|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include "vis.h"
#include "vmpi.h"
int g_TraceClusterStart = -1; int g_TraceClusterStop = -1; /*
each portal will have a list of all possible to see from first portal
if (!thread->portalmightsee[portalnum])
portal mightsee
for p2 = all other portals in leaf get sperating planes for all portals that might be seen by p2 mark as unseen if not present in seperating plane flood fill a new mightsee save as passagemightsee
void CalcMightSee (leaf_t *leaf, */
int CountBits (byte *bits, int numbits) { int i; int c;
c = 0; for (i=0 ; i<numbits ; i++) if ( CheckBit( bits, i ) ) c++;
return c; }
int c_fullskip; int c_portalskip, c_leafskip; int c_vistest, c_mighttest;
int c_chop, c_nochop;
int active;
extern bool g_bVMPIEarlyExit;
void CheckStack (leaf_t *leaf, threaddata_t *thread) { pstack_t *p, *p2;
for (p=thread->pstack_head.next ; p ; p=p->next) { // Msg ("=");
if (p->leaf == leaf) Error ("CheckStack: leaf recursion"); for (p2=thread->pstack_head.next ; p2 != p ; p2=p2->next) if (p2->leaf == p->leaf) Error ("CheckStack: late leaf recursion"); } // Msg ("\n");
}
winding_t *AllocStackWinding (pstack_t *stack) { int i;
for (i=0 ; i<3 ; i++) { if (stack->freewindings[i]) { stack->freewindings[i] = 0; return &stack->windings[i]; } }
Error ("Out of memory. AllocStackWinding: failed");
return NULL; }
void FreeStackWinding (winding_t *w, pstack_t *stack) { int i;
i = w - stack->windings;
if (i<0 || i>2) return; // not from local
if (stack->freewindings[i]) Error ("FreeStackWinding: allready free"); stack->freewindings[i] = 1; }
/*
============== ChopWinding
============== */
#ifdef _WIN32
#pragma warning (disable:4701)
#endif
winding_t *ChopWinding (winding_t *in, pstack_t *stack, plane_t *split) { vec_t dists[128]; int sides[128]; int counts[3]; vec_t dot; int i, j; Vector mid; winding_t *neww;
counts[0] = counts[1] = counts[2] = 0;
// determine sides for each point
for (i=0 ; i<in->numpoints ; i++) { dot = DotProduct (in->points[i], split->normal); dot -= split->dist; dists[i] = dot; if (dot > ON_VIS_EPSILON) sides[i] = SIDE_FRONT; else if (dot < -ON_VIS_EPSILON) sides[i] = SIDE_BACK; else { sides[i] = SIDE_ON; } counts[sides[i]]++; }
if (!counts[1]) return in; // completely on front side
if (!counts[0]) { FreeStackWinding (in, stack); return NULL; }
sides[i] = sides[0]; dists[i] = dists[0]; neww = AllocStackWinding (stack);
neww->numpoints = 0;
for (i=0 ; i<in->numpoints ; i++) { Vector& p1 = in->points[i];
if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING) { FreeStackWinding (neww, stack); return in; // can't chop -- fall back to original
}
if (sides[i] == SIDE_ON) { VectorCopy (p1, neww->points[neww->numpoints]); neww->numpoints++; continue; } if (sides[i] == SIDE_FRONT) { VectorCopy (p1, neww->points[neww->numpoints]); neww->numpoints++; } if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i]) continue; if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING) { FreeStackWinding (neww, stack); return in; // can't chop -- fall back to original
}
// generate a split point
Vector& p2 = in->points[(i+1)%in->numpoints]; dot = dists[i] / (dists[i]-dists[i+1]); for (j=0 ; j<3 ; j++) { // avoid round off error when possible
if (split->normal[j] == 1) mid[j] = split->dist; else if (split->normal[j] == -1) mid[j] = -split->dist; else mid[j] = p1[j] + dot*(p2[j]-p1[j]); } VectorCopy (mid, neww->points[neww->numpoints]); neww->numpoints++; } // free the original winding
FreeStackWinding (in, stack); return neww; }
#ifdef _WIN32
#pragma warning (default:4701)
#endif
/*
============== ClipToSeperators
Source, pass, and target are an ordering of portals.
