static_prop_id_to_skip=-1, int nLFlags = 0) { SSE_sampleLightOutput_t sampleOutput;
outColor.Init();
// Iterate over all direct lights and accumulate their contribution
int cluster = ClusterFromPoint( position ); for ( directlight_t *dl = activelights; dl != NULL; dl = dl->next ) { if ( dl->light.style ) { // skip lights with style
continue; }
// is this lights cluster visible?
if ( !PVSCheck( dl->pvs, cluster ) ) continue;
// push the vertex towards the light to avoid surface acne
Vector adjusted_pos = position; float flEpsilon = 0.0;
if (dl->light.type != emit_skyambient) { // push towards the light
Vector fudge; if ( dl->light.type == emit_skylight ) fudge = -( dl->light.normal); else { fudge = dl->light.origin-position; VectorNormalize( fudge ); } fudge *= 4.0; adjusted_pos += fudge; } else { // push out along normal
adjusted_pos += 4.0 * normal; // flEpsilon = 1.0;
}
FourVectors adjusted_pos4; FourVectors normal4; adjusted_pos4.DuplicateVector( adjusted_pos ); normal4.DuplicateVector( normal );
GatherSampleLightSSE( sampleOutput, dl, -1, adjusted_pos4, &normal4, 1, iThread, nLFlags | GATHERLFLAGS_FORCE_FAST, static_prop_id_to_skip, flEpsilon ); VectorMA( outColor, sampleOutput.m_flFalloff.m128_f32[0] * sampleOutput.m_flDot[0].m128_f32[0], dl->light.intensity, outColor ); } }
//-----------------------------------------------------------------------------
// Takes the results from a ComputeLighting call and applies it to the static prop in question.
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::ApplyLightingToStaticProp( int iStaticProp, CStaticProp &prop, const CComputeStaticPropLightingResults *pResults ) { if ( pResults->m_ColorVertsArrays.Count() == 0 && pResults->m_ColorTexelsArrays.Count() == 0 ) return;
StaticPropDict_t &dict = m_StaticPropDict[prop.m_ModelIdx]; studiohdr_t *pStudioHdr = dict.m_pStudioHdr; OptimizedModel::FileHeader_t *pVtxHdr = (OptimizedModel::FileHeader_t *)dict.m_VtxBuf.Base(); Assert( pStudioHdr && pVtxHdr );
int iCurColorVertsArray = 0; int iCurColorTexelsArray = 0;
for ( int bodyID = 0; bodyID < pStudioHdr->numbodyparts; ++bodyID ) { OptimizedModel::BodyPartHeader_t* pVtxBodyPart = pVtxHdr->pBodyPart( bodyID ); mstudiobodyparts_t *pBodyPart = pStudioHdr->pBodypart( bodyID );
for ( int modelID = 0; modelID < pBodyPart->nummodels; ++modelID ) { OptimizedModel::ModelHeader_t* pVtxModel = pVtxBodyPart->pModel( modelID ); mstudiomodel_t *pStudioModel = pBodyPart->pModel( modelID ); const CUtlVector<colorVertex_t> *colorVerts = pResults->m_ColorVertsArrays.Count() ? pResults->m_ColorVertsArrays[iCurColorVertsArray++] : nullptr; const CUtlVector<colorTexel_t> *colorTexels = pResults->m_ColorTexelsArrays.Count() ? pResults->m_ColorTexelsArrays[iCurColorTexelsArray++] : nullptr; for ( int nLod = 0; nLod < pVtxHdr->numLODs; nLod++ ) { OptimizedModel::ModelLODHeader_t *pVtxLOD = pVtxModel->pLOD( nLod );
for ( int nMesh = 0; nMesh < pStudioModel->nummeshes; ++nMesh ) { mstudiomesh_t* pMesh = pStudioModel->pMesh( nMesh ); OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh( nMesh );
for ( int nGroup = 0; nGroup < pVtxMesh->numStripGroups; ++nGroup ) { OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup( nGroup ); int nMeshIdx = prop.m_MeshData.AddToTail();
if (colorVerts) { prop.m_MeshData[nMeshIdx].m_VertexColors.AddMultipleToTail( pStripGroup->numVerts ); prop.m_MeshData[nMeshIdx].m_nLod = nLod;
for ( int nVertex = 0; nVertex < pStripGroup->numVerts; ++nVertex ) { int nIndex = pMesh->vertexoffset + pStripGroup->pVertex( nVertex )->origMeshVertID;
Assert( nIndex < pStudioModel->numvertices ); prop.m_MeshData[nMeshIdx].m_VertexColors[nVertex] = (*colorVerts)[nIndex].m_Color; } }
if (colorTexels) { // TODO: Consider doing this work in the worker threads, because then we distribute it.
ConvertTexelDataToTexture(prop.m_LightmapImageWidth, prop.m_LightmapImageHeight, prop.m_LightmapImageFormat, (*colorTexels), &prop.m_MeshData[nMeshIdx].m_TexelsEncoded);
if (g_bDumpPropLightmaps) { char buffer[_MAX_PATH]; V_snprintf( buffer, _MAX_PATH - 1, "staticprop_lightmap_%d_%.0f_%.0f_%.0f_%s_%d_%d_%d_%d_%d.tga", iStaticProp, prop.m_Origin.x, prop.m_Origin.y, prop.m_Origin.z, dict.m_pStudioHdr->pszName(), bodyID, modelID, nLod, nMesh, nGroup );
for ( int i = 0; buffer[i]; ++i ) { if (buffer[i] == '/' || buffer[i] == '\\') buffer[i] = '-'; } DumpLightmapLinear( buffer, (*colorTexels), prop.m_LightmapImageWidth, prop.m_LightmapImageHeight ); } } } } } } } }
//-----------------------------------------------------------------------------
// Trace rays from each unique vertex, accumulating direct and indirect
// sources at each ray termination. Use the winding data to distribute the unique vertexes
// into the rendering layout.
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::ComputeLighting( CStaticProp &prop, int iThread, int prop_index, CComputeStaticPropLightingResults *pResults ) { CUtlVector<badVertex_t> badVerts;
StaticPropDict_t &dict = m_StaticPropDict[prop.m_ModelIdx]; studiohdr_t *pStudioHdr = dict.m_pStudioHdr; OptimizedModel::FileHeader_t *pVtxHdr = (OptimizedModel::FileHeader_t *)dict.m_VtxBuf.Base(); if ( !pStudioHdr || !pVtxHdr ) { // must have model and its verts for lighting computation
// game will fallback to fullbright
return; }
const bool withVertexLighting = (prop.m_Flags & STATIC_PROP_NO_PER_VERTEX_LIGHTING) == 0; const bool withTexelLighting = (prop.m_Flags & STATIC_PROP_NO_PER_TEXEL_LIGHTING) == 0;
if (!withVertexLighting && !withTexelLighting) return;
const int skip_prop = (g_bDisablePropSelfShadowing || (prop.m_Flags & STATIC_PROP_NO_SELF_SHADOWING)) ? prop_index : -1; const int nFlags = ( prop.m_Flags & STATIC_PROP_IGNORE_NORMALS ) ? GATHERLFLAGS_IGNORE_NORMALS : 0;
VMPI_SetCurrentStage( "ComputeLighting" );
matrix3x4_t matPos, matNormal; AngleMatrix(prop.m_Angles, prop.m_Origin, matPos); AngleMatrix(prop.m_Angles, matNormal); for ( int bodyID = 0; bodyID < pStudioHdr->numbodyparts; ++bodyID ) { OptimizedModel::BodyPartHeader_t* pVtxBodyPart = pVtxHdr->pBodyPart( bodyID ); mstudiobodyparts_t *pBodyPart = pStudioHdr->pBodypart( bodyID );
for ( int modelID = 0; modelID < pBodyPart->nummodels; ++modelID ) { OptimizedModel::ModelHeader_t* pVtxModel = pVtxBodyPart->pModel(modelID); mstudiomodel_t *pStudioModel = pBodyPart->pModel( modelID );
if (withTexelLighting) { CUtlVector<colorTexel_t> *pColorTexelArray = new CUtlVector<colorTexel_t>; pResults->m_ColorTexelsArrays.AddToTail(pColorTexelArray); } // light all unique vertexes
CUtlVector<colorVertex_t> *pColorVertsArray = new CUtlVector<colorVertex_t>; pResults->m_ColorVertsArrays.AddToTail( pColorVertsArray ); CUtlVector<colorVertex_t> &colorVerts = *pColorVertsArray; colorVerts.EnsureCount( pStudioModel->numvertices ); memset( colorVerts.Base(), 0, colorVerts.Count() * sizeof(colorVertex_t) );
int numVertexes = 0; for ( int meshID = 0; meshID < pStudioModel->nummeshes; ++meshID ) { mstudiomesh_t *pStudioMesh = pStudioModel->pMesh( meshID ); const mstudio_meshvertexdata_t *vertData = pStudioMesh->GetVertexData((void *)pStudioHdr);
Assert(vertData); // This can only return NULL on X360 for now
// TODO: Move this into its own function. In fact, refactor this whole function.
