|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
// ---------------------------------------------------------------------------------------- //
// This is a datatable test case.
// It is run in debug mode when the engine starts to catch any bugs in datatable code.
// This can also serve as a simple example of how datatables work separately from the
// intricacies of the entity system.
// ---------------------------------------------------------------------------------------- //
// This is also a good place to test new code since it's run right when the engine
// starts up. It can also be put into standalone apps easily.
// ---------------------------------------------------------------------------------------- //
// Things it tests:
// - Data transmission integrity.
// - Delta calculation.
// - Strings, floats, vectors, recursive datatables, and ints.
// - Fixed-length arrays.
// - Variable-length arrays.
// - Exclude props.
// - Recursive datatables.
// - Datatable proxies returning false.
// - CUtlVectors of regular types (like floats) and data tables.
// ---------------------------------------------------------------------------------------- //
// Things it does not test:
// - Quantization.
// - Clamping.
// - The entity system's usage of data tables.
// - Stress testing - too many properties, maxing out delta bits.
// - Built-in and custom client and server proxies.
// ---------------------------------------------------------------------------------------- //
// At a high level, the test is setup as such:
// - Server structure and datatable.
// - Client structure and datatable.
// - A function table with a function to modify and compare each element.
// - A function that initializes the server structure and tries random changes to it and
// verifies that the client receives the deltas and changes correctly.
// ---------------------------------------------------------------------------------------- //
// Eventually it would be nice to stress-test the entities with tests for:
// - Misordered proxy callbacks and missing data.
// ---------------------------------------------------------------------------------------- //
#include "quakedef.h"
#include "dt.h"
#include "dt_send.h"
#include "dt_recv.h"
#include "tier0/dbg.h"
#include "dt_utlvector_send.h"
#include "dt_utlvector_recv.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
// If datatables support these again, then uncomment this to have them tested.
//#define SUPPORT_ARRAYS_OF_DATATABLES
#ifdef _DEBUG
class DTTestSub2Sub { public: int m_Int2; };
class DTTestSub2 { public: int m_Int; DTTestSub2Sub m_Sub; };
class CTestStruct { public: int a,b; float f; };
#define MAX_STRUCTARRAY_ELEMENTS 11
#define MAX_FLOATARRAY_ELEMENTS 18
#define MAX_CHARARRAY_ELEMENTS 22
// ------------------------------------------------------------------------------------------- //
// DTTestServerSub and its DataTable.
// ------------------------------------------------------------------------------------------- //
class DTTestServerSub { public: float m_FloatArray[3]; char m_Strings[2][64]; CUtlVector<CTestStruct> m_UtlVectorStruct; CUtlVector<float> m_UtlVectorFloat; CUtlVector<char> m_UtlVectorChar; };
void SendProxy_DTTestServerSubString( const SendProp *pProp, const void *pStruct, const void *pData, DVariant *pOut, int iElement, int objectID ) { SendProxy_StringToString( pProp, pStruct, pData, pOut, iElement, objectID);
}
BEGIN_SEND_TABLE_NOBASE( CTestStruct, DT_TestStruct ) SendPropInt( SENDINFO_NOCHECK( a ) ), SendPropInt( SENDINFO_NOCHECK( b ) ), SendPropFloat( SENDINFO_NOCHECK( f ) ) END_SEND_TABLE()
BEGIN_SEND_TABLE_NOBASE(DTTestServerSub, DT_DTTestSub) // - Auto type conversions (receiving an array of floats into an array of ints).
SendPropArray( SendPropFloat(SENDINFO_NOCHECK(m_FloatArray[0]), 0, SPROP_NOSCALE), m_FloatArray),
SendPropUtlVectorDataTable( m_UtlVectorStruct, MAX_STRUCTARRAY_ELEMENTS, DT_TestStruct ),
SendPropArray( SendPropString(SENDINFO_NOCHECK(m_Strings[0]), 0, SendProxy_DTTestServerSubString), m_Strings ),
SendPropUtlVector( SENDINFO_UTLVECTOR( m_UtlVectorChar ), MAX_CHARARRAY_ELEMENTS, SendPropInt( NULL, 0, sizeof( char ), 0 ) ),
SendPropUtlVector( SENDINFO_UTLVECTOR( m_UtlVectorFloat ), MAX_FLOATARRAY_ELEMENTS, // max elements
SendPropFloat( NULL, 0, 0, 0, SPROP_NOSCALE ) ) END_SEND_TABLE()
BEGIN_SEND_TABLE_NOBASE(DTTestSub2Sub, DT_DTTestSub2Sub) SendPropInt( SENDINFO_NOCHECK( m_Int2 ), 32 ), END_SEND_TABLE()
BEGIN_SEND_TABLE_NOBASE(DTTestSub2, DT_DTTestSub2) SendPropDataTable(SENDINFO_DT(m_Sub), &REFERENCE_SEND_TABLE(DT_DTTestSub2Sub)), SendPropInt( SENDINFO_NOCHECK( m_Int ), 32 ), END_SEND_TABLE()
// ------------------------------------------------------------------------------------------- //
// DTTestServer and its DataTable.