Generates seperating planes canidates by taking two points from source and one point from pass, and clips target by them.
If target is totally clipped away, that portal can not be seen through.
Normal clip keeps target on the same side as pass, which is correct if the order goes source, pass, target. If the order goes pass, source, target then flipclip should be set. ============== */ winding_t *ClipToSeperators (winding_t *source, winding_t *pass, winding_t *target, bool flipclip, pstack_t *stack) { int i, j, k, l; plane_t plane; Vector v1, v2; float d; vec_t length; int counts[3]; bool fliptest;
// check all combinations
for (i=0 ; i<source->numpoints ; i++) { l = (i+1)%source->numpoints; VectorSubtract (source->points[l] , source->points[i], v1);
// fing a vertex of pass that makes a plane that puts all of the
// vertexes of pass on the front side and all of the vertexes of
// source on the back side
for (j=0 ; j<pass->numpoints ; j++) { VectorSubtract (pass->points[j], source->points[i], v2);
plane.normal[0] = v1[1]*v2[2] - v1[2]*v2[1]; plane.normal[1] = v1[2]*v2[0] - v1[0]*v2[2]; plane.normal[2] = v1[0]*v2[1] - v1[1]*v2[0]; // if points don't make a valid plane, skip it
length = plane.normal[0] * plane.normal[0] + plane.normal[1] * plane.normal[1] + plane.normal[2] * plane.normal[2]; if (length < ON_VIS_EPSILON) continue;
length = 1/sqrt(length); plane.normal[0] *= length; plane.normal[1] *= length; plane.normal[2] *= length;
plane.dist = DotProduct (pass->points[j], plane.normal);
//
// find out which side of the generated seperating plane has the
// source portal
//
#if 1
fliptest = false; for (k=0 ; k<source->numpoints ; k++) { if (k == i || k == l) continue; d = DotProduct (source->points[k], plane.normal) - plane.dist; if (d < -ON_VIS_EPSILON) { // source is on the negative side, so we want all
// pass and target on the positive side
fliptest = false; break; } else if (d > ON_VIS_EPSILON) { // source is on the positive side, so we want all
// pass and target on the negative side
fliptest = true; break; } } if (k == source->numpoints) continue; // planar with source portal
#else
fliptest = flipclip; #endif
//
// flip the normal if the source portal is backwards
//
if (fliptest) { VectorSubtract (vec3_origin, plane.normal, plane.normal); plane.dist = -plane.dist; } #if 1
//
// if all of the pass portal points are now on the positive side,
// this is the seperating plane
//
counts[0] = counts[1] = counts[2] = 0; for (k=0 ; k<pass->numpoints ; k++) { if (k==j) continue; d = DotProduct (pass->points[k], plane.normal) - plane.dist; if (d < -ON_VIS_EPSILON) break; else if (d > ON_VIS_EPSILON) counts[0]++; else counts[2]++; } if (k != pass->numpoints) continue; // points on negative side, not a seperating plane
if (!counts[0]) continue; // planar with seperating plane
#else
k = (j+1)%pass->numpoints; d = DotProduct (pass->points[k], plane.normal) - plane.dist; if (d < -ON_VIS_EPSILON) continue; k = (j+pass->numpoints-1)%pass->numpoints; d = DotProduct (pass->points[k], plane.normal) - plane.dist; if (d < -ON_VIS_EPSILON) continue; #endif
//
// flip the normal if we want the back side
//
if (flipclip) { VectorSubtract (vec3_origin, plane.normal, plane.normal); plane.dist = -plane.dist; } //
// clip target by the seperating plane
//
target = ChopWinding (target, stack, &plane); if (!target) return NULL; // target is not visible
// JAY: End the loop, no need to find additional separators on this edge ?