if (withTexelLighting) { GenerateLightmapSamplesForMesh( matPos, matNormal, iThread, skip_prop, nFlags, prop.m_LightmapImageWidth, prop.m_LightmapImageHeight, pStudioHdr, pStudioModel, pVtxModel, meshID, pResults ); }
// If we do lightmapping, we also do vertex lighting as a potential fallback. This may change.
for ( int vertexID = 0; vertexID < pStudioMesh->numvertices; ++vertexID ) { Vector sampleNormal; Vector samplePosition; // transform position and normal into world coordinate system
VectorTransform(*vertData->Position(vertexID), matPos, samplePosition); VectorTransform(*vertData->Normal(vertexID), matNormal, sampleNormal);
if ( PositionInSolid( samplePosition ) ) { // vertex is in solid, add to the bad list, and recover later
badVertex_t badVertex; badVertex.m_ColorVertex = numVertexes; badVertex.m_Position = samplePosition; badVertex.m_Normal = sampleNormal; badVerts.AddToTail( badVertex ); } else { Vector direct_pos=samplePosition;
Vector directColor(0,0,0); ComputeDirectLightingAtPoint( direct_pos, sampleNormal, directColor, iThread, skip_prop, nFlags ); Vector indirectColor(0,0,0);
if (g_bShowStaticPropNormals) { directColor= sampleNormal; directColor += Vector(1.0,1.0,1.0); directColor *= 50.0; } else { if (numbounce >= 1) ComputeIndirectLightingAtPoint( samplePosition, sampleNormal, indirectColor, iThread, true, ( prop.m_Flags & STATIC_PROP_IGNORE_NORMALS) != 0 ); } colorVerts[numVertexes].m_bValid = true; colorVerts[numVertexes].m_Position = samplePosition; VectorAdd( directColor, indirectColor, colorVerts[numVertexes].m_Color ); } numVertexes++; } } // color in the bad vertexes
// when entire model has no lighting origin and no valid neighbors
// must punt, leave black coloring
if ( badVerts.Count() && ( prop.m_bLightingOriginValid || badVerts.Count() != numVertexes ) ) { for ( int nBadVertex = 0; nBadVertex < badVerts.Count(); nBadVertex++ ) { Vector bestPosition; if ( prop.m_bLightingOriginValid ) { // use the specified lighting origin
VectorCopy( prop.m_LightingOrigin, bestPosition ); } else { // find the closest valid neighbor
int best = 0; float closest = FLT_MAX; for ( int nColorVertex = 0; nColorVertex < numVertexes; nColorVertex++ ) { if ( !colorVerts[nColorVertex].m_bValid ) { // skip invalid neighbors
continue; } Vector delta; VectorSubtract( colorVerts[nColorVertex].m_Position, badVerts[nBadVertex].m_Position, delta ); float distance = VectorLength( delta ); if ( distance < closest ) { closest = distance; best = nColorVertex; } }
// use the best neighbor as the direction to crawl
VectorCopy( colorVerts[best].m_Position, bestPosition ); }
// crawl toward best position
// sudivide to determine a closer valid point to the bad vertex, and re-light
Vector midPosition; int numIterations = 20; while ( --numIterations > 0 ) { VectorAdd( bestPosition, badVerts[nBadVertex].m_Position, midPosition ); VectorScale( midPosition, 0.5f, midPosition ); if ( PositionInSolid( midPosition ) ) break; bestPosition = midPosition; }
// re-light from better position
Vector directColor; ComputeDirectLightingAtPoint( bestPosition, badVerts[nBadVertex].m_Normal, directColor, iThread );
Vector indirectColor; ComputeIndirectLightingAtPoint( bestPosition, badVerts[nBadVertex].m_Normal, indirectColor, iThread, true );
// save results, not changing valid status
// to ensure this offset position is not considered as a viable candidate
colorVerts[badVerts[nBadVertex].m_ColorVertex].m_Position = bestPosition; VectorAdd( directColor, indirectColor, colorVerts[badVerts[nBadVertex].m_ColorVertex].m_Color ); } } // discard bad verts
badVerts.Purge(); } } }
//-----------------------------------------------------------------------------
// Write the lighitng to bsp pak lump
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::SerializeLighting() { char filename[MAX_PATH]; CUtlBuffer utlBuf;
// illuminate them all
int count = m_StaticProps.Count(); if ( !count ) { // nothing to do
return; }
char mapName[MAX_PATH]; Q_FileBase( source, mapName, sizeof( mapName ) );
int size; for (int i = 0; i < count; ++i) { // no need to write this file if we didn't compute the data
// props marked this way will not load the info anyway
if ( m_StaticProps[i].m_Flags & STATIC_PROP_NO_PER_VERTEX_LIGHTING ) continue;
if (g_bHDR) { sprintf( filename, "sp_hdr_%d.vhv", i ); } else { sprintf( filename, "sp_%d.vhv", i ); }
int totalVertexes = 0; for ( int j=0; j<m_StaticProps[i].m_MeshData.Count(); j++ ) { totalVertexes += m_StaticProps[i].m_MeshData[j].m_VertexColors.Count(); }
// allocate a buffer with enough padding for alignment
size = sizeof( HardwareVerts::FileHeader_t ) + m_StaticProps[i].m_MeshData.Count()*sizeof(HardwareVerts::MeshHeader_t) + totalVertexes*4 + 2*512; utlBuf.EnsureCapacity( size ); Q_memset( utlBuf.Base(), 0, size );
HardwareVerts::FileHeader_t *pVhvHdr = (HardwareVerts::FileHeader_t *)utlBuf.Base();
// align to start of vertex data
unsigned char *pVertexData = (unsigned char *)(sizeof( HardwareVerts::FileHeader_t ) + m_StaticProps[i].m_MeshData.Count()*sizeof(HardwareVerts::MeshHeader_t)); pVertexData = (unsigned char*)pVhvHdr + ALIGN_TO_POW2( (unsigned int)pVertexData, 512 ); // construct header
pVhvHdr->m_nVersion = VHV_VERSION; pVhvHdr->m_nChecksum = m_StaticPropDict[m_StaticProps[i].m_ModelIdx].m_pStudioHdr->checksum; pVhvHdr->m_nVertexFlags = VERTEX_COLOR; pVhvHdr->m_nVertexSize = 4; pVhvHdr->m_nVertexes = totalVertexes; pVhvHdr->m_nMeshes = m_StaticProps[i].m_MeshData.Count();