// ------------------------------------------------------------------------------------------- //
class DTTestServer { public: DTTestServerSub m_Sub; DTTestSub2 m_Sub2;
float m_Float;
#if defined( SUPPORT_ARRAYS_OF_DATATABLES )
DTTestServerSub m_SubArray[2]; #endif
Vector m_Vector; char m_String[64]; int m_Int; int m_IntArray[32]; // Note that the server and client array length are different.
char m_CharArray[8];
int m_VLALength; int m_VLA[16]; };
void SendProxy_DTTestServerFloat( const SendProp *pProp, void *pStruct, void *pData, DVariant *pOut, int iElement, int objectID ) { SendProxy_FloatToFloat(pProp, pStruct, pData, pOut, iElement, objectID); }
void SendProxy_DTTestServerVector( const SendProp *pProp, void *pStruct, void *pData, DVariant *pOut, int iElement, int objectID ) { SendProxy_VectorToVector(pProp, pStruct, pData, pOut, iElement, objectID); }
void SendProxy_DTTestServerString( const SendProp *pProp, void *pStruct, void *pData, DVariant *pOut, int iElement, int objectID ) { SendProxy_StringToString(pProp, pStruct, pData, pOut, iElement, objectID); }
void SendProxy_DTTestServerInt( const SendProp *pProp, void *pStruct, void *pData, DVariant *pOut, int iElement, int objectID ) { SendProxy_Int32ToInt32(pProp, pStruct, pData, pOut, iElement, objectID); }
bool g_bSendSub = true; void* SendProxy_DTTestServerSub( const SendProp *pProp, const void *pStruct, const void *pData, CSendProxyRecipients *pRecipients, int objectID ) { if( !g_bSendSub ) return NULL; return SendProxy_DataTableToDataTable( pProp, pStruct, pData, pRecipients, objectID ); } REGISTER_SEND_PROXY_NON_MODIFIED_POINTER( SendProxy_DTTestServerSub );
int ArrayLengthSendProxy_VLALength( const void *pStruct, int objectID ) { DTTestServer *pServer = (DTTestServer*)pStruct; return pServer->m_VLALength; }
BEGIN_SEND_TABLE_NOBASE(DTTestServer, DT_DTTest) SendPropVariableLengthArray( ArrayLengthSendProxy_VLALength, SendPropInt( SENDINFO_NOCHECK( m_VLA[0] ) ), m_VLA ),
// Test exclude props.
SendPropExclude( "DT_DTTest", "m_Int" ), SendPropDataTable(SENDINFO_DT(m_Sub), &REFERENCE_SEND_TABLE(DT_DTTestSub), SendProxy_DTTestServerSub),
SendPropFloat (SENDINFO_NOCHECK(m_Float), 32, SPROP_NOSCALE),
SendPropDataTable(SENDINFO_DT(m_Sub2), &REFERENCE_SEND_TABLE(DT_DTTestSub2)),
SendPropInt (SENDINFO_NOCHECK(m_Int), 23, SPROP_UNSIGNED), SendPropExclude( "DT_DTTestSub", "m_FloatArray" ),
SendPropString(SENDINFO_NOCHECK(m_String)),
SendPropArray( SendPropInt(SENDINFO_NOCHECK(m_CharArray[0]), 8), m_CharArray),
SendPropArray( SendPropInt (SENDINFO_NOCHECK(m_IntArray[0]), 23, SPROP_UNSIGNED), m_IntArray),
#if defined( SUPPORT_ARRAYS_OF_DATATABLES )
SendPropArray( SendPropDataTable(SENDINFO_DT(m_SubArray[0]), &REFERENCE_SEND_TABLE(DT_DTTestSub), SendProxy_DTTestServerSub), m_SubArray ), #endif
SendPropVector(SENDINFO_NOCHECK(m_Vector), 32, SPROP_NOSCALE) END_SEND_TABLE()
// ------------------------------------------------------------------------------------------- //
// DTTestClientSub and its DataTable.