// j = pass->numpoints;
} } return target; }
class CPortalTrace { public: CUtlVector<Vector> m_list; CThreadFastMutex m_mutex; } g_PortalTrace;
void WindingCenter (winding_t *w, Vector ¢er) { int i; float scale;
VectorCopy (vec3_origin, center); for (i=0 ; i<w->numpoints ; i++) VectorAdd (w->points[i], center, center);
scale = 1.0/w->numpoints; VectorScale (center, scale, center); }
Vector ClusterCenter( int cluster ) { Vector mins, maxs; ClearBounds(mins, maxs); int count = leafs[cluster].portals.Count(); for ( int i = 0; i < count; i++ ) { winding_t *w = leafs[cluster].portals[i]->winding; for ( int j = 0; j < w->numpoints; j++ ) { AddPointToBounds( w->points[j], mins, maxs ); } } return (mins + maxs) * 0.5f; }
void DumpPortalTrace( pstack_t *pStack ) { AUTO_LOCK(g_PortalTrace.m_mutex); if ( g_PortalTrace.m_list.Count() ) return;
Warning("Dumped cluster trace!!!\n"); Vector mid; mid = ClusterCenter( g_TraceClusterStart ); g_PortalTrace.m_list.AddToTail(mid); for ( ; pStack != NULL; pStack = pStack->next ) { winding_t *w = pStack->pass ? pStack->pass : pStack->portal->winding; WindingCenter (w, mid); g_PortalTrace.m_list.AddToTail(mid); for ( int i = 0; i < w->numpoints; i++ ) { g_PortalTrace.m_list.AddToTail(w->points[i]); g_PortalTrace.m_list.AddToTail(mid); } for ( int i = 0; i < w->numpoints; i++ ) { g_PortalTrace.m_list.AddToTail(w->points[i]); } g_PortalTrace.m_list.AddToTail(w->points[0]); g_PortalTrace.m_list.AddToTail(mid); } mid = ClusterCenter( g_TraceClusterStop ); g_PortalTrace.m_list.AddToTail(mid); }
void WritePortalTrace( const char *source ) { Vector mid; FILE *linefile; char filename[1024];
if ( !g_PortalTrace.m_list.Count() ) { Warning("No trace generated from %d to %d\n", g_TraceClusterStart, g_TraceClusterStop ); return; }
sprintf (filename, "%s.lin", source); linefile = fopen (filename, "w"); if (!linefile) Error ("Couldn't open %s\n", filename);
for ( int i = 0; i < g_PortalTrace.m_list.Count(); i++ ) { Vector p = g_PortalTrace.m_list[i]; fprintf (linefile, "%f %f %f\n", p[0], p[1], p[2]); } fclose (linefile); Warning("Wrote %s!!!\n", filename); }
/*
================== RecursiveLeafFlow
Flood fill through the leafs If src_portal is NULL, this is the originating leaf ================== */ void RecursiveLeafFlow (int leafnum, threaddata_t *thread, pstack_t *prevstack) { pstack_t stack; portal_t *p; plane_t backplane; leaf_t *leaf; int i, j; long *test, *might, *vis, more; int pnum;
// Early-out if we're a VMPI worker that's told to exit. If we don't do this here, then the
// worker might spin its wheels for a while on an expensive work unit and not be available to the pool.