for (int n=0; n<pVhvHdr->m_nMeshes; n++) { // construct mesh dictionary
HardwareVerts::MeshHeader_t *pMesh = pVhvHdr->pMesh( n ); pMesh->m_nLod = m_StaticProps[i].m_MeshData[n].m_nLod; pMesh->m_nVertexes = m_StaticProps[i].m_MeshData[n].m_VertexColors.Count(); pMesh->m_nOffset = (unsigned int)pVertexData - (unsigned int)pVhvHdr;
// construct vertexes
for (int k=0; k<pMesh->m_nVertexes; k++) { Vector &vertexColor = m_StaticProps[i].m_MeshData[n].m_VertexColors[k];
ColorRGBExp32 rgbColor; VectorToColorRGBExp32( vertexColor, rgbColor ); unsigned char dstColor[4]; ConvertRGBExp32ToRGBA8888( &rgbColor, dstColor );
// b,g,r,a order
pVertexData[0] = dstColor[2]; pVertexData[1] = dstColor[1]; pVertexData[2] = dstColor[0]; pVertexData[3] = dstColor[3]; pVertexData += 4; } }
// align to end of file
pVertexData = (unsigned char *)((unsigned int)pVertexData - (unsigned int)pVhvHdr); pVertexData = (unsigned char*)pVhvHdr + ALIGN_TO_POW2( (unsigned int)pVertexData, 512 );
AddBufferToPak( GetPakFile(), filename, (void*)pVhvHdr, pVertexData - (unsigned char*)pVhvHdr, false ); }
for (int i = 0; i < count; ++i) { const int kAlignment = 512; // no need to write this file if we didn't compute the data
// props marked this way will not load the info anyway
if (m_StaticProps[i].m_Flags & STATIC_PROP_NO_PER_TEXEL_LIGHTING) continue;
sprintf(filename, "texelslighting_%d.ppl", i);
ImageFormat fmt = m_StaticProps[i].m_LightmapImageFormat;
unsigned int totalTexelSizeBytes = 0; for (int j = 0; j < m_StaticProps[i].m_MeshData.Count(); j++) { totalTexelSizeBytes += m_StaticProps[i].m_MeshData[j].m_TexelsEncoded.Count(); }
// allocate a buffer with enough padding for alignment
size = sizeof(HardwareTexels::FileHeader_t) + m_StaticProps[i].m_MeshData.Count() * sizeof(HardwareTexels::MeshHeader_t) + totalTexelSizeBytes + 2 * kAlignment; utlBuf.EnsureCapacity(size); Q_memset(utlBuf.Base(), 0, size);
HardwareTexels::FileHeader_t *pVhtHdr = (HardwareTexels::FileHeader_t *)utlBuf.Base();
// align start of texel data
unsigned char *pTexelData = (unsigned char *)(sizeof(HardwareTexels::FileHeader_t) + m_StaticProps[i].m_MeshData.Count() * sizeof(HardwareTexels::MeshHeader_t)); pTexelData = (unsigned char*)pVhtHdr + ALIGN_TO_POW2((unsigned int)pTexelData, kAlignment);
pVhtHdr->m_nVersion = VHT_VERSION; pVhtHdr->m_nChecksum = m_StaticPropDict[m_StaticProps[i].m_ModelIdx].m_pStudioHdr->checksum; pVhtHdr->m_nTexelFormat = fmt; pVhtHdr->m_nMeshes = m_StaticProps[i].m_MeshData.Count();
for (int n = 0; n < pVhtHdr->m_nMeshes; n++) { HardwareTexels::MeshHeader_t *pMesh = pVhtHdr->pMesh(n); pMesh->m_nLod = m_StaticProps[i].m_MeshData[n].m_nLod; pMesh->m_nOffset = (unsigned int)pTexelData - (unsigned int)pVhtHdr; pMesh->m_nBytes = m_StaticProps[i].m_MeshData[n].m_TexelsEncoded.Count(); pMesh->m_nWidth = m_StaticProps[i].m_LightmapImageWidth; pMesh->m_nHeight = m_StaticProps[i].m_LightmapImageHeight;
Q_memcpy(pTexelData, m_StaticProps[i].m_MeshData[n].m_TexelsEncoded.Base(), m_StaticProps[i].m_MeshData[n].m_TexelsEncoded.Count()); pTexelData += m_StaticProps[i].m_MeshData[n].m_TexelsEncoded.Count(); }
pTexelData = (unsigned char *)((unsigned int)pTexelData - (unsigned int)pVhtHdr); pTexelData = (unsigned char*)pVhtHdr + ALIGN_TO_POW2((unsigned int)pTexelData, kAlignment);
AddBufferToPak(GetPakFile(), filename, (void*)pVhtHdr, pTexelData - (unsigned char*)pVhtHdr, false); } }
void CVradStaticPropMgr::VMPI_ProcessStaticProp_Static( int iThread, uint64 iStaticProp, MessageBuffer *pBuf ) { g_StaticPropMgr.VMPI_ProcessStaticProp( iThread, iStaticProp, pBuf ); }
void CVradStaticPropMgr::VMPI_ReceiveStaticPropResults_Static( uint64 iStaticProp, MessageBuffer *pBuf, int iWorker ) { g_StaticPropMgr.VMPI_ReceiveStaticPropResults( iStaticProp, pBuf, iWorker ); } //-----------------------------------------------------------------------------
// Called on workers to do the computation for a static prop and send
// it to the master.
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::VMPI_ProcessStaticProp( int iThread, int iStaticProp, MessageBuffer *pBuf ) { // Compute the lighting.
CComputeStaticPropLightingResults results; ComputeLighting( m_StaticProps[iStaticProp], iThread, iStaticProp, &results );
VMPI_SetCurrentStage( "EncodeLightingResults" ); // Encode the results.
int nLists = results.m_ColorVertsArrays.Count(); pBuf->write( &nLists, sizeof( nLists ) ); for ( int i=0; i < nLists; i++ ) { CUtlVector<colorVertex_t> &curList = *results.m_ColorVertsArrays[i]; int count = curList.Count(); pBuf->write( &count, sizeof( count ) ); pBuf->write( curList.Base(), curList.Count() * sizeof( colorVertex_t ) ); }
nLists = results.m_ColorTexelsArrays.Count(); pBuf->write(&nLists, sizeof(nLists));
for (int i = 0; i < nLists; i++) { CUtlVector<colorTexel_t> &curList = *results.m_ColorTexelsArrays[i]; int count = curList.Count(); pBuf->write(&count, sizeof(count)); pBuf->write(curList.Base(), curList.Count() * sizeof(colorTexel_t)); } }
//-----------------------------------------------------------------------------
// Called on the master when a worker finishes processing a static prop.
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::VMPI_ReceiveStaticPropResults( int iStaticProp, MessageBuffer *pBuf, int iWorker ) { // Read in the results.