// ------------------------------------------------------------------------------------------- //
class DTTestClientSub { public: char m_Strings[2][64]; float m_FloatArray[3];
CUtlVector<CTestStruct> m_UtlVectorStruct; CUtlVector<float> m_UtlVectorFloat; CUtlVector<char> m_UtlVectorChar; };
void RecvProxy_DTTestClientSubString( const CRecvProxyData *pData, void *pStruct, void *pOut ) { RecvProxy_StringToString( pData, pStruct, pOut ); }
BEGIN_RECV_TABLE_NOBASE( CTestStruct, DT_TestStruct ) RecvPropInt( RECVINFO( a ) ), RecvPropInt( RECVINFO( b ) ), RecvPropFloat( RECVINFO( f ) ), END_RECV_TABLE()
BEGIN_RECV_TABLE_NOBASE(DTTestClientSub, DT_DTTestSub) // - Auto type conversions (receiving an array of floats into an array of ints).
RecvPropArray( RecvPropFloat(RECVINFO(m_FloatArray[0])), m_FloatArray),
RecvPropUtlVector( RECVINFO_UTLVECTOR( m_UtlVectorFloat ), MAX_FLOATARRAY_ELEMENTS, RecvPropFloat(NULL,0,0) ), RecvPropUtlVectorDataTable( m_UtlVectorStruct, MAX_STRUCTARRAY_ELEMENTS, DT_TestStruct ), RecvPropUtlVector( RECVINFO_UTLVECTOR( m_UtlVectorChar ), MAX_CHARARRAY_ELEMENTS, RecvPropInt( NULL, 0, sizeof( char ) ) ),
RecvPropArray( RecvPropString(RECVINFO(m_Strings[0]), 0, RecvProxy_DTTestClientSubString), m_Strings), END_RECV_TABLE()
BEGIN_RECV_TABLE_NOBASE(DTTestSub2Sub, DT_DTTestSub2Sub) RecvPropInt( RECVINFO( m_Int2 ), 32 ), END_RECV_TABLE()
BEGIN_RECV_TABLE_NOBASE(DTTestSub2, DT_DTTestSub2) RecvPropDataTable(RECVINFO_DT(m_Sub), 0, &REFERENCE_RECV_TABLE(DT_DTTestSub2Sub)), RecvPropInt( RECVINFO( m_Int ) ), END_RECV_TABLE()
// ------------------------------------------------------------------------------------------- //
// DTTestClient and DataTable.
// ------------------------------------------------------------------------------------------- //
class DTTestClient { public: DTTestClientSub m_Sub; long m_Guard1; DTTestSub2 m_Sub2; long m_Guard2;
#if defined( SUPPORT_ARRAYS_OF_DATATABLES )
DTTestClientSub m_SubArray[2]; #endif
long m_Guard3;
float m_Float; long m_Guard4;
Vector m_Vector; long m_Guard5;
char m_String[64]; long m_Guard6;
int m_Int; long m_Guard7;
int m_IntArray[32]; // Note that the server and client array length are different.
long m_Guard8;
char m_CharArray[8]; long m_Guard9;
int m_VLALength; int m_VLA[16]; };
void RecvProxyArrayLength_VLA( void *pStruct, int objectID, int currentArrayLength ) { DTTestClient *pClient = (DTTestClient*)pStruct; pClient->m_VLALength = currentArrayLength; }
BEGIN_RECV_TABLE_NOBASE(DTTestClient, DT_DTTest)
#if defined( SUPPORT_ARRAYS_OF_DATATABLES )
RecvPropArray( RecvPropDataTable(RECVINFO_DT(m_SubArray[0]), 0, &REFERENCE_RECV_TABLE(DT_DTTestSub), RecvProxy_DTTestClientSub), m_SubArray ), #endif
RecvPropFloat (RECVINFO(m_Float), 0),
RecvPropDataTable(RECVINFO_DT(m_Sub), 0, &REFERENCE_RECV_TABLE(DT_DTTestSub)), RecvPropDataTable(RECVINFO_DT(m_Sub2), 0, &REFERENCE_RECV_TABLE(DT_DTTestSub2)),
// - Arrays with and without the SPROP_ONEBITDELTA flag.
RecvPropArray( RecvPropInt (RECVINFO(m_CharArray[0]), 8), m_CharArray),
RecvPropVector(RECVINFO(m_Vector), 0), RecvPropString(RECVINFO_STRING(m_String), 0), RecvPropInt (RECVINFO(m_Int), 0),
// - Arrays with and without the SPROP_ONEBITDELTA flag.