// This is pretty common in vis.
if ( g_bVMPIEarlyExit ) return;
if ( leafnum == g_TraceClusterStop ) { DumpPortalTrace(&thread->pstack_head); return; } thread->c_chains++;
leaf = &leafs[leafnum];
prevstack->next = &stack;
stack.next = NULL; stack.leaf = leaf; stack.portal = NULL;
might = (long *)stack.mightsee; vis = (long *)thread->base->portalvis; // check all portals for flowing into other leafs
for (i=0 ; i<leaf->portals.Count() ; i++) {
p = leaf->portals[i]; pnum = p - portals;
if ( ! (prevstack->mightsee[pnum >> 3] & (1<<(pnum&7)) ) ) { continue; // can't possibly see it
}
// if the portal can't see anything we haven't allready seen, skip it
if (p->status == stat_done) { test = (long *)p->portalvis; } else { test = (long *)p->portalflood; }
more = 0; for (j=0 ; j<portallongs ; j++) { might[j] = ((long *)prevstack->mightsee)[j] & test[j]; more |= (might[j] & ~vis[j]); } if ( !more && CheckBit( thread->base->portalvis, pnum ) ) { // can't see anything new
continue; }
// get plane of portal, point normal into the neighbor leaf
stack.portalplane = p->plane; VectorSubtract (vec3_origin, p->plane.normal, backplane.normal); backplane.dist = -p->plane.dist; stack.portal = p; stack.next = NULL; stack.freewindings[0] = 1; stack.freewindings[1] = 1; stack.freewindings[2] = 1; float d = DotProduct (p->origin, thread->pstack_head.portalplane.normal); d -= thread->pstack_head.portalplane.dist; if (d < -p->radius) { continue; } else if (d > p->radius) { stack.pass = p->winding; } else { stack.pass = ChopWinding (p->winding, &stack, &thread->pstack_head.portalplane); if (!stack.pass) continue; }
d = DotProduct (thread->base->origin, p->plane.normal); d -= p->plane.dist; if (d > thread->base->radius) { continue; } else if (d < -thread->base->radius) { stack.source = prevstack->source; } else { stack.source = ChopWinding (prevstack->source, &stack, &backplane); if (!stack.source) continue; }
if (!prevstack->pass) { // the second leaf can only be blocked if coplanar
// mark the portal as visible
SetBit( thread->base->portalvis, pnum );
RecursiveLeafFlow (p->leaf, thread, &stack); continue; }
stack.pass = ClipToSeperators (stack.source, prevstack->pass, stack.pass, false, &stack); if (!stack.pass) continue; stack.pass = ClipToSeperators (prevstack->pass, stack.source, stack.pass, true, &stack); if (!stack.pass) continue;
// mark the portal as visible
SetBit( thread->base->portalvis, pnum );
// flow through it for real
RecursiveLeafFlow (p->leaf, thread, &stack); } }
/*
=============== PortalFlow
generates the portalvis bit vector =============== */ void PortalFlow (int iThread, int portalnum) { threaddata_t data; int i; portal_t *p; int c_might, c_can;
p = sorted_portals[portalnum]; p->status = stat_working; c_might = CountBits (p->portalflood, g_numportals*2);
memset (&data, 0, sizeof(data)); data.base = p; data.pstack_head.portal = p; data.pstack_head.source = p->winding; data.pstack_head.portalplane = p->plane; for (i=0 ; i<portallongs ; i++) ((long *)data.pstack_head.mightsee)[i] = ((long *)p->portalflood)[i];
RecursiveLeafFlow (p->leaf, &data, &data.pstack_head);
p->status = stat_done;
c_can = CountBits (p->portalvis, g_numportals*2);
qprintf ("portal:%4i mightsee:%4i cansee:%4i (%i chains)\n", (int)(p - portals), c_might, c_can, data.c_chains); }
/*
===============================================================================
This is a rough first-order aproximation that is used to trivially reject some of the final calculations.
Calculates portalfront and portalflood bit vectors
=============================================================================== */
int c_flood, c_vis;
/*
================== SimpleFlood
================== */ void SimpleFlood (portal_t *srcportal, int leafnum) { int i; leaf_t *leaf; portal_t *p; int pnum;
leaf = &leafs[leafnum]; for (i=0 ; i<leaf->portals.Count(); i++) { p = leaf->portals[i]; pnum = p - portals; if ( !CheckBit( srcportal->portalfront, pnum ) ) continue;
if ( CheckBit( srcportal->portalflood, pnum ) ) continue;
SetBit( srcportal->portalflood, pnum ); SimpleFlood (srcportal, p->leaf); } }
/*
============== BasePortalVis ============== */ void BasePortalVis (int iThread, int portalnum) { int j, k; portal_t *tp, *p; float d; winding_t *w; Vector segment; double dist2, minDist2;
// get the portal
p = portals+portalnum;
//
// allocate memory for bitwise vis solutions for this portal
//
p->portalfront = (byte*)malloc (portalbytes); memset (p->portalfront, 0, portalbytes);
p->portalflood = (byte*)malloc (portalbytes); memset (p->portalflood, 0, portalbytes); p->portalvis = (byte*)malloc (portalbytes); memset (p->portalvis, 0, portalbytes); //
// test the given portal against all of the portals in the map
//
for (j=0, tp = portals ; j<g_numportals*2 ; j++, tp++) { // don't test against itself
if (j == portalnum) continue;
//
//
//
w = tp->winding; for (k=0 ; k<w->numpoints ; k++) { d = DotProduct (w->points[k], p->plane.normal) - p->plane.dist; if (d > ON_VIS_EPSILON) break; } if (k == w->numpoints) continue; // no points on front
//
//
//
w = p->winding; for (k=0 ; k<w->numpoints ; k++) { d = DotProduct (w->points[k], tp->plane.normal) - tp->plane.dist; if (d < -ON_VIS_EPSILON) break; } if (k == w->numpoints) continue; // no points on front
//
// if using radius visibility -- check to see if any portal points lie inside of the
// radius given
//
if( g_bUseRadius ) { w = tp->winding; minDist2 = 1024000000.0; // 32000^2
for( k = 0; k < w->numpoints; k++ ) { VectorSubtract( w->points[k], p->origin, segment ); dist2 = ( segment[0] * segment[0] ) + ( segment[1] * segment[1] ) + ( segment[2] * segment[2] ); if( dist2 < minDist2 ) { minDist2 = dist2; } }
if( minDist2 > g_VisRadius ) continue; }
// add current portal to given portal's list of visible portals
SetBit( p->portalfront, j ); } SimpleFlood (p, p->leaf);
p->nummightsee = CountBits (p->portalflood, g_numportals*2); // Msg ("portal %i: %i mightsee\n", portalnum, p->nummightsee);
c_flood += p->nummightsee; }
/*
===============================================================================
This is a second order aproximation
Calculates portalvis bit vector
WAAAAAAY too slow.
=============================================================================== */
/*
================== RecursiveLeafBitFlow
================== */ void RecursiveLeafBitFlow (int leafnum, byte *mightsee, byte *cansee) { portal_t *p; leaf_t *leaf; int i, j; long more; int pnum; byte newmight[MAX_PORTALS/8];
leaf = &leafs[leafnum]; // check all portals for flowing into other leafs
for (i=0 ; i<leaf->portals.Count(); i++) { p = leaf->portals[i]; pnum = p - portals;
// if some previous portal can't see it, skip
if ( !CheckBit( mightsee, pnum ) ) continue;
// if this portal can see some portals we mightsee, recurse
more = 0; for (j=0 ; j<portallongs ; j++) { ((long *)newmight)[j] = ((long *)mightsee)[j] & ((long *)p->portalflood)[j]; more |= ((long *)newmight)[j] & ~((long *)cansee)[j]; }
if (!more) continue; // can't see anything new
SetBit( cansee, pnum );
RecursiveLeafBitFlow (p->leaf, newmight, cansee); } }
/*
============== BetterPortalVis ============== */ void BetterPortalVis (int portalnum) { portal_t *p;
p = portals+portalnum;
RecursiveLeafBitFlow (p->leaf, p->portalflood, p->portalvis);
// build leaf vis information
p->nummightsee = CountBits (p->portalvis, g_numportals*2); c_vis += p->nummightsee; }
|