CComputeStaticPropLightingResults results; int nLists; pBuf->read( &nLists, sizeof( nLists ) ); for ( int i=0; i < nLists; i++ ) { CUtlVector<colorVertex_t> *pList = new CUtlVector<colorVertex_t>; results.m_ColorVertsArrays.AddToTail( pList ); int count; pBuf->read( &count, sizeof( count ) ); pList->SetSize( count ); pBuf->read( pList->Base(), count * sizeof( colorVertex_t ) ); }
pBuf->read(&nLists, sizeof(nLists));
for (int i = 0; i < nLists; i++) { CUtlVector<colorTexel_t> *pList = new CUtlVector<colorTexel_t>; results.m_ColorTexelsArrays.AddToTail(pList);
int count; pBuf->read(&count, sizeof(count)); pList->SetSize(count); pBuf->read(pList->Base(), count * sizeof(colorTexel_t)); } // Apply the results.
ApplyLightingToStaticProp( iStaticProp, m_StaticProps[iStaticProp], &results ); }
void CVradStaticPropMgr::ComputeLightingForProp( int iThread, int iStaticProp ) { // Compute the lighting.
CComputeStaticPropLightingResults results; ComputeLighting( m_StaticProps[iStaticProp], iThread, iStaticProp, &results ); ApplyLightingToStaticProp( iStaticProp, m_StaticProps[iStaticProp], &results ); }
void CVradStaticPropMgr::ThreadComputeStaticPropLighting( int iThread, void *pUserData ) { while (1) { int j = GetThreadWork (); if (j == -1) break; CComputeStaticPropLightingResults results; g_StaticPropMgr.ComputeLightingForProp( iThread, j ); } }
//-----------------------------------------------------------------------------
// Computes lighting for the static props.
// Must be after all other surface lighting has been computed for the indirect sampling.
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::ComputeLighting( int iThread ) { // illuminate them all
int count = m_StaticProps.Count(); if ( !count ) { // nothing to do
return; }
StartPacifier( "Computing static prop lighting : " );
// ensure any traces against us are ignored because we have no inherit lighting contribution
m_bIgnoreStaticPropTrace = true;
if ( g_bUseMPI ) { // Distribute the work among the workers.
VMPI_SetCurrentStage( "CVradStaticPropMgr::ComputeLighting" ); DistributeWork( count, VMPI_DISTRIBUTEWORK_PACKETID, &CVradStaticPropMgr::VMPI_ProcessStaticProp_Static, &CVradStaticPropMgr::VMPI_ReceiveStaticPropResults_Static ); } else { RunThreadsOn(count, true, ThreadComputeStaticPropLighting); }
// restore default
m_bIgnoreStaticPropTrace = false;
// save data to bsp
SerializeLighting();
EndPacifier( true ); }
//-----------------------------------------------------------------------------
// Adds all static prop polys to the ray trace store.
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::AddPolysForRayTrace( void ) { int count = m_StaticProps.Count(); if ( !count ) { // nothing to do
return; }
// Triangle coverage of 1 (full coverage)
Vector fullCoverage; fullCoverage.x = 1.0f;
for ( int nProp = 0; nProp < count; ++nProp ) { CStaticProp &prop = m_StaticProps[nProp]; StaticPropDict_t &dict = m_StaticPropDict[prop.m_ModelIdx];
if ( prop.m_Flags & STATIC_PROP_NO_SHADOW ) continue;
// If not using static prop polys, use AABB
if ( !g_bStaticPropPolys ) { if ( dict.m_pModel ) { VMatrix xform; xform.SetupMatrixOrgAngles ( prop.m_Origin, prop.m_Angles ); ICollisionQuery *queryModel = s_pPhysCollision->CreateQueryModel( dict.m_pModel ); for ( int nConvex = 0; nConvex < queryModel->ConvexCount(); ++nConvex ) { for ( int nTri = 0; nTri < queryModel->TriangleCount( nConvex ); ++nTri ) { Vector verts[3]; queryModel->GetTriangleVerts( nConvex, nTri, verts ); for ( int nVert = 0; nVert < 3; ++nVert ) verts[nVert] = xform.VMul4x3(verts[nVert]); g_RtEnv.AddTriangle ( TRACE_ID_STATICPROP | nProp, verts[0], verts[1], verts[2], fullCoverage ); } } s_pPhysCollision->DestroyQueryModel( queryModel ); } else { VectorAdd ( dict.m_Mins, prop.m_Origin, prop.m_mins ); VectorAdd ( dict.m_Maxs, prop.m_Origin, prop.m_maxs ); g_RtEnv.AddAxisAlignedRectangularSolid ( TRACE_ID_STATICPROP | nProp, prop.m_mins, prop.m_maxs, fullCoverage ); } continue; }
studiohdr_t *pStudioHdr = dict.m_pStudioHdr; OptimizedModel::FileHeader_t *pVtxHdr = (OptimizedModel::FileHeader_t *)dict.m_VtxBuf.Base(); if ( !pStudioHdr || !pVtxHdr ) { // must have model and its verts for decoding triangles
return; } // only init the triangle table the first time
bool bInitTriangles = dict.m_triangleMaterialIndex.Count() ? false : true; int triangleIndex = 0;
// meshes are deeply hierarchial, divided between three stores, follow the white rabbit
// body parts -> models -> lod meshes -> strip groups -> strips
// the vertices and indices are pooled, the trick is knowing the offset to determine your indexed base
for ( int bodyID = 0; bodyID < pStudioHdr->numbodyparts; ++bodyID ) { OptimizedModel::BodyPartHeader_t* pVtxBodyPart = pVtxHdr->pBodyPart( bodyID ); mstudiobodyparts_t *pBodyPart = pStudioHdr->pBodypart( bodyID );
for ( int modelID = 0; modelID < pBodyPart->nummodels; ++modelID ) { OptimizedModel::ModelHeader_t* pVtxModel = pVtxBodyPart->pModel( modelID ); mstudiomodel_t *pStudioModel = pBodyPart->pModel( modelID );
// assuming lod 0, could iterate if required
int nLod = 0; OptimizedModel::ModelLODHeader_t *pVtxLOD = pVtxModel->pLOD( nLod );
for ( int nMesh = 0; nMesh < pStudioModel->nummeshes; ++nMesh ) { // check if this mesh's material is in the no shadow material name list
mstudiomesh_t* pMesh = pStudioModel->pMesh( nMesh ); mstudiotexture_t *pTxtr=pStudioHdr->pTexture(pMesh->material); //printf("mat idx=%d mat name=%s\n",pMesh->material,pTxtr->pszName());
bool bSkipThisMesh = false; for(int check=0; check<g_NonShadowCastingMaterialStrings.Count(); check++) { if ( Q_stristr( pTxtr->pszName(), g_NonShadowCastingMaterialStrings[check] ) ) { //printf("skip mat name=%s\n",pTxtr->pszName());
bSkipThisMesh = true; break; } } if ( bSkipThisMesh) continue;
int shadowTextureIndex = -1; if ( dict.m_textureShadowIndex.Count() ) { shadowTextureIndex = dict.m_textureShadowIndex[pMesh->material]; }
OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh( nMesh ); const mstudio_meshvertexdata_t *vertData = pMesh->GetVertexData( (void *)pStudioHdr ); Assert( vertData ); // This can only return NULL on X360 for now
for ( int nGroup = 0; nGroup < pVtxMesh->numStripGroups; ++nGroup ) { OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup( nGroup );
int nStrip; for ( nStrip = 0; nStrip < pStripGroup->numStrips; nStrip++ ) { OptimizedModel::StripHeader_t *pStrip = pStripGroup->pStrip( nStrip );
if ( pStrip->flags & OptimizedModel::STRIP_IS_TRILIST ) { for ( int i = 0; i < pStrip->numIndices; i += 3 ) { int idx = pStrip->indexOffset + i;
unsigned short i1 = *pStripGroup->pIndex( idx ); unsigned short i2 = *pStripGroup->pIndex( idx + 1 ); unsigned short i3 = *pStripGroup->pIndex( idx + 2 );
int vertex1 = pStripGroup->pVertex( i1 )->origMeshVertID; int vertex2 = pStripGroup->pVertex( i2 )->origMeshVertID; int vertex3 = pStripGroup->pVertex( i3 )->origMeshVertID;
// transform position into world coordinate system
matrix3x4_t matrix; AngleMatrix( prop.m_Angles, prop.m_Origin, matrix );
Vector position1; Vector position2; Vector position3; VectorTransform( *vertData->Position( vertex1 ), matrix, position1 ); VectorTransform( *vertData->Position( vertex2 ), matrix, position2 ); VectorTransform( *vertData->Position( vertex3 ), matrix, position3 ); unsigned short flags = 0; int materialIndex = -1; Vector color = vec3_origin; if ( shadowTextureIndex >= 0 ) { if ( bInitTriangles ) { // add texture space and texture index to material database
// now
float coverage = g_ShadowTextureList.ComputeCoverageForTriangle(shadowTextureIndex, *vertData->Texcoord(vertex1), *vertData->Texcoord(vertex2), *vertData->Texcoord(vertex3) ); if ( coverage < 1.0f ) { materialIndex = g_ShadowTextureList.AddMaterialEntry( shadowTextureIndex, *vertData->Texcoord(vertex1), *vertData->Texcoord(vertex2), *vertData->Texcoord(vertex3) ); color.x = coverage; } else { materialIndex = -1; } dict.m_triangleMaterialIndex.AddToTail(materialIndex); } else { materialIndex = dict.m_triangleMaterialIndex[triangleIndex]; triangleIndex++; } if ( materialIndex >= 0 ) { flags = FCACHETRI_TRANSPARENT; } } // printf( "\ngl 3\n" );
// printf( "gl %6.3f %6.3f %6.3f 1 0 0\n", XYZ(position1));
// printf( "gl %6.3f %6.3f %6.3f 0 1 0\n", XYZ(position2));
// printf( "gl %6.3f %6.3f %6.3f 0 0 1\n", XYZ(position3));
g_RtEnv.AddTriangle( TRACE_ID_STATICPROP | nProp, position1, position2, position3, color, flags, materialIndex); } } else { // all tris expected to be discrete tri lists
// must fixme if stripping ever occurs
printf( "unexpected strips found\n" ); Assert( 0 ); return; } } } } } } } }
struct tl_tri_t { Vector p0; Vector p1; Vector p2; Vector n0; Vector n1; Vector n2;
bool operator == (const tl_tri_t &t) const { return ( p0 == t.p0 && p1 == t.p1 && p2 == t.p2 && n0 == t.n0 && n1 == t.n1 && n2 == t.n2 ); } };
struct tl_vert_t { Vector m_position; CUtlLinkedList< tl_tri_t, int > m_triList; };
void AddTriVertsToList( CUtlVector< tl_vert_t > &triListVerts, int vertIndex, Vector vertPosition, Vector p0, Vector p1, Vector p2, Vector n0, Vector n1, Vector n2 ) { tl_tri_t tlTri;
tlTri.p0 = p0; tlTri.p1 = p1; tlTri.p2 = p2; tlTri.n0 = n0; tlTri.n1 = n1; tlTri.n2 = n2;
triListVerts.EnsureCapacity( vertIndex+1 );
triListVerts[vertIndex].m_position = vertPosition;
int index = triListVerts[vertIndex].m_triList.Find( tlTri ); if ( !triListVerts[vertIndex].m_triList.IsValidIndex( index ) ) { // not in list, add to list of triangles
triListVerts[vertIndex].m_triList.AddToTail( tlTri ); } }
//-----------------------------------------------------------------------------
// Builds a list of tris for every vertex
//-----------------------------------------------------------------------------
void CVradStaticPropMgr::BuildTriList( CStaticProp &prop ) { // the generated list will consist of a list of verts
// each vert will have a linked list of triangles that it belongs to
CUtlVector< tl_vert_t > triListVerts;
StaticPropDict_t &dict = m_StaticPropDict[prop.m_ModelIdx]; studiohdr_t *pStudioHdr = dict.m_pStudioHdr; OptimizedModel::FileHeader_t *pVtxHdr = (OptimizedModel::FileHeader_t *)dict.m_VtxBuf.Base(); if ( !pStudioHdr || !pVtxHdr ) { // must have model and its verts for decoding triangles
return; }
// meshes are deeply hierarchial, divided between three stores, follow the white rabbit
// body parts -> models -> lod meshes -> strip groups -> strips
// the vertices and indices are pooled, the trick is knowing the offset to determine your indexed base
for ( int bodyID = 0; bodyID < pStudioHdr->numbodyparts; ++bodyID ) { OptimizedModel::BodyPartHeader_t* pVtxBodyPart = pVtxHdr->pBodyPart( bodyID ); mstudiobodyparts_t *pBodyPart = pStudioHdr->pBodypart( bodyID );
for ( int modelID = 0; modelID < pBodyPart->nummodels; ++modelID ) { OptimizedModel::ModelHeader_t* pVtxModel = pVtxBodyPart->pModel( modelID ); mstudiomodel_t *pStudioModel = pBodyPart->pModel( modelID );
// get the specified lod, assuming lod 0
int nLod = 0; OptimizedModel::ModelLODHeader_t *pVtxLOD = pVtxModel->pLOD( nLod );
// must reset because each model has their own vertexes [0..n]
// in order for this to be monolithic for the entire prop the list must be segmented
triListVerts.Purge();
for ( int nMesh = 0; nMesh < pStudioModel->nummeshes; ++nMesh ) { mstudiomesh_t* pMesh = pStudioModel->pMesh( nMesh ); OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh( nMesh ); const mstudio_meshvertexdata_t *vertData = pMesh->GetVertexData( (void *)pStudioHdr ); Assert( vertData ); // This can only return NULL on X360 for now
for ( int nGroup = 0; nGroup < pVtxMesh->numStripGroups; ++nGroup ) { OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup( nGroup );
int nStrip; for ( nStrip = 0; nStrip < pStripGroup->numStrips; nStrip++ ) { OptimizedModel::StripHeader_t *pStrip = pStripGroup->pStrip( nStrip );
if ( pStrip->flags & OptimizedModel::STRIP_IS_TRILIST ) { for ( int i = 0; i < pStrip->numIndices; i += 3 ) { int idx = pStrip->indexOffset + i;
unsigned short i1 = *pStripGroup->pIndex( idx ); unsigned short i2 = *pStripGroup->pIndex( idx + 1 ); unsigned short i3 = *pStripGroup->pIndex( idx + 2 );
int vertex1 = pStripGroup->pVertex( i1 )->origMeshVertID; int vertex2 = pStripGroup->pVertex( i2 )->origMeshVertID; int vertex3 = pStripGroup->pVertex( i3 )->origMeshVertID;
// transform position into world coordinate system
matrix3x4_t matrix; AngleMatrix( prop.m_Angles, prop.m_Origin, matrix );
Vector position1; Vector position2; Vector position3; VectorTransform( *vertData->Position( vertex1 ), matrix, position1 ); VectorTransform( *vertData->Position( vertex2 ), matrix, position2 ); VectorTransform( *vertData->Position( vertex3 ), matrix, position3 );
Vector normal1; Vector normal2; Vector normal3; VectorTransform( *vertData->Normal( vertex1 ), matrix, normal1 ); VectorTransform( *vertData->Normal( vertex2 ), matrix, normal2 ); VectorTransform( *vertData->Normal( vertex3 ), matrix, normal3 );
AddTriVertsToList( triListVerts, pMesh->vertexoffset + vertex1, position1, position1, position2, position3, normal1, normal2, normal3 ); AddTriVertsToList( triListVerts, pMesh->vertexoffset + vertex2, position2, position1, position2, position3, normal1, normal2, normal3 ); AddTriVertsToList( triListVerts, pMesh->vertexoffset + vertex3, position3, position1, position2, position3, normal1, normal2, normal3 ); } } else { // all tris expected to be discrete tri lists
// must fixme if stripping ever occurs
printf( "unexpected strips found\n" ); Assert( 0 ); return; } } } } } } }
const vertexFileHeader_t * mstudiomodel_t::CacheVertexData( void *pModelData ) { studiohdr_t *pActiveStudioHdr = static_cast<studiohdr_t *>(pModelData); Assert( pActiveStudioHdr );
if ( pActiveStudioHdr->pVertexBase ) { return (vertexFileHeader_t *)pActiveStudioHdr->pVertexBase; }
// mandatory callback to make requested data resident
// load and persist the vertex file
char fileName[MAX_PATH]; strcpy( fileName, "models/" ); strcat( fileName, pActiveStudioHdr->pszName() ); Q_StripExtension( fileName, fileName, sizeof( fileName ) ); strcat( fileName, ".vvd" );
// load the model
FileHandle_t fileHandle = g_pFileSystem->Open( fileName, "rb" ); if ( !fileHandle ) { Error( "Unable to load vertex data \"%s\"\n", fileName ); }
// Get the file size
int vvdSize = g_pFileSystem->Size( fileHandle ); if ( vvdSize == 0 ) { g_pFileSystem->Close( fileHandle ); Error( "Bad size for vertex data \"%s\"\n", fileName ); }
vertexFileHeader_t *pVvdHdr = (vertexFileHeader_t *)malloc( vvdSize ); g_pFileSystem->Read( pVvdHdr, vvdSize, fileHandle ); g_pFileSystem->Close( fileHandle );
// check header
if ( pVvdHdr->id != MODEL_VERTEX_FILE_ID ) { Error("Error Vertex File %s id %d should be %d\n", fileName, pVvdHdr->id, MODEL_VERTEX_FILE_ID); } if ( pVvdHdr->version != MODEL_VERTEX_FILE_VERSION ) { Error("Error Vertex File %s version %d should be %d\n", fileName, pVvdHdr->version, MODEL_VERTEX_FILE_VERSION); } if ( pVvdHdr->checksum != pActiveStudioHdr->checksum ) { Error("Error Vertex File %s checksum %d should be %d\n", fileName, pVvdHdr->checksum, pActiveStudioHdr->checksum); }
// need to perform mesh relocation fixups
// allocate a new copy
vertexFileHeader_t *pNewVvdHdr = (vertexFileHeader_t *)malloc( vvdSize ); if ( !pNewVvdHdr ) { Error( "Error allocating %d bytes for Vertex File '%s'\n", vvdSize, fileName ); }
// load vertexes and run fixups
Studio_LoadVertexes( pVvdHdr, pNewVvdHdr, 0, true );
// discard original
free( pVvdHdr ); pVvdHdr = pNewVvdHdr;
pActiveStudioHdr->pVertexBase = (void*)pVvdHdr; return pVvdHdr; }
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
struct ColorTexelValue { Vector mLinearColor; // Linear color value for this texel
bool mValidData; // Whether there is valid data in this texel.
size_t mTriangleIndex; // Which triangle we used to generate the texel.
};
// ------------------------------------------------------------------------------------------------
inline int ComputeLinearPos( int _x, int _y, int _resX, int _resY ) { return Min( Max( 0, _y ), _resY - 1 ) * _resX + Min( Max( 0, _x ), _resX - 1 ); }
// ------------------------------------------------------------------------------------------------
inline float ComputeBarycentricDistanceToTri( Vector _barycentricCoord, Vector2D _v[3] ) { Vector2D realPos = _barycentricCoord.x * _v[0] + _barycentricCoord.y * _v[1] + _barycentricCoord.z * _v[2];
int minIndex = 0; float minVal = _barycentricCoord[0]; for (int i = 1; i < 3; ++i) { if (_barycentricCoord[i] < minVal) { minVal = _barycentricCoord[i]; minIndex = i; } }
Vector2D& first = _v[ (minIndex + 1) % 3]; Vector2D& second = _v[ (minIndex + 2) % 3];
return CalcDistanceToLineSegment2D( realPos, first, second ); }
// ------------------------------------------------------------------------------------------------
static void GenerateLightmapSamplesForMesh( const matrix3x4_t& _matPos, const matrix3x4_t& _matNormal, int _iThread, int _skipProp, int _flags, int _lightmapResX, int _lightmapResY, studiohdr_t* _pStudioHdr, mstudiomodel_t* _pStudioModel, OptimizedModel::ModelHeader_t* _pVtxModel, int _meshID, CComputeStaticPropLightingResults *_outResults ) { // Could iterate and gen this if needed.
int nLod = 0;
OptimizedModel::ModelLODHeader_t *pVtxLOD = _pVtxModel->pLOD(nLod);
CUtlVector<colorTexel_t> &colorTexels = (*_outResults->m_ColorTexelsArrays.Tail()); const int cTotalPixelCount = _lightmapResX * _lightmapResY; colorTexels.EnsureCount(cTotalPixelCount); memset(colorTexels.Base(), 0, colorTexels.Count() * sizeof(colorTexel_t));
for (int i = 0; i < colorTexels.Count(); ++i) { colorTexels[i].m_fDistanceToTri = FLT_MAX; }
mstudiomesh_t* pMesh = _pStudioModel->pMesh(_meshID); OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(_meshID); const mstudio_meshvertexdata_t *vertData = pMesh->GetVertexData((void *)_pStudioHdr); Assert(vertData); // This can only return NULL on X360 for now
for (int nGroup = 0; nGroup < pVtxMesh->numStripGroups; ++nGroup) { OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(nGroup);
int nStrip; for (nStrip = 0; nStrip < pStripGroup->numStrips; nStrip++) { OptimizedModel::StripHeader_t *pStrip = pStripGroup->pStrip(nStrip);
// If this hits, re-factor the code to iterate over triangles, and build the triangles
// from the underlying structures.
Assert((pStrip->flags & OptimizedModel::STRIP_IS_TRISTRIP) == 0);
if (pStrip->flags & OptimizedModel::STRIP_IS_TRILIST) { for (int i = 0; i < pStrip->numIndices; i += 3) { int idx = pStrip->indexOffset + i;
unsigned short i1 = *pStripGroup->pIndex(idx); unsigned short i2 = *pStripGroup->pIndex(idx + 1); unsigned short i3 = *pStripGroup->pIndex(idx + 2);
int vertex1 = pStripGroup->pVertex(i1)->origMeshVertID; int vertex2 = pStripGroup->pVertex(i2)->origMeshVertID; int vertex3 = pStripGroup->pVertex(i3)->origMeshVertID;
Vector modelPos[3] = { *vertData->Position(vertex1), *vertData->Position(vertex2), *vertData->Position(vertex3) };
Vector modelNormal[3] = { *vertData->Normal(vertex1), *vertData->Normal(vertex2), *vertData->Normal(vertex3) };
Vector worldPos[3]; Vector worldNormal[3];
VectorTransform(modelPos[0], _matPos, worldPos[0]); VectorTransform(modelPos[1], _matPos, worldPos[1]); VectorTransform(modelPos[2], _matPos, worldPos[2]);
VectorTransform(modelNormal[0], _matNormal, worldNormal[0]); VectorTransform(modelNormal[1], _matNormal, worldNormal[1]); VectorTransform(modelNormal[2], _matNormal, worldNormal[2]);
Vector2D texcoord[3] = { *vertData->Texcoord(vertex1), *vertData->Texcoord(vertex2), *vertData->Texcoord(vertex3) };
Rasterizer rasterizer(texcoord[0], texcoord[1], texcoord[2], _lightmapResX, _lightmapResY);
for (auto it = rasterizer.begin(); it != rasterizer.end(); ++it) { size_t linearPos = rasterizer.GetLinearPos(it); Assert(linearPos < cTotalPixelCount);
if ( colorTexels[linearPos].m_bValid ) { continue; }
float ourDistancetoTri = ComputeBarycentricDistanceToTri( it->barycentric, texcoord );
bool doWrite = it->insideTriangle || !colorTexels[linearPos].m_bPossiblyInteresting || colorTexels[linearPos].m_fDistanceToTri > ourDistancetoTri;
if (doWrite) { Vector itWorldPos = worldPos[0] * it->barycentric.x + worldPos[1] * it->barycentric.y + worldPos[2] * it->barycentric.z;
Vector itWorldNormal = worldNormal[0] * it->barycentric.x + worldNormal[1] * it->barycentric.y + worldNormal[2] * it->barycentric.z; itWorldNormal.NormalizeInPlace();
colorTexels[linearPos].m_WorldPosition = itWorldPos; colorTexels[linearPos].m_WorldNormal = itWorldNormal; colorTexels[linearPos].m_bValid = it->insideTriangle; colorTexels[linearPos].m_bPossiblyInteresting = true; colorTexels[linearPos].m_fDistanceToTri = ourDistancetoTri; } } } } } }
// Process neighbors to the valid region. Walk through the existing array, look for samples that
// are not valid but are adjacent to valid samples. Works if we are only bilinearly sampling
// on the other side.
// First attempt: Just pretend the triangle was larger and cast a ray from this new world pos
// as above.
int linearPos = 0; for ( int j = 0; j < _lightmapResY; ++j ) { for (int i = 0; i < _lightmapResX; ++i ) { bool shouldProcess = colorTexels[linearPos].m_bValid; // Are any of the eight neighbors valid??
if ( colorTexels[linearPos].m_bPossiblyInteresting ) { // Look at our neighborhood (3x3 centerd on us).
shouldProcess = shouldProcess || colorTexels[ComputeLinearPos( i - 1, j - 1, _lightmapResX, _lightmapResY )].m_bValid // TL
|| colorTexels[ComputeLinearPos( i , j - 1, _lightmapResX, _lightmapResY )].m_bValid // T
|| colorTexels[ComputeLinearPos( i + 1, j - 1, _lightmapResX, _lightmapResY )].m_bValid // TR
|| colorTexels[ComputeLinearPos( i - 1, j , _lightmapResX, _lightmapResY )].m_bValid // L
|| colorTexels[ComputeLinearPos( i + 1, j , _lightmapResX, _lightmapResY )].m_bValid // R
|| colorTexels[ComputeLinearPos( i - 1, j + 1, _lightmapResX, _lightmapResY )].m_bValid // BL
|| colorTexels[ComputeLinearPos( i , j + 1, _lightmapResX, _lightmapResY )].m_bValid // B
|| colorTexels[ComputeLinearPos( i + 1, j + 1, _lightmapResX, _lightmapResY )].m_bValid; // BR
}
if (shouldProcess) { Vector directColor(0, 0, 0), indirectColor(0, 0, 0);
ComputeDirectLightingAtPoint( colorTexels[linearPos].m_WorldPosition, colorTexels[linearPos].m_WorldNormal, directColor, _iThread, _skipProp, _flags);
if (numbounce >= 1) { ComputeIndirectLightingAtPoint( colorTexels[linearPos].m_WorldPosition, colorTexels[linearPos].m_WorldNormal, indirectColor, _iThread, true, (_flags & GATHERLFLAGS_IGNORE_NORMALS) != 0 ); }
VectorAdd(directColor, indirectColor, colorTexels[linearPos].m_Color); }
++linearPos; } } }
// ------------------------------------------------------------------------------------------------
static int GetTexelCount(unsigned int _resX, unsigned int _resY, bool _mipmaps) { // Because they are unsigned, this is a != check--but if we were to change to ints, this would be
// the right assert (and it's no worse than != now).
Assert(_resX > 0 && _resY > 0);
if (_mipmaps == false) return _resX * _resY;
int retVal = 0; while (_resX > 1 || _resY > 1) { retVal += _resX * _resY; _resX = max(1, _resX >> 1); _resY = max(1, _resY >> 1); }
// Add in the 1x1 mipmap level, which wasn't hit above. This could be done in the initializer of
// retVal, but it's more obvious here.
retVal += 1;
return retVal; }
// ------------------------------------------------------------------------------------------------
static void FilterFineMipmap(unsigned int _resX, unsigned int _resY, const CUtlVector<colorTexel_t>& _srcTexels, CUtlVector<Vector>* _outLinear) { Assert(_outLinear); // We can't filter in place, so go ahead and create a linear buffer here.
CUtlVector<Vector> filterSrc; filterSrc.EnsureCount(_srcTexels.Count());
for (int i = 0; i < _srcTexels.Count(); ++i) { ColorRGBExp32 rgbColor; VectorToColorRGBExp32(_srcTexels[i].m_Color, rgbColor); ConvertRGBExp32ToLinear( &rgbColor, &(filterSrc[i]) ); }
const int cRadius = 1; const float cOneOverDiameter = 1.0f / pow(2.0f * cRadius + 1.0f, 2.0f) ; // Filter here.
for (int j = 0; j < _resY; ++j) { for (int i = 0; i < _resX; ++i) { Vector value(0, 0, 0); int thisIndex = ComputeLinearPos(i, j, _resX, _resY);
if (!_srcTexels[thisIndex].m_bValid) { (*_outLinear)[thisIndex] = filterSrc[thisIndex]; continue; }
// TODO: Check ASM for this, unroll by hand if needed.
for ( int offsetJ = -cRadius; offsetJ <= cRadius; ++offsetJ ) { for ( int offsetI = -cRadius; offsetI <= cRadius; ++offsetI ) { int finalIndex = ComputeLinearPos( i + offsetI, j + offsetJ, _resX, _resY ); if ( !_srcTexels[finalIndex].m_bValid ) { finalIndex = thisIndex; } value += filterSrc[finalIndex]; } }
(*_outLinear)[thisIndex] = value * cOneOverDiameter; } } }
// ------------------------------------------------------------------------------------------------
static void BuildFineMipmap(unsigned int _resX, unsigned int _resY, bool _applyFilter, const CUtlVector<colorTexel_t>& _srcTexels, CUtlVector<RGB888_t>* _outTexelsRGB888, CUtlVector<Vector>* _outLinear) { // At least one of these needs to be non-null, otherwise what are we doing here?
Assert(_outTexelsRGB888 || _outLinear); Assert(!_applyFilter || _outLinear); Assert(_srcTexels.Count() == GetTexelCount(_resX, _resY, false));
int texelCount = GetTexelCount(_resX, _resY, true);
if (_outTexelsRGB888) (*_outTexelsRGB888).EnsureCount(texelCount);
if (_outLinear) (*_outLinear).EnsureCount(GetTexelCount(_resX, _resY, false));
// This code can take awhile, so minimize the branchiness of the inner-loop.
if (_applyFilter) {
FilterFineMipmap(_resX, _resY, _srcTexels, _outLinear);
if ( _outTexelsRGB888 ) { for (int i = 0; i < _srcTexels.Count(); ++i) { RGBA8888_t encodedColor;
Vector linearColor = (*_outLinear)[i];
ConvertLinearToRGBA8888( &linearColor, (unsigned char*)&encodedColor ); (*_outTexelsRGB888)[i].r = encodedColor.r; (*_outTexelsRGB888)[i].g = encodedColor.g; (*_outTexelsRGB888)[i].b = encodedColor.b; } } } else { for (int i = 0; i < _srcTexels.Count(); ++i) { ColorRGBExp32 rgbColor; RGBA8888_t encodedColor; VectorToColorRGBExp32(_srcTexels[i].m_Color, rgbColor); ConvertRGBExp32ToRGBA8888(&rgbColor, (unsigned char*)&encodedColor, (_outLinear ? (&(*_outLinear)[i]) : NULL) ); // We drop alpha on the floor here, if this were to fire we'd need to consider using a different compressed format.
Assert(encodedColor.a == 0xFF);
if (_outTexelsRGB888) { (*_outTexelsRGB888)[i].r = encodedColor.r; (*_outTexelsRGB888)[i].g = encodedColor.g; (*_outTexelsRGB888)[i].b = encodedColor.b; } } } }
// ------------------------------------------------------------------------------------------------
static void FilterCoarserMipmaps(unsigned int _resX, unsigned int _resY, CUtlVector<Vector>* _scratchLinear, CUtlVector<RGB888_t> *_outTexelsRGB888) { Assert(_outTexelsRGB888);
int srcResX = _resX; int srcResY = _resY; int dstResX = max(1, (srcResX >> 1)); int dstResY = max(1, (srcResY >> 1)); int dstOffset = GetTexelCount(srcResX, srcResY, false);
// Build mipmaps here, after being converted to linear space.
// TODO: Should do better filtering for downsampling. But this will work for now.
while (srcResX > 1 || srcResY > 1) { for (int j = 0; j < srcResY; j += 2) { for (int i = 0; i < srcResX; i += 2) { int srcCol0 = i; int srcCol1 = i + 1 > srcResX - 1 ? srcResX - 1 : i + 1; int srcRow0 = j; int srcRow1 = j + 1 > srcResY - 1 ? srcResY - 1 : j + 1;;
int dstCol = i >> 1; int dstRow = j >> 1;
const Vector& tl = (*_scratchLinear)[srcCol0 + (srcRow0 * srcResX)]; const Vector& tr = (*_scratchLinear)[srcCol1 + (srcRow0 * srcResX)]; const Vector& bl = (*_scratchLinear)[srcCol0 + (srcRow1 * srcResX)]; const Vector& br = (*_scratchLinear)[srcCol1 + (srcRow1 * srcResX)];
Vector sample = (tl + tr + bl + br) / 4.0f;
ConvertLinearToRGBA8888(&sample, (unsigned char*)&(*_outTexelsRGB888)[dstOffset + dstCol + dstRow * dstResX]);
// Also overwrite the srcBuffer to filter the next loop. This is safe because we won't be reading this source value
// again during this mipmap level.
(*_scratchLinear)[dstCol + dstRow * dstResX] = sample; } }
srcResX = dstResX; srcResY = dstResY; dstResX = max(1, (srcResX >> 1)); dstResY = max(1, (srcResY >> 1)); dstOffset += GetTexelCount(srcResX, srcResY, false); } }
// ------------------------------------------------------------------------------------------------
static void ConvertToDestinationFormat(unsigned int _resX, unsigned int _resY, ImageFormat _destFmt, const CUtlVector<RGB888_t>& _scratchRBG888, CUtlMemory<byte>* _outTexture) { const ImageFormat cSrcImageFormat = IMAGE_FORMAT_RGB888;
// Converts from the scratch RGB888 buffer, which should be fully filled out to the output texture.
int destMemoryUsage = ImageLoader::GetMemRequired(_resX, _resY, 1, _destFmt, true); (*_outTexture).EnsureCapacity(destMemoryUsage);
int srcResX = _resX; int srcResY = _resY; int srcOffset = 0; int dstOffset = 0;
// The usual case--that they'll be different.
if (cSrcImageFormat != _destFmt) { while (srcResX > 1 || srcResY > 1) { // Convert this mipmap level.
ImageLoader::ConvertImageFormat((unsigned char*)(&_scratchRBG888[srcOffset]), cSrcImageFormat, (*_outTexture).Base() + dstOffset, _destFmt, srcResX, srcResY);
// Then update offsets for the next mipmap level.
srcOffset += GetTexelCount(srcResX, srcResY, false); dstOffset += ImageLoader::GetMemRequired(srcResX, srcResY, 1, _destFmt, false);
srcResX = max(1, (srcResX >> 1)); srcResY = max(1, (srcResY >> 1)); }
// Do the 1x1 level also.
ImageLoader::ConvertImageFormat((unsigned char*)_scratchRBG888.Base() + srcOffset, cSrcImageFormat, (*_outTexture).Base() + dstOffset, _destFmt, srcResX, srcResY); } else { // But sometimes (particularly for debugging) they will be the same.
Q_memcpy( (*_outTexture).Base(), _scratchRBG888.Base(), destMemoryUsage ); } }
// ------------------------------------------------------------------------------------------------
static void ConvertTexelDataToTexture(unsigned int _resX, unsigned int _resY, ImageFormat _destFmt, const CUtlVector<colorTexel_t>& _srcTexels, CUtlMemory<byte>* _outTexture) { Assert(_outTexture); Assert(_srcTexels.Count() == _resX * _resY);
CUtlVector<RGB888_t> scratchRGB888; CUtlVector<Vector> scratchLinear;
BuildFineMipmap(_resX, _resY, true, _srcTexels, &scratchRGB888, &scratchLinear); FilterCoarserMipmaps(_resX, _resY, &scratchLinear, &scratchRGB888 ); ConvertToDestinationFormat(_resX, _resY, _destFmt, scratchRGB888, _outTexture); }
// ------------------------------------------------------------------------------------------------
static void DumpLightmapLinear( const char* _dstFilename, const CUtlVector<colorTexel_t>& _srcTexels, int _width, int _height ) { CUtlVector< Vector > linearFloats; CUtlVector< BGR888_t > linearBuffer; BuildFineMipmap( _width, _height, true, _srcTexels, NULL, &linearFloats ); linearBuffer.SetCount( linearFloats.Count() );
for ( int i = 0; i < linearFloats.Count(); ++i ) { linearBuffer[i].b = RoundFloatToByte(linearFloats[i].z * 255.0f); linearBuffer[i].g = RoundFloatToByte(linearFloats[i].y * 255.0f); linearBuffer[i].r = RoundFloatToByte(linearFloats[i].x * 255.0f); } TGAWriter::WriteTGAFile( _dstFilename, _width, _height, IMAGE_FORMAT_BGR888, (uint8*)(linearBuffer.Base()), _width * ImageLoader::SizeInBytes(IMAGE_FORMAT_BGR888) ); }
|