|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include "render_pch.h"
#include "gl_lightmap.h"
#include "view.h"
#include "gl_cvars.h"
#include "zone.h"
#include "gl_water.h"
#include "r_local.h"
#include "gl_model_private.h"
#include "mathlib/bumpvects.h"
#include "gl_matsysiface.h"
#include <float.h>
#include "materialsystem/imaterialsystemhardwareconfig.h"
#include "materialsystem/imesh.h"
#include "tier0/dbg.h"
#include "tier0/vprof.h"
#include "tier1/callqueue.h"
#include "lightcache.h"
#include "cl_main.h"
#include "materialsystem/imaterial.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// globals
//-----------------------------------------------------------------------------
// Only enable this if you are testing lightstyle performance.
//#define UPDATE_LIGHTSTYLES_EVERY_FRAME
ALIGN128 Vector4D blocklights[NUM_BUMP_VECTS+1][ MAX_LIGHTMAP_DIM_INCLUDING_BORDER * MAX_LIGHTMAP_DIM_INCLUDING_BORDER ];
ConVar r_avglightmap( "r_avglightmap", "0", FCVAR_CHEAT | FCVAR_MATERIAL_SYSTEM_THREAD ); ConVar r_maxdlights( "r_maxdlights", "32" ); extern ConVar r_unloadlightmaps; extern bool g_bHunkAllocLightmaps;
static int r_dlightvisible; static int r_dlightvisiblethisframe; static int s_nVisibleDLightCount; static int s_nMaxVisibleDLightCount;
//-----------------------------------------------------------------------------
// Visible, not visible DLights
//-----------------------------------------------------------------------------
void R_MarkDLightVisible( int dlight ) { if ( (r_dlightvisible & ( 1 << dlight )) == 0 ) { ++s_nVisibleDLightCount; r_dlightvisible |= 1 << dlight; } }
void R_MarkDLightNotVisible( int dlight ) { if ( r_dlightvisible & ( 1 << dlight )) { --s_nVisibleDLightCount; r_dlightvisible &= ~( 1 << dlight ); } }
//-----------------------------------------------------------------------------
// Must call these at the start + end of rendering each view
//-----------------------------------------------------------------------------
void R_DLightStartView() { r_dlightvisiblethisframe = 0; s_nMaxVisibleDLightCount = r_maxdlights.GetInt(); }
void R_DLightEndView() { if ( !g_bActiveDlights ) return; for( int lnum=0 ; lnum<MAX_DLIGHTS; lnum++ ) { if ( r_dlightvisiblethisframe & ( 1 << lnum )) continue;
R_MarkDLightNotVisible( lnum ); } }
//-----------------------------------------------------------------------------
// Can we use another dynamic light, or is it just too expensive?
//-----------------------------------------------------------------------------
bool R_CanUseVisibleDLight( int dlight ) { r_dlightvisiblethisframe |= (1 << dlight);
if ( r_dlightvisible & ( 1 << dlight ) ) return true;
if ( s_nVisibleDLightCount >= s_nMaxVisibleDLightCount ) return false;
R_MarkDLightVisible( dlight ); return true; }
//-----------------------------------------------------------------------------
// Adds a single dynamic light
//-----------------------------------------------------------------------------
static bool AddSingleDynamicLight( dlight_t& dl, SurfaceHandle_t surfID, const Vector &lightOrigin, float perpDistSq, float lightRadiusSq ) { // transform the light into brush local space
Vector local; // Spotlight early outs...
if (dl.m_OuterAngle) { if (dl.m_OuterAngle < 180.0f) { // Can't light anything from the rear...
if (DotProduct(dl.m_Direction, MSurf_Plane( surfID ).normal) >= 0.0f) return false; } }
// Transform the light center point into (u,v) space of the lightmap
mtexinfo_t* tex = MSurf_TexInfo( surfID ); local[0] = DotProduct (lightOrigin, tex->lightmapVecsLuxelsPerWorldUnits[0].AsVector3D()) + tex->lightmapVecsLuxelsPerWorldUnits[0][3]; local[1] = DotProduct (lightOrigin, tex->lightmapVecsLuxelsPerWorldUnits[1].AsVector3D()) + tex->lightmapVecsLuxelsPerWorldUnits[1][3];
// Now put the center points into the space of the lightmap rectangle
// defined by the lightmapMins + lightmapExtents
local[0] -= MSurf_LightmapMins( surfID )[0]; local[1] -= MSurf_LightmapMins( surfID )[1]; // Figure out the quadratic attenuation factor...
Vector intensity; float lightStyleValue = LightStyleValue( dl.style ); intensity[0] = TexLightToLinear( dl.color.r, dl.color.exponent ) * lightStyleValue; intensity[1] = TexLightToLinear( dl.color.g, dl.color.exponent ) * lightStyleValue; intensity[2] = TexLightToLinear( dl.color.b, dl.color.exponent ) * lightStyleValue;
float minlight = fpmax( g_flMinLightingValue, dl.minlight ); float ooQuadraticAttn = lightRadiusSq * minlight; float ooRadiusSq = 1.0f / lightRadiusSq;
// Compute a color at each luxel
// We want to know the square distance from luxel center to light
// so we can compute an 1/r^2 falloff in light color
int smax = MSurf_LightmapExtents( surfID )[0] + 1; int tmax = MSurf_LightmapExtents( surfID )[1] + 1; for (int t=0; t<tmax; ++t) { float td = (local[1] - t) * tex->worldUnitsPerLuxel; for (int s=0; s<smax; ++s) { float sd = (local[0] - s) * tex->worldUnitsPerLuxel;
float inPlaneDistSq = sd * sd + td * td; float totalDistSq = inPlaneDistSq + perpDistSq; if (totalDistSq < lightRadiusSq) { // at least all floating point only happens when a luxel is lit.
float scale = (totalDistSq != 0.0f) ? ooQuadraticAttn / totalDistSq : 1.0f;
// Apply a little extra attenuation
scale *= (1.0f - totalDistSq * ooRadiusSq);
if (scale > 2.0f) scale = 2.0f;
int idx = t*smax + s;
// Compute the base lighting just as is done in the non-bump case...
blocklights[0][idx][0] += scale * intensity[0]; blocklights[0][idx][1] += scale * intensity[1]; blocklights[0][idx][2] += scale * intensity[2]; } } } return true; }
//-----------------------------------------------------------------------------
// Adds a dynamic light to the bumped lighting
//-----------------------------------------------------------------------------
static void AddSingleDynamicLightToBumpLighting( dlight_t& dl, SurfaceHandle_t surfID, const Vector &lightOrigin, float perpDistSq, float lightRadiusSq, Vector* pBumpBasis, const Vector& luxelBasePosition ) { Vector local; // FIXME: For now, only elights can be spotlights
// the lightmap computation could get expensive for spotlights...
Assert( dl.m_OuterAngle == 0.0f );
// Transform the light center point into (u,v) space of the lightmap
mtexinfo_t *pTexInfo = MSurf_TexInfo( surfID ); local[0] = DotProduct (lightOrigin, pTexInfo->lightmapVecsLuxelsPerWorldUnits[0].AsVector3D()) + pTexInfo->lightmapVecsLuxelsPerWorldUnits[0][3]; local[1] = DotProduct (lightOrigin, pTexInfo->lightmapVecsLuxelsPerWorldUnits[1].AsVector3D()) + pTexInfo->lightmapVecsLuxelsPerWorldUnits[1][3];
// Now put the center points into the space of the lightmap rectangle
// defined by the lightmapMins + lightmapExtents
local[0] -= MSurf_LightmapMins( surfID )[0]; local[1] -= MSurf_LightmapMins( surfID )[1];
// Figure out the quadratic attenuation factor...
Vector intensity; float lightStyleValue = LightStyleValue( dl.style ); intensity[0] = TexLightToLinear( dl.color.r, dl.color.exponent ) * lightStyleValue; intensity[1] = TexLightToLinear( dl.color.g, dl.color.exponent ) * lightStyleValue; intensity[2] = TexLightToLinear( dl.color.b, dl.color.exponent ) * lightStyleValue;
float minlight = fpmax( g_flMinLightingValue, dl.minlight ); float ooQuadraticAttn = lightRadiusSq * minlight; float ooRadiusSq = 1.0f / lightRadiusSq;
// The algorithm here is necessary to make dynamic lights live in the
// same world as the non-bumped dynamic lights. Therefore, we compute
// the intensity of the flat lightmap the exact same way here as when
// we've got a non-bumped surface.