// - Array size mismatches between the client and the server.
RecvPropArray( RecvPropInt (RECVINFO(m_IntArray[0]), 0), m_IntArray),
RecvPropInt( RECVINFO( m_VLALength ) ),
RecvPropVariableLengthArray( RecvProxyArrayLength_VLA, RecvPropInt( RECVINFO( m_VLA[0] ) ), m_VLA ) END_RECV_TABLE()
// ------------------------------------------------------------------------------------------- //
// Functions that act on the data.
// ------------------------------------------------------------------------------------------- //
typedef bool (*CompareElementFn)(DTTestClient *pClient, DTTestServer *pServer); typedef void (*RandomlyChangeElementFn)(DTTestServer *pServer);
float FRand(double minVal, double maxVal) { return (float)(((double)rand() / VALVE_RAND_MAX) * (maxVal - minVal) + minVal); }
void RandomlyChangeStringGeneric(char *str, int size) { for(int i=0; i < size-1; i++) str[i] = (char)rand();
str[size-1] = 0; }
bool CompareTestSubString0(DTTestClient *pClient, DTTestServer *pServer) { return strcmp(pClient->m_Sub.m_Strings[0], pServer->m_Sub.m_Strings[0]) == 0; } void RandomlyChangeSubString0(DTTestServer *pServer) { if( g_bSendSub ) RandomlyChangeStringGeneric(pServer->m_Sub.m_Strings[0], sizeof(pServer->m_Sub.m_Strings[0])); }
bool CompareTestSubString1(DTTestClient *pClient, DTTestServer *pServer) { return strcmp(pClient->m_Sub.m_Strings[1], pServer->m_Sub.m_Strings[1]) == 0; } void RandomlyChangeSubString1(DTTestServer *pServer) { if( g_bSendSub ) RandomlyChangeStringGeneric(pServer->m_Sub.m_Strings[1], sizeof(pServer->m_Sub.m_Strings[1])); }
bool CompareFloat(DTTestClient *pClient, DTTestServer *pServer) { return pClient->m_Float == pServer->m_Float; } void RandomlyChangeFloat(DTTestServer *pServer) { pServer->m_Float = FRand(-500000, 500000); }
bool CompareVector(DTTestClient *pClient, DTTestServer *pServer) { return pClient->m_Vector.x == pServer->m_Vector.x && pClient->m_Vector.y == pServer->m_Vector.y && pClient->m_Vector.z == pServer->m_Vector.z; } void RandomlyChangeVector(DTTestServer *pServer) { pServer->m_Vector.x = FRand(-500000, 500000); pServer->m_Vector.y = FRand(-500000, 500000); pServer->m_Vector.z = FRand(-500000, 500000); }
bool CompareString(DTTestClient *pClient, DTTestServer *pServer) { return strcmp(pClient->m_String, pServer->m_String) == 0; } void RandomlyChangeString(DTTestServer *pServer) { //memset( pServer->m_String, , sizeof( pServer->m_String ) );
Q_strncpy( pServer->m_String, "a", sizeof( pServer->m_String ) );
//RandomlyChangeStringGeneric(pServer->m_String, sizeof(pServer->m_String));
}
bool CompareInt(DTTestClient *pClient, DTTestServer *pServer) { // (m_Int is the exclude prop we're testing)
// return pClient->m_Int == pServer->m_Int;
return true; } void RandomlyChangeInt(DTTestServer *pServer) { pServer->m_Int = (int)rand(); }
bool CompareIntArray(DTTestClient *pClient, DTTestServer *pServer) { // Just verify however much of the data we can.
int leastElements = (sizeof(pClient->m_IntArray) < sizeof(pServer->m_IntArray)) ? (sizeof(pClient->m_IntArray)/sizeof(pClient->m_IntArray[0])) : (sizeof(pServer->m_IntArray)/sizeof(pServer->m_IntArray[0])); return memcmp(pClient->m_IntArray, pServer->m_IntArray, leastElements*sizeof(int)) == 0; } void RandomlyChangeIntArray(DTTestServer *pServer) { // Change a random subset of the array.
int nElements = sizeof(pServer->m_IntArray) / sizeof(pServer->m_IntArray[0]); int nChanges = 4 + rand() % nElements; for(int i=0; i < nChanges; i++) { pServer->m_IntArray[rand() % nElements] = (int)rand(); } }
bool CompareFloatArray(DTTestClient *pClient, DTTestServer *pServer) { // m_FloatArray is an ExcludeProp.
/*
int leastElements = (sizeof(pClient->m_Sub.m_FloatArray) < sizeof(pServer->m_Sub.m_FloatArray)) ? (sizeof(pClient->m_Sub.m_FloatArray)/sizeof(pClient->m_Sub.m_FloatArray[0])) : (sizeof(pServer->m_Sub.m_FloatArray)/sizeof(pServer->m_Sub.m_FloatArray[0])); for(int i=0; i < leastElements; i++) { if(pClient->m_Sub.m_FloatArray[i] != pServer->m_Sub.m_FloatArray[i]) return false; } */ return true; } void RandomlyChangeFloatArray(DTTestServer *pServer) { // Change a random subset of the array.
int nElements = sizeof(pServer->m_Sub.m_FloatArray) / sizeof(pServer->m_Sub.m_FloatArray[0]); int nChanges = 4 + rand() % nElements; for(int i=0; i < nChanges; i++) { pServer->m_Sub.m_FloatArray[rand() % nElements] = (float)rand() * 0.943123f; } }
bool CompareCharArray(DTTestClient *pClient, DTTestServer *pServer) { return memcmp(pClient->m_CharArray, pServer->m_CharArray, sizeof(pClient->m_CharArray)) == 0; } void RandomlyChangeCharArray(DTTestServer *pServer) { for(int i=0; i < (sizeof(pServer->m_CharArray) / sizeof(pServer->m_CharArray[0])); i++) pServer->m_CharArray[i] = (char)rand(); }
bool CompareSubArray(DTTestClient *pClient, DTTestServer *pServer ) { #if defined( SUPPORT_ARRAYS_OF_DATATABLES )
for( int i=0; i < 2; i++ ) { for( int z=0; z < sizeof(pServer->m_SubArray[0].m_FloatArray) / sizeof(pServer->m_SubArray[0].m_FloatArray[0]); z++ ) { if( pServer->m_SubArray[i].m_FloatArray[z] != pClient->m_SubArray[i].m_FloatArray[z] ) return false; } for( int iString=0; iString < sizeof(pServer->m_SubArray[0].m_Strings) / sizeof(pServer->m_SubArray[0].m_Strings[0]); iString++ ) { for( z=0; z < sizeof(pServer->m_SubArray[0].m_Strings[0]) / sizeof(pServer->m_SubArray[0].m_Strings[0][0]); z++ ) { if( pServer->m_SubArray[i].m_Strings[iString][z] != pClient->m_SubArray[i].m_Strings[iString][z] ) return false; // Check for null termination.
if( pServer->m_SubArray[i].m_Strings[iString][z] == 0 ) break; } } } #endif
return true; }
void RandomlyChangeSubArray(DTTestServer *pServer) { #if defined( SUPPORT_ARRAYS_OF_DATATABLES )
if( !g_bSendSub ) return;
for( int i=0; i < 2; i++ ) { int index = rand() & 1; for( int z=0; z < sizeof(pServer->m_SubArray[0].m_FloatArray) / sizeof(pServer->m_SubArray[0].m_FloatArray[0]); z++ ) pServer->m_SubArray[index].m_FloatArray[z] = rand() * 0.932f; for( int iString=0; iString < sizeof(pServer->m_SubArray[0].m_Strings) / sizeof(pServer->m_SubArray[0].m_Strings[0]); iString++ ) { int stringLen = sizeof(pServer->m_SubArray[0].m_Strings[0]) / sizeof(pServer->m_SubArray[0].m_Strings[0][0]); for( z=0; z < stringLen; z++ ) pServer->m_SubArray[index].m_Strings[iString][z] = (char)rand();
// null-terminate it
pServer->m_SubArray[index].m_Strings[iString][stringLen-1] = 0; } } #endif
}
bool CompareSub2( DTTestClient *pClient, DTTestServer *pServer ) { return memcmp( &pClient->m_Sub2, &pServer->m_Sub2, sizeof( pClient->m_Sub2 ) ) == 0; }
void RandomlyChangeSub2( DTTestServer *pServer ) { pServer->m_Sub2.m_Int = rand(); }
bool CompareSub2Sub( DTTestClient *pClient, DTTestServer *pServer ) { return pClient->m_Sub2.m_Sub.m_Int2 == pServer->m_Sub2.m_Sub.m_Int2; }
void RandomlyChangeSub2Sub( DTTestServer *pServer ) { pServer->m_Sub2.m_Sub.m_Int2 = rand(); }
bool CompareVLA( DTTestClient *pClient, DTTestServer *pServer ) { if ( pClient->m_VLALength != pServer->m_VLALength ) return false;
for ( int i=0; i < pClient->m_VLALength; i++ ) { if ( pClient->m_VLA[i] != pServer->m_VLA[i] ) return false; }
return true; }
void RandomlyChangeVLA( DTTestServer *pServer ) { pServer->m_VLALength = rand() % ARRAYSIZE( pServer->m_VLA ); for ( int i=0; i < pServer->m_VLALength; i++ ) pServer->m_VLA[i] = rand() * rand(); }
bool CompareUtlVectorStruct( DTTestClient *pClient, DTTestServer *pServer ) { CUtlVector<CTestStruct> &c = pClient->m_Sub.m_UtlVectorStruct; CUtlVector<CTestStruct> &s = pServer->m_Sub.m_UtlVectorStruct;
if ( c.Count() != s.Count() ) return false;
for ( int i=0; i < c.Count(); i++ ) { if ( c[i].a != s[i].a || c[i].b != s[i].b || c[i].f != s[i].f ) return false; } return true; }
void RandomlyChangeUtlVectorStruct( DTTestServer *pServer ) { if ( !g_bSendSub ) return;
int nElements = rand() % MAX_STRUCTARRAY_ELEMENTS; pServer->m_Sub.m_UtlVectorStruct.SetSize( nElements ); for ( int i=0; i < nElements; i++ ) { pServer->m_Sub.m_UtlVectorStruct[i].a = rand(); pServer->m_Sub.m_UtlVectorStruct[i].b = rand(); pServer->m_Sub.m_UtlVectorStruct[i].f = rand(); } }
bool CompareUtlVectorFloat( DTTestClient *pClient, DTTestServer *pServer ) { CUtlVector<float> &c = pClient->m_Sub.m_UtlVectorFloat; CUtlVector<float> &s = pServer->m_Sub.m_UtlVectorFloat;
if ( c.Count() != s.Count() ) return false;
for ( int i=0; i < c.Count(); i++ ) { if ( c[i] != s[i] ) return false; } return true; }
void RandomlyChangeUtlVectorChar( DTTestServer *pServer ) { if ( !g_bSendSub ) return;
int nElements = rand() % MAX_CHARARRAY_ELEMENTS; pServer->m_Sub.m_UtlVectorChar.SetSize( nElements ); for ( int i=0; i < nElements; i++ ) pServer->m_Sub.m_UtlVectorChar[i] = (char)rand(); }
bool CompareUtlVectorChar( DTTestClient *pClient, DTTestServer *pServer ) { CUtlVector<char> &c = pClient->m_Sub.m_UtlVectorChar; CUtlVector<char> &s = pServer->m_Sub.m_UtlVectorChar;
if ( c.Count() != s.Count() ) return false;
for ( int i=0; i < c.Count(); i++ ) { if ( c[i] != s[i] ) return false; } return true; }
void RandomlyChangeUtlVectorFloat( DTTestServer *pServer ) { if ( !g_bSendSub ) return;
int nElements = rand() % MAX_FLOATARRAY_ELEMENTS; pServer->m_Sub.m_UtlVectorFloat.SetSize( nElements ); for ( int i=0; i < nElements; i++ ) pServer->m_Sub.m_UtlVectorFloat[i] = rand() / 0.93; }
typedef struct { CompareElementFn m_CompareFn; RandomlyChangeElementFn m_ChangeFn; } VarTestInfo;
VarTestInfo g_VarTestInfos[] = { {CompareVLA, RandomlyChangeVLA}, {CompareUtlVectorStruct,RandomlyChangeUtlVectorStruct}, {CompareUtlVectorFloat, RandomlyChangeUtlVectorFloat}, {CompareUtlVectorChar, RandomlyChangeUtlVectorChar}, {CompareFloat, RandomlyChangeFloat}, {CompareSub2, RandomlyChangeSub2}, {CompareSub2Sub, RandomlyChangeSub2Sub}, {CompareInt, RandomlyChangeInt}, {CompareFloatArray, RandomlyChangeFloatArray}, {CompareTestSubString0, RandomlyChangeSubString0}, {CompareTestSubString1, RandomlyChangeSubString1}, {CompareCharArray, RandomlyChangeCharArray}, {CompareVector, RandomlyChangeVector}, {CompareString, RandomlyChangeString}, {CompareIntArray, RandomlyChangeIntArray}, {CompareSubArray, RandomlyChangeSubArray} }; #define NUMVARTESTINFOS (sizeof(g_VarTestInfos) / sizeof(g_VarTestInfos[0]))
int g_GuardOffsets[] = { offsetof( DTTestClient, m_Guard1 ), offsetof( DTTestClient, m_Guard2 ), offsetof( DTTestClient, m_Guard3 ), offsetof( DTTestClient, m_Guard4 ), offsetof( DTTestClient, m_Guard5 ), offsetof( DTTestClient, m_Guard6 ), offsetof( DTTestClient, m_Guard7 ), offsetof( DTTestClient, m_Guard8 ), offsetof( DTTestClient, m_Guard9 ) }; int g_nGuardOffsets = sizeof( g_GuardOffsets ) / sizeof( g_GuardOffsets[0] );
void SetGuardBytes( DTTestClient *pClient ) { for( int i=0; i < g_nGuardOffsets; i++ ) { unsigned char *pDest = ((unsigned char *)pClient) + g_GuardOffsets[i]; *((long*)pDest) = i; } }
void CheckGuardBytes( DTTestClient *pClient ) { for( int i=0; i < g_nGuardOffsets; i++ ) { unsigned char *pDest = ((unsigned char *)pClient) + g_GuardOffsets[i]; Assert( *((long*)pDest) == i ); } }
// ------------------------------------------------------------------------------------------- //
// TEST CODE
// ------------------------------------------------------------------------------------------- //
bool CompareDTTest(DTTestClient *pClient, DTTestServer *pServer) { for(int iVar=0; iVar < NUMVARTESTINFOS; iVar++) { if(!g_VarTestInfos[iVar].m_CompareFn(pClient, pServer)) { Assert( !"CompareDTTest: comparison failed. There is a new datatable bug." ); return false; } } return true; }
bool WriteSendTable_R( SendTable *pTable, bf_write &bfWrite, bool bNeedsDecoder ) { if( pTable->GetWriteFlag() ) return true;
pTable->SetWriteFlag( true );
// Send the version with the exclude props.
bfWrite.WriteOneBit( 1 );
bfWrite.WriteOneBit( bNeedsDecoder?1:0 ); if( !SendTable_WriteInfos( pTable, &bfWrite ) ) return false;
for( int i=0; i < pTable->m_nProps; i++ ) { SendProp *pProp = &pTable->m_pProps[i];
if( pProp->m_Type == DPT_DataTable ) if( !WriteSendTable_R( pProp->GetDataTable(), bfWrite, false ) ) return false; }
return true; }
void RunDataTableTest() { RecvTable *pRecvTable = &REFERENCE_RECV_TABLE(DT_DTTest); SendTable *pSendTable = &REFERENCE_SEND_TABLE(DT_DTTest);
ALIGN4 unsigned char buf[4096] ALIGN4_POST; bf_write x = bf_write(buf, 4096); bf_read y = bf_read(buf, 4096); x.WriteUBitLong(1, 1); x.WriteUBitLong(3, 2); x.WriteUBitLong(7, 3); x.WriteUBitLong(0x31415926, 32); Verify( y.ReadOneBit() == 1 ); Verify( y.ReadUBitLong(5) == 7*4+3 ); Verify( y.ReadUBitLong(32) == 0x31415926 );
// Initialize the send and receive modules.
SendTable_Init( &pSendTable, 1 ); RecvTable_Init( &pRecvTable, 1 );
pSendTable->SetWriteFlag( false ); // Send DataTable info to the client.
ALIGN4 unsigned char commBuf[8192] ALIGN4_POST; bf_write bfWrite( "RunDataTableTest->commBuf", commBuf, sizeof(commBuf) ); if( !WriteSendTable_R( pSendTable, bfWrite, true ) ) { Assert( !"RunDataTableTest: SendTable_SendInfo failed." ); } bfWrite.WriteOneBit(0);
// Receive the SendTable's info.
bf_read bfRead( "RunDataTableTest->bfRead", commBuf, sizeof(commBuf)); while( bfRead.ReadOneBit() ) { bool bNeedsDecoder = bfRead.ReadOneBit()!=0;
if( !RecvTable_RecvClassInfos( &bfRead, bNeedsDecoder ) ) { Assert( !"RunDataTableTest: RecvTable_ReadInfos failed." ); continue; } }
// Register our receive table.
if( !RecvTable_CreateDecoders( NULL, false ) ) { Assert(false); }
// Setup the data with all zeros.
DTTestServer dtServer; DTTestClient dtClient;
ALIGN4 unsigned char prevEncoded[4096] ALIGN4_POST; ALIGN4 unsigned char fullEncoded[4096] ALIGN4_POST;
memset(&dtServer, 0, sizeof(dtServer)); memset(&dtClient, 0, sizeof(dtClient)); memset(prevEncoded, 0, sizeof(prevEncoded));
SetGuardBytes( &dtClient );
// Now loop around, changing the data a little bit each time and send/recv deltas.
int nIterations = 25; for( int iIteration=0; iIteration < nIterations; iIteration++ ) { // Change the server's data.
g_bSendSub = true; if( (iIteration % 5) == 0 ) { g_bSendSub = false; // every 8th time, don't send the subtable
} if( (iIteration & 3) == 0 ) { // Every once in a while, change ALL the properties.
for( int iChange=0; iChange < NUMVARTESTINFOS; iChange++ ) g_VarTestInfos[iChange].m_ChangeFn( &dtServer ); } else { int nChanges = 3 + rand() % NUMVARTESTINFOS; for( int iChange=0; iChange < nChanges; iChange++ ) { int iInfo = rand() % NUMVARTESTINFOS; g_VarTestInfos[iInfo].m_ChangeFn( &dtServer ); } }
// Fully encode it.
bf_write bfFullEncoded( "RunDataTableTest->bfFullEncoded", fullEncoded, sizeof(fullEncoded) ); if( !SendTable_Encode( pSendTable, &dtServer, &bfFullEncoded, -1, NULL ) ) { Assert(false); }
ALIGN4 unsigned char deltaEncoded[4096] ALIGN4_POST; bf_write bfDeltaEncoded( "RunDataTableTest->bfDeltaEncoded", deltaEncoded, sizeof(deltaEncoded) ); if ( iIteration == 0 ) { // On the first iteration, just write the whole state.
if( !SendTable_Encode( pSendTable, &dtServer, &bfDeltaEncoded, -1, NULL ) ) { Assert( false ); } } else { // Figure out the delta between the newly encoded one and the previously encoded one.
ALIGN4 int deltaProps[MAX_DATATABLE_PROPS] ALIGN4_POST;
bf_read fullEncodedRead( "RunDataTableTest->fullEncodedRead", fullEncoded, sizeof( fullEncoded ), bfFullEncoded.GetNumBitsWritten() ); bf_read prevEncodedRead( "RunDataTableTest->prevEncodedRead", prevEncoded, sizeof( prevEncoded ) );
int nDeltaProps = SendTable_CalcDelta( pSendTable, prevEncoded, sizeof( prevEncoded ) * 8, fullEncoded, bfFullEncoded.GetNumBitsWritten(), deltaProps, ARRAYSIZE( deltaProps ), -1 ); Assert( nDeltaProps != -1 ); // BAD: buffer overflow
// Reencode with just the delta. This is what is actually sent to the client.
SendTable_WritePropList( pSendTable, fullEncoded, bfFullEncoded.GetNumBitsWritten(), &bfDeltaEncoded, -1111, deltaProps, nDeltaProps ); }
memcpy( prevEncoded, fullEncoded, sizeof( prevEncoded ) );
// This step isn't necessary to have the client decode the data but it's here to test
// RecvTable_CopyEncoding (and RecvTable_MergeDeltas). This call should just make an exact
// copy of the encoded data.
ALIGN4 unsigned char copyEncoded[4096] ALIGN4_POST; bf_read bfReadDeltaEncoded( "RunDataTableTest->bfReadDeltaEncoded", deltaEncoded, sizeof( deltaEncoded ) ); bf_write bfCopyEncoded( "RunDataTableTest->bfCopyEncoded", copyEncoded, sizeof(copyEncoded) );
RecvTable_CopyEncoding( pRecvTable, &bfReadDeltaEncoded, &bfCopyEncoded, -1 ); // Decode..
bf_read bfDecode( "RunDataTableTest->copyEncoded", copyEncoded, sizeof( copyEncoded ) ); if(!RecvTable_Decode(pRecvTable, &dtClient, &bfDecode, 1111)) { Assert(false); }
// Make sure it didn't go into memory it shouldn't have.
CheckGuardBytes( &dtClient );
// Verify that only the changed properties were sent and that they were received correctly.
CompareDTTest( &dtClient, &dtServer ); }
SendTable_Term(); RecvTable_Term(); }
#endif
|