// Then, I compute an actual light direction vector per luxel (FIXME: !!expensive!!)
// and compute what light would have to come in along that direction
// in order to produce the same illumination on the flat lightmap. That's
// computed by dividing the flat lightmap color by n dot l.
Vector lightDirection(0, 0, 0), texelWorldPosition; #if 1
bool useLightDirection = (dl.m_OuterAngle != 0.0f) && (fabs(dl.m_Direction.LengthSqr() - 1.0f) < 1e-3); if (useLightDirection) VectorMultiply( dl.m_Direction, -1.0f, lightDirection ); #endif
// Since there's a scale factor used when going from world to luxel,
// we gotta undo that scale factor when going from luxel to world
float fixupFactor = pTexInfo->worldUnitsPerLuxel * pTexInfo->worldUnitsPerLuxel;
// Compute a color at each luxel
// We want to know the square distance from luxel center to light
// so we can compute an 1/r^2 falloff in light color
int smax = MSurf_LightmapExtents( surfID )[0] + 1; int tmax = MSurf_LightmapExtents( surfID )[1] + 1; for (int t=0; t<tmax; ++t) { float td = (local[1] - t) * pTexInfo->worldUnitsPerLuxel; // Move along the v direction
VectorMA( luxelBasePosition, t * fixupFactor, pTexInfo->lightmapVecsLuxelsPerWorldUnits[1].AsVector3D(), texelWorldPosition );
for (int s=0; s<smax; ++s) { float sd = (local[0] - s) * pTexInfo->worldUnitsPerLuxel;
float inPlaneDistSq = sd * sd + td * td; float totalDistSq = inPlaneDistSq + perpDistSq;
if (totalDistSq < lightRadiusSq) { // at least all floating point only happens when a luxel is lit.
float scale = (totalDistSq != 0.0f) ? ooQuadraticAttn / totalDistSq : 1.0f;
// Apply a little extra attenuation
scale *= (1.0f - totalDistSq * ooRadiusSq);
if (scale > 2.0f) scale = 2.0f;
int idx = t*smax + s;
// Compute the base lighting just as is done in the non-bump case...
VectorMA( blocklights[0][idx].AsVector3D(), scale, intensity, blocklights[0][idx].AsVector3D() );
#if 1
if (!useLightDirection) { VectorSubtract( lightOrigin, texelWorldPosition, lightDirection ); VectorNormalize( lightDirection ); } float lDotN = DotProduct( lightDirection, MSurf_Plane( surfID ).normal ); if (lDotN < 1e-3) lDotN = 1e-3; scale /= lDotN;
int i; for( i = 1; i < NUM_BUMP_VECTS + 1; i++ ) { float dot = DotProduct( lightDirection, pBumpBasis[i-1] ); if( dot <= 0.0f ) continue; VectorMA( blocklights[i][idx].AsVector3D(), dot * scale, intensity, blocklights[i][idx].AsVector3D() ); } #else
VectorMA( blocklights[1][idx].AsVector3D(), scale, intensity, blocklights[1][idx].AsVector3D() ); VectorMA( blocklights[2][idx].AsVector3D(), scale, intensity, blocklights[2][idx].AsVector3D() ); VectorMA( blocklights[3][idx].AsVector3D(), scale, intensity, blocklights[3][idx].AsVector3D() ); #endif
} }
// Move along u
VectorMA( texelWorldPosition, fixupFactor, pTexInfo->lightmapVecsLuxelsPerWorldUnits[0].AsVector3D(), texelWorldPosition );
} }
//-----------------------------------------------------------------------------
// Compute the bumpmap basis for this surface
//-----------------------------------------------------------------------------
static void R_ComputeSurfaceBasis( SurfaceHandle_t surfID, Vector *pBumpNormals, Vector &luxelBasePosition ) { // Get the bump basis vects in the space of the surface.
Vector sVect, tVect; VectorCopy( MSurf_TexInfo( surfID )->lightmapVecsLuxelsPerWorldUnits[0].AsVector3D(), sVect ); VectorNormalize( sVect ); VectorCopy( MSurf_TexInfo( surfID )->lightmapVecsLuxelsPerWorldUnits[1].AsVector3D(), tVect ); VectorNormalize( tVect ); GetBumpNormals( sVect, tVect, MSurf_Plane( surfID ).normal, MSurf_Plane( surfID ).normal, pBumpNormals );
// Compute the location of the first luxel in worldspace
// Since there's a scale factor used when going from world to luxel,
// we gotta undo that scale factor when going from luxel to world
float fixupFactor = MSurf_TexInfo( surfID )->worldUnitsPerLuxel * MSurf_TexInfo( surfID )->worldUnitsPerLuxel;
// The starting u of the surface is surf->lightmapMins[0];
// since N * P + D = u, N * P = u - D, therefore we gotta move (u-D) along uvec
VectorMultiply( MSurf_TexInfo( surfID )->lightmapVecsLuxelsPerWorldUnits[0].AsVector3D(), (MSurf_LightmapMins( surfID )[0] - MSurf_TexInfo( surfID )->lightmapVecsLuxelsPerWorldUnits[0][3]) * fixupFactor, luxelBasePosition );
// Do the same thing for the v direction.
VectorMA( luxelBasePosition, (MSurf_LightmapMins( surfID )[1] - MSurf_TexInfo( surfID )->lightmapVecsLuxelsPerWorldUnits[1][3]) * fixupFactor, MSurf_TexInfo( surfID )->lightmapVecsLuxelsPerWorldUnits[1].AsVector3D(), luxelBasePosition );
// Move out in the direction of the plane normal...
VectorMA( luxelBasePosition, MSurf_Plane( surfID ).dist, MSurf_Plane( surfID ).normal, luxelBasePosition ); }
//-----------------------------------------------------------------------------
// Purpose: Compute the mask of which dlights affect a surface
// NOTE: Also has the side effect of updating the surface lighting dlight flags!
//-----------------------------------------------------------------------------
unsigned int R_ComputeDynamicLightMask( dlight_t *pLights, SurfaceHandle_t surfID, msurfacelighting_t *pLighting, const matrix3x4_t& entityToWorld ) { ASSERT_SURF_VALID( surfID ); Vector bumpNormals[3]; Vector luxelBasePosition;
// Displacements do dynamic lights different
if( SurfaceHasDispInfo( surfID ) ) { return MSurf_DispInfo( surfID )->ComputeDynamicLightMask(pLights); }
if ( !g_bActiveDlights ) return 0;
int lightMask = 0; for ( int lnum = 0, testBit = 1, mask = r_dlightactive; lnum < MAX_DLIGHTS; lnum++, mask >>= 1, testBit <<= 1 ) { if ( mask & 1 ) { // not lit by this light
if ( !(pLighting->m_fDLightBits & testBit ) ) continue;
// This light doesn't affect the world
if ( pLights[lnum].flags & (DLIGHT_NO_WORLD_ILLUMINATION|DLIGHT_DISPLACEMENT_MASK)) continue;
// This is used to ensure a maximum number of dlights in a frame
if ( !R_CanUseVisibleDLight( lnum ) ) continue;
// Cull surface to light radius
Vector lightOrigin;
VectorITransform( pLights[lnum].origin, entityToWorld, lightOrigin );
// NOTE: Dist can be negative because muzzle flashes can actually get behind walls
// since the gun isn't checked for collision tests.
float perpDistSq = DotProduct (lightOrigin, MSurf_Plane( surfID ).normal) - MSurf_Plane( surfID ).dist; if (perpDistSq < DLIGHT_BEHIND_PLANE_DIST) { // update the surfacelighting and remove this light's bit
pLighting->m_fDLightBits &= ~testBit; continue; }
perpDistSq *= perpDistSq;
// If the perp distance > radius of light, blow it off
float lightRadiusSq = pLights[lnum].GetRadiusSquared(); if (lightRadiusSq <= perpDistSq) { // update the surfacelighting and remove this light's bit
pLighting->m_fDLightBits &= ~testBit; continue; }
lightMask |= testBit; } }
return lightMask; }
//-----------------------------------------------------------------------------
// Purpose: Modifies blocklights[][][] to include the state of the dlights
// affecting this surface.
// NOTE: Can be threaded, should not reference or modify any global state
// other than blocklights.
//-----------------------------------------------------------------------------
void R_AddDynamicLights( dlight_t *pLights, SurfaceHandle_t surfID, const matrix3x4_t& entityToWorld, bool needsBumpmap, unsigned int lightMask ) { ASSERT_SURF_VALID( surfID ); VPROF( "R_AddDynamicLights" );
Vector bumpNormals[3]; bool computedBumpBasis = false; Vector luxelBasePosition;
// Displacements do dynamic lights different
if( SurfaceHasDispInfo( surfID ) ) { MSurf_DispInfo( surfID )->AddDynamicLights(pLights, lightMask); return; }
// iterate all of the active dynamic lights. Uses several iterators to keep
// the light mask (bit), light index, and active mask current
for ( int lnum = 0, testBit = 1, mask = lightMask; lnum < MAX_DLIGHTS && mask != 0; lnum++, mask >>= 1, testBit <<= 1 ) { // shift over the mask of active lights each iteration, if this one is active, apply it
if ( mask & 1 ) { // Cull surface to light radius
Vector lightOrigin;
VectorITransform( pLights[lnum].origin, entityToWorld, lightOrigin );
// NOTE: Dist can be negative because muzzle flashes can actually get behind walls
// since the gun isn't checked for collision tests.
float perpDistSq = DotProduct (lightOrigin, MSurf_Plane( surfID ).normal) - MSurf_Plane( surfID ).dist; if (perpDistSq < DLIGHT_BEHIND_PLANE_DIST) continue;
perpDistSq *= perpDistSq;
// If the perp distance > radius of light, blow it off
float lightRadiusSq = pLights[lnum].GetRadiusSquared(); if (lightRadiusSq <= perpDistSq) continue;
if (!needsBumpmap) { AddSingleDynamicLight( pLights[lnum], surfID, lightOrigin, perpDistSq, lightRadiusSq ); continue; }
// Here, I'm precomputing things needed by bumped lighting that
// are the same for a surface...
if (!computedBumpBasis) { R_ComputeSurfaceBasis( surfID, bumpNormals, luxelBasePosition ); computedBumpBasis = true; }
AddSingleDynamicLightToBumpLighting( pLights[lnum], surfID, lightOrigin, perpDistSq, lightRadiusSq, bumpNormals, luxelBasePosition ); } } }
// Fixed point (8.8) color/intensity ratios
#define I_RED ((int)(0.299*255))
#define I_GREEN ((int)(0.587*255))
#define I_BLUE ((int)(0.114*255))
//-----------------------------------------------------------------------------
// Sets all elements in a lightmap to a particular opaque greyscale value
//-----------------------------------------------------------------------------
static void InitLMSamples( Vector4D *pSamples, int nSamples, float value ) { for( int i=0; i < nSamples; i++ ) { pSamples[i][0] = pSamples[i][1] = pSamples[i][2] = value; pSamples[i][3] = 1.0f; } }
//-----------------------------------------------------------------------------
// Computes the lightmap size
//-----------------------------------------------------------------------------
static int ComputeLightmapSize( SurfaceHandle_t surfID ) { int smax = ( MSurf_LightmapExtents( surfID )[0] ) + 1; int tmax = ( MSurf_LightmapExtents( surfID )[1] ) + 1; int size = smax * tmax;
int nMaxSize = MSurf_MaxLightmapSizeWithBorder( surfID ); if (size > nMaxSize * nMaxSize) { ConMsg("Bad lightmap extents on material \"%s\"\n", materialSortInfoArray[MSurf_MaterialSortID( surfID )].material->GetName()); return 0; } return size; }
#ifndef _X360
//-----------------------------------------------------------------------------
// Compute the portion of the lightmap generated from lightstyles
//-----------------------------------------------------------------------------
static void AccumulateLightstyles( ColorRGBExp32* pLightmap, int lightmapSize, float scalar ) { Assert( pLightmap ); for (int i=0; i<lightmapSize ; ++i) { blocklights[0][i][0] += scalar * TexLightToLinear( pLightmap[i].r, pLightmap[i].exponent ); blocklights[0][i][1] += scalar * TexLightToLinear( pLightmap[i].g, pLightmap[i].exponent ); blocklights[0][i][2] += scalar * TexLightToLinear( pLightmap[i].b, pLightmap[i].exponent ); } }
static void AccumulateLightstylesFlat( ColorRGBExp32* pLightmap, int lightmapSize, float scalar ) { Assert( pLightmap ); for (int i=0; i<lightmapSize ; ++i) { blocklights[0][i][0] += scalar * TexLightToLinear( pLightmap->r, pLightmap->exponent ); blocklights[0][i][1] += scalar * TexLightToLinear( pLightmap->g, pLightmap->exponent ); blocklights[0][i][2] += scalar * TexLightToLinear( pLightmap->b, pLightmap->exponent ); } }
static void AccumulateBumpedLightstyles( ColorRGBExp32* pLightmap, int lightmapSize, float scalar ) { ColorRGBExp32 *pBumpedLightmaps[3]; pBumpedLightmaps[0] = pLightmap + lightmapSize; pBumpedLightmaps[1] = pLightmap + 2 * lightmapSize; pBumpedLightmaps[2] = pLightmap + 3 * lightmapSize;
// I chose to split up the loops this way because it was the best tradeoff
// based on profiles between cache miss + loop overhead
for (int i=0 ; i<lightmapSize ; ++i) { blocklights[0][i][0] += scalar * TexLightToLinear( pLightmap[i].r, pLightmap[i].exponent ); blocklights[0][i][1] += scalar * TexLightToLinear( pLightmap[i].g, pLightmap[i].exponent ); blocklights[0][i][2] += scalar * TexLightToLinear( pLightmap[i].b, pLightmap[i].exponent ); Assert( blocklights[0][i][0] >= 0.0f ); Assert( blocklights[0][i][1] >= 0.0f ); Assert( blocklights[0][i][2] >= 0.0f );
blocklights[1][i][0] += scalar * TexLightToLinear( pBumpedLightmaps[0][i].r, pBumpedLightmaps[0][i].exponent ); blocklights[1][i][1] += scalar * TexLightToLinear( pBumpedLightmaps[0][i].g, pBumpedLightmaps[0][i].exponent ); blocklights[1][i][2] += scalar * TexLightToLinear( pBumpedLightmaps[0][i].b, pBumpedLightmaps[0][i].exponent ); Assert( blocklights[1][i][0] >= 0.0f ); Assert( blocklights[1][i][1] >= 0.0f ); Assert( blocklights[1][i][2] >= 0.0f ); } for ( int i=0 ; i<lightmapSize ; ++i) { blocklights[2][i][0] += scalar * TexLightToLinear( pBumpedLightmaps[1][i].r, pBumpedLightmaps[1][i].exponent ); blocklights[2][i][1] += scalar * TexLightToLinear( pBumpedLightmaps[1][i].g, pBumpedLightmaps[1][i].exponent ); blocklights[2][i][2] += scalar * TexLightToLinear( pBumpedLightmaps[1][i].b, pBumpedLightmaps[1][i].exponent ); Assert( blocklights[2][i][0] >= 0.0f ); Assert( blocklights[2][i][1] >= 0.0f ); Assert( blocklights[2][i][2] >= 0.0f );
blocklights[3][i][0] += scalar * TexLightToLinear( pBumpedLightmaps[2][i].r, pBumpedLightmaps[2][i].exponent ); blocklights[3][i][1] += scalar * TexLightToLinear( pBumpedLightmaps[2][i].g, pBumpedLightmaps[2][i].exponent ); blocklights[3][i][2] += scalar * TexLightToLinear( pBumpedLightmaps[2][i].b, pBumpedLightmaps[2][i].exponent ); Assert( blocklights[3][i][0] >= 0.0f ); Assert( blocklights[3][i][1] >= 0.0f ); Assert( blocklights[3][i][2] >= 0.0f ); } } #else
/*
// unpack four ColorRGBExp32's loaded into a single vector register
// into four. Can't do this as a function coz you can't return four
// values and even the inliner falls down on pass-by-ref.
#define UNPACK_COLORRGBEXP(fromVec, toVec0, toVec1, toVec2, toVec3) {\
} */
// because the e component of the colors is signed, we need to mask
// off the corresponding channel in the intermediate halfword expansion
// when we combine it with the unsigned unpack for the other channels
static const int32 ALIGN16 g_SIMD_HalfWordMask[4]= { 0x0000000, 0x0000FFFF, 0x0000000, 0x0000FFFF }; static const fltx4 vOneOverTwoFiftyFive = { 1.0f / 255.0f , 1.0f / 255.0f , 1.0f / 255.0f , 1.0f / 255.0f };
// grind through accumlating onto the blocklights,
// one cache line at a time. Input pointers are assumed
// to be cache aligned.
// For a simpler reference implementation, see the PC version in the ifdef above.
// This function makes heavy use of the special XBOX360 opcodes for
// packing and unpacking integer d3d data. (Not available in SSE, sadly.)
static void AccumulateLightstyles_EightAtAtime( ColorRGBExp32* RESTRICT pLightmap, // the input lightmap (not necessarily aligned)
int lightmapSize, fltx4 vScalar, Vector4D * RESTRICT bLights // pointer to the blocklights row we'll be writing into -- should be cache aligned, but only hurts perf if it's not
) { // We process blockLights in groups of four at a time, because we load the pLightmap four
// at a time (four words fit into a vector register).
// On top of that, we do two groups at once, because that's the length
// of a cache line, and it helps us better hide latency.
AssertMsg((lightmapSize & 7) == 0, "Input to Accumulate...EightAtATime not divisible by eight. Data corruption is the likely result." );
const fltx4 vHalfWordMask = XMLoadVector4A(g_SIMD_HalfWordMask);
fltx4 zero = Four_Zeros; for (int i = 0 ; i < lightmapSize ; i += 8 ) { // cache prefetch two lines ahead on bLights, and one on pLightmap
__dcbt(256, bLights); __dcbt(128, pLightmap);
// the naming convention on these psuedoarrays (they are actually
// registers) is that the number before the index is the group id,
// and the index itself is which word in the group. If this seems
// unclear to you, feel free to just use array indices 0..7
// The compiler doesn't seem to deal properly with multidim arrays
// (at least in the sense of aliasing them to registers)
// However, if you always access through the arrays by using
// compile-time immediate constants (eg, foo[2] rather than
// int x = 2; foo[x]
// it will at least treat them as register variables.
// load four blockLights entries, and four colors
fltx4 vLight0[4], vLight1[4]; fltx4 colorLightMap0[4], colorLightMap1[4];
fltx4 bytePackedLightMap0 = XMLoadVector4(pLightmap+i); // because each colorrgbexp is actually a 32-bit struct,
// this loads four of them into one vector -- they are ubytes for rgb and sbyte for e
fltx4 bytePackedLightMap1 = XMLoadVector4(pLightmap+i+4);
// load group 0
vLight0[0] = LoadAlignedSIMD( &(bLights + i + 0)->x ); vLight0[1] = LoadAlignedSIMD( &(bLights + i + 1)->x ); vLight0[2] = LoadAlignedSIMD( &(bLights + i + 2)->x ); vLight0[3] = LoadAlignedSIMD( &(bLights + i + 3)->x );
// load group 1
vLight1[0] = LoadAlignedSIMD( &(bLights + i + 4)->x ); vLight1[1] = LoadAlignedSIMD( &(bLights + i + 5)->x ); vLight1[2] = LoadAlignedSIMD( &(bLights + i + 6)->x ); vLight1[3] = LoadAlignedSIMD( &(bLights + i + 7)->x );
// unpack the color light maps now that they have loaded
// interleaving (four-vector) group 0 and 1
// unpack rgbe 0 and 1:
// like an unsigned unpack: { 0x00, colorLightMap[0].r, 0x00, colorLightMap[0].g, 0x00, colorLightMap[0].b, 0x00, colorLightMap[0].e,
// 0x00, colorLightMap[1].r, 0x00, colorLightMap[1].g, 0x00, colorLightMap[1].b, 0x00, colorLightMap[1].e}
fltx4 unsignedUnpackHi0 = __vmrghb(zero, bytePackedLightMap0); // GROUP 0
fltx4 unsignedUnpackLo0 = __vmrglb(zero, bytePackedLightMap0); // rgbe words 2 and 3
fltx4 unsignedUnpackHi1 = __vmrghb(zero, bytePackedLightMap1); // GROUP 1
fltx4 unsignedUnpackLo1 = __vmrglb(zero, bytePackedLightMap1); // rgbe words 2 and 3
fltx4 signedUnpackHi0 = __vupkhsb(bytePackedLightMap0); // signed unpack of words 0 and 1, like the unsigned unpack but replaces 0x00 w/ sign extension
fltx4 signedUnpackLo0 = __vupklsb(bytePackedLightMap0); // GROUP 0
fltx4 signedUnpackHi1 = __vupkhsb(bytePackedLightMap1); // signed unpack of words 0 and 1, like the unsigned unpack but replaces 0x00 w/ sign extension
fltx4 signedUnpackLo1 = __vupklsb(bytePackedLightMap1); // GROUP 1
// merge the signed and unsigned unpacks together to make the full halfwords
unsignedUnpackHi0 = MaskedAssign(vHalfWordMask, signedUnpackHi0, unsignedUnpackHi0 ); unsignedUnpackLo0 = MaskedAssign(vHalfWordMask, signedUnpackLo0, unsignedUnpackLo0 ); unsignedUnpackHi1 = MaskedAssign(vHalfWordMask, signedUnpackHi1, unsignedUnpackHi1 ); unsignedUnpackLo1 = MaskedAssign(vHalfWordMask, signedUnpackLo1, unsignedUnpackLo1 );
// now complete the unpack from halfwords to words (we can just use signed because there are 0x00's above the rgb channels)
colorLightMap0[0] = __vupkhsh(unsignedUnpackHi0); // vector unpack high signed halfword
colorLightMap0[1] = __vupklsh(unsignedUnpackHi0); // vector unpack low signed halfword
colorLightMap0[2] = __vupkhsh(unsignedUnpackLo0); colorLightMap0[3] = __vupklsh(unsignedUnpackLo0); colorLightMap0[0] = __vcfsx( colorLightMap0[0], 0); // convert to floats
colorLightMap1[0] = __vupkhsh(unsignedUnpackHi1); // interleave group 1 unpacks
colorLightMap0[1] = __vcfsx( colorLightMap0[1], 0); // convert to floats
colorLightMap1[1] = __vupklsh(unsignedUnpackHi1); // should dual issue
colorLightMap0[2] = __vcfsx( colorLightMap0[2], 0); // convert to floats
colorLightMap1[2] = __vupkhsh(unsignedUnpackLo1); colorLightMap0[3] = __vcfsx( colorLightMap0[3], 0); // convert to floats
colorLightMap1[3] = __vupklsh(unsignedUnpackLo1);
// finish unpacking group 1 (giving group 0 time to finish converting)
colorLightMap1[0] = __vcfsx( colorLightMap1[0], 0); colorLightMap1[1] = __vcfsx( colorLightMap1[1], 0); colorLightMap1[2] = __vcfsx( colorLightMap1[2], 0); colorLightMap1[3] = __vcfsx( colorLightMap1[3], 0);
// manufacture exponent splats and start normalizing the rgb channels (eg *= 1/255)
fltx4 expW0[4], expW1[4]; expW0[0] = XMVectorSplatW(colorLightMap0[0]); colorLightMap0[0] = MulSIMD(colorLightMap0[0], vOneOverTwoFiftyFive); // normalize the rgb channels
expW0[1] = XMVectorSplatW(colorLightMap0[1]); colorLightMap0[1] = MulSIMD(colorLightMap0[1], vOneOverTwoFiftyFive); // normalize the rgb channels
expW0[2] = XMVectorSplatW(colorLightMap0[2]); colorLightMap0[2] = MulSIMD(colorLightMap0[2], vOneOverTwoFiftyFive); // normalize the rgb channels
expW0[3] = XMVectorSplatW(colorLightMap0[3]); colorLightMap0[3] = MulSIMD(colorLightMap0[3], vOneOverTwoFiftyFive); // normalize the rgb channels
// scale each of the color channels by the exponent channel
// (the estimate operation is exact for integral inputs, as here)
expW0[0] = XMVectorExpEst( expW0[0] ); // x = 2^x
expW1[0] = XMVectorSplatW(colorLightMap1[0]); // interleave splats on exp group 1 (dual issue)
colorLightMap1[0] = MulSIMD(colorLightMap1[0], vOneOverTwoFiftyFive); // normalize the rgb channels
expW0[1] = XMVectorExpEst( expW0[1] ); expW1[1] = XMVectorSplatW(colorLightMap1[1]); colorLightMap1[1] = MulSIMD(colorLightMap1[1], vOneOverTwoFiftyFive); // normalize the rgb channels
expW0[2] = XMVectorExpEst( expW0[2] ); expW1[2] = XMVectorSplatW(colorLightMap1[2]); colorLightMap1[2] = MulSIMD(colorLightMap1[2], vOneOverTwoFiftyFive); // normalize the rgb channels
expW0[3] = XMVectorExpEst( expW0[3] ); expW1[3] = XMVectorSplatW(colorLightMap1[3]); colorLightMap1[3] = MulSIMD(colorLightMap1[3], vOneOverTwoFiftyFive); // normalize the rgb channels
// finish scale-by-exponent on group 1
expW1[0] = XMVectorExpEst( expW1[0] ); expW1[1] = XMVectorExpEst( expW1[1] ); expW1[2] = XMVectorExpEst( expW1[2] ); expW1[3] = XMVectorExpEst( expW1[3] );
colorLightMap0[0] = MulSIMD(expW0[0], colorLightMap0[0]); colorLightMap0[1] = MulSIMD(expW0[1], colorLightMap0[1]); colorLightMap0[2] = MulSIMD(expW0[2], colorLightMap0[2]); colorLightMap0[3] = MulSIMD(expW0[3], colorLightMap0[3]); colorLightMap1[0] = MulSIMD(expW1[0], colorLightMap1[0]); colorLightMap1[1] = MulSIMD(expW1[1], colorLightMap1[1]); colorLightMap1[2] = MulSIMD(expW1[2], colorLightMap1[2]); colorLightMap1[3] = MulSIMD(expW1[3], colorLightMap1[3]);
#ifdef X360_DOUBLECHECK_LIGHTMAPS
for (int group = 0 ; group < 4 ; ++group) { Assert( colorLightMap0[group].v[0] == TexLightToLinear( pLightmap[i + group].r, pLightmap[i + group].exponent ) && colorLightMap0[group].v[1] == TexLightToLinear( pLightmap[i + group].g, pLightmap[i + group].exponent ) && colorLightMap0[group].v[2] == TexLightToLinear( pLightmap[i + group].b, pLightmap[i + group].exponent ) ); } #endif
// accumulate into blocklights
vLight0[0] = XMVectorMultiplyAdd(vScalar, colorLightMap0[0], vLight0[0]); vLight0[1] = XMVectorMultiplyAdd(vScalar, colorLightMap0[1], vLight0[1]); vLight0[2] = XMVectorMultiplyAdd(vScalar, colorLightMap0[2], vLight0[2]); vLight0[3] = XMVectorMultiplyAdd(vScalar, colorLightMap0[3], vLight0[3]); vLight1[0] = XMVectorMultiplyAdd(vScalar, colorLightMap1[0], vLight1[0]); vLight1[1] = XMVectorMultiplyAdd(vScalar, colorLightMap1[1], vLight1[1]); vLight1[2] = XMVectorMultiplyAdd(vScalar, colorLightMap1[2], vLight1[2]); vLight1[3] = XMVectorMultiplyAdd(vScalar, colorLightMap1[3], vLight1[3]);
// save
XMStoreVector4A( bLights + i + 0, vLight0[0]); XMStoreVector4A( bLights + i + 1, vLight0[1]); XMStoreVector4A( bLights + i + 2, vLight0[2]); XMStoreVector4A( bLights + i + 3, vLight0[3]); XMStoreVector4A( bLights + i + 4, vLight1[0]); XMStoreVector4A( bLights + i + 5, vLight1[1]); XMStoreVector4A( bLights + i + 6, vLight1[2]); XMStoreVector4A( bLights + i + 7, vLight1[3]); } }
// just like XMLoadByte4 only no asserts
FORCEINLINE XMVECTOR LoadSignedByte4NoAssert ( CONST XMBYTE4* pSource ) { XMVECTOR V;
V = __lvlx(pSource, 0); V = __vupkhsb(V); V = __vupkhsh(V); V = __vcfsx(V, 0); return V; }
//-----------------------------------------------------------------------------
// Compute the portion of the lightmap generated from lightstyles
//-----------------------------------------------------------------------------
static void AccumulateLightstyles( ColorRGBExp32* pLightmap, int lightmapSize, fltx4 vScalar ) { Assert( pLightmap ); // crush w of the scalar to zero (so we don't overwrite blocklight[x][y][3] in the madds)
vScalar = __vrlimi(vScalar, Four_Zeros, 1, 0); int lightmapSizeEightAligned = lightmapSize & (~0x07);
// crunch as many groups of eight as possible, then deal with the remainder
AccumulateLightstyles_EightAtAtime(pLightmap, lightmapSizeEightAligned, vScalar, blocklights[0]);
// handle remainders
for (int i = lightmapSizeEightAligned; i < lightmapSize ; ++i ) { // load four blockLights entries, and four colors
fltx4 vLight; fltx4 colorLightMap; vLight = LoadAlignedSIMD(blocklights[0][i].Base());
// unpack the color light maps
// load the unsigned bytes
colorLightMap = XMLoadUByte4(reinterpret_cast<XMUBYTE4 *>(pLightmap + i)); // fish out the exponent component from a signed load
fltx4 exponentiator = XMVectorExpEst(XMVectorSplatW(LoadSignedByte4NoAssert(reinterpret_cast<XMBYTE4 *>(pLightmap + i))));
// scale each of the color light channels by the exponent
colorLightMap = MulSIMD( MulSIMD(colorLightMap, vOneOverTwoFiftyFive ), exponentiator );
Assert( colorLightMap.v[0] == TexLightToLinear( pLightmap[i].r, pLightmap[i].exponent ) && colorLightMap.v[1] == TexLightToLinear( pLightmap[i].g, pLightmap[i].exponent ) && colorLightMap.v[2] == TexLightToLinear( pLightmap[i].b, pLightmap[i].exponent ) );
// accumulate onto blocklights
vLight = MaddSIMD(vScalar, colorLightMap, vLight);
StoreAlignedSIMD(blocklights[0][i].Base(), vLight); } }
static void AccumulateLightstylesFlat( ColorRGBExp32* pLightmap, int lightmapSize, fltx4 vScalar ) { Assert( pLightmap );
// this isn't a terribly fast way of doing things, but
// this function doesn't seem to be called much (so
// it's not worth the trouble of custom loop scheduling)
fltx4 colorLightMap; // unpack the color light maps
// load the unsigned bytes
colorLightMap = XMLoadUByte4(reinterpret_cast<XMUBYTE4 *>(pLightmap)); // fish out the exponent component from a signed load
fltx4 exponentiator = XMVectorExpEst(XMVectorSplatW(LoadSignedByte4NoAssert(reinterpret_cast<XMBYTE4 *>(pLightmap))));
// scale each of the color light channels by the exponent
colorLightMap = MulSIMD( MulSIMD(colorLightMap, vOneOverTwoFiftyFive ), exponentiator );
for (int i = 0; i < lightmapSize ; ++i ) { // load four blockLights entries, and four colors
fltx4 vLight; vLight = LoadAlignedSIMD(blocklights[0][i].Base());
// accumulate onto blocklights
vLight = MaddSIMD(vScalar, colorLightMap, vLight);
StoreAlignedSIMD(blocklights[0][i].Base(), vLight); } }
static void AccumulateBumpedLightstyles( ColorRGBExp32* RESTRICT pLightmap, int lightmapSize, fltx4 vScalar ) { COMPILE_TIME_ASSERT(sizeof(ColorRGBExp32) == 4); // This function is carefully scheduled around four-byte colors
// crush w of the scalar to zero (so we don't overwrite blocklight[x][y][3] in the madds)
vScalar = __vrlimi(vScalar, Four_Zeros, 1, 0);
/*
ColorRGBExp32 * RESTRICT pBumpedLightmaps[3]; pBumpedLightmaps[1] = pLightmap + lightmapSize; pBumpedLightmaps[2] = pLightmap + 2 * lightmapSize; pBumpedLightmaps[3] = pLightmap + 3 * lightmapSize; */ // assert word (not vector) alignment
AssertMsg( ((reinterpret_cast<unsigned int>(pLightmap) & 0x03 ) == 0), "Lightmap was not word-aligned: AccumulateBumpedLightstyles must fail." ); // assert vector alignment
AssertMsg( (reinterpret_cast<unsigned int>(blocklights) & 0x0F ) == 0, "Blocklights is not vector-aligned. You're doomed." ); AssertMsg( (reinterpret_cast<unsigned int>(blocklights) & 127 ) == 0, "Blocklights is not cache-aligned. Performance will suffer." );
#if 0 // reference: This is the simple version -- four-way accumulate (no interleaving)
for (int i = 0 ; i < lightmapSize ; i+= 4) { // load four blockLights entries, and four colors
fltx4 vLight[4]; fltx4 colorLightMap[4]; vLight[0] = LoadUnalignedSIMD(&blocklights[0][i]); vLight[1] = LoadUnalignedSIMD(&blocklights[0][i+1]); vLight[2] = LoadUnalignedSIMD(&blocklights[0][i+2]); vLight[3] = LoadUnalignedSIMD(&blocklights[0][i+3]); // unpack the color light maps
{ fltx4 zero = Four_Zeros; fltx4 colorLightmap = LoadUnalignedSIMD(pLightmap+i); // because each colorrgbexp is actually a 32-bit struct,
// this loads four of them into one vector -- they are ubytes for rgb and sbyte for e
// unpack rgbe 0 and 1:
// like an unsigned unpack: { 0x00, colorLightMap[0].r, 0x00, colorLightMap[0].g, 0x00, colorLightMap[0].b, 0x00, colorLightMap[0].e,
// 0x00, colorLightMap[1].r, 0x00, colorLightMap[1].g, 0x00, colorLightMap[1].b, 0x00, colorLightMap[1].e}
fltx4 unsignedUnpackHi = __vmrghb(zero, colorLightMap); fltx4 unsignedUnpackLo = __vmrghb(zero, colorLightMap); // rgbe words 2 and 3
fltx4 signedUnpackHi = __vupkhsb(colorLightMap); // signed unpack of words 0 and 1, like the unsigned unpack but repl 0x00 w/ sign extension
fltx4 signedUnpackLo = __vupklsb(colorLightMap); // merge the signed and unsigned unpacks together to make the full halfwords
unsignedUnpackHi = MaskedAssign(vHalfWordMask, signedUnpackHi, unsignedUnpackHi ); unsignedUnpackLo = MaskedAssign(vHalfWordMask, signedUnpackLo, unsignedUnpackLo ); // now complete the unpack from halfwords to words (we can just use signed because there are 0x00's above the rgb channels)
// and convert to float
colorLightMap[0] = __vcfsx( __vupkhsh(unsignedUnpackHi), 0); colorLightMap[1] = __vcfsx( __vupklsh(unsignedUnpackHi), 0); colorLightMap[2] = __vcfsx( __vupkhsh(unsignedUnpackLo), 0); colorLightMap[3] = __vcfsx( __vupklsh(unsignedUnpackLo), 0); }
// scale each of the color channels by the exponent channel
colorLightMap[0] = XMVectorExpEst( XMVectorSplatW(colorLightMap[0]) ); colorLightMap[1] = XMVectorExpEst( XMVectorSplatW(colorLightMap[1]) ); colorLightMap[2] = XMVectorExpEst( XMVectorSplatW(colorLightMap[2]) ); colorLightMap[3] = XMVectorExpEst( XMVectorSplatW(colorLightMap[3]) );
// accumulate into blocklights
vLight[0] = XMVectorMultiplyAdd(vScalar, colorLightMap[0], vLight[0]); vLight[1] = XMVectorMultiplyAdd(vScalar, colorLightMap[1], vLight[1]); vLight[2] = XMVectorMultiplyAdd(vScalar, colorLightMap[2], vLight[2]); vLight[3] = XMVectorMultiplyAdd(vScalar, colorLightMap[3], vLight[3]);
// save
XMStoreVector4(&blocklights[0][i], vLight[0]); XMStoreVector4(&blocklights[1][i], vLight[1]); XMStoreVector4(&blocklights[2][i], vLight[2]); XMStoreVector4(&blocklights[3][i], vLight[3]); } #endif
int lightmapSizeEightAligned = lightmapSize & (~0x07);
// crunch each of the lightmap groups.
for (int mapGroup = 0 ; mapGroup <= 3 ; ++mapGroup, pLightmap += lightmapSize ) { // process the base lightmap
AccumulateLightstyles_EightAtAtime(pLightmap, lightmapSizeEightAligned, vScalar, blocklights[mapGroup]); // handle remainders
for (int i = lightmapSizeEightAligned; i < lightmapSize ; ++i ) { // load four blockLights entries, and four colors
fltx4 vLight; fltx4 colorLightMap; vLight = LoadAlignedSIMD(blocklights[mapGroup][i].Base());
// unpack the color light maps
// load the unsigned bytes
colorLightMap = XMLoadUByte4(reinterpret_cast<XMUBYTE4 *>(pLightmap + i)); // fish out the exponent component from a signed load
fltx4 exponentiator = XMVectorExpEst(XMVectorSplatW(LoadSignedByte4NoAssert(reinterpret_cast<XMBYTE4 *>(pLightmap + i))));
// scale each of the color light channels by the exponent
colorLightMap = MulSIMD( MulSIMD(colorLightMap, vOneOverTwoFiftyFive ), exponentiator );
Assert( colorLightMap.v[0] == TexLightToLinear( pLightmap[i].r, pLightmap[i].exponent ) && colorLightMap.v[1] == TexLightToLinear( pLightmap[i].g, pLightmap[i].exponent ) && colorLightMap.v[2] == TexLightToLinear( pLightmap[i].b, pLightmap[i].exponent ) );
// accumulate onto blocklights
vLight = MaddSIMD(vScalar, colorLightMap, vLight); StoreAlignedSIMD(blocklights[mapGroup][i].Base(), vLight); }
// note: pLightmap is incremented as well.
} } #endif
//-----------------------------------------------------------------------------
// Compute the portion of the lightmap generated from lightstyles
//-----------------------------------------------------------------------------
static void ComputeLightmapFromLightstyle( msurfacelighting_t *pLighting, bool computeLightmap, bool computeBumpmap, int lightmapSize, bool hasBumpmapLightmapData ) { VPROF( "ComputeLightmapFromLightstyle" );
ColorRGBExp32 *pLightmap = pLighting->m_pSamples;
// Compute iteration range
int minmap, maxmap; #ifdef USE_CONVARS
if( r_lightmap.GetInt() != -1 ) { minmap = r_lightmap.GetInt(); maxmap = minmap + 1; } else #endif
{ minmap = 0; maxmap = MAXLIGHTMAPS; }
for (int maps = minmap; maps < maxmap && pLighting->m_nStyles[maps] != 255; ++maps) { if( r_lightstyle.GetInt() != -1 && pLighting->m_nStyles[maps] != r_lightstyle.GetInt()) { continue; }
float fscalar = LightStyleValue( pLighting->m_nStyles[maps] );
// hack - don't know why we are getting negative values here.
// if (scalar > 0.0f && maps > 0 )
if (fscalar > 0.0f) { #ifdef _X360
fltx4 scalar = ReplicateX4(fscalar); // we use SIMD versions of these functions on 360
#else
const float &scalar = fscalar; #endif
if( computeBumpmap ) { AccumulateBumpedLightstyles( pLightmap, lightmapSize, scalar ); } else if( computeLightmap ) { if (r_avglightmap.GetInt()) { pLightmap = pLighting->AvgLightColor(maps); AccumulateLightstylesFlat( pLightmap, lightmapSize, scalar ); } else { AccumulateLightstyles( pLightmap, lightmapSize, scalar ); } } }
// skip to next lightmap. If we store lightmap data, we need to jump forward 4
pLightmap += hasBumpmapLightmapData ? lightmapSize * ( NUM_BUMP_VECTS + 1 ) : lightmapSize; } }
// instrumentation to measure locks
/*
static CUtlVector<int> g_LightmapLocks; static int g_Lastdlightframe = -1; static int g_lastlock = -1; static int g_unsorted = 0; void MarkPage( int pageID ) { if ( g_Lastdlightframe != r_framecount ) { int total = 0; int locks = 0; for ( int i = 0; i < g_LightmapLocks.Count(); i++ ) { int count = g_LightmapLocks[i]; if ( count ) { total++; locks += count; } g_LightmapLocks[i] = 0; } g_Lastdlightframe = r_framecount; g_lastlock = -1; if ( locks ) Msg("Total pages %d, locks %d, unsorted locks %d\n", total, locks, g_unsorted ); g_unsorted = 0; } if ( pageID != g_lastlock ) { g_lastlock = pageID; g_unsorted++; } g_LightmapLocks.EnsureCount(pageID+1); g_LightmapLocks[pageID]++; } */ //-----------------------------------------------------------------------------
// Update the lightmaps...
//-----------------------------------------------------------------------------
static void UpdateLightmapTextures( SurfaceHandle_t surfID, bool needsBumpmap ) { ASSERT_SURF_VALID( surfID );
if( materialSortInfoArray ) { int lightmapSize[2]; int offsetIntoLightmapPage[2]; lightmapSize[0] = ( MSurf_LightmapExtents( surfID )[0] ) + 1; lightmapSize[1] = ( MSurf_LightmapExtents( surfID )[1] ) + 1; offsetIntoLightmapPage[0] = MSurf_OffsetIntoLightmapPage( surfID )[0]; offsetIntoLightmapPage[1] = MSurf_OffsetIntoLightmapPage( surfID )[1]; Assert( MSurf_MaterialSortID( surfID ) >= 0 && MSurf_MaterialSortID( surfID ) < g_WorldStaticMeshes.Count() ); // FIXME: Should differentiate between bumped and unbumped since the perf characteristics
// are completely different?
// MarkPage( materialSortInfoArray[MSurf_MaterialSortID( surfID )].lightmapPageID );
if( needsBumpmap ) { materials->UpdateLightmap( materialSortInfoArray[MSurf_MaterialSortID( surfID )].lightmapPageID, lightmapSize, offsetIntoLightmapPage, &blocklights[0][0][0], &blocklights[1][0][0], &blocklights[2][0][0], &blocklights[3][0][0] ); } else { materials->UpdateLightmap( materialSortInfoArray[MSurf_MaterialSortID( surfID )].lightmapPageID, lightmapSize, offsetIntoLightmapPage, &blocklights[0][0][0], NULL, NULL, NULL ); } } }
unsigned int R_UpdateDlightState( dlight_t *pLights, SurfaceHandle_t surfID, const matrix3x4_t& entityToWorld, bool bOnlyUseLightStyles, bool bLightmap ) { unsigned int dlightMask = 0; // Mark the surface with the particular cached light values...
msurfacelighting_t *pLighting = SurfaceLighting( surfID );
// Retire dlights that are no longer active
pLighting->m_fDLightBits &= r_dlightactive; pLighting->m_nLastComputedFrame = r_framecount;
// Here, it's got the data it needs. So use it!
if ( !bOnlyUseLightStyles ) { // add all the dynamic lights
if( bLightmap && ( pLighting->m_nDLightFrame == r_framecount ) ) { dlightMask = R_ComputeDynamicLightMask( pLights, surfID, pLighting, entityToWorld ); }
if ( !dlightMask || !pLighting->m_fDLightBits ) { pLighting->m_fDLightBits = 0; MSurf_Flags(surfID) &= ~SURFDRAW_HASDLIGHT; } } return dlightMask; }
//-----------------------------------------------------------------------------
// Purpose: Build the blocklights array for a given surface and copy to dest
// Combine and scale multiple lightmaps into the 8.8 format in blocklights
// Input : *psurf - surface to rebuild
// *dest - texture pointer to receive copy in lightmap texture format
// stride - stride of *dest memory
//-----------------------------------------------------------------------------
void R_BuildLightMapGuts( dlight_t *pLights, SurfaceHandle_t surfID, const matrix3x4_t& entityToWorld, unsigned int dlightMask, bool needsBumpmap, bool needsLightmap ) { VPROF_("R_BuildLightMapGuts", 1, VPROF_BUDGETGROUP_DLIGHT_RENDERING, false, 0); int bumpID;
// Lightmap data can be dumped to save memory - this precludes any dynamic lighting on the world
Assert( !host_state.worldbrush->unloadedlightmaps );
// Mark the surface with the particular cached light values...
msurfacelighting_t *pLighting = SurfaceLighting( surfID );
int size = ComputeLightmapSize( surfID ); if (size == 0) return;
bool hasBumpmap = SurfHasBumpedLightmaps( surfID ); bool hasLightmap = SurfHasLightmap( surfID );
// clear to no light
if( needsLightmap ) { // set to full bright if no light data
InitLMSamples( blocklights[0], size, hasLightmap ? 0.0f : 1.0f ); }
if( needsBumpmap ) { // set to full bright if no light data
for( bumpID = 1; bumpID < NUM_BUMP_VECTS + 1; bumpID++ ) { InitLMSamples( blocklights[bumpID], size, hasBumpmap ? 0.0f : 1.0f ); } }
// add all the lightmaps
// Here, it's got the data it needs. So use it!
if( ( hasLightmap && needsLightmap ) || ( hasBumpmap && needsBumpmap ) ) { ComputeLightmapFromLightstyle( pLighting, ( hasLightmap && needsLightmap ), ( hasBumpmap && needsBumpmap ), size, hasBumpmap ); } else if( !hasBumpmap && needsBumpmap && hasLightmap ) { // make something up for the bumped lights if you need them but don't have the data
// if you have a lightmap, use that, otherwise fullbright
ComputeLightmapFromLightstyle( pLighting, true, false, size, hasBumpmap );
for( bumpID = 0; bumpID < ( hasBumpmap ? ( NUM_BUMP_VECTS + 1 ) : 1 ); bumpID++ ) { for (int i=0 ; i<size ; i++) { blocklights[bumpID][i].AsVector3D() = blocklights[0][i].AsVector3D(); } } } else if( needsBumpmap && !hasLightmap ) { // set to full bright if no light data
InitLMSamples( blocklights[1], size, 0.0f ); InitLMSamples( blocklights[2], size, 0.0f ); InitLMSamples( blocklights[3], size, 0.0f ); } else if( !needsBumpmap && !needsLightmap ) { } else if( needsLightmap && !hasLightmap ) { } else { Assert( 0 ); }
// add all the dynamic lights
if ( dlightMask && (needsLightmap || needsBumpmap) ) { R_AddDynamicLights( pLights, surfID, entityToWorld, needsBumpmap, dlightMask ); }
// Update the texture state
UpdateLightmapTextures( surfID, needsBumpmap ); }
void R_BuildLightMap( dlight_t *pLights, ICallQueue *pCallQueue, SurfaceHandle_t surfID, const matrix3x4_t &entityToWorld, bool bOnlyUseLightStyles ) { bool needsBumpmap = SurfNeedsBumpedLightmaps( surfID ); bool needsLightmap = SurfNeedsLightmap( surfID );
if( !needsBumpmap && !needsLightmap ) return; if( materialSortInfoArray ) { Assert( MSurf_MaterialSortID( surfID ) >= 0 && MSurf_MaterialSortID( surfID ) < g_WorldStaticMeshes.Count() ); if (( materialSortInfoArray[MSurf_MaterialSortID( surfID )].lightmapPageID == MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE ) || ( materialSortInfoArray[MSurf_MaterialSortID( surfID )].lightmapPageID == MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE_BUMP ) ) { return; } }
bool bDlightsInLightmap = needsLightmap || needsBumpmap; unsigned int dlightMask = R_UpdateDlightState( pLights, surfID, entityToWorld, bOnlyUseLightStyles, bDlightsInLightmap );
// update the state, but don't render any dlights if only lightstyles requested
if ( bOnlyUseLightStyles ) dlightMask = 0;
if ( !pCallQueue ) { R_BuildLightMapGuts( pLights, surfID, entityToWorld, dlightMask, needsBumpmap, needsLightmap ); } else { pCallQueue->QueueCall( R_BuildLightMapGuts, pLights, surfID, RefToVal( entityToWorld ), dlightMask, needsBumpmap, needsLightmap ); } }
//-----------------------------------------------------------------------------
// Purpose: Save off the average light values, and dump the rest of the lightmap data.
// Can be used to save memory, at the expense of dynamic lights and lightstyles.
//-----------------------------------------------------------------------------
void CacheAndUnloadLightmapData() { Assert( !g_bHunkAllocLightmaps ); if ( g_bHunkAllocLightmaps ) { return; }
worldbrushdata_t *pBrushData = host_state.worldbrush; msurfacelighting_t *pLighting = pBrushData->surfacelighting; int numSurfaces = pBrushData->numsurfaces;
// This will allocate more data than necessary, but only 1-2K max
byte *pDestBase = (byte*)malloc( numSurfaces * MAXLIGHTMAPS * sizeof( ColorRGBExp32 ) ); byte *pDest = pDestBase;
for ( int i = 0; i < numSurfaces; ++i, ++pLighting ) { int nStyleCt = 0; for ( int map = 0 ; map < MAXLIGHTMAPS; ++map ) { if ( pLighting->m_nStyles[map] != 255 ) ++nStyleCt; }
const int nHdrBytes = nStyleCt * sizeof( ColorRGBExp32 ); byte *pHdr = (byte*)pLighting->m_pSamples - nHdrBytes;
// Copy just the 0-4 average color entries
Q_memcpy( pDest, pHdr, nHdrBytes );
// m_pSamples needs to point AFTER the average color data
pDest += nHdrBytes; pLighting->m_pSamples = (ColorRGBExp32*)pDest; }
// Update the lightdata pointer
free( host_state.worldbrush->lightdata ); host_state.worldbrush->lightdata = (ColorRGBExp32*)pDestBase; host_state.worldbrush->unloadedlightmaps = true; }
//sorts the surfaces in place
static void SortSurfacesByLightmapID( SurfaceHandle_t *pToSort, int iSurfaceCount ) { SurfaceHandle_t *pSortTemp = (SurfaceHandle_t *)stackalloc( sizeof( SurfaceHandle_t ) * iSurfaceCount ); //radix sort
for( int radix = 0; radix != 4; ++radix ) { //swap the inputs for the next pass
{ SurfaceHandle_t *pTemp = pToSort; pToSort = pSortTemp; pSortTemp = pTemp; }
int iCounts[256] = { 0 }; int iBitOffset = radix * 8; for( int i = 0; i != iSurfaceCount; ++i ) { uint8 val = (materialSortInfoArray[MSurf_MaterialSortID( pSortTemp[i] )].lightmapPageID >> iBitOffset) & 0xFF; ++iCounts[val]; }
int iOffsetTable[256]; iOffsetTable[0] = 0; for( int i = 0; i != 255; ++i ) { iOffsetTable[i + 1] = iOffsetTable[i] + iCounts[i]; }
for( int i = 0; i != iSurfaceCount; ++i ) { uint8 val = (materialSortInfoArray[MSurf_MaterialSortID( pSortTemp[i] )].lightmapPageID >> iBitOffset) & 0xFF; int iWriteIndex = iOffsetTable[val]; pToSort[iWriteIndex] = pSortTemp[i]; ++iOffsetTable[val]; } } }
void R_RedownloadAllLightmaps() { #ifdef _DEBUG
static bool initializedBlockLights = false; if (!initializedBlockLights) { memset( &blocklights[0][0][0], 0, MAX_LIGHTMAP_DIM_INCLUDING_BORDER * MAX_LIGHTMAP_DIM_INCLUDING_BORDER * (NUM_BUMP_VECTS + 1) * sizeof( Vector ) ); initializedBlockLights = true; } #endif
double st = Sys_FloatTime();
bool bOnlyUseLightStyles = false;
if( r_dynamic.GetInt() == 0 ) { bOnlyUseLightStyles = true; }
// Can't build lightmaps if the source data has been dumped
CMatRenderContextPtr pRenderContext( materials ); ICallQueue *pCallQueue = pRenderContext->GetCallQueue(); if ( !host_state.worldbrush->unloadedlightmaps ) { int iSurfaceCount = host_state.worldbrush->numsurfaces; SurfaceHandle_t *pSortedSurfaces = (SurfaceHandle_t *)stackalloc( sizeof( SurfaceHandle_t ) * iSurfaceCount ); for( int surfaceIndex = 0; surfaceIndex < iSurfaceCount; surfaceIndex++ ) { SurfaceHandle_t surfID = SurfaceHandleFromIndex( surfaceIndex ); pSortedSurfaces[surfaceIndex] = surfID; }
SortSurfacesByLightmapID( pSortedSurfaces, iSurfaceCount ); //sorts in place, so now the array really is sorted
if( pCallQueue ) pCallQueue->QueueCall( materials, &IMaterialSystem::BeginUpdateLightmaps ); else materials->BeginUpdateLightmaps(); matrix3x4_t xform; SetIdentityMatrix(xform); for( int surfaceIndex = 0; surfaceIndex < iSurfaceCount; surfaceIndex++ ) { SurfaceHandle_t surfID = pSortedSurfaces[surfaceIndex];
ASSERT_SURF_VALID( surfID ); R_BuildLightMap( &cl_dlights[0], pCallQueue, surfID, xform, bOnlyUseLightStyles ); }
if( pCallQueue ) pCallQueue->QueueCall( materials, &IMaterialSystem::EndUpdateLightmaps ); else materials->EndUpdateLightmaps();
if ( !g_bHunkAllocLightmaps && r_unloadlightmaps.GetInt() == 1 ) { // Delete the lightmap data from memory
if ( !pCallQueue ) { CacheAndUnloadLightmapData(); } else { pCallQueue->QueueCall( CacheAndUnloadLightmapData ); } } }
float elapsed = ( float )( Sys_FloatTime() - st ) * 1000.0; DevMsg( "R_RedownloadAllLightmaps took %.3f msec!\n", elapsed );
g_RebuildLightmaps = false; }
//-----------------------------------------------------------------------------
// Purpose: flag the lightmaps as needing to be rebuilt (gamma change)
//-----------------------------------------------------------------------------
bool g_RebuildLightmaps = false;
void GL_RebuildLightmaps( void ) { g_RebuildLightmaps = true; }
//-----------------------------------------------------------------------------
// Purpose: Update the in-RAM texture for the given surface's lightmap
// Input : *fa - surface pointer
//-----------------------------------------------------------------------------
#ifdef UPDATE_LIGHTSTYLES_EVERY_FRAME
ConVar mat_updatelightstyleseveryframe( "mat_updatelightstyleseveryframe", "0" ); #endif
void FASTCALL R_RenderDynamicLightmaps ( dlight_t *pLights, ICallQueue *pCallQueue, SurfaceHandle_t surfID, const matrix3x4_t &xform ) { VPROF_BUDGET( "R_RenderDynamicLightmaps", VPROF_BUDGETGROUP_DLIGHT_RENDERING ); ASSERT_SURF_VALID( surfID );
int fSurfFlags = MSurf_Flags( surfID );
if( fSurfFlags & SURFDRAW_NOLIGHT ) return;
// check for lightmap modification
bool bChanged = false; msurfacelighting_t *pLighting = SurfaceLighting( surfID ); if( fSurfFlags & SURFDRAW_HASLIGHTSYTLES ) { #ifdef UPDATE_LIGHTSTYLES_EVERY_FRAME
if( mat_updatelightstyleseveryframe.GetBool() && ( pLighting->m_nStyles[0] != 0 || pLighting->m_nStyles[1] != 255 ) ) { bChanged = true; } #endif
for( int maps = 0; maps < MAXLIGHTMAPS && pLighting->m_nStyles[maps] != 255; maps++ ) { if( d_lightstyleframe[pLighting->m_nStyles[maps]] > pLighting->m_nLastComputedFrame ) { bChanged = true; break; } } }
// was it dynamic this frame (pLighting->m_nDLightFrame == r_framecount)
// or dynamic previously (pLighting->m_fDLightBits)
bool bDLightChanged = ( pLighting->m_nDLightFrame == r_framecount ) || pLighting->m_fDLightBits; bool bOnlyUseLightStyles = false;
if( r_dynamic.GetInt() == 0 ) { bOnlyUseLightStyles = true; bDLightChanged = false; }
if ( bChanged || bDLightChanged ) { R_BuildLightMap( pLights, pCallQueue, surfID, xform, bOnlyUseLightStyles ); } }